linux/kernel/time/timer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Kernel internal timers
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
   8 *
   9 *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
  10 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
  11 *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
  12 *              serialize accesses to xtime/lost_ticks).
  13 *                              Copyright (C) 1998  Andrea Arcangeli
  14 *  1999-03-10  Improved NTP compatibility by Ulrich Windl
  15 *  2002-05-31  Move sys_sysinfo here and make its locking sane, Robert Love
  16 *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
  17 *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
  18 *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
  19 */
  20
  21#include <linux/kernel_stat.h>
  22#include <linux/export.h>
  23#include <linux/interrupt.h>
  24#include <linux/percpu.h>
  25#include <linux/init.h>
  26#include <linux/mm.h>
  27#include <linux/swap.h>
  28#include <linux/pid_namespace.h>
  29#include <linux/notifier.h>
  30#include <linux/thread_info.h>
  31#include <linux/time.h>
  32#include <linux/jiffies.h>
  33#include <linux/posix-timers.h>
  34#include <linux/cpu.h>
  35#include <linux/syscalls.h>
  36#include <linux/delay.h>
  37#include <linux/tick.h>
  38#include <linux/kallsyms.h>
  39#include <linux/irq_work.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/sysctl.h>
  42#include <linux/sched/nohz.h>
  43#include <linux/sched/debug.h>
  44#include <linux/slab.h>
  45#include <linux/compat.h>
  46
  47#include <linux/uaccess.h>
  48#include <asm/unistd.h>
  49#include <asm/div64.h>
  50#include <asm/timex.h>
  51#include <asm/io.h>
  52
  53#include "tick-internal.h"
  54
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/timer.h>
  57
  58__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
  59
  60EXPORT_SYMBOL(jiffies_64);
  61
  62/*
  63 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
  64 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
  65 * level has a different granularity.
  66 *
  67 * The level granularity is:            LVL_CLK_DIV ^ lvl
  68 * The level clock frequency is:        HZ / (LVL_CLK_DIV ^ level)
  69 *
  70 * The array level of a newly armed timer depends on the relative expiry
  71 * time. The farther the expiry time is away the higher the array level and
  72 * therefor the granularity becomes.
  73 *
  74 * Contrary to the original timer wheel implementation, which aims for 'exact'
  75 * expiry of the timers, this implementation removes the need for recascading
  76 * the timers into the lower array levels. The previous 'classic' timer wheel
  77 * implementation of the kernel already violated the 'exact' expiry by adding
  78 * slack to the expiry time to provide batched expiration. The granularity
  79 * levels provide implicit batching.
  80 *
  81 * This is an optimization of the original timer wheel implementation for the
  82 * majority of the timer wheel use cases: timeouts. The vast majority of
  83 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
  84 * the timeout expires it indicates that normal operation is disturbed, so it
  85 * does not matter much whether the timeout comes with a slight delay.
  86 *
  87 * The only exception to this are networking timers with a small expiry
  88 * time. They rely on the granularity. Those fit into the first wheel level,
  89 * which has HZ granularity.
  90 *
  91 * We don't have cascading anymore. timers with a expiry time above the
  92 * capacity of the last wheel level are force expired at the maximum timeout
  93 * value of the last wheel level. From data sampling we know that the maximum
  94 * value observed is 5 days (network connection tracking), so this should not
  95 * be an issue.
  96 *
  97 * The currently chosen array constants values are a good compromise between
  98 * array size and granularity.
  99 *
 100 * This results in the following granularity and range levels:
 101 *
 102 * HZ 1000 steps
 103 * Level Offset  Granularity            Range
 104 *  0      0         1 ms                0 ms -         63 ms
 105 *  1     64         8 ms               64 ms -        511 ms
 106 *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
 107 *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
 108 *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
 109 *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
 110 *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
 111 *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
 112 *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
 113 *
 114 * HZ  300
 115 * Level Offset  Granularity            Range
 116 *  0      0         3 ms                0 ms -        210 ms
 117 *  1     64        26 ms              213 ms -       1703 ms (213ms - ~1s)
 118 *  2    128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
 119 *  3    192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
 120 *  4    256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
 121 *  5    320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
 122 *  6    384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
 123 *  7    448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
 124 *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
 125 *
 126 * HZ  250
 127 * Level Offset  Granularity            Range
 128 *  0      0         4 ms                0 ms -        255 ms
 129 *  1     64        32 ms              256 ms -       2047 ms (256ms - ~2s)
 130 *  2    128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
 131 *  3    192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
 132 *  4    256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
 133 *  5    320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
 134 *  6    384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
 135 *  7    448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
 136 *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
 137 *
 138 * HZ  100
 139 * Level Offset  Granularity            Range
 140 *  0      0         10 ms               0 ms -        630 ms
 141 *  1     64         80 ms             640 ms -       5110 ms (640ms - ~5s)
 142 *  2    128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
 143 *  3    192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
 144 *  4    256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
 145 *  5    320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
 146 *  6    384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
 147 *  7    448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
 148 */
 149
 150/* Clock divisor for the next level */
 151#define LVL_CLK_SHIFT   3
 152#define LVL_CLK_DIV     (1UL << LVL_CLK_SHIFT)
 153#define LVL_CLK_MASK    (LVL_CLK_DIV - 1)
 154#define LVL_SHIFT(n)    ((n) * LVL_CLK_SHIFT)
 155#define LVL_GRAN(n)     (1UL << LVL_SHIFT(n))
 156
 157/*
 158 * The time start value for each level to select the bucket at enqueue
 159 * time.
 160 */
 161#define LVL_START(n)    ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
 162
 163/* Size of each clock level */
 164#define LVL_BITS        6
 165#define LVL_SIZE        (1UL << LVL_BITS)
 166#define LVL_MASK        (LVL_SIZE - 1)
 167#define LVL_OFFS(n)     ((n) * LVL_SIZE)
 168
 169/* Level depth */
 170#if HZ > 100
 171# define LVL_DEPTH      9
 172# else
 173# define LVL_DEPTH      8
 174#endif
 175
 176/* The cutoff (max. capacity of the wheel) */
 177#define WHEEL_TIMEOUT_CUTOFF    (LVL_START(LVL_DEPTH))
 178#define WHEEL_TIMEOUT_MAX       (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
 179
 180/*
 181 * The resulting wheel size. If NOHZ is configured we allocate two
 182 * wheels so we have a separate storage for the deferrable timers.
 183 */
 184#define WHEEL_SIZE      (LVL_SIZE * LVL_DEPTH)
 185
 186#ifdef CONFIG_NO_HZ_COMMON
 187# define NR_BASES       2
 188# define BASE_STD       0
 189# define BASE_DEF       1
 190#else
 191# define NR_BASES       1
 192# define BASE_STD       0
 193# define BASE_DEF       0
 194#endif
 195
 196struct timer_base {
 197        raw_spinlock_t          lock;
 198        struct timer_list       *running_timer;
 199        unsigned long           clk;
 200        unsigned long           next_expiry;
 201        unsigned int            cpu;
 202        bool                    is_idle;
 203        bool                    must_forward_clk;
 204        DECLARE_BITMAP(pending_map, WHEEL_SIZE);
 205        struct hlist_head       vectors[WHEEL_SIZE];
 206} ____cacheline_aligned;
 207
 208static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
 209
 210#ifdef CONFIG_NO_HZ_COMMON
 211
 212static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
 213static DEFINE_MUTEX(timer_keys_mutex);
 214
 215static void timer_update_keys(struct work_struct *work);
 216static DECLARE_WORK(timer_update_work, timer_update_keys);
 217
 218#ifdef CONFIG_SMP
 219unsigned int sysctl_timer_migration = 1;
 220
 221DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
 222
 223static void timers_update_migration(void)
 224{
 225        if (sysctl_timer_migration && tick_nohz_active)
 226                static_branch_enable(&timers_migration_enabled);
 227        else
 228                static_branch_disable(&timers_migration_enabled);
 229}
 230#else
 231static inline void timers_update_migration(void) { }
 232#endif /* !CONFIG_SMP */
 233
 234static void timer_update_keys(struct work_struct *work)
 235{
 236        mutex_lock(&timer_keys_mutex);
 237        timers_update_migration();
 238        static_branch_enable(&timers_nohz_active);
 239        mutex_unlock(&timer_keys_mutex);
 240}
 241
 242void timers_update_nohz(void)
 243{
 244        schedule_work(&timer_update_work);
 245}
 246
 247int timer_migration_handler(struct ctl_table *table, int write,
 248                            void __user *buffer, size_t *lenp,
 249                            loff_t *ppos)
 250{
 251        int ret;
 252
 253        mutex_lock(&timer_keys_mutex);
 254        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 255        if (!ret && write)
 256                timers_update_migration();
 257        mutex_unlock(&timer_keys_mutex);
 258        return ret;
 259}
 260
 261static inline bool is_timers_nohz_active(void)
 262{
 263        return static_branch_unlikely(&timers_nohz_active);
 264}
 265#else
 266static inline bool is_timers_nohz_active(void) { return false; }
 267#endif /* NO_HZ_COMMON */
 268
 269static unsigned long round_jiffies_common(unsigned long j, int cpu,
 270                bool force_up)
 271{
 272        int rem;
 273        unsigned long original = j;
 274
 275        /*
 276         * We don't want all cpus firing their timers at once hitting the
 277         * same lock or cachelines, so we skew each extra cpu with an extra
 278         * 3 jiffies. This 3 jiffies came originally from the mm/ code which
 279         * already did this.
