linux/kernel/trace/ring_buffer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Generic ring buffer
   4 *
   5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
   6 */
   7#include <linux/trace_events.h>
   8#include <linux/ring_buffer.h>
   9#include <linux/trace_clock.h>
  10#include <linux/sched/clock.h>
  11#include <linux/trace_seq.h>
  12#include <linux/spinlock.h>
  13#include <linux/irq_work.h>
  14#include <linux/uaccess.h>
  15#include <linux/hardirq.h>
  16#include <linux/kthread.h>      /* for self test */
  17#include <linux/module.h>
  18#include <linux/percpu.h>
  19#include <linux/mutex.h>
  20#include <linux/delay.h>
  21#include <linux/slab.h>
  22#include <linux/init.h>
  23#include <linux/hash.h>
  24#include <linux/list.h>
  25#include <linux/cpu.h>
  26#include <linux/oom.h>
  27
  28#include <asm/local.h>
  29
  30static void update_pages_handler(struct work_struct *work);
  31
  32/*
  33 * The ring buffer header is special. We must manually up keep it.
  34 */
  35int ring_buffer_print_entry_header(struct trace_seq *s)
  36{
  37        trace_seq_puts(s, "# compressed entry header\n");
  38        trace_seq_puts(s, "\ttype_len    :    5 bits\n");
  39        trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
  40        trace_seq_puts(s, "\tarray       :   32 bits\n");
  41        trace_seq_putc(s, '\n');
  42        trace_seq_printf(s, "\tpadding     : type == %d\n",
  43                         RINGBUF_TYPE_PADDING);
  44        trace_seq_printf(s, "\ttime_extend : type == %d\n",
  45                         RINGBUF_TYPE_TIME_EXTEND);
  46        trace_seq_printf(s, "\ttime_stamp : type == %d\n",
  47                         RINGBUF_TYPE_TIME_STAMP);
  48        trace_seq_printf(s, "\tdata max type_len  == %d\n",
  49                         RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
  50
  51        return !trace_seq_has_overflowed(s);
  52}
  53
  54/*
  55 * The ring buffer is made up of a list of pages. A separate list of pages is
  56 * allocated for each CPU. A writer may only write to a buffer that is
  57 * associated with the CPU it is currently executing on.  A reader may read
  58 * from any per cpu buffer.
  59 *
  60 * The reader is special. For each per cpu buffer, the reader has its own
  61 * reader page. When a reader has read the entire reader page, this reader
  62 * page is swapped with another page in the ring buffer.
  63 *
  64 * Now, as long as the writer is off the reader page, the reader can do what
  65 * ever it wants with that page. The writer will never write to that page
  66 * again (as long as it is out of the ring buffer).
  67 *
  68 * Here's some silly ASCII art.
  69 *
  70 *   +------+
  71 *   |reader|          RING BUFFER
  72 *   |page  |
  73 *   +------+        +---+   +---+   +---+
  74 *                   |   |-->|   |-->|   |
  75 *                   +---+   +---+   +---+
  76 *                     ^               |
  77 *                     |               |
  78 *                     +---------------+
  79 *
  80 *
  81 *   +------+
  82 *   |reader|          RING BUFFER
  83 *   |page  |------------------v
  84 *   +------+        +---+   +---+   +---+
  85 *                   |   |-->|   |-->|   |
  86 *                   +---+   +---+   +---+
  87 *                     ^               |
  88 *                     |               |
  89 *                     +---------------+
  90 *
  91 *
  92 *   +------+
  93 *   |reader|          RING BUFFER
  94 *   |page  |------------------v
  95 *   +------+        +---+   +---+   +---+
  96 *      ^            |   |-->|   |-->|   |
  97 *      |            +---+   +---+   +---+
  98 *      |                              |
  99 *      |                              |
 100 *      +------------------------------+
 101 *
 102 *
 103 *   +------+
 104 *   |buffer|          RING BUFFER
 105 *   |page  |------------------v
 106 *   +------+        +---+   +---+   +---+
 107 *      ^            |   |   |   |-->|   |
 108 *      |   New      +---+   +---+   +---+
 109 *      |  Reader------^               |
 110 *      |   page                       |
 111 *      +------------------------------+
 112 *
 113 *
 114 * After we make this swap, the reader can hand this page off to the splice
 115 * code and be done with it. It can even allocate a new page if it needs to
 116 * and swap that into the ring buffer.
 117 *
 118 * We will be using cmpxchg soon to make all this lockless.
 119 *
 120 */
 121
 122/* Used for individual buffers (after the counter) */
 123#define RB_BUFFER_OFF           (1 << 20)
 124
 125#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
 126
 127#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
 128#define RB_ALIGNMENT            4U
 129#define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 130#define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
 131#define RB_ALIGN_DATA           __aligned(RB_ALIGNMENT)
 132
 133/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
 134#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
 135
 136enum {
 137        RB_LEN_TIME_EXTEND = 8,
 138        RB_LEN_TIME_STAMP =  8,
 139};
 140
 141#define skip_time_extend(event) \
 142        ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
 143
 144#define extended_time(event) \
 145        (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
 146
 147static inline int rb_null_event(struct ring_buffer_event *event)
 148{
 149        return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
 150}
 151
 152static void rb_event_set_padding(struct ring_buffer_event *event)
 153{
 154        /* padding has a NULL time_delta */
 155        event->type_len = RINGBUF_TYPE_PADDING;
 156        event->time_delta = 0;
 157}
 158
 159static unsigned
 160rb_event_data_length(struct ring_buffer_event *event)
 161{
 162        unsigned length;
 163
 164        if (event->type_len)
 165                length = event->type_len * RB_ALIGNMENT;
 166        else
 167                length = event->array[0];
 168        return length + RB_EVNT_HDR_SIZE;
 169}
 170
 171/*
 172 * Return the length of the given event. Will return
 173 * the length of the time extend if the event is a
 174 * time extend.
 175 */
 176static inline unsigned
 177rb_event_length(struct ring_buffer_event *event)
 178{
 179        switch (event->type_len) {
 180        case RINGBUF_TYPE_PADDING:
 181                if (rb_null_event(event))
 182                        /* undefined */
 183                        return -1;
 184                return  event->array[0] + RB_EVNT_HDR_SIZE;
 185
 186        case RINGBUF_TYPE_TIME_EXTEND:
 187                return RB_LEN_TIME_EXTEND;
 188
 189        case RINGBUF_TYPE_TIME_STAMP:
 190                return RB_LEN_TIME_STAMP;
 191
 192        case RINGBUF_TYPE_DATA:
 193                return rb_event_data_length(event);
 194        default:
 195                BUG();
 196        }
 197        /* not hit */
 198        return 0;
 199}
 200
 201/*
 202 * Return total length of time extend and data,
 203 *   or just the event length for all other events.
 204 */
 205static inline unsigned
 206rb_event_ts_length(struct ring_buffer_event *event)
 207{
 208        unsigned len = 0;
 209
 210        if (extended_time(event)) {
 211                /* time extends include the data event after it */
 212                len = RB_LEN_TIME_EXTEND;
 213                event = skip_time_extend(event);
 214        }
 215        return len + rb_event_length(event);
 216}
 217
 218/**
 219 * ring_buffer_event_length - return the length of the event
 220 * @event: the event to get the length of
 221 *
 222 * Returns the size of the data load of a data event.
 223 * If the event is something other than a data event, it
 224 * returns the size of the event itself. With the exception
 225 * of a TIME EXTEND, where it still returns the size of the
 226 * data load of the data event after it.
 227 */
 228unsigned ring_buffer_event_length(struct ring_buffer_event *event)
 229{
 230        unsigned length;
 231
 232        if (extended_time(event))
 233                event = skip_time_extend(event);
 234
 235        length = rb_event_length(event);
 236        if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
 237                return length;
 238        length -= RB_EVNT_HDR_SIZE;
 239        if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
 240                length -= sizeof(event->array[0]);
 241        return length;
 242}
 243EXPORT_SYMBOL_GPL(ring_buffer_event_length);
 244
 245/* inline for ring buffer fast paths */
 246static __always_inline void *
 247rb_event_data(struct ring_buffer_event *event)
 248{
 249        if (extended_time(event))
 250                event = skip_time_extend(event);
 251        BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
 252        /* If length is in len field, then array[0] has the data */
 253        if (event->type_len)
 254                return (void *)&event->array[0];
 255        /* Otherwise length is in array[0] and array[1] has the data */
 256        return (void *)&event->array[1];
 257}
 258
 259/**
 260 * ring_buffer_event_data - return the data of the event
 261 * @event: the event to get the data from
 262 */
 263void *ring_buffer_event_data(struct ring_buffer_event *event)
 264{
 265        return rb_event_data(event);
 266}
 267EXPORT_SYMBOL_GPL(ring_buffer_event_data);
 268
 269#define for_each_buffer_cpu(buffer, cpu)                \
 270        for_each_cpu(cpu, buffer->cpumask)
 271
 272#define TS_SHIFT        27
 273#define TS_MASK         ((1ULL << TS_SHIFT) - 1)
 274#define TS_DELTA_TEST   (~TS_MASK)
 275
 276/**
 277 * ring_buffer_event_time_stamp - return the event's extended timestamp
 278 * @event: the event to get the timestamp of
 279 *
 280 * Returns the extended timestamp associated with a data event.
 281 * An extended time_stamp is a 64-bit timestamp represented
 282 * internally in a special way that makes the best use of space
 283 * contained within a ring buffer event.  This function decodes
 284 * it and maps it to a straight u64 value.