 280         * The skew is done by adding 3*cpunr, then round, then subtract this
 281         * extra offset again.
 282         */
 283        j += cpu * 3;
 284
 285        rem = j % HZ;
 286
 287        /*
 288         * If the target jiffie is just after a whole second (which can happen
 289         * due to delays of the timer irq, long irq off times etc etc) then
 290         * we should round down to the whole second, not up. Use 1/4th second
 291         * as cutoff for this rounding as an extreme upper bound for this.
 292         * But never round down if @force_up is set.
 293         */
 294        if (rem < HZ/4 && !force_up) /* round down */
 295                j = j - rem;
 296        else /* round up */
 297                j = j - rem + HZ;
 298
 299        /* now that we have rounded, subtract the extra skew again */
 300        j -= cpu * 3;
 301
 302        /*
 303         * Make sure j is still in the future. Otherwise return the
 304         * unmodified value.
 305         */
 306        return time_is_after_jiffies(j) ? j : original;
 307}
 308
 309/**
 310 * __round_jiffies - function to round jiffies to a full second
 311 * @j: the time in (absolute) jiffies that should be rounded
 312 * @cpu: the processor number on which the timeout will happen
 313 *
 314 * __round_jiffies() rounds an absolute time in the future (in jiffies)
 315 * up or down to (approximately) full seconds. This is useful for timers
 316 * for which the exact time they fire does not matter too much, as long as
 317 * they fire approximately every X seconds.
 318 *
 319 * By rounding these timers to whole seconds, all such timers will fire
 320 * at the same time, rather than at various times spread out. The goal
 321 * of this is to have the CPU wake up less, which saves power.
 322 *
 323 * The exact rounding is skewed for each processor to avoid all
 324 * processors firing at the exact same time, which could lead
 325 * to lock contention or spurious cache line bouncing.
 326 *
 327 * The return value is the rounded version of the @j parameter.
 328 */
 329unsigned long __round_jiffies(unsigned long j, int cpu)
 330{
 331        return round_jiffies_common(j, cpu, false);
 332}
 333EXPORT_SYMBOL_GPL(__round_jiffies);
 334
 335/**
 336 * __round_jiffies_relative - function to round jiffies to a full second
 337 * @j: the time in (relative) jiffies that should be rounded
 338 * @cpu: the processor number on which the timeout will happen
 339 *
 340 * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 341 * up or down to (approximately) full seconds. This is useful for timers
 342 * for which the exact time they fire does not matter too much, as long as
 343 * they fire approximately every X seconds.
 344 *
 345 * By rounding these timers to whole seconds, all such timers will fire
 346 * at the same time, rather than at various times spread out. The goal
 347 * of this is to have the CPU wake up less, which saves power.
 348 *
 349 * The exact rounding is skewed for each processor to avoid all
 350 * processors firing at the exact same time, which could lead
 351 * to lock contention or spurious cache line bouncing.
 352 *
 353 * The return value is the rounded version of the @j parameter.
 354 */
 355unsigned long __round_jiffies_relative(unsigned long j, int cpu)
 356{
 357        unsigned long j0 = jiffies;
 358
 359        /* Use j0 because jiffies might change while we run */
 360        return round_jiffies_common(j + j0, cpu, false) - j0;
 361}
 362EXPORT_SYMBOL_GPL(__round_jiffies_relative);
 363
 364/**
 365 * round_jiffies - function to round jiffies to a full second
 366 * @j: the time in (absolute) jiffies that should be rounded
 367 *
 368 * round_jiffies() rounds an absolute time in the future (in jiffies)
 369 * up or down to (approximately) full seconds. This is useful for timers
 370 * for which the exact time they fire does not matter too much, as long as
 371 * they fire approximately every X seconds.
 372 *
 373 * By rounding these timers to whole seconds, all such timers will fire
 374 * at the same time, rather than at various times spread out. The goal
 375 * of this is to have the CPU wake up less, which saves power.
 376 *
 377 * The return value is the rounded version of the @j parameter.
 378 */
 379unsigned long round_jiffies(unsigned long j)
 380{
 381        return round_jiffies_common(j, raw_smp_processor_id(), false);
 382}
 383EXPORT_SYMBOL_GPL(round_jiffies);
 384
 385/**
 386 * round_jiffies_relative - function to round jiffies to a full second
 387 * @j: the time in (relative) jiffies that should be rounded
 388 *
 389 * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
 390 * up or down to (approximately) full seconds. This is useful for timers
 391 * for which the exact time they fire does not matter too much, as long as
 392 * they fire approximately every X seconds.
 393 *
 394 * By rounding these timers to whole seconds, all such timers will fire
 395 * at the same time, rather than at various times spread out. The goal
 396 * of this is to have the CPU wake up less, which saves power.
 397 *
 398 * The return value is the rounded version of the @j parameter.
 399 */
 400unsigned long round_jiffies_relative(unsigned long j)
 401{
 402        return __round_jiffies_relative(j, raw_smp_processor_id());
 403}
 404EXPORT_SYMBOL_GPL(round_jiffies_relative);
 405
 406/**
 407 * __round_jiffies_up - function to round jiffies up to a full second
 408 * @j: the time in (absolute) jiffies that should be rounded
 409 * @cpu: the processor number on which the timeout will happen
 410 *
 411 * This is the same as __round_jiffies() except that it will never
 412 * round down.  This is useful for timeouts for which the exact time
 413 * of firing does not matter too much, as long as they don't fire too
 414 * early.
 415 */
 416unsigned long __round_jiffies_up(unsigned long j, int cpu)
 417{
 418        return round_jiffies_common(j, cpu, true);
 419}
 420EXPORT_SYMBOL_GPL(__round_jiffies_up);
 421
 422/**
 423 * __round_jiffies_up_relative - function to round jiffies up to a full second
 424 * @j: the time in (relative) jiffies that should be rounded
 425 * @cpu: the processor number on which the timeout will happen
 426 *
 427 * This is the same as __round_jiffies_relative() except that it will never
 428 * round down.  This is useful for timeouts for which the exact time
 429 * of firing does not matter too much, as long as they don't fire too
 430 * early.
 431 */
 432unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
 433{
 434        unsigned long j0 = jiffies;
 435
 436        /* Use j0 because jiffies might change while we run */
 437        return round_jiffies_common(j + j0, cpu, true) - j0;
 438}
 439EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
 440
 441/**
 442 * round_jiffies_up - function to round jiffies up to a full second
 443 * @j: the time in (absolute) jiffies that should be rounded
 444 *
 445 * This is the same as round_jiffies() except that it will never
 446 * round down.  This is useful for timeouts for which the exact time
 447 * of firing does not matter too much, as long as they don't fire too
 448 * early.
 449 */
 450unsigned long round_jiffies_up(unsigned long j)
 451{
 452        return round_jiffies_common(j, raw_smp_processor_id(), true);
 453}
 454EXPORT_SYMBOL_GPL(round_jiffies_up);
 455
 456/**
 457 * round_jiffies_up_relative - function to round jiffies up to a full second
 458 * @j: the time in (relative) jiffies that should be rounded
 459 *
 460 * This is the same as round_jiffies_relative() except that it will never
 461 * round down.  This is useful for timeouts for which the exact time
 462 * of firing does not matter too much, as long as they don't fire too
 463 * early.