 285 */
 286u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
 287{
 288        u64 ts;
 289
 290        ts = event->array[0];
 291        ts <<= TS_SHIFT;
 292        ts += event->time_delta;
 293
 294        return ts;
 295}
 296
 297/* Flag when events were overwritten */
 298#define RB_MISSED_EVENTS        (1 << 31)
 299/* Missed count stored at end */
 300#define RB_MISSED_STORED        (1 << 30)
 301
 302#define RB_MISSED_FLAGS         (RB_MISSED_EVENTS|RB_MISSED_STORED)
 303
 304struct buffer_data_page {
 305        u64              time_stamp;    /* page time stamp */
 306        local_t          commit;        /* write committed index */
 307        unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
 308};
 309
 310/*
 311 * Note, the buffer_page list must be first. The buffer pages
 312 * are allocated in cache lines, which means that each buffer
 313 * page will be at the beginning of a cache line, and thus
 314 * the least significant bits will be zero. We use this to
 315 * add flags in the list struct pointers, to make the ring buffer
 316 * lockless.
 317 */
 318struct buffer_page {
 319        struct list_head list;          /* list of buffer pages */
 320        local_t          write;         /* index for next write */
 321        unsigned         read;          /* index for next read */
 322        local_t          entries;       /* entries on this page */
 323        unsigned long    real_end;      /* real end of data */
 324        struct buffer_data_page *page;  /* Actual data page */
 325};
 326
 327/*
 328 * The buffer page counters, write and entries, must be reset
 329 * atomically when crossing page boundaries. To synchronize this
 330 * update, two counters are inserted into the number. One is
 331 * the actual counter for the write position or count on the page.
 332 *
 333 * The other is a counter of updaters. Before an update happens
 334 * the update partition of the counter is incremented. This will
 335 * allow the updater to update the counter atomically.
 336 *
 337 * The counter is 20 bits, and the state data is 12.
 338 */
 339#define RB_WRITE_MASK           0xfffff
 340#define RB_WRITE_INTCNT         (1 << 20)
 341
 342static void rb_init_page(struct buffer_data_page *bpage)
 343{
 344        local_set(&bpage->commit, 0);
 345}
 346
 347/*
 348 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
 349 * this issue out.
 350 */
 351static void free_buffer_page(struct buffer_page *bpage)
 352{
 353        free_page((unsigned long)bpage->page);
 354        kfree(bpage);
 355}
 356
 357/*
 358 * We need to fit the time_stamp delta into 27 bits.
 359 */
 360static inline int test_time_stamp(u64 delta)
 361{
 362        if (delta & TS_DELTA_TEST)
 363                return 1;
 364        return 0;
 365}
 366
 367#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
 368
 369/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
 370#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
 371
 372int ring_buffer_print_page_header(struct trace_seq *s)
 373{
 374        struct buffer_data_page field;
 375
 376        trace_seq_printf(s, "\tfield: u64 timestamp;\t"
 377                         "offset:0;\tsize:%u;\tsigned:%u;\n",
 378                         (unsigned int)sizeof(field.time_stamp),
 379                         (unsigned int)is_signed_type(u64));
 380
 381        trace_seq_printf(s, "\tfield: local_t commit;\t"
 382                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 383                         (unsigned int)offsetof(typeof(field), commit),
 384                         (unsigned int)sizeof(field.commit),
 385                         (unsigned int)is_signed_type(long));
 386
 387        trace_seq_printf(s, "\tfield: int overwrite;\t"
 388                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 389                         (unsigned int)offsetof(typeof(field), commit),
 390                         1,
 391                         (unsigned int)is_signed_type(long));
 392
 393        trace_seq_printf(s, "\tfield: char data;\t"
 394                         "offset:%u;\tsize:%u;\tsigned:%u;\n",
 395                         (unsigned int)offsetof(typeof(field), data),
 396                         (unsigned int)BUF_PAGE_SIZE,
 397                         (unsigned int)is_signed_type(char));
 398
 399        return !trace_seq_has_overflowed(s);
 400}
 401
 402struct rb_irq_work {
 403        struct irq_work                 work;
 404        wait_queue_head_t               waiters;
 405        wait_queue_head_t               full_waiters;
 406        bool                            waiters_pending;
 407        bool                            full_waiters_pending;
 408        bool                            wakeup_full;
 409};
 410
 411/*
 412 * Structure to hold event state and handle nested events.
 413 */
 414struct rb_event_info {
 415        u64                     ts;
 416        u64                     delta;
 417        unsigned long           length;
 418        struct buffer_page      *tail_page;
 419        int                     add_timestamp;
 420};
 421
 422/*
 423 * Used for which event context the event is in.
 424 *  NMI     = 0
 425 *  IRQ     = 1
 426 *  SOFTIRQ = 2
 427 *  NORMAL  = 3
 428 *
 429 * See trace_recursive_lock() comment below for more details.
 430 */
 431enum {
 432        RB_CTX_NMI,
 433        RB_CTX_IRQ,
 434        RB_CTX_SOFTIRQ,
 435        RB_CTX_NORMAL,
 436        RB_CTX_MAX
 437};
 438
 439/*
 440 * head_page == tail_page && head == tail then buffer is empty.
 441 */
 442struct ring_buffer_per_cpu {
 443        int                             cpu;
 444        atomic_t                        record_disabled;
 445        struct ring_buffer              *buffer;
 446        raw_spinlock_t                  reader_lock;    /* serialize readers */
 447        arch_spinlock_t                 lock;
 448        struct lock_class_key           lock_key;
 449        struct buffer_data_page         *free_page;
 450        unsigned long                   nr_pages;
 451        unsigned int                    current_context;
 452        struct list_head                *pages;
 453        struct buffer_page              *head_page;     /* read from head */
 454        struct buffer_page              *tail_page;     /* write to tail */
 455        struct buffer_page              *commit_page;   /* committed pages */
 456        struct buffer_page              *reader_page;
 457        unsigned long                   lost_events;
 458        unsigned long                   last_overrun;
 459        unsigned long                   nest;
 460        local_t                         entries_bytes;
 461        local_t                         entries;
 462        local_t                         overrun;
 463        local_t                         commit_overrun;
 464        local_t                         dropped_events;
 465        local_t                         committing;
 466        local_t                         commits;
 467        local_t                         pages_touched;
 468        local_t                         pages_read;
 469        long                            last_pages_touch;
 470        size_t                          shortest_full;
 471        unsigned long                   read;
 472        unsigned long                   read_bytes;
 473        u64                             write_stamp;
 474        u64                             read_stamp;
 475        /* ring buffer pages to update, > 0 to add, < 0 to remove */
 476        long                            nr_pages_to_update;
 477        struct list_head                new_pages; /* new pages to add */
 478        struct work_struct              update_pages_work;
 479        struct completion               update_done;
 480
 481        struct rb_irq_work              irq_work;
 482};
 483
 484struct ring_buffer {
 485        unsigned                        flags;
 486        int                             cpus;
 487        atomic_t                        record_disabled;
 488        atomic_t                        resize_disabled;
 489        cpumask_var_t                   cpumask;
 490
 491        struct lock_class_key           *reader_lock_key;
 492
 493        struct mutex                    mutex;
 494
 495        struct ring_buffer_per_cpu      **buffers;
 496
 497        struct hlist_node               node;
 498        u64                             (*clock)(void);
 499
 500        struct rb_irq_work              irq_work;
 501        bool                            time_stamp_abs;
 502};
 503
 504struct ring_buffer_iter {
 505        struct ring_buffer_per_cpu      *cpu_buffer;
 506        unsigned long                   head;
 507        struct buffer_page              *head_page;
 508        struct buffer_page              *cache_reader_page;
 509        unsigned long                   cache_read;
 510        u64                             read_stamp;
 511};
 512
 513/**
 514 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
 515 * @buffer: The ring_buffer to get the number of pages from
 516 * @cpu: The cpu of the ring_buffer to get the number of pages from
 517 *
 518 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
 519 */
 520size_t ring_buffer_nr_pages(struct ring_buffer *buffer, int cpu)
 521{
 522        return buffer->buffers[cpu]->nr_pages;
 523}
 524
 525/**
 526 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
 527 * @buffer: The ring_buffer to get the number of pages from
 528 * @cpu: The cpu of the ring_buffer to get the number of pages from
 529 *
 530 * Returns the number of pages that have content in the ring buffer.
 531 */
 532size_t ring_buffer_nr_dirty_pages(struct ring_buffer *buffer, int cpu)
 533{
 534        size_t read;
 535        size_t cnt;
 536
 537        read = local_read(&buffer->buffers[cpu]->pages_read);
 538        cnt = local_read(&buffer->buffers[cpu]->pages_touched);
 539        /* The reader can read an empty page, but not more than that */
 540        if (cnt < read) {
 541                WARN_ON_ONCE(read > cnt + 1);
 542                return 0;
 543        }
 544
 545        return cnt - read;
 546}
 547
 548/*
 549 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
 550 *
 551 * Schedules a delayed work to wake up any task that is blocked on the
 552 * ring buffer waiters queue.
 553 */
 554static void rb_wake_up_waiters(struct irq_work *work)
 555{
 556        struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
 557
 558        wake_up_all(&rbwork->waiters);
 559        if (rbwork->wakeup_full) {
 560                rbwork->wakeup_full = false;
 561                wake_up_all(&rbwork->full_waiters);
 562        }
 563}
 564
 565/**
 566 * ring_buffer_wait - wait for input to the ring buffer
 567 * @buffer: buffer to wait on
 568 * @cpu: the cpu buffer to wait on
 569 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
 570 *
 571 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 572 * as data is added to any of the @buffer's cpu buffers. Otherwise
 573 * it will wait for data to be added to a specific cpu buffer.