 464 */
 465unsigned long round_jiffies_up_relative(unsigned long j)
 466{
 467        return __round_jiffies_up_relative(j, raw_smp_processor_id());
 468}
 469EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
 470
 471
 472static inline unsigned int timer_get_idx(struct timer_list *timer)
 473{
 474        return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
 475}
 476
 477static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
 478{
 479        timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
 480                        idx << TIMER_ARRAYSHIFT;
 481}
 482
 483/*
 484 * Helper function to calculate the array index for a given expiry
 485 * time.
 486 */
 487static inline unsigned calc_index(unsigned expires, unsigned lvl)
 488{
 489        expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
 490        return LVL_OFFS(lvl) + (expires & LVL_MASK);
 491}
 492
 493static int calc_wheel_index(unsigned long expires, unsigned long clk)
 494{
 495        unsigned long delta = expires - clk;
 496        unsigned int idx;
 497
 498        if (delta < LVL_START(1)) {
 499                idx = calc_index(expires, 0);
 500        } else if (delta < LVL_START(2)) {
 501                idx = calc_index(expires, 1);
 502        } else if (delta < LVL_START(3)) {
 503                idx = calc_index(expires, 2);
 504        } else if (delta < LVL_START(4)) {
 505                idx = calc_index(expires, 3);
 506        } else if (delta < LVL_START(5)) {
 507                idx = calc_index(expires, 4);
 508        } else if (delta < LVL_START(6)) {
 509                idx = calc_index(expires, 5);
 510        } else if (delta < LVL_START(7)) {
 511                idx = calc_index(expires, 6);
 512        } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
 513                idx = calc_index(expires, 7);
 514        } else if ((long) delta < 0) {
 515                idx = clk & LVL_MASK;
 516        } else {
 517                /*
 518                 * Force expire obscene large timeouts to expire at the
 519                 * capacity limit of the wheel.
 520                 */
 521                if (expires >= WHEEL_TIMEOUT_CUTOFF)
 522                        expires = WHEEL_TIMEOUT_MAX;
 523
 524                idx = calc_index(expires, LVL_DEPTH - 1);
 525        }
 526        return idx;
 527}
 528
 529/*
 530 * Enqueue the timer into the hash bucket, mark it pending in
 531 * the bitmap and store the index in the timer flags.
 532 */
 533static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
 534                          unsigned int idx)
 535{
 536        hlist_add_head(&timer->entry, base->vectors + idx);
 537        __set_bit(idx, base->pending_map);
 538        timer_set_idx(timer, idx);
 539
 540        trace_timer_start(timer, timer->expires, timer->flags);
 541}
 542
 543static void
 544__internal_add_timer(struct timer_base *base, struct timer_list *timer)
 545{
 546        unsigned int idx;
 547
 548        idx = calc_wheel_index(timer->expires, base->clk);
 549        enqueue_timer(base, timer, idx);
 550}
 551
 552static void
 553trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
 554{
 555        if (!is_timers_nohz_active())
 556                return;
 557
 558        /*
 559         * TODO: This wants some optimizing similar to the code below, but we
 560         * will do that when we switch from push to pull for deferrable timers.
 561         */
 562        if (timer->flags & TIMER_DEFERRABLE) {
 563                if (tick_nohz_full_cpu(base->cpu))
 564                        wake_up_nohz_cpu(base->cpu);
 565                return;
 566        }
 567
 568        /*
 569         * We might have to IPI the remote CPU if the base is idle and the
 570         * timer is not deferrable. If the other CPU is on the way to idle
 571         * then it can't set base->is_idle as we hold the base lock:
 572         */
 573        if (!base->is_idle)
 574                return;
 575
 576        /* Check whether this is the new first expiring timer: */
 577        if (time_after_eq(timer->expires, base->next_expiry))
 578                return;
 579
 580        /*
 581         * Set the next expiry time and kick the CPU so it can reevaluate the
 582         * wheel:
 583         */
 584        base->next_expiry = timer->expires;
 585        wake_up_nohz_cpu(base->cpu);
 586}
 587
 588static void
 589internal_add_timer(struct timer_base *base, struct timer_list *timer)
 590{
 591        __internal_add_timer(base, timer);
 592        trigger_dyntick_cpu(base, timer);
 593}
 594
 595#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
 596
 597static struct debug_obj_descr timer_debug_descr;
 598
 599static void *timer_debug_hint(void *addr)
 600{
 601        return ((struct timer_list *) addr)->function;
 602}
 603
 604static bool timer_is_static_object(void *addr)
 605{
 606        struct timer_list *timer = addr;
 607
 608        return (timer->entry.pprev == NULL &&
 609                timer->entry.next == TIMER_ENTRY_STATIC);
 610}
 611
 612/*
 613 * fixup_init is called when:
 614 * - an active object is initialized
 615 */
 616static bool timer_fixup_init(void *addr, enum debug_obj_state state)
 617{
 618        struct timer_list *timer = addr;
 619
 620        switch (state) {
 621        case ODEBUG_STATE_ACTIVE:
 622                del_timer_sync(timer);
 623                debug_object_init(timer, &timer_debug_descr);
 624                return true;
 625        default:
 626                return false;
 627        }
 628}
 629
 630/* Stub timer callback for improperly used timers. */
 631static void stub_timer(struct timer_list *unused)
 632{
 633        WARN_ON(1);
 634}
 635
 636/*
 637 * fixup_activate is called when:
 638 * - an active object is activated
 639 * - an unknown non-static object is activated
 640 */
 641static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
 642{
 643        struct timer_list *timer = addr;
 644
 645        switch (state) {
 646        case ODEBUG_STATE_NOTAVAILABLE:
 647                timer_setup(timer, stub_timer, 0);
 648                return true;
 649
 650        case ODEBUG_STATE_ACTIVE:
 651                WARN_ON(1);
 652                /* fall through */
 653        default:
 654                return false;
 655        }
 656}
 657
 658/*
 659 * fixup_free is called when:
 660 * - an active object is freed
 661 */
 662static bool timer_fixup_free(void *addr, enum debug_obj_state state)
 663{
 664        struct timer_list *timer = addr;
 665
 666        switch (state) {
 667        case ODEBUG_STATE_ACTIVE:
 668                del_timer_sync(timer);
 669                debug_object_free(timer, &timer_debug_descr);
 670                return true;
 671        default:
 672                return false;
 673        }
 674}
 675
 676/*
 677 * fixup_assert_init is called when:
 678 * - an untracked/uninit-ed object is found
 679 */
 680static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
 681{
 682        struct timer_list *timer = addr;
 683
 684        switch (state) {
 685        case ODEBUG_STATE_NOTAVAILABLE:
 686                timer_setup(timer, stub_timer, 0);
 687                return true;
 688        default:
 689                return false;
 690        }
 691}
 692
 693static struct debug_obj_descr timer_debug_descr = {
 694        .name                   = "timer_list",
 695        .debug_hint             = timer_debug_hint,
 696        .is_static_object       = timer_is_static_object,
 697        .fixup_init             = timer_fixup_init,
 698        .fixup_activate         = timer_fixup_activate,
 699        .fixup_free             = timer_fixup_free,
 700        .fixup_assert_init      = timer_fixup_assert_init,
 701};
 702
 703static inline void debug_timer_init(struct timer_list *timer)
 704{
 705        debug_object_init(timer, &timer_debug_descr);
 706}
 707
 708static inline void debug_timer_activate(struct timer_list *timer)
 709{
 710        debug_object_activate(timer, &timer_debug_descr);
 711}
 712
 713static inline void debug_timer_deactivate(struct timer_list *timer)
 714{
 715        debug_object_deactivate(timer, &timer_debug_descr);
 716}
 717
 718static inline void debug_timer_free(struct timer_list *timer)
 719{
 720        debug_object_free(timer, &timer_debug_descr);
 721}
 722
 723static inline void debug_timer_assert_init(struct timer_list *timer)
 724{
 725        debug_object_assert_init(timer, &timer_debug_descr);
 726}
 727
 728static void do_init_timer(struct timer_list *timer,
 729                          void (*func)(struct timer_list *),
 730                          unsigned int flags,
 731                          const char *name, struct lock_class_key *key);
 732
 733void init_timer_on_stack_key(struct timer_list *timer,
 734                             void (*func)(struct timer_list *),
 735                             unsigned int flags,
 736                             const char *name, struct lock_class_key *key)
 737{
 738        debug_object_init_on_stack(timer, &timer_debug_descr);
 739        do_init_timer(timer, func, flags, name, key);
 740}
 741EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
 742
 743void destroy_timer_on_stack(struct timer_list *timer)
 744{
 745        debug_object_free(timer, &timer_debug_descr);
 746}
 747EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
 748
 749#else
 750static inline void debug_timer_init(struct timer_list *timer) { }
 751static inline void debug_timer_activate(struct timer_list *timer) { }
 752static inline void debug_timer_deactivate(struct timer_list *timer) { }
 753static inline void debug_timer_assert_init(struct timer_list *timer) { }
 754#endif
 755
 756static inline void debug_init(struct timer_list *timer)
 757{
 758        debug_timer_init(timer);
 759        trace_timer_init(timer);
 760}
 761
 762static inline void debug_deactivate(struct timer_list *timer)
 763{
 764        debug_timer_deactivate(timer);
 765        trace_timer_cancel(timer);
 766}
 767
 768static inline void debug_assert_init(struct timer_list *timer)
 769{
 770        debug_timer_assert_init(timer);
 771}
 772
 773static void do_init_timer(struct timer_list *timer,
 774                          void (*func)(struct timer_list *),
 775                          unsigned int flags,
 776                          const char *name, struct lock_class_key *key)
 777{
 778        timer->entry.pprev = NULL;
 779        timer->function = func;
 780        timer->flags = flags | raw_smp_processor_id();
 781        lockdep_init_map(&timer->lockdep_map, name, key, 0);
 782}
 783
 784/**
 785 * init_timer_key - initialize a timer
 786 * @timer: the timer to be initialized
 787 * @func: timer callback function
 788 * @flags: timer flags
 789 * @name: name of the timer
 790 * @key: lockdep class key of the fake lock used for tracking timer
 791 *       sync lock dependencies
 792 *
 793 * init_timer_key() must be done to a timer prior calling *any* of the
 794 * other timer functions.