 574 */
 575int ring_buffer_wait(struct ring_buffer *buffer, int cpu, int full)
 576{
 577        struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
 578        DEFINE_WAIT(wait);
 579        struct rb_irq_work *work;
 580        int ret = 0;
 581
 582        /*
 583         * Depending on what the caller is waiting for, either any
 584         * data in any cpu buffer, or a specific buffer, put the
 585         * caller on the appropriate wait queue.
 586         */
 587        if (cpu == RING_BUFFER_ALL_CPUS) {
 588                work = &buffer->irq_work;
 589                /* Full only makes sense on per cpu reads */
 590                full = 0;
 591        } else {
 592                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 593                        return -ENODEV;
 594                cpu_buffer = buffer->buffers[cpu];
 595                work = &cpu_buffer->irq_work;
 596        }
 597
 598
 599        while (true) {
 600                if (full)
 601                        prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
 602                else
 603                        prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
 604
 605                /*
 606                 * The events can happen in critical sections where
 607                 * checking a work queue can cause deadlocks.
 608                 * After adding a task to the queue, this flag is set
 609                 * only to notify events to try to wake up the queue
 610                 * using irq_work.
 611                 *
 612                 * We don't clear it even if the buffer is no longer
 613                 * empty. The flag only causes the next event to run
 614                 * irq_work to do the work queue wake up. The worse
 615                 * that can happen if we race with !trace_empty() is that
 616                 * an event will cause an irq_work to try to wake up
 617                 * an empty queue.
 618                 *
 619                 * There's no reason to protect this flag either, as
 620                 * the work queue and irq_work logic will do the necessary
 621                 * synchronization for the wake ups. The only thing
 622                 * that is necessary is that the wake up happens after
 623                 * a task has been queued. It's OK for spurious wake ups.
 624                 */
 625                if (full)
 626                        work->full_waiters_pending = true;
 627                else
 628                        work->waiters_pending = true;
 629
 630                if (signal_pending(current)) {
 631                        ret = -EINTR;
 632                        break;
 633                }
 634
 635                if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
 636                        break;
 637
 638                if (cpu != RING_BUFFER_ALL_CPUS &&
 639                    !ring_buffer_empty_cpu(buffer, cpu)) {
 640                        unsigned long flags;
 641                        bool pagebusy;
 642                        size_t nr_pages;
 643                        size_t dirty;
 644
 645                        if (!full)
 646                                break;
 647
 648                        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
 649                        pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
 650                        nr_pages = cpu_buffer->nr_pages;
 651                        dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
 652                        if (!cpu_buffer->shortest_full ||
 653                            cpu_buffer->shortest_full < full)
 654                                cpu_buffer->shortest_full = full;
 655                        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
 656                        if (!pagebusy &&
 657                            (!nr_pages || (dirty * 100) > full * nr_pages))
 658                                break;
 659                }
 660
 661                schedule();
 662        }
 663
 664        if (full)
 665                finish_wait(&work->full_waiters, &wait);
 666        else
 667                finish_wait(&work->waiters, &wait);
 668
 669        return ret;
 670}
 671
 672/**
 673 * ring_buffer_poll_wait - poll on buffer input
 674 * @buffer: buffer to wait on
 675 * @cpu: the cpu buffer to wait on
 676 * @filp: the file descriptor
 677 * @poll_table: The poll descriptor
 678 *
 679 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
 680 * as data is added to any of the @buffer's cpu buffers. Otherwise
 681 * it will wait for data to be added to a specific cpu buffer.
 682 *
 683 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
 684 * zero otherwise.
 685 */
 686__poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
 687                          struct file *filp, poll_table *poll_table)
 688{
 689        struct ring_buffer_per_cpu *cpu_buffer;
 690        struct rb_irq_work *work;
 691
 692        if (cpu == RING_BUFFER_ALL_CPUS)
 693                work = &buffer->irq_work;
 694        else {
 695                if (!cpumask_test_cpu(cpu, buffer->cpumask))
 696                        return -EINVAL;
 697
 698                cpu_buffer = buffer->buffers[cpu];
 699                work = &cpu_buffer->irq_work;
 700        }
 701
 702        poll_wait(filp, &work->waiters, poll_table);
 703        work->waiters_pending = true;
 704        /*
 705         * There's a tight race between setting the waiters_pending and
 706         * checking if the ring buffer is empty.  Once the waiters_pending bit
 707         * is set, the next event will wake the task up, but we can get stuck
 708         * if there's only a single event in.
 709         *
 710         * FIXME: Ideally, we need a memory barrier on the writer side as well,
 711         * but adding a memory barrier to all events will cause too much of a
 712         * performance hit in the fast path.  We only need a memory barrier when
 713         * the buffer goes from empty to having content.  But as this race is
 714         * extremely small, and it's not a problem if another event comes in, we
 715         * will fix it later.
 716         */
 717        smp_mb();
 718
 719        if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
 720            (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
 721                return EPOLLIN | EPOLLRDNORM;
 722        return 0;
 723}
 724
 725/* buffer may be either ring_buffer or ring_buffer_per_cpu */
 726#define RB_WARN_ON(b, cond)                                             \
 727        ({                                                              \
 728                int _____ret = unlikely(cond);                          \
 729                if (_____ret) {                                         \
 730                        if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
 731                                struct ring_buffer_per_cpu *__b =       \
 732                                        (void *)b;                      \
 733                                atomic_inc(&__b->buffer->record_disabled); \
 734                        } else                                          \
 735                                atomic_inc(&b->record_disabled);        \
 736                        WARN_ON(1);                                     \
 737                }                                                       \
 738                _____ret;                                               \
 739        })
 740
 741/* Up this if you want to test the TIME_EXTENTS and normalization */
 742#define DEBUG_SHIFT 0
 743
 744static inline u64 rb_time_stamp(struct ring_buffer *buffer)
 745{
 746        /* shift to debug/test normalization and TIME_EXTENTS */
 747        return buffer->clock() << DEBUG_SHIFT;
 748}
 749
 750u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
 751{
 752        u64 time;
 753
 754        preempt_disable_notrace();
 755        time = rb_time_stamp(buffer);
 756        preempt_enable_notrace();
 757
 758        return time;
 759}
 760EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
 761
 762void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
 763                                      int cpu, u64 *ts)
 764{
 765        /* Just stupid testing the normalize function and deltas */
 766        *ts >>= DEBUG_SHIFT;
 767}
 768EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
 769
 770/*
 771 * Making the ring buffer lockless makes things tricky.
 772 * Although writes only happen on the CPU that they are on,
 773 * and they only need to worry about interrupts. Reads can
 774 * happen on any CPU.
 775 *
 776 * The reader page is always off the ring buffer, but when the
 777 * reader finishes with a page, it needs to swap its page with
 778 * a new one from the buffer. The reader needs to take from
 779 * the head (writes go to the tail). But if a writer is in overwrite
 780 * mode and wraps, it must push the head page forward.
 781 *
 782 * Here lies the problem.
 783 *
 784 * The reader must be careful to replace only the head page, and
 785 * not another one. As described at the top of the file in the
 786 * ASCII art, the reader sets its old page to point to the next
 787 * page after head. It then sets the page after head to point to
 788 * the old reader page. But if the writer moves the head page
 789 * during this operation, the reader could end up with the tail.
 790 *
 791 * We use cmpxchg to help prevent this race. We also do something
 792 * special with the page before head. We set the LSB to 1.
 793 *
 794 * When the writer must push the page forward, it will clear the
 795 * bit that points to the head page, move the head, and then set
 796 * the bit that points to the new head page.
 797 *
 798 * We also don't want an interrupt coming in and moving the head
 799 * page on another writer. Thus we use the second LSB to catch
 800 * that too. Thus:
 801 *
 802 * head->list->prev->next        bit 1          bit 0
 803 *                              -------        -------
 804 * Normal page                     0              0
 805 * Points to head page             0              1
 806 * New head page                   1              0
 807 *
 808 * Note we can not trust the prev pointer of the head page, because:
 809 *
 810 * +----+       +-----+        +-----+
 811 * |    |------>|  T  |---X--->|  N  |
 812 * |    |<------|     |        |     |
 813 * +----+       +-----+        +-----+
 814 *   ^                           ^ |
 815 *   |          +-----+          | |
 816 *   +----------|  R  |----------+ |
 817 *              |     |<-----------+
 818 *              +-----+
 819 *
 820 * Key:  ---X-->  HEAD flag set in pointer
 821 *         T      Tail page
 822 *         R      Reader page
 823 *         N      Next page
 824 *
 825 * (see __rb_reserve_next() to see where this happens)
 826 *
 827 *  What the above shows is that the reader just swapped out
 828 *  the reader page with a page in the buffer, but before it
 829 *  could make the new header point back to the new page added
 830 *  it was preempted by a writer. The writer moved forward onto
 831 *  the new page added by the reader and is about to move forward
 832 *  again.
 833 *
 834 *  You can see, it is legitimate for the previous pointer of
 835 *  the head (or any page) not to point back to itself. But only
 836 *  temporarily.
 837 */
 838
 839#define RB_PAGE_NORMAL          0UL
 840#define RB_PAGE_HEAD            1UL
 841#define RB_PAGE_UPDATE          2UL
 842
 843
 844#define RB_FLAG_MASK            3UL
 845
 846/* PAGE_MOVED is not part of the mask */
 847#define RB_PAGE_MOVED           4UL
 848
 849/*
 850 * rb_list_head - remove any bit
 851 */
 852static struct list_head *rb_list_head(struct list_head *list)
 853{
 854        unsigned long val = (unsigned long)list;
 855
 856        return (struct list_head *)(val & ~RB_FLAG_MASK);
 857}
 858
 859/*
 860 * rb_is_head_page - test if the given page is the head page
 861 *
 862 * Because the reader may move the head_page pointer, we can
 863 * not trust what the head page is (it may be pointing to
 864 * the reader page). But if the next page is a header page,
 865 * its flags will be non zero.
 866 */
 867static inline int
 868rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
 869                struct buffer_page *page, struct list_head *list)
 870{
 871        unsigned long val;
 872
 873        val = (unsigned long)list->next;
 874
 875        if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
 876                return RB_PAGE_MOVED;
 877
 878        return val & RB_FLAG_MASK;
 879}
 880
 881/*
 882 * rb_is_reader_page
 883 *
 884 * The unique thing about the reader page, is that, if the
 885 * writer is ever on it, the previous pointer never points
 886 * back to the reader page.
 887 */
 888static bool rb_is_reader_page(struct buffer_page *page)
 889{
 890        struct list_head *list = page->list.prev;
 891
 892        return rb_list_head(list->next) != &page->list;
 893}
 894
 895/*
 896 * rb_set_list_to_head - set a list_head to be pointing to head.
 897 */
 898static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
 899                                struct list_head *list)
 900{
 901        unsigned long *ptr;
 902
 903        ptr = (unsigned long *)&list->next;
 904        *ptr |= RB_PAGE_HEAD;
 905        *ptr &= ~RB_PAGE_UPDATE;
 906}
 907
 908/*
 909 * rb_head_page_activate - sets up head page
 910 */
 911static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
 912{
 913        struct buffer_page *head;
 914
 915        head = cpu_buffer->head_page;
 916        if (!head)
 917                return;
 918
 919        /*
 920         * Set the previous list pointer to have the HEAD flag.
 921         */
 922        rb_set_list_to_head(cpu_buffer, head->list.prev);
 923}
 924
 925static void rb_list_head_clear(struct list_head *list)
 926{
 927        unsigned long *ptr = (unsigned long *)&list->next;
 928
 929        *ptr &= ~RB_FLAG_MASK;
 930}
 931
 932/*
 933 * rb_head_page_deactivate - clears head page ptr (for free list)
 934 */
 935static void
 936rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
 937{
 938        struct list_head *hd;
 939
 940        /* Go through the whole list and clear any pointers found. */
 941        rb_list_head_clear(cpu_buffer->pages);
 942
 943        list_for_each(hd, cpu_buffer->pages)
 944                rb_list_head_clear(hd);
 945}
 946
 947static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
 948                            struct buffer_page *head,
 949                            struct buffer_page *prev,
 950                            int old_flag, int new_flag)
 951{
 952        struct list_head *list;
 953        unsigned long val = (unsigned long)&head->list;
 954        unsigned long ret;
 955
 956        list = &prev->list;
 957
 958        val &= ~RB_FLAG_MASK;
 959
 960        ret = cmpxchg((unsigned long *)&list->next,
 961                      val | old_flag, val | new_flag);
 962
 963        /* check if the reader took the page */
 964        if ((ret & ~RB_FLAG_MASK) != val)
 965                return RB_PAGE_MOVED;
 966
 967        return ret & RB_FLAG_MASK;
 968}
 969
 970static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
 971                                   struct buffer_page *head,
 972                                   struct buffer_page *prev,
 973                                   int old_flag)
 974{
 975        return rb_head_page_set(cpu_buffer, head, prev,
 976                                old_flag, RB_PAGE_UPDATE);
 977}
 978
 979static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
 980                                 struct buffer_page *head,
 981                                 struct buffer_page *prev,
 982                                 int old_flag)
 983{
 984        return rb_head_page_set(cpu_buffer, head, prev,
 985                                old_flag, RB_PAGE_HEAD);
 986}
 987
 988static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
 989                                   struct buffer_page *head,
 990                                   struct buffer_page *prev,
 991                                   int old_flag)
 992{
 993        return rb_head_page_set(cpu_buffer, head, prev,
 994                                old_flag, RB_PAGE_NORMAL);
 995}
 996
 997static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
 998                               struct buffer_page **bpage)
 999{
1000        struct list_head *p = rb_list_head((*bpage)->list.next);
1001
1002        *bpage = list_entry(p, struct buffer_page, list);
1003}
1004
1005static struct buffer_page *
1006rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1007{
1008        struct buffer_page *head;
1009        struct buffer_page *page;
1010        struct list_head *list;
1011        int i;
1012
1013        if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1014                return NULL;
1015
1016        /* sanity check */
1017        list = cpu_buffer->pages;
1018        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1019                return NULL;
1020
1021        page = head = cpu_buffer->head_page;
1022        /*
1023         * It is possible that the writer moves the header behind
1024         * where we started, and we miss in one loop.
1025         * A second loop should grab the header, but we'll do
1026         * three loops just because I'm paranoid.
1027         */
1028        for (i = 0; i < 3; i++) {
1029                do {
1030                        if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
1031                                cpu_buffer->head_page = page;
1032                                return page;
1033                        }
1034                        rb_inc_page(cpu_buffer, &page);
1035                } while (page != head);
1036        }
1037
1038        RB_WARN_ON(cpu_buffer, 1);
1039
1040        return NULL;
1041}
1042
1043static int rb_head_page_replace(struct buffer_page *old,
1044                                struct buffer_page *new)
1045{
1046        unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1047        unsigned long val;
1048        unsigned long ret;
1049
1050        val = *ptr & ~RB_FLAG_MASK;
1051        val |= RB_PAGE_HEAD;
1052
1053        ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1054
1055        return ret == val;
1056}
1057
1058/*
1059 * rb_tail_page_update - move the tail page forward
1060 */
1061static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1062                               struct buffer_page *tail_page,
1063                               struct buffer_page *next_page)
1064{
1065        unsigned long old_entries;
1066        unsigned long old_write;
1067
1068        /*
1069         * The tail page now needs to be moved forward.
1070         *
1071         * We need to reset the tail page, but without messing
1072         * with possible erasing of data brought in by interrupts
1073         * that have moved the tail page and are currently on it.
1074         *
1075         * We add a counter to the write field to denote this.
1076         */
1077        old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1078        old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1079
1080        local_inc(&cpu_buffer->pages_touched);
1081        /*
1082         * Just make sure we have seen our old_write and synchronize
1083         * with any interrupts that come in.
1084         */
1085        barrier();
1086
1087        /*
1088         * If the tail page is still the same as what we think
1089         * it is, then it is up to us to update the tail
1090         * pointer.
1091         */
1092        if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1093                /* Zero the write counter */
1094                unsigned long val = old_write & ~RB_WRITE_MASK;
1095                unsigned long eval = old_entries & ~RB_WRITE_MASK;
1096
1097                /*
1098                 * This will only succeed if an interrupt did
1099                 * not come in and change it. In which case, we
1100                 * do not want to modify it.
1101                 *
1102                 * We add (void) to let the compiler know that we do not care
1103                 * about the return value of these functions. We use the
1104                 * cmpxchg to only update if an interrupt did not already
1105                 * do it for us. If the cmpxchg fails, we don't care.
1106                 */
1107                (void)local_cmpxchg(&next_page->write, old_write, val);
1108                (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1109
1110                /*
1111                 * No need to worry about races with clearing out the commit.
1112                 * it only can increment when a commit takes place. But that
1113                 * only happens in the outer most nested commit.
1114                 */
1115                local_set(&next_page->page->commit, 0);
1116
1117                /* Again, either we update tail_page or an interrupt does */
1118                (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1119        }
1120}
1121
1122static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1123                          struct buffer_page *bpage)
1124{
1125        unsigned long val = (unsigned long)bpage;
1126
1127        if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1128                return 1;
1129
1130        return 0;
1131}
1132
1133/**
1134 * rb_check_list - make sure a pointer to a list has the last bits zero
1135 */
1136static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1137                         struct list_head *list)
1138{
1139        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1140                return 1;
1141        if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1142                return 1;
1143        return 0;
1144}
1145
1146/**
1147 * rb_check_pages - integrity check of buffer pages
1148 * @cpu_buffer: CPU buffer with pages to test
1149 *
1150 * As a safety measure we check to make sure the data pages have not
1151 * been corrupted.
1152 */
1153static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1154{
1155        struct list_head *head = cpu_buffer->pages;
1156        struct buffer_page *bpage, *tmp;
1157
1158        /* Reset the head page if it exists */
1159        if (cpu_buffer->head_page)
1160                rb_set_head_page(cpu_buffer);
1161
1162        rb_head_page_deactivate(cpu_buffer);
1163
1164        if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1165                return -1;
1166        if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1167                return -1;
1168
1169        if (rb_check_list(cpu_buffer, head))
1170                return -1;
1171
1172        list_for_each_entry_safe(bpage, tmp, head, list) {
1173                if (RB_WARN_ON(cpu_buffer,
1174                               bpage->list.next->prev != &bpage->list))
1175                        return -1;
1176                if (RB_WARN_ON(cpu_buffer,
1177                               bpage->list.prev->next != &bpage->list))
1178                        return -1;
1179                if (rb_check_list(cpu_buffer, &bpage->list))
1180                        return -1;
1181        }
1182
1183        rb_head_page_activate(cpu_buffer);
1184
1185        return 0;
1186}
1187
1188static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1189{
1190        struct buffer_page *bpage, *tmp;
1191        bool user_thread = current->mm != NULL;
1192        gfp_t mflags;
1193        long i;
1194
1195        /*
1196         * Check if the available memory is there first.
1197         * Note, si_mem_available() only gives us a rough estimate of available
1198         * memory. It may not be accurate. But we don't care, we just want
1199         * to prevent doing any allocation when it is obvious that it is
1200         * not going to succeed.