 795 */
 796void init_timer_key(struct timer_list *timer,
 797                    void (*func)(struct timer_list *), unsigned int flags,
 798                    const char *name, struct lock_class_key *key)
 799{
 800        debug_init(timer);
 801        do_init_timer(timer, func, flags, name, key);
 802}
 803EXPORT_SYMBOL(init_timer_key);
 804
 805static inline void detach_timer(struct timer_list *timer, bool clear_pending)
 806{
 807        struct hlist_node *entry = &timer->entry;
 808
 809        debug_deactivate(timer);
 810
 811        __hlist_del(entry);
 812        if (clear_pending)
 813                entry->pprev = NULL;
 814        entry->next = LIST_POISON2;
 815}
 816
 817static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
 818                             bool clear_pending)
 819{
 820        unsigned idx = timer_get_idx(timer);
 821
 822        if (!timer_pending(timer))
 823                return 0;
 824
 825        if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
 826                __clear_bit(idx, base->pending_map);
 827
 828        detach_timer(timer, clear_pending);
 829        return 1;
 830}
 831
 832static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
 833{
 834        struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
 835
 836        /*
 837         * If the timer is deferrable and NO_HZ_COMMON is set then we need
 838         * to use the deferrable base.
 839         */
 840        if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 841                base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
 842        return base;
 843}
 844
 845static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
 846{
 847        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
 848
 849        /*
 850         * If the timer is deferrable and NO_HZ_COMMON is set then we need
 851         * to use the deferrable base.
 852         */
 853        if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
 854                base = this_cpu_ptr(&timer_bases[BASE_DEF]);
 855        return base;
 856}
 857
 858static inline struct timer_base *get_timer_base(u32 tflags)
 859{
 860        return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
 861}
 862
 863static inline struct timer_base *
 864get_target_base(struct timer_base *base, unsigned tflags)
 865{
 866#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
 867        if (static_branch_likely(&timers_migration_enabled) &&
 868            !(tflags & TIMER_PINNED))
 869                return get_timer_cpu_base(tflags, get_nohz_timer_target());
 870#endif
 871        return get_timer_this_cpu_base(tflags);
 872}
 873
 874static inline void forward_timer_base(struct timer_base *base)
 875{
 876#ifdef CONFIG_NO_HZ_COMMON
 877        unsigned long jnow;
 878
 879        /*
 880         * We only forward the base when we are idle or have just come out of
 881         * idle (must_forward_clk logic), and have a delta between base clock
 882         * and jiffies. In the common case, run_timers will take care of it.
 883         */
 884        if (likely(!base->must_forward_clk))
 885                return;
 886
 887        jnow = READ_ONCE(jiffies);
 888        base->must_forward_clk = base->is_idle;
 889        if ((long)(jnow - base->clk) < 2)
 890                return;
 891
 892        /*
 893         * If the next expiry value is > jiffies, then we fast forward to
 894         * jiffies otherwise we forward to the next expiry value.
 895         */
 896        if (time_after(base->next_expiry, jnow))
 897                base->clk = jnow;
 898        else
 899                base->clk = base->next_expiry;
 900#endif
 901}
 902
 903
 904/*
 905 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
 906 * that all timers which are tied to this base are locked, and the base itself
 907 * is locked too.
 908 *
 909 * So __run_timers/migrate_timers can safely modify all timers which could
 910 * be found in the base->vectors array.
 911 *
 912 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
 913 * to wait until the migration is done.
 914 */
 915static struct timer_base *lock_timer_base(struct timer_list *timer,
 916                                          unsigned long *flags)
 917        __acquires(timer->base->lock)
 918{
 919        for (;;) {
 920                struct timer_base *base;
 921                u32 tf;
 922
 923                /*
 924                 * We need to use READ_ONCE() here, otherwise the compiler
 925                 * might re-read @tf between the check for TIMER_MIGRATING
 926                 * and spin_lock().
 927                 */
 928                tf = READ_ONCE(timer->flags);
 929
 930                if (!(tf & TIMER_MIGRATING)) {
 931                        base = get_timer_base(tf);
 932                        raw_spin_lock_irqsave(&base->lock, *flags);
 933                        if (timer->flags == tf)
 934                                return base;
 935                        raw_spin_unlock_irqrestore(&base->lock, *flags);
 936                }
 937                cpu_relax();
 938        }
 939}
 940
 941#define MOD_TIMER_PENDING_ONLY          0x01
 942#define MOD_TIMER_REDUCE                0x02
 943
 944static inline int
 945__mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
 946{
 947        struct timer_base *base, *new_base;
 948        unsigned int idx = UINT_MAX;
 949        unsigned long clk = 0, flags;
 950        int ret = 0;
 951
 952        BUG_ON(!timer->function);
 953
 954        /*
 955         * This is a common optimization triggered by the networking code - if
 956         * the timer is re-modified to have the same timeout or ends up in the
 957         * same array bucket then just return:
 958         */
 959        if (timer_pending(timer)) {
 960                /*
 961                 * The downside of this optimization is that it can result in
 962                 * larger granularity than you would get from adding a new
 963                 * timer with this expiry.
 964                 */
 965                long diff = timer->expires - expires;
 966
 967                if (!diff)
 968                        return 1;
 969                if (options & MOD_TIMER_REDUCE && diff <= 0)
 970                        return 1;
 971
 972                /*
 973                 * We lock timer base and calculate the bucket index right
 974                 * here. If the timer ends up in the same bucket, then we
 975                 * just update the expiry time and avoid the whole
 976                 * dequeue/enqueue dance.
 977                 */
 978                base = lock_timer_base(timer, &flags);
 979                forward_timer_base(base);
 980
 981                if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
 982                    time_before_eq(timer->expires, expires)) {
 983                        ret = 1;
 984                        goto out_unlock;
 985                }
 986
 987                clk = base->clk;
 988                idx = calc_wheel_index(expires, clk);
 989
 990                /*
 991                 * Retrieve and compare the array index of the pending
 992                 * timer. If it matches set the expiry to the new value so a
 993                 * subsequent call will exit in the expires check above.