1201         */
1202        i = si_mem_available();
1203        if (i < nr_pages)
1204                return -ENOMEM;
1205
1206        /*
1207         * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1208         * gracefully without invoking oom-killer and the system is not
1209         * destabilized.
1210         */
1211        mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1212
1213        /*
1214         * If a user thread allocates too much, and si_mem_available()
1215         * reports there's enough memory, even though there is not.
1216         * Make sure the OOM killer kills this thread. This can happen
1217         * even with RETRY_MAYFAIL because another task may be doing
1218         * an allocation after this task has taken all memory.
1219         * This is the task the OOM killer needs to take out during this
1220         * loop, even if it was triggered by an allocation somewhere else.
1221         */
1222        if (user_thread)
1223                set_current_oom_origin();
1224        for (i = 0; i < nr_pages; i++) {
1225                struct page *page;
1226
1227                bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1228                                    mflags, cpu_to_node(cpu));
1229                if (!bpage)
1230                        goto free_pages;
1231
1232                list_add(&bpage->list, pages);
1233
1234                page = alloc_pages_node(cpu_to_node(cpu), mflags, 0);
1235                if (!page)
1236                        goto free_pages;
1237                bpage->page = page_address(page);
1238                rb_init_page(bpage->page);
1239
1240                if (user_thread && fatal_signal_pending(current))
1241                        goto free_pages;
1242        }
1243        if (user_thread)
1244                clear_current_oom_origin();
1245
1246        return 0;
1247
1248free_pages:
1249        list_for_each_entry_safe(bpage, tmp, pages, list) {
1250                list_del_init(&bpage->list);
1251                free_buffer_page(bpage);
1252        }
1253        if (user_thread)
1254                clear_current_oom_origin();
1255
1256        return -ENOMEM;
1257}
1258
1259static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1260                             unsigned long nr_pages)
1261{
1262        LIST_HEAD(pages);
1263
1264        WARN_ON(!nr_pages);
1265
1266        if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1267                return -ENOMEM;
1268
1269        /*
1270         * The ring buffer page list is a circular list that does not
1271         * start and end with a list head. All page list items point to
1272         * other pages.
1273         */
1274        cpu_buffer->pages = pages.next;
1275        list_del(&pages);
1276
1277        cpu_buffer->nr_pages = nr_pages;
1278
1279        rb_check_pages(cpu_buffer);
1280
1281        return 0;
1282}
1283
1284static struct ring_buffer_per_cpu *
1285rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1286{
1287        struct ring_buffer_per_cpu *cpu_buffer;
1288        struct buffer_page *bpage;
1289        struct page *page;
1290        int ret;
1291
1292        cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1293                                  GFP_KERNEL, cpu_to_node(cpu));
1294        if (!cpu_buffer)
1295                return NULL;
1296
1297        cpu_buffer->cpu = cpu;
1298        cpu_buffer->buffer = buffer;
1299        raw_spin_lock_init(&cpu_buffer->reader_lock);
1300        lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1301        cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1302        INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1303        init_completion(&cpu_buffer->update_done);
1304        init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1305        init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1306        init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1307
1308        bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1309                            GFP_KERNEL, cpu_to_node(cpu));
1310        if (!bpage)
1311                goto fail_free_buffer;
1312
1313        rb_check_bpage(cpu_buffer, bpage);
1314
1315        cpu_buffer->reader_page = bpage;
1316        page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1317        if (!page)
1318                goto fail_free_reader;
1319        bpage->page = page_address(page);
1320        rb_init_page(bpage->page);
1321
1322        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1323        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1324
1325        ret = rb_allocate_pages(cpu_buffer, nr_pages);
1326        if (ret < 0)
1327                goto fail_free_reader;
1328
1329        cpu_buffer->head_page
1330                = list_entry(cpu_buffer->pages, struct buffer_page, list);
1331        cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1332
1333        rb_head_page_activate(cpu_buffer);
1334
1335        return cpu_buffer;
1336
1337 fail_free_reader:
1338        free_buffer_page(cpu_buffer->reader_page);
1339
1340 fail_free_buffer:
1341        kfree(cpu_buffer);
1342        return NULL;
1343}
1344
1345static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1346{
1347        struct list_head *head = cpu_buffer->pages;
1348        struct buffer_page *bpage, *tmp;
1349
1350        free_buffer_page(cpu_buffer->reader_page);
1351
1352        rb_head_page_deactivate(cpu_buffer);
1353
1354        if (head) {
1355                list_for_each_entry_safe(bpage, tmp, head, list) {
1356                        list_del_init(&bpage->list);
1357                        free_buffer_page(bpage);
1358                }
1359                bpage = list_entry(head, struct buffer_page, list);
1360                free_buffer_page(bpage);
1361        }
1362
1363        kfree(cpu_buffer);
1364}
1365
1366/**
1367 * __ring_buffer_alloc - allocate a new ring_buffer
1368 * @size: the size in bytes per cpu that is needed.
1369 * @flags: attributes to set for the ring buffer.
1370 *
1371 * Currently the only flag that is available is the RB_FL_OVERWRITE
1372 * flag. This flag means that the buffer will overwrite old data
1373 * when the buffer wraps. If this flag is not set, the buffer will
1374 * drop data when the tail hits the head.
1375 */
1376struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1377                                        struct lock_class_key *key)
1378{
1379        struct ring_buffer *buffer;
1380        long nr_pages;
1381        int bsize;
1382        int cpu;
1383        int ret;
1384
1385        /* keep it in its own cache line */
1386        buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1387                         GFP_KERNEL);
1388        if (!buffer)
1389                return NULL;
1390
1391        if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1392                goto fail_free_buffer;
1393
1394        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1395        buffer->flags = flags;
1396        buffer->clock = trace_clock_local;
1397        buffer->reader_lock_key = key;
1398
1399        init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1400        init_waitqueue_head(&buffer->irq_work.waiters);
1401
1402        /* need at least two pages */
1403        if (nr_pages < 2)
1404                nr_pages = 2;
1405
1406        buffer->cpus = nr_cpu_ids;
1407
1408        bsize = sizeof(void *) * nr_cpu_ids;
1409        buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1410                                  GFP_KERNEL);
1411        if (!buffer->buffers)
1412                goto fail_free_cpumask;
1413
1414        cpu = raw_smp_processor_id();
1415        cpumask_set_cpu(cpu, buffer->cpumask);
1416        buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1417        if (!buffer->buffers[cpu])
1418                goto fail_free_buffers;
1419
1420        ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1421        if (ret < 0)
1422                goto fail_free_buffers;
1423
1424        mutex_init(&buffer->mutex);
1425
1426        return buffer;
1427
1428 fail_free_buffers:
1429        for_each_buffer_cpu(buffer, cpu) {
1430                if (buffer->buffers[cpu])
1431                        rb_free_cpu_buffer(buffer->buffers[cpu]);
1432        }
1433        kfree(buffer->buffers);
1434
1435 fail_free_cpumask:
1436        free_cpumask_var(buffer->cpumask);
1437
1438 fail_free_buffer:
1439        kfree(buffer);
1440        return NULL;
1441}
1442EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1443
1444/**
1445 * ring_buffer_free - free a ring buffer.
1446 * @buffer: the buffer to free.
1447 */
1448void
1449ring_buffer_free(struct ring_buffer *buffer)
1450{
1451        int cpu;
1452
1453        cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1454
1455        for_each_buffer_cpu(buffer, cpu)
1456                rb_free_cpu_buffer(buffer->buffers[cpu]);
1457
1458        kfree(buffer->buffers);
1459        free_cpumask_var(buffer->cpumask);
1460
1461        kfree(buffer);
1462}
1463EXPORT_SYMBOL_GPL(ring_buffer_free);
1464
1465void ring_buffer_set_clock(struct ring_buffer *buffer,
1466                           u64 (*clock)(void))
1467{
1468        buffer->clock = clock;
1469}
1470
1471void ring_buffer_set_time_stamp_abs(struct ring_buffer *buffer, bool abs)
1472{
1473        buffer->time_stamp_abs = abs;
1474}
1475
1476bool ring_buffer_time_stamp_abs(struct ring_buffer *buffer)
1477{
1478        return buffer->time_stamp_abs;
1479}
1480
1481static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1482
1483static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1484{
1485        return local_read(&bpage->entries) & RB_WRITE_MASK;
1486}
1487
1488static inline unsigned long rb_page_write(struct buffer_page *bpage)
1489{
1490        return local_read(&bpage->write) & RB_WRITE_MASK;
1491}
1492
1493static int
1494rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1495{
1496        struct list_head *tail_page, *to_remove, *next_page;
1497        struct buffer_page *to_remove_page, *tmp_iter_page;
1498        struct buffer_page *last_page, *first_page;
1499        unsigned long nr_removed;
1500        unsigned long head_bit;
1501        int page_entries;
1502
1503        head_bit = 0;
1504
1505        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1506        atomic_inc(&cpu_buffer->record_disabled);
1507        /*
1508         * We don't race with the readers since we have acquired the reader
1509         * lock. We also don't race with writers after disabling recording.
1510         * This makes it easy to figure out the first and the last page to be
1511         * removed from the list. We unlink all the pages in between including
1512         * the first and last pages. This is done in a busy loop so that we
1513         * lose the least number of traces.
1514         * The pages are freed after we restart recording and unlock readers.