 994                 */
 995                if (idx == timer_get_idx(timer)) {
 996                        if (!(options & MOD_TIMER_REDUCE))
 997                                timer->expires = expires;
 998                        else if (time_after(timer->expires, expires))
 999                                timer->expires = expires;
1000                        ret = 1;
1001                        goto out_unlock;
1002                }
1003        } else {
1004                base = lock_timer_base(timer, &flags);
1005                forward_timer_base(base);
1006        }
1007
1008        ret = detach_if_pending(timer, base, false);
1009        if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1010                goto out_unlock;
1011
1012        new_base = get_target_base(base, timer->flags);
1013
1014        if (base != new_base) {
1015                /*
1016                 * We are trying to schedule the timer on the new base.
1017                 * However we can't change timer's base while it is running,
1018                 * otherwise del_timer_sync() can't detect that the timer's
1019                 * handler yet has not finished. This also guarantees that the
1020                 * timer is serialized wrt itself.
1021                 */
1022                if (likely(base->running_timer != timer)) {
1023                        /* See the comment in lock_timer_base() */
1024                        timer->flags |= TIMER_MIGRATING;
1025
1026                        raw_spin_unlock(&base->lock);
1027                        base = new_base;
1028                        raw_spin_lock(&base->lock);
1029                        WRITE_ONCE(timer->flags,
1030                                   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1031                        forward_timer_base(base);
1032                }
1033        }
1034
1035        debug_timer_activate(timer);
1036
1037        timer->expires = expires;
1038        /*
1039         * If 'idx' was calculated above and the base time did not advance
1040         * between calculating 'idx' and possibly switching the base, only
1041         * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1042         * we need to (re)calculate the wheel index via
1043         * internal_add_timer().
1044         */
1045        if (idx != UINT_MAX && clk == base->clk) {
1046                enqueue_timer(base, timer, idx);
1047                trigger_dyntick_cpu(base, timer);
1048        } else {
1049                internal_add_timer(base, timer);
1050        }
1051
1052out_unlock:
1053        raw_spin_unlock_irqrestore(&base->lock, flags);
1054
1055        return ret;
1056}
1057
1058/**
1059 * mod_timer_pending - modify a pending timer's timeout
1060 * @timer: the pending timer to be modified
1061 * @expires: new timeout in jiffies
1062 *
1063 * mod_timer_pending() is the same for pending timers as mod_timer(),
1064 * but will not re-activate and modify already deleted timers.
1065 *
1066 * It is useful for unserialized use of timers.
1067 */
1068int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1069{
1070        return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1071}
1072EXPORT_SYMBOL(mod_timer_pending);
1073
1074/**
1075 * mod_timer - modify a timer's timeout
1076 * @timer: the timer to be modified
1077 * @expires: new timeout in jiffies
1078 *
1079 * mod_timer() is a more efficient way to update the expire field of an
1080 * active timer (if the timer is inactive it will be activated)
1081 *
1082 * mod_timer(timer, expires) is equivalent to:
1083 *
1084 *     del_timer(timer); timer->expires = expires; add_timer(timer);
1085 *
1086 * Note that if there are multiple unserialized concurrent users of the
1087 * same timer, then mod_timer() is the only safe way to modify the timeout,
1088 * since add_timer() cannot modify an already running timer.
1089 *
1090 * The function returns whether it has modified a pending timer or not.
1091 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1092 * active timer returns 1.)
1093 */
1094int mod_timer(struct timer_list *timer, unsigned long expires)
1095{
1096        return __mod_timer(timer, expires, 0);
1097}
1098EXPORT_SYMBOL(mod_timer);
1099
1100/**
1101 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1102 * @timer:      The timer to be modified
1103 * @expires:    New timeout in jiffies
1104 *
1105 * timer_reduce() is very similar to mod_timer(), except that it will only
1106 * modify a running timer if that would reduce the expiration time (it will
1107 * start a timer that isn't running).
1108 */
1109int timer_reduce(struct timer_list *timer, unsigned long expires)
1110{
1111        return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1112}
1113EXPORT_SYMBOL(timer_reduce);
1114
1115/**
1116 * add_timer - start a timer
1117 * @timer: the timer to be added
1118 *
1119 * The kernel will do a ->function(@timer) callback from the
1120 * timer interrupt at the ->expires point in the future. The
1121 * current time is 'jiffies'.
1122 *
1123 * The timer's ->expires, ->function fields must be set prior calling this
1124 * function.
1125 *
1126 * Timers with an ->expires field in the past will be executed in the next
1127 * timer tick.
1128 */
1129void add_timer(struct timer_list *timer)
1130{
1131        BUG_ON(timer_pending(timer));
1132        mod_timer(timer, timer->expires);
1133}
1134EXPORT_SYMBOL(add_timer);
1135
1136/**
1137 * add_timer_on - start a timer on a particular CPU
1138 * @timer: the timer to be added
1139 * @cpu: the CPU to start it on
1140 *
1141 * This is not very scalable on SMP. Double adds are not possible.
1142 */
1143void add_timer_on(struct timer_list *timer, int cpu)
1144{
1145        struct timer_base *new_base, *base;
1146        unsigned long flags;
1147
1148        BUG_ON(timer_pending(timer) || !timer->function);
1149
1150        new_base = get_timer_cpu_base(timer->flags, cpu);
1151
1152        /*
1153         * If @timer was on a different CPU, it should be migrated with the
1154         * old base locked to prevent other operations proceeding with the
1155         * wrong base locked.  See lock_timer_base().
1156         */
1157        base = lock_timer_base(timer, &flags);
1158        if (base != new_base) {
1159                timer->flags |= TIMER_MIGRATING;
1160
1161                raw_spin_unlock(&base->lock);
1162                base = new_base;
1163                raw_spin_lock(&base->lock);
1164                WRITE_ONCE(timer->flags,
1165                           (timer->flags & ~TIMER_BASEMASK) | cpu);
1166        }
1167        forward_timer_base(base);
1168
1169        debug_timer_activate(timer);
1170        internal_add_timer(base, timer);
1171        raw_spin_unlock_irqrestore(&base->lock, flags);
1172}
1173EXPORT_SYMBOL_GPL(add_timer_on);
1174
1175/**
1176 * del_timer - deactivate a timer.
1177 * @timer: the timer to be deactivated
1178 *
1179 * del_timer() deactivates a timer - this works on both active and inactive
1180 * timers.
1181 *
1182 * The function returns whether it has deactivated a pending timer or not.
1183 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1184 * active timer returns 1.)
1185 */
1186int del_timer(struct timer_list *timer)
1187{
1188        struct timer_base *base;
1189        unsigned long flags;
1190        int ret = 0;
1191
1192        debug_assert_init(timer);
1193
1194        if (timer_pending(timer)) {
1195                base = lock_timer_base(timer, &flags);
1196                ret = detach_if_pending(timer, base, true);
1197                raw_spin_unlock_irqrestore(&base->lock, flags);
1198        }
1199
1200        return ret;
1201}
1202EXPORT_SYMBOL(del_timer);
1203
1204/**
1205 * try_to_del_timer_sync - Try to deactivate a timer
1206 * @timer: timer to delete
1207 *
1208 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1209 * exit the timer is not queued and the handler is not running on any CPU.
1210 */
1211int try_to_del_timer_sync(struct timer_list *timer)
1212{
1213        struct timer_base *base;
1214        unsigned long flags;
1215        int ret = -1;
1216
1217        debug_assert_init(timer);
1218
1219        base = lock_timer_base(timer, &flags);
1220
1221        if (base->running_timer != timer)
1222                ret = detach_if_pending(timer, base, true);
1223
1224        raw_spin_unlock_irqrestore(&base->lock, flags);
1225
1226        return ret;
1227}
1228EXPORT_SYMBOL(try_to_del_timer_sync);
1229
1230#ifdef CONFIG_SMP
1231/**
1232 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1233 * @timer: the timer to be deactivated
1234 *
1235 * This function only differs from del_timer() on SMP: besides deactivating
1236 * the timer it also makes sure the handler has finished executing on other
1237 * CPUs.
1238 *
1239 * Synchronization rules: Callers must prevent restarting of the timer,
1240 * otherwise this function is meaningless. It must not be called from
1241 * interrupt contexts unless the timer is an irqsafe one. The caller must
1242 * not hold locks which would prevent completion of the timer's
1243 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1244 * timer is not queued and the handler is not running on any CPU.
1245 *
1246 * Note: For !irqsafe timers, you must not hold locks that are held in
1247 *   interrupt context while calling this function. Even if the lock has
1248 *   nothing to do with the timer in question.  Here's why::
1249 *
1250 *    CPU0                             CPU1
1251 *    ----                             ----
1252 *                                     <SOFTIRQ>
1253 *                                       call_timer_fn();
1254 *                                       base->running_timer = mytimer;
1255 *    spin_lock_irq(somelock);
1256 *                                     <IRQ>
1257 *                                        spin_lock(somelock);
1258 *    del_timer_sync(mytimer);
1259 *    while (base->running_timer == mytimer);
1260 *
1261 * Now del_timer_sync() will never return and never release somelock.
1262 * The interrupt on the other CPU is waiting to grab somelock but
1263 * it has interrupted the softirq that CPU0 is waiting to finish.
1264 *
1265 * The function returns whether it has deactivated a pending timer or not.
1266 */
1267int del_timer_sync(struct timer_list *timer)
1268{
1269#ifdef CONFIG_LOCKDEP
1270        unsigned long flags;
1271
1272        /*
1273         * If lockdep gives a backtrace here, please reference
1274         * the synchronization rules above.
1275         */
1276        local_irq_save(flags);
1277        lock_map_acquire(&timer->lockdep_map);
1278        lock_map_release(&timer->lockdep_map);
1279        local_irq_restore(flags);
1280#endif
1281        /*
1282         * don't use it in hardirq context, because it
1283         * could lead to deadlock.
1284         */
1285        WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1286        for (;;) {
1287                int ret = try_to_del_timer_sync(timer);
1288                if (ret >= 0)
1289                        return ret;
1290                cpu_relax();
1291        }
1292}
1293EXPORT_SYMBOL(del_timer_sync);
1294#endif
1295
1296static void call_timer_fn(struct timer_list *timer,
1297                          void (*fn)(struct timer_list *),
1298                          unsigned long baseclk)
1299{
1300        int count = preempt_count();
1301
1302#ifdef CONFIG_LOCKDEP
1303        /*
1304         * It is permissible to free the timer from inside the
1305         * function that is called from it, this we need to take into
1306         * account for lockdep too. To avoid bogus "held lock freed"
1307         * warnings as well as problems when looking into
1308         * timer->lockdep_map, make a copy and use that here.
1309         */
1310        struct lockdep_map lockdep_map;
1311
1312        lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1313#endif
1314        /*
1315         * Couple the lock chain with the lock chain at
1316         * del_timer_sync() by acquiring the lock_map around the fn()
1317         * call here and in del_timer_sync().
1318         */
1319        lock_map_acquire(&lockdep_map);
1320
1321        trace_timer_expire_entry(timer, baseclk);
1322        fn(timer);
1323        trace_timer_expire_exit(timer);
1324
1325        lock_map_release(&lockdep_map);
1326
1327        if (count != preempt_count()) {
1328                WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1329                          fn, count, preempt_count());
1330                /*
1331                 * Restore the preempt count. That gives us a decent
1332                 * chance to survive and extract information. If the
1333                 * callback kept a lock held, bad luck, but not worse
1334                 * than the BUG() we had.
1335                 */
1336                preempt_count_set(count);
1337        }
1338}
1339
1340static void expire_timers(struct timer_base *base, struct hlist_head *head)
1341{
1342        /*
1343         * This value is required only for tracing. base->clk was
1344         * incremented directly before expire_timers was called. But expiry
1345         * is related to the old base->clk value.
1346         */
1347        unsigned long baseclk = base->clk - 1;
1348
1349        while (!hlist_empty(head)) {
1350                struct timer_list *timer;
1351                void (*fn)(struct timer_list *);
1352
1353                timer = hlist_entry(head->first, struct timer_list, entry);
1354
1355                base->running_timer = timer;
1356                detach_timer(timer, true);
1357
1358                fn = timer->function;
1359
1360                if (timer->flags & TIMER_IRQSAFE) {
1361                        raw_spin_unlock(&base->lock);
1362                        call_timer_fn(timer, fn, baseclk);
1363                        raw_spin_lock(&base->lock);
1364                } else {
1365                        raw_spin_unlock_irq(&base->lock);
1366                        call_timer_fn(timer, fn, baseclk);
1367                        raw_spin_lock_irq(&base->lock);
1368                }
1369        }
1370}
1371
1372static int __collect_expired_timers(struct timer_base *base,
1373                                    struct hlist_head *heads)
1374{
1375        unsigned long clk = base->clk;
1376        struct hlist_head *vec;
1377        int i, levels = 0;
1378        unsigned int idx;
1379
1380        for (i = 0; i < LVL_DEPTH; i++) {
1381                idx = (clk & LVL_MASK) + i * LVL_SIZE;
1382
1383                if (__test_and_clear_bit(idx, base->pending_map)) {
1384                        vec = base->vectors + idx;
1385                        hlist_move_list(vec, heads++);
1386                        levels++;
1387                }
1388                /* Is it time to look at the next level? */
1389                if (clk & LVL_CLK_MASK)
1390                        break;
1391                /* Shift clock for the next level granularity */
1392                clk >>= LVL_CLK_SHIFT;
1393        }
1394        return levels;
1395}
1396
1397#ifdef CONFIG_NO_HZ_COMMON
1398/*
1399 * Find the next pending bucket of a level. Search from level start (@offset)
1400 * + @clk upwards and if nothing there, search from start of the level
1401 * (@offset) up to @offset + clk.
1402 */
1403static int next_pending_bucket(struct timer_base *base, unsigned offset,
1404                               unsigned clk)
1405{
1406        unsigned pos, start = offset + clk;
1407        unsigned end = offset + LVL_SIZE;
1408
1409        pos = find_next_bit(base->pending_map, end, start);
1410        if (pos < end)
1411                return pos - start;
1412
1413        pos = find_next_bit(base->pending_map, start, offset);
1414        return pos < start ? pos + LVL_SIZE - start : -1;
1415}
1416
1417/*
1418 * Search the first expiring timer in the various clock levels. Caller must
1419 * hold base->lock.
1420 */
1421static unsigned long __next_timer_interrupt(struct timer_base *base)
1422{
1423        unsigned long clk, next, adj;
1424        unsigned lvl, offset = 0;
1425
1426        next = base->clk + NEXT_TIMER_MAX_DELTA;
1427        clk = base->clk;
1428        for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1429                int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1430
1431                if (pos >= 0) {
1432                        unsigned long tmp = clk + (unsigned long) pos;
1433
1434                        tmp <<= LVL_SHIFT(lvl);
1435                        if (time_before(tmp, next))
1436                                next = tmp;
1437                }
1438                /*
1439                 * Clock for the next level. If the current level clock lower
1440                 * bits are zero, we look at the next level as is. If not we
1441                 * need to advance it by one because that's going to be the
1442                 * next expiring bucket in that level. base->clk is the next
1443                 * expiring jiffie. So in case of:
1444                 *
1445                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1446                 *  0    0    0    0    0    0
1447                 *
1448                 * we have to look at all levels @index 0. With
1449                 *
1450                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1451                 *  0    0    0    0    0    2
1452                 *
1453                 * LVL0 has the next expiring bucket @index 2. The upper
1454                 * levels have the next expiring bucket @index 1.
1455                 *
1456                 * In case that the propagation wraps the next level the same
1457                 * rules apply:
1458                 *
1459                 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1460                 *  0    0    0    0    F    2
1461                 *
1462                 * So after looking at LVL0 we get:
1463                 *
1464                 * LVL5 LVL4 LVL3 LVL2 LVL1
1465                 *  0    0    0    1    0
1466                 *
1467                 * So no propagation from LVL1 to LVL2 because that happened
1468                 * with the add already, but then we need to propagate further
1469                 * from LVL2 to LVL3.
1470                 *
1471                 * So the simple check whether the lower bits of the current
1472                 * level are 0 or not is sufficient for all cases.
1473                 */
1474                adj = clk & LVL_CLK_MASK ? 1 : 0;
1475                clk >>= LVL_CLK_SHIFT;
1476                clk += adj;
1477        }
1478        return next;
1479}
1480
1481/*
1482 * Check, if the next hrtimer event is before the next timer wheel
1483 * event:
1484 */
1485static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1486{
1487        u64 nextevt = hrtimer_get_next_event();
1488
1489        /*
1490         * If high resolution timers are enabled
1491         * hrtimer_get_next_event() returns KTIME_MAX.