1515         */
1516        tail_page = &cpu_buffer->tail_page->list;
1517
1518        /*
1519         * tail page might be on reader page, we remove the next page
1520         * from the ring buffer
1521         */
1522        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1523                tail_page = rb_list_head(tail_page->next);
1524        to_remove = tail_page;
1525
1526        /* start of pages to remove */
1527        first_page = list_entry(rb_list_head(to_remove->next),
1528                                struct buffer_page, list);
1529
1530        for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1531                to_remove = rb_list_head(to_remove)->next;
1532                head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1533        }
1534
1535        next_page = rb_list_head(to_remove)->next;
1536
1537        /*
1538         * Now we remove all pages between tail_page and next_page.
1539         * Make sure that we have head_bit value preserved for the
1540         * next page
1541         */
1542        tail_page->next = (struct list_head *)((unsigned long)next_page |
1543                                                head_bit);
1544        next_page = rb_list_head(next_page);
1545        next_page->prev = tail_page;
1546
1547        /* make sure pages points to a valid page in the ring buffer */
1548        cpu_buffer->pages = next_page;
1549
1550        /* update head page */
1551        if (head_bit)
1552                cpu_buffer->head_page = list_entry(next_page,
1553                                                struct buffer_page, list);
1554
1555        /*
1556         * change read pointer to make sure any read iterators reset
1557         * themselves
1558         */
1559        cpu_buffer->read = 0;
1560
1561        /* pages are removed, resume tracing and then free the pages */
1562        atomic_dec(&cpu_buffer->record_disabled);
1563        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1564
1565        RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1566
1567        /* last buffer page to remove */
1568        last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1569                                list);
1570        tmp_iter_page = first_page;
1571
1572        do {
1573                cond_resched();
1574
1575                to_remove_page = tmp_iter_page;
1576                rb_inc_page(cpu_buffer, &tmp_iter_page);
1577
1578                /* update the counters */
1579                page_entries = rb_page_entries(to_remove_page);
1580                if (page_entries) {
1581                        /*
1582                         * If something was added to this page, it was full
1583                         * since it is not the tail page. So we deduct the
1584                         * bytes consumed in ring buffer from here.
1585                         * Increment overrun to account for the lost events.
1586                         */
1587                        local_add(page_entries, &cpu_buffer->overrun);
1588                        local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1589                }
1590
1591                /*
1592                 * We have already removed references to this list item, just
1593                 * free up the buffer_page and its page
1594                 */
1595                free_buffer_page(to_remove_page);
1596                nr_removed--;
1597
1598        } while (to_remove_page != last_page);
1599
1600        RB_WARN_ON(cpu_buffer, nr_removed);
1601
1602        return nr_removed == 0;
1603}
1604
1605static int
1606rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1607{
1608        struct list_head *pages = &cpu_buffer->new_pages;
1609        int retries, success;
1610
1611        raw_spin_lock_irq(&cpu_buffer->reader_lock);
1612        /*
1613         * We are holding the reader lock, so the reader page won't be swapped
1614         * in the ring buffer. Now we are racing with the writer trying to
1615         * move head page and the tail page.
1616         * We are going to adapt the reader page update process where:
1617         * 1. We first splice the start and end of list of new pages between
1618         *    the head page and its previous page.
1619         * 2. We cmpxchg the prev_page->next to point from head page to the
1620         *    start of new pages list.
1621         * 3. Finally, we update the head->prev to the end of new list.
1622         *
1623         * We will try this process 10 times, to make sure that we don't keep
1624         * spinning.
1625         */
1626        retries = 10;
1627        success = 0;
1628        while (retries--) {
1629                struct list_head *head_page, *prev_page, *r;
1630                struct list_head *last_page, *first_page;
1631                struct list_head *head_page_with_bit;
1632
1633                head_page = &rb_set_head_page(cpu_buffer)->list;
1634                if (!head_page)
1635                        break;
1636                prev_page = head_page->prev;
1637
1638                first_page = pages->next;
1639                last_page  = pages->prev;
1640
1641                head_page_with_bit = (struct list_head *)
1642                                     ((unsigned long)head_page | RB_PAGE_HEAD);
1643
1644                last_page->next = head_page_with_bit;
1645                first_page->prev = prev_page;
1646
1647                r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1648
1649                if (r == head_page_with_bit) {
1650                        /*
1651                         * yay, we replaced the page pointer to our new list,
1652                         * now, we just have to update to head page's prev
1653                         * pointer to point to end of list
1654                         */
1655                        head_page->prev = last_page;
1656                        success = 1;
1657                        break;
1658                }
1659        }
1660
1661        if (success)
1662                INIT_LIST_HEAD(pages);
1663        /*
1664         * If we weren't successful in adding in new pages, warn and stop
1665         * tracing
1666         */
1667        RB_WARN_ON(cpu_buffer, !success);
1668        raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1669
1670        /* free pages if they weren't inserted */
1671        if (!success) {
1672                struct buffer_page *bpage, *tmp;
1673                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1674                                         list) {
1675                        list_del_init(&bpage->list);
1676                        free_buffer_page(bpage);
1677                }
1678        }
1679        return success;
1680}
1681
1682static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1683{
1684        int success;
1685
1686        if (cpu_buffer->nr_pages_to_update > 0)
1687                success = rb_insert_pages(cpu_buffer);
1688        else
1689                success = rb_remove_pages(cpu_buffer,
1690                                        -cpu_buffer->nr_pages_to_update);
1691
1692        if (success)
1693                cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1694}
1695
1696static void update_pages_handler(struct work_struct *work)
1697{
1698        struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1699                        struct ring_buffer_per_cpu, update_pages_work);
1700        rb_update_pages(cpu_buffer);
1701        complete(&cpu_buffer->update_done);
1702}
1703
1704/**
1705 * ring_buffer_resize - resize the ring buffer
1706 * @buffer: the buffer to resize.
1707 * @size: the new size.
1708 * @cpu_id: the cpu buffer to resize
1709 *
1710 * Minimum size is 2 * BUF_PAGE_SIZE.
1711 *
1712 * Returns 0 on success and < 0 on failure.
1713 */
1714int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1715                        int cpu_id)
1716{
1717        struct ring_buffer_per_cpu *cpu_buffer;
1718        unsigned long nr_pages;
1719        int cpu, err = 0;
1720
1721        /*
1722         * Always succeed at resizing a non-existent buffer:
1723         */
1724        if (!buffer)
1725                return size;
1726
1727        /* Make sure the requested buffer exists */
1728        if (cpu_id != RING_BUFFER_ALL_CPUS &&
1729            !cpumask_test_cpu(cpu_id, buffer->cpumask))
1730                return size;
1731
1732        nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1733
1734        /* we need a minimum of two pages */
1735        if (nr_pages < 2)
1736                nr_pages = 2;
1737
1738        size = nr_pages * BUF_PAGE_SIZE;
1739
1740        /*
1741         * Don't succeed if resizing is disabled, as a reader might be
1742         * manipulating the ring buffer and is expecting a sane state while
1743         * this is true.
1744         */
1745        if (atomic_read(&buffer->resize_disabled))
1746                return -EBUSY;
1747
1748        /* prevent another thread from changing buffer sizes */
1749        mutex_lock(&buffer->mutex);
1750
1751        if (cpu_id == RING_BUFFER_ALL_CPUS) {
1752                /* calculate the pages to update */
1753                for_each_buffer_cpu(buffer, cpu) {
1754                        cpu_buffer = buffer->buffers[cpu];
1755
1756                        cpu_buffer->nr_pages_to_update = nr_pages -
1757                                                        cpu_buffer->nr_pages;
1758                        /*
1759                         * nothing more to do for removing pages or no update
1760                         */
1761                        if (cpu_buffer->nr_pages_to_update <= 0)
1762                                continue;
1763                        /*
1764                         * to add pages, make sure all new pages can be
1765                         * allocated without receiving ENOMEM
1766                         */
1767                        INIT_LIST_HEAD(&cpu_buffer->new_pages);
1768                        if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1769                                                &cpu_buffer->new_pages, cpu)) {
1770                                /* not enough memory for new pages */
1771                                err = -ENOMEM;
1772                                goto out_err;
1773                        }
1774                }
1775
1776                get_online_cpus();
1777                /*
1778                 * Fire off all the required work handlers
1779                 * We can't schedule on offline CPUs, but it's not necessary
1780                 * since we can change their buffer sizes without any race.
1781                 */
1782                for_each_buffer_cpu(buffer, cpu) {
1783                        cpu_buffer = buffer->buffers[cpu];
1784                        if (!cpu_buffer->nr_pages_to_update)
1785                                continue;
1786
1787                        /* Can't run something on an offline CPU. */
1788                        if (!cpu_online(cpu)) {
1789                                rb_update_pages(cpu_buffer);
1790                                cpu_buffer->nr_pages_to_update = 0;
1791                        } else {
1792                                schedule_work_on(cpu,
1793                                                &cpu_buffer->update_pages_work);
1794                        }
1795                }
1796
1797                /* wait for all the updates to complete */
1798                for_each_buffer_cpu(buffer, cpu) {
1799                        cpu_buffer = buffer->buffers[cpu];
1800                        if (!cpu_buffer->nr_pages_to_update)
1801                                continue;
1802
1803                        if (cpu_online(cpu))
1804                                wait_for_completion(&cpu_buffer->update_done);
1805                        cpu_buffer->nr_pages_to_update = 0;
1806                }
1807
1808                put_online_cpus();
1809        } else {
1810                /* Make sure this CPU has been initialized */
1811                if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1812                        goto out;
1813
1814                cpu_buffer = buffer->buffers[cpu_id];
1815
1816                if (nr_pages == cpu_buffer->nr_pages)
1817                        goto out;
1818
1819                cpu_buffer->nr_pages_to_update = nr_pages -
1820                                                cpu_buffer->nr_pages;
1821
1822                INIT_LIST_HEAD(&cpu_buffer->new_pages);
1823                if (cpu_buffer->nr_pages_to_update > 0 &&
1824                        __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1825                                            &cpu_buffer->new_pages, cpu_id)) {
1826                        err = -ENOMEM;
1827                        goto out_err;
1828                }
1829
1830                get_online_cpus();
1831
1832                /* Can't run something on an offline CPU. */
1833                if (!cpu_online(cpu_id))
1834                        rb_update_pages(cpu_buffer);
1835                else {
1836                        schedule_work_on(cpu_id,
1837                                         &cpu_buffer->update_pages_work);
1838                        wait_for_completion(&cpu_buffer->update_done);
1839                }
1840
1841                cpu_buffer->nr_pages_to_update = 0;
1842                put_online_cpus();
1843        }
1844
1845 out:
1846        /*
1847         * The ring buffer resize can happen with the ring buffer
1848         * enabled, so that the update disturbs the tracing as little
1849         * as possible. But if the buffer is disabled, we do not need
1850         * to worry about that, and we can take the time to verify
1851         * that the buffer is not corrupt.