1492         */
1493        if (expires <= nextevt)
1494                return expires;
1495
1496        /*
1497         * If the next timer is already expired, return the tick base
1498         * time so the tick is fired immediately.
1499         */
1500        if (nextevt <= basem)
1501                return basem;
1502
1503        /*
1504         * Round up to the next jiffie. High resolution timers are
1505         * off, so the hrtimers are expired in the tick and we need to
1506         * make sure that this tick really expires the timer to avoid
1507         * a ping pong of the nohz stop code.
1508         *
1509         * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1510         */
1511        return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1512}
1513
1514/**
1515 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1516 * @basej:      base time jiffies
1517 * @basem:      base time clock monotonic
1518 *
1519 * Returns the tick aligned clock monotonic time of the next pending
1520 * timer or KTIME_MAX if no timer is pending.
1521 */
1522u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1523{
1524        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1525        u64 expires = KTIME_MAX;
1526        unsigned long nextevt;
1527        bool is_max_delta;
1528
1529        /*
1530         * Pretend that there is no timer pending if the cpu is offline.
1531         * Possible pending timers will be migrated later to an active cpu.
1532         */
1533        if (cpu_is_offline(smp_processor_id()))
1534                return expires;
1535
1536        raw_spin_lock(&base->lock);
1537        nextevt = __next_timer_interrupt(base);
1538        is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1539        base->next_expiry = nextevt;
1540        /*
1541         * We have a fresh next event. Check whether we can forward the
1542         * base. We can only do that when @basej is past base->clk
1543         * otherwise we might rewind base->clk.
1544         */
1545        if (time_after(basej, base->clk)) {
1546                if (time_after(nextevt, basej))
1547                        base->clk = basej;
1548                else if (time_after(nextevt, base->clk))
1549                        base->clk = nextevt;
1550        }
1551
1552        if (time_before_eq(nextevt, basej)) {
1553                expires = basem;
1554                base->is_idle = false;
1555        } else {
1556                if (!is_max_delta)
1557                        expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
1558                /*
1559                 * If we expect to sleep more than a tick, mark the base idle.
1560                 * Also the tick is stopped so any added timer must forward
1561                 * the base clk itself to keep granularity small. This idle
1562                 * logic is only maintained for the BASE_STD base, deferrable
1563                 * timers may still see large granularity skew (by design).
1564                 */
1565                if ((expires - basem) > TICK_NSEC) {
1566                        base->must_forward_clk = true;
1567                        base->is_idle = true;
1568                }
1569        }
1570        raw_spin_unlock(&base->lock);
1571
1572        return cmp_next_hrtimer_event(basem, expires);
1573}
1574
1575/**
1576 * timer_clear_idle - Clear the idle state of the timer base
1577 *
1578 * Called with interrupts disabled
1579 */
1580void timer_clear_idle(void)
1581{
1582        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1583
1584        /*
1585         * We do this unlocked. The worst outcome is a remote enqueue sending
1586         * a pointless IPI, but taking the lock would just make the window for
1587         * sending the IPI a few instructions smaller for the cost of taking
1588         * the lock in the exit from idle path.
1589         */
1590        base->is_idle = false;
1591}
1592
1593static int collect_expired_timers(struct timer_base *base,
1594                                  struct hlist_head *heads)
1595{
1596        /*
1597         * NOHZ optimization. After a long idle sleep we need to forward the
1598         * base to current jiffies. Avoid a loop by searching the bitfield for
1599         * the next expiring timer.
1600         */
1601        if ((long)(jiffies - base->clk) > 2) {
1602                unsigned long next = __next_timer_interrupt(base);
1603
1604                /*
1605                 * If the next timer is ahead of time forward to current
1606                 * jiffies, otherwise forward to the next expiry time:
1607                 */
1608                if (time_after(next, jiffies)) {
1609                        /*
1610                         * The call site will increment base->clk and then
1611                         * terminate the expiry loop immediately.
1612                         */
1613                        base->clk = jiffies;
1614                        return 0;
1615                }
1616                base->clk = next;
1617        }
1618        return __collect_expired_timers(base, heads);
1619}
1620#else
1621static inline int collect_expired_timers(struct timer_base *base,
1622                                         struct hlist_head *heads)
1623{
1624        return __collect_expired_timers(base, heads);
1625}
1626#endif
1627
1628/*
1629 * Called from the timer interrupt handler to charge one tick to the current
1630 * process.  user_tick is 1 if the tick is user time, 0 for system.
1631 */
1632void update_process_times(int user_tick)
1633{
1634        struct task_struct *p = current;
1635
1636        /* Note: this timer irq context must be accounted for as well. */
1637        account_process_tick(p, user_tick);
1638        run_local_timers();
1639        rcu_sched_clock_irq(user_tick);
1640#ifdef CONFIG_IRQ_WORK
1641        if (in_irq())
1642                irq_work_tick();
1643#endif
1644        scheduler_tick();
1645        if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1646                run_posix_cpu_timers(p);
1647}
1648
1649/**
1650 * __run_timers - run all expired timers (if any) on this CPU.
1651 * @base: the timer vector to be processed.
1652 */
1653static inline void __run_timers(struct timer_base *base)
1654{
1655        struct hlist_head heads[LVL_DEPTH];
1656        int levels;
1657
1658        if (!time_after_eq(jiffies, base->clk))
1659                return;
1660
1661        raw_spin_lock_irq(&base->lock);
1662
1663        /*
1664         * timer_base::must_forward_clk must be cleared before running
1665         * timers so that any timer functions that call mod_timer() will
1666         * not try to forward the base. Idle tracking / clock forwarding
1667         * logic is only used with BASE_STD timers.
1668         *
1669         * The must_forward_clk flag is cleared unconditionally also for
1670         * the deferrable base. The deferrable base is not affected by idle
1671         * tracking and never forwarded, so clearing the flag is a NOOP.
1672         *
1673         * The fact that the deferrable base is never forwarded can cause
1674         * large variations in granularity for deferrable timers, but they
1675         * can be deferred for long periods due to idle anyway.
1676         */
1677        base->must_forward_clk = false;
1678
1679        while (time_after_eq(jiffies, base->clk)) {
1680
1681                levels = collect_expired_timers(base, heads);
1682                base->clk++;
1683
1684                while (levels--)
1685                        expire_timers(base, heads + levels);
1686        }
1687        base->running_timer = NULL;
1688        raw_spin_unlock_irq(&base->lock);
1689}
1690
1691/*
1692 * This function runs timers and the timer-tq in bottom half context.
1693 */
1694static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1695{
1696        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1697
1698        __run_timers(base);
1699        if (IS_ENABLED(CONFIG_NO_HZ_COMMON))
1700                __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1701}
1702
1703/*
1704 * Called by the local, per-CPU timer interrupt on SMP.
1705 */
1706void run_local_timers(void)
1707{
1708        struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1709
1710        hrtimer_run_queues();
1711        /* Raise the softirq only if required. */
1712        if (time_before(jiffies, base->clk)) {
1713                if (!IS_ENABLED(CONFIG_NO_HZ_COMMON))
1714                        return;
1715                /* CPU is awake, so check the deferrable base. */
1716                base++;
1717                if (time_before(jiffies, base->clk))
1718                        return;
1719        }
1720        raise_softirq(TIMER_SOFTIRQ);
1721}
1722
1723/*
1724 * Since schedule_timeout()'s timer is defined on the stack, it must store
1725 * the target task on the stack as well.
1726 */
1727struct process_timer {
1728        struct timer_list timer;
1729        struct task_struct *task;
1730};
1731
1732static void process_timeout(struct timer_list *t)
1733{
1734        struct process_timer *timeout = from_timer(timeout, t, timer);
1735
1736        wake_up_process(timeout->task);
1737}
1738
1739/**
1740 * schedule_timeout - sleep until timeout
1741 * @timeout: timeout value in jiffies
1742 *
1743 * Make the current task sleep until @timeout jiffies have
1744 * elapsed. The routine will return immediately unless
1745 * the current task state has been set (see set_current_state()).