1852         */
1853        if (atomic_read(&buffer->record_disabled)) {
1854                atomic_inc(&buffer->record_disabled);
1855                /*
1856                 * Even though the buffer was disabled, we must make sure
1857                 * that it is truly disabled before calling rb_check_pages.
1858                 * There could have been a race between checking
1859                 * record_disable and incrementing it.
1860                 */
1861                synchronize_rcu();
1862                for_each_buffer_cpu(buffer, cpu) {
1863                        cpu_buffer = buffer->buffers[cpu];
1864                        rb_check_pages(cpu_buffer);
1865                }
1866                atomic_dec(&buffer->record_disabled);
1867        }
1868
1869        mutex_unlock(&buffer->mutex);
1870        return size;
1871
1872 out_err:
1873        for_each_buffer_cpu(buffer, cpu) {
1874                struct buffer_page *bpage, *tmp;
1875
1876                cpu_buffer = buffer->buffers[cpu];
1877                cpu_buffer->nr_pages_to_update = 0;
1878
1879                if (list_empty(&cpu_buffer->new_pages))
1880                        continue;
1881
1882                list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1883                                        list) {
1884                        list_del_init(&bpage->list);
1885                        free_buffer_page(bpage);
1886                }
1887        }
1888        mutex_unlock(&buffer->mutex);
1889        return err;
1890}
1891EXPORT_SYMBOL_GPL(ring_buffer_resize);
1892
1893void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1894{
1895        mutex_lock(&buffer->mutex);
1896        if (val)
1897                buffer->flags |= RB_FL_OVERWRITE;
1898        else
1899                buffer->flags &= ~RB_FL_OVERWRITE;
1900        mutex_unlock(&buffer->mutex);
1901}
1902EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1903
1904static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1905{
1906        return bpage->page->data + index;
1907}
1908
1909static __always_inline struct ring_buffer_event *
1910rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1911{
1912        return __rb_page_index(cpu_buffer->reader_page,
1913                               cpu_buffer->reader_page->read);
1914}
1915
1916static __always_inline struct ring_buffer_event *
1917rb_iter_head_event(struct ring_buffer_iter *iter)
1918{
1919        return __rb_page_index(iter->head_page, iter->head);
1920}
1921
1922static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1923{
1924        return local_read(&bpage->page->commit);
1925}
1926
1927/* Size is determined by what has been committed */
1928static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1929{
1930        return rb_page_commit(bpage);
1931}
1932
1933static __always_inline unsigned
1934rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1935{
1936        return rb_page_commit(cpu_buffer->commit_page);
1937}
1938
1939static __always_inline unsigned
1940rb_event_index(struct ring_buffer_event *event)
1941{
1942        unsigned long addr = (unsigned long)event;
1943
1944        return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1945}
1946
1947static void rb_inc_iter(struct ring_buffer_iter *iter)
1948{
1949        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1950
1951        /*
1952         * The iterator could be on the reader page (it starts there).
1953         * But the head could have moved, since the reader was
1954         * found. Check for this case and assign the iterator
1955         * to the head page instead of next.
1956         */
1957        if (iter->head_page == cpu_buffer->reader_page)
1958                iter->head_page = rb_set_head_page(cpu_buffer);
1959        else
1960                rb_inc_page(cpu_buffer, &iter->head_page);
1961
1962        iter->read_stamp = iter->head_page->page->time_stamp;
1963        iter->head = 0;
1964}
1965
1966/*
1967 * rb_handle_head_page - writer hit the head page
1968 *
1969 * Returns: +1 to retry page
1970 *           0 to continue
1971 *          -1 on error
1972 */
1973static int
1974rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1975                    struct buffer_page *tail_page,
1976                    struct buffer_page *next_page)
1977{
1978        struct buffer_page *new_head;
1979        int entries;
1980        int type;
1981        int ret;
1982
1983        entries = rb_page_entries(next_page);
1984
1985        /*
1986         * The hard part is here. We need to move the head
1987         * forward, and protect against both readers on
1988         * other CPUs and writers coming in via interrupts.
1989         */
1990        type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1991                                       RB_PAGE_HEAD);
1992
1993        /*
1994         * type can be one of four:
1995         *  NORMAL - an interrupt already moved it for us
1996         *  HEAD   - we are the first to get here.
1997         *  UPDATE - we are the interrupt interrupting
1998         *           a current move.
1999         *  MOVED  - a reader on another CPU moved the next
2000         *           pointer to its reader page. Give up
2001         *           and try again.
2002         */
2003
2004        switch (type) {
2005        case RB_PAGE_HEAD:
2006                /*
2007                 * We changed the head to UPDATE, thus
2008                 * it is our responsibility to update
2009                 * the counters.
2010                 */
2011                local_add(entries, &cpu_buffer->overrun);
2012                local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2013
2014                /*
2015                 * The entries will be zeroed out when we move the
2016                 * tail page.
2017                 */
2018
2019                /* still more to do */
2020                break;
2021
2022        case RB_PAGE_UPDATE:
2023                /*
2024                 * This is an interrupt that interrupt the
2025                 * previous update. Still more to do.
2026                 */
2027                break;
2028        case RB_PAGE_NORMAL:
2029                /*
2030                 * An interrupt came in before the update
2031                 * and processed this for us.
2032                 * Nothing left to do.
2033                 */
2034                return 1;
2035        case RB_PAGE_MOVED:
2036                /*
2037                 * The reader is on another CPU and just did
2038                 * a swap with our next_page.
2039                 * Try again.
2040                 */
2041                return 1;
2042        default:
2043                RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2044                return -1;
2045        }
2046
2047        /*
2048         * Now that we are here, the old head pointer is
2049         * set to UPDATE. This will keep the reader from
2050         * swapping the head page with the reader page.
2051         * The reader (on another CPU) will spin till
2052         * we are finished.
2053         *
2054         * We just need to protect against interrupts
2055         * doing the job. We will set the next pointer
2056         * to HEAD. After that, we set the old pointer
2057         * to NORMAL, but only if it was HEAD before.
2058         * otherwise we are an interrupt, and only
2059         * want the outer most commit to reset it.
2060         */
2061        new_head = next_page;
2062        rb_inc_page(cpu_buffer, &new_head);
2063
2064        ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2065                                    RB_PAGE_NORMAL);
2066
2067        /*
2068         * Valid returns are:
2069         *  HEAD   - an interrupt came in and already set it.
2070         *  NORMAL - One of two things:
2071         *            1) We really set it.
2072         *            2) A bunch of interrupts came in and moved
2073         *               the page forward again.
2074         */
2075        switch (ret) {
2076        case RB_PAGE_HEAD:
2077        case RB_PAGE_NORMAL:
2078                /* OK */
2079                break;
2080        default:
2081                RB_WARN_ON(cpu_buffer, 1);
2082                return -1;
2083        }
2084
2085        /*
2086         * It is possible that an interrupt came in,
2087         * set the head up, then more interrupts came in
2088         * and moved it again. When we get back here,
2089         * the page would have been set to NORMAL but we
2090         * just set it back to HEAD.
2091         *
2092         * How do you detect this? Well, if that happened
2093         * the tail page would have moved.
2094         */
2095        if (ret == RB_PAGE_NORMAL) {
2096                struct buffer_page *buffer_tail_page;
2097
2098                buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2099                /*
2100                 * If the tail had moved passed next, then we need
2101                 * to reset the pointer.
2102                 */
2103                if (buffer_tail_page != tail_page &&
2104                    buffer_tail_page != next_page)
2105                        rb_head_page_set_normal(cpu_buffer, new_head,
2106                                                next_page,
2107                                                RB_PAGE_HEAD);
2108        }
2109
2110        /*
2111         * If this was the outer most commit (the one that
2112         * changed the original pointer from HEAD to UPDATE),
2113         * then it is up to us to reset it to NORMAL.
2114         */
2115        if (type == RB_PAGE_HEAD) {
2116                ret = rb_head_page_set_normal(cpu_buffer, next_page,
2117                                              tail_page,
2118                                              RB_PAGE_UPDATE);
2119                if (RB_WARN_ON(cpu_buffer,
2120                               ret != RB_PAGE_UPDATE))
2121                        return -1;
2122        }
2123
2124        return 0;
2125}
2126
2127static inline void
2128rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2129              unsigned long tail, struct rb_event_info *info)
2130{
2131        struct buffer_page *tail_page = info->tail_page;
2132        struct ring_buffer_event *event;
2133        unsigned long length = info->length;
2134
2135        /*
2136         * Only the event that crossed the page boundary
2137         * must fill the old tail_page with padding.