1746 *
1747 * You can set the task state as follows -
1748 *
1749 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1750 * pass before the routine returns unless the current task is explicitly
1751 * woken up, (e.g. by wake_up_process())".
1752 *
1753 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1754 * delivered to the current task or the current task is explicitly woken
1755 * up.
1756 *
1757 * The current task state is guaranteed to be TASK_RUNNING when this
1758 * routine returns.
1759 *
1760 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1761 * the CPU away without a bound on the timeout. In this case the return
1762 * value will be %MAX_SCHEDULE_TIMEOUT.
1763 *
1764 * Returns 0 when the timer has expired otherwise the remaining time in
1765 * jiffies will be returned.  In all cases the return value is guaranteed
1766 * to be non-negative.
1767 */
1768signed long __sched schedule_timeout(signed long timeout)
1769{
1770        struct process_timer timer;
1771        unsigned long expire;
1772
1773        switch (timeout)
1774        {
1775        case MAX_SCHEDULE_TIMEOUT:
1776                /*
1777                 * These two special cases are useful to be comfortable
1778                 * in the caller. Nothing more. We could take
1779                 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1780                 * but I' d like to return a valid offset (>=0) to allow
1781                 * the caller to do everything it want with the retval.
1782                 */
1783                schedule();
1784                goto out;
1785        default:
1786                /*
1787                 * Another bit of PARANOID. Note that the retval will be
1788                 * 0 since no piece of kernel is supposed to do a check
1789                 * for a negative retval of schedule_timeout() (since it
1790                 * should never happens anyway). You just have the printk()
1791                 * that will tell you if something is gone wrong and where.
1792                 */
1793                if (timeout < 0) {
1794                        printk(KERN_ERR "schedule_timeout: wrong timeout "
1795                                "value %lx\n", timeout);
1796                        dump_stack();
1797                        current->state = TASK_RUNNING;
1798                        goto out;
1799                }
1800        }
1801
1802        expire = timeout + jiffies;
1803
1804        timer.task = current;
1805        timer_setup_on_stack(&timer.timer, process_timeout, 0);
1806        __mod_timer(&timer.timer, expire, 0);
1807        schedule();
1808        del_singleshot_timer_sync(&timer.timer);
1809
1810        /* Remove the timer from the object tracker */
1811        destroy_timer_on_stack(&timer.timer);
1812
1813        timeout = expire - jiffies;
1814
1815 out:
1816        return timeout < 0 ? 0 : timeout;
1817}
1818EXPORT_SYMBOL(schedule_timeout);
1819
1820/*
1821 * We can use __set_current_state() here because schedule_timeout() calls
1822 * schedule() unconditionally.
1823 */
1824signed long __sched schedule_timeout_interruptible(signed long timeout)
1825{
1826        __set_current_state(TASK_INTERRUPTIBLE);
1827        return schedule_timeout(timeout);
1828}
1829EXPORT_SYMBOL(schedule_timeout_interruptible);
1830
1831signed long __sched schedule_timeout_killable(signed long timeout)
1832{
1833        __set_current_state(TASK_KILLABLE);
1834        return schedule_timeout(timeout);
1835}
1836EXPORT_SYMBOL(schedule_timeout_killable);
1837
1838signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1839{
1840        __set_current_state(TASK_UNINTERRUPTIBLE);
1841        return schedule_timeout(timeout);
1842}
1843EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1844
1845/*
1846 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1847 * to load average.
1848 */
1849signed long __sched schedule_timeout_idle(signed long timeout)
1850{
1851        __set_current_state(TASK_IDLE);
1852        return schedule_timeout(timeout);
1853}
1854EXPORT_SYMBOL(schedule_timeout_idle);
1855
1856#ifdef CONFIG_HOTPLUG_CPU
1857static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1858{
1859        struct timer_list *timer;
1860        int cpu = new_base->cpu;
1861
1862        while (!hlist_empty(head)) {
1863                timer = hlist_entry(head->first, struct timer_list, entry);
1864                detach_timer(timer, false);
1865                timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1866                internal_add_timer(new_base, timer);
1867        }
1868}
1869
1870int timers_prepare_cpu(unsigned int cpu)
1871{
1872        struct timer_base *base;
1873        int b;
1874
1875        for (b = 0; b < NR_BASES; b++) {
1876                base = per_cpu_ptr(&timer_bases[b], cpu);
1877                base->clk = jiffies;
1878                base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
1879                base->is_idle = false;
1880                base->must_forward_clk = true;
1881        }
1882        return 0;
1883}
1884
1885int timers_dead_cpu(unsigned int cpu)
1886{
1887        struct timer_base *old_base;
1888        struct timer_base *new_base;
1889        int b, i;
1890
1891        BUG_ON(cpu_online(cpu));
1892
1893        for (b = 0; b < NR_BASES; b++) {
1894                old_base = per_cpu_ptr(&timer_bases[b], cpu);
1895                new_base = get_cpu_ptr(&timer_bases[b]);
1896                /*
1897                 * The caller is globally serialized and nobody else
1898                 * takes two locks at once, deadlock is not possible.
1899                 */
1900                raw_spin_lock_irq(&new_base->lock);
1901                raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1902
1903                /*
1904                 * The current CPUs base clock might be stale. Update it
1905                 * before moving the timers over.
1906                 */
1907                forward_timer_base(new_base);
1908
1909                BUG_ON(old_base->running_timer);
1910
1911                for (i = 0; i < WHEEL_SIZE; i++)
1912                        migrate_timer_list(new_base, old_base->vectors + i);
1913
1914                raw_spin_unlock(&old_base->lock);
1915                raw_spin_unlock_irq(&new_base->lock);
1916                put_cpu_ptr(&timer_bases);
1917        }
1918        return 0;
1919}
1920
1921#endif /* CONFIG_HOTPLUG_CPU */
1922
1923static void __init init_timer_cpu(int cpu)
1924{
1925        struct timer_base *base;
1926        int i;
1927
1928        for (i = 0; i < NR_BASES; i++) {
1929                base = per_cpu_ptr(&timer_bases[i], cpu);
1930                base->cpu = cpu;
1931                raw_spin_lock_init(&base->lock);
1932                base->clk = jiffies;
1933        }
1934}
1935
1936static void __init init_timer_cpus(void)
1937{
1938        int cpu;
1939
1940        for_each_possible_cpu(cpu)
1941                init_timer_cpu(cpu);
1942}
1943
1944void __init init_timers(void)
1945{
1946        init_timer_cpus();
1947        open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1948}
1949
1950/**
1951 * msleep - sleep safely even with waitqueue interruptions
1952 * @msecs: Time in milliseconds to sleep for
1953 */
1954void msleep(unsigned int msecs)
1955{
1956        unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1957
1958        while (timeout)
1959                timeout = schedule_timeout_uninterruptible(timeout);
1960}
1961
1962EXPORT_SYMBOL(msleep);
1963
1964/**
1965 * msleep_interruptible - sleep waiting for signals
1966 * @msecs: Time in milliseconds to sleep for
1967 */
1968unsigned long msleep_interruptible(unsigned int msecs)
1969{
1970        unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1971
1972        while (timeout && !signal_pending(current))
1973                timeout = schedule_timeout_interruptible(timeout);
1974        return jiffies_to_msecs(timeout);
1975}
1976
1977EXPORT_SYMBOL(msleep_interruptible);
1978
1979/**
1980 * usleep_range - Sleep for an approximate time
1981 * @min: Minimum time in usecs to sleep
1982 * @max: Maximum time in usecs to sleep
1983 *
1984 * In non-atomic context where the exact wakeup time is flexible, use
1985 * usleep_range() instead of udelay().  The sleep improves responsiveness
1986 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1987 * power usage by allowing hrtimers to take advantage of an already-
1988 * scheduled interrupt instead of scheduling a new one just for this sleep.
1989 */
1990void __sched usleep_range(unsigned long min, unsigned long max)
1991{
1992        ktime_t exp = ktime_add_us(ktime_get(), min);
1993        u64 delta = (u64)(max - min) * NSEC_PER_USEC;
1994
1995        for (;;) {
1996                __set_current_state(TASK_UNINTERRUPTIBLE);
1997                /* Do not return before the requested sleep time has elapsed */
1998                if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
1999                        break;
2000        }
2001}
2002EXPORT_SYMBOL(usleep_range);
2003