2138         */
2139        if (tail >= BUF_PAGE_SIZE) {
2140                /*
2141                 * If the page was filled, then we still need
2142                 * to update the real_end. Reset it to zero
2143                 * and the reader will ignore it.
2144                 */
2145                if (tail == BUF_PAGE_SIZE)
2146                        tail_page->real_end = 0;
2147
2148                local_sub(length, &tail_page->write);
2149                return;
2150        }
2151
2152        event = __rb_page_index(tail_page, tail);
2153
2154        /* account for padding bytes */
2155        local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2156
2157        /*
2158         * Save the original length to the meta data.
2159         * This will be used by the reader to add lost event
2160         * counter.
2161         */
2162        tail_page->real_end = tail;
2163
2164        /*
2165         * If this event is bigger than the minimum size, then
2166         * we need to be careful that we don't subtract the
2167         * write counter enough to allow another writer to slip
2168         * in on this page.
2169         * We put in a discarded commit instead, to make sure
2170         * that this space is not used again.
2171         *
2172         * If we are less than the minimum size, we don't need to
2173         * worry about it.
2174         */
2175        if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2176                /* No room for any events */
2177
2178                /* Mark the rest of the page with padding */
2179                rb_event_set_padding(event);
2180
2181                /* Set the write back to the previous setting */
2182                local_sub(length, &tail_page->write);
2183                return;
2184        }
2185
2186        /* Put in a discarded event */
2187        event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2188        event->type_len = RINGBUF_TYPE_PADDING;
2189        /* time delta must be non zero */
2190        event->time_delta = 1;
2191
2192        /* Set write to end of buffer */
2193        length = (tail + length) - BUF_PAGE_SIZE;
2194        local_sub(length, &tail_page->write);
2195}
2196
2197static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2198
2199/*
2200 * This is the slow path, force gcc not to inline it.
2201 */
2202static noinline struct ring_buffer_event *
2203rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2204             unsigned long tail, struct rb_event_info *info)
2205{
2206        struct buffer_page *tail_page = info->tail_page;
2207        struct buffer_page *commit_page = cpu_buffer->commit_page;
2208        struct ring_buffer *buffer = cpu_buffer->buffer;
2209        struct buffer_page *next_page;
2210        int ret;
2211
2212        next_page = tail_page;
2213
2214        rb_inc_page(cpu_buffer, &next_page);
2215
2216        /*
2217         * If for some reason, we had an interrupt storm that made
2218         * it all the way around the buffer, bail, and warn
2219         * about it.
2220         */
2221        if (unlikely(next_page == commit_page)) {
2222                local_inc(&cpu_buffer->commit_overrun);
2223                goto out_reset;
2224        }
2225
2226        /*
2227         * This is where the fun begins!
2228         *
2229         * We are fighting against races between a reader that
2230         * could be on another CPU trying to swap its reader
2231         * page with the buffer head.
2232         *
2233         * We are also fighting against interrupts coming in and
2234         * moving the head or tail on us as well.
2235         *
2236         * If the next page is the head page then we have filled
2237         * the buffer, unless the commit page is still on the
2238         * reader page.
2239         */
2240        if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2241
2242                /*
2243                 * If the commit is not on the reader page, then
2244                 * move the header page.
2245                 */
2246                if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2247                        /*
2248                         * If we are not in overwrite mode,
2249                         * this is easy, just stop here.
2250                         */
2251                        if (!(buffer->flags & RB_FL_OVERWRITE)) {
2252                                local_inc(&cpu_buffer->dropped_events);
2253                                goto out_reset;
2254                        }
2255
2256                        ret = rb_handle_head_page(cpu_buffer,
2257                                                  tail_page,
2258                                                  next_page);
2259                        if (ret < 0)
2260                                goto out_reset;
2261                        if (ret)
2262                                goto out_again;
2263                } else {
2264                        /*
2265                         * We need to be careful here too. The
2266                         * commit page could still be on the reader
2267                         * page. We could have a small buffer, and
2268                         * have filled up the buffer with events
2269                         * from interrupts and such, and wrapped.
2270                         *
2271                         * Note, if the tail page is also the on the
2272                         * reader_page, we let it move out.
2273                         */
2274                        if (unlikely((cpu_buffer->commit_page !=
2275                                      cpu_buffer->tail_page) &&
2276                                     (cpu_buffer->commit_page ==
2277                                      cpu_buffer->reader_page))) {
2278                                local_inc(&cpu_buffer->commit_overrun);
2279                                goto out_reset;
2280                        }
2281                }
2282        }
2283
2284        rb_tail_page_update(cpu_buffer, tail_page, next_page);
2285
2286 out_again:
2287
2288        rb_reset_tail(cpu_buffer, tail, info);
2289
2290        /* Commit what we have for now. */
2291        rb_end_commit(cpu_buffer);
2292        /* rb_end_commit() decs committing */
2293        local_inc(&cpu_buffer->committing);
2294
2295        /* fail and let the caller try again */
2296        return ERR_PTR(-EAGAIN);
2297
2298 out_reset:
2299        /* reset write */
2300        rb_reset_tail(cpu_buffer, tail, info);
2301
2302        return NULL;
2303}
2304
2305/* Slow path, do not inline */
2306static noinline struct ring_buffer_event *
2307rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2308{
2309        if (abs)
2310                event->type_len = RINGBUF_TYPE_TIME_STAMP;
2311        else
2312                event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2313
2314        /* Not the first event on the page, or not delta? */
2315        if (abs || rb_event_index(event)) {
2316                event->time_delta = delta & TS_MASK;
2317                event->array[0] = delta >> TS_SHIFT;
2318        } else {
2319                /* nope, just zero it */
2320                event->time_delta = 0;
2321                event->array[0] = 0;
2322        }
2323
2324        return skip_time_extend(event);
2325}
2326
2327static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2328                                     struct ring_buffer_event *event);
2329
2330/**
2331 * rb_update_event - update event type and data
2332 * @event: the event to update
2333 * @type: the type of event
2334 * @length: the size of the event field in the ring buffer
2335 *
2336 * Update the type and data fields of the event. The length
2337 * is the actual size that is written to the ring buffer,
2338 * and with this, we can determine what to place into the
2339 * data field.
2340 */
2341static void
2342rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2343                struct ring_buffer_event *event,
2344                struct rb_event_info *info)
2345{
2346        unsigned length = info->length;
2347        u64 delta = info->delta;
2348
2349        /* Only a commit updates the timestamp */
2350        if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2351                delta = 0;
2352
2353        /*
2354         * If we need to add a timestamp, then we
2355         * add it to the start of the reserved space.
2356         */
2357        if (unlikely(info->add_timestamp)) {
2358                bool abs = ring_buffer_time_stamp_abs(cpu_buffer->buffer);
2359
2360                event = rb_add_time_stamp(event, info->delta, abs);
2361                length -= RB_LEN_TIME_EXTEND;
2362                delta = 0;
2363        }
2364
2365        event->time_delta = delta;
2366        length -= RB_EVNT_HDR_SIZE;
2367        if (length > RB_MAX_SMALL_DATA) {
2368                event->type_len = 0;
2369                event->array[0] = length;
2370        } else
2371                event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2372}
2373
2374static unsigned rb_calculate_event_length(unsigned length)
2375{
2376        struct ring_buffer_event event; /* Used only for sizeof array */
2377
2378        /* zero length can cause confusions */
2379        if (!length)
2380                length++;
2381
2382        if (length > RB_MAX_SMALL_DATA)
2383                length += sizeof(event.array[0]);
2384
2385        length += RB_EVNT_HDR_SIZE;
2386        length = ALIGN(length, RB_ALIGNMENT);
2387
2388        /*
2389         * In case the time delta is larger than the 27 bits for it
2390         * in the header, we need to add a timestamp. If another
2391         * event comes in when trying to discard this one to increase
2392         * the length, then the timestamp will be added in the allocated
2393         * space of this event. If length is bigger than the size needed
2394         * for the TIME_EXTEND, then padding has to be used. The events
2395         * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2396         * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2397         * As length is a multiple of 4, we only need to worry if it
2398         * is 12 (RB_LEN_TIME_EXTEND + 4).
2399         */
2400        if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2401                length += RB_ALIGNMENT;
2402
2403        return length;
2404}
2405
2406#ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2407static inline bool sched_clock_stable(void)
2408{
2409        return true;
2410}
2411#endif
2412
2413static inline int
2414rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2415                  struct ring_buffer_event *event)
2416{
2417        unsigned long new_index, old_index;
2418        struct buffer_page *bpage;
2419        unsigned long index;
2420        unsigned long addr;
2421
2422        new_index = rb_event_index(event);
2423        old_index = new_index + rb_event_ts_length(event);
2424        addr = (unsigned long)event;
2425        addr &= PAGE_MASK;
2426
2427        bpage = READ_ONCE(cpu_buffer->tail_page);
2428
2429        if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2430                unsigned long write_mask =
2431                        local_read(&bpage->write) & ~RB_WRITE_MASK;
2432                unsigned long event_length = rb_event_length(event);
2433                /*
2434                 * This is on the tail page. It is possible that
2435                 * a write could come in and move the tail page
2436                 * and write to the next page. That is fine
2437                 * because we just shorten what is on this page.
2438                 */
2439                old_index += write_mask;
2440                new_index += write_mask;
2441                index = local_cmpxchg(&bpage->write, old_index, new_index);
2442                if (index == old_index) {
2443                        /* update counters */
2444                        local_sub(event_length, &cpu_buffer->entries_bytes);
2445                        return 1;
2446                }
2447        }
2448
2449        /* could not discard */
2450        return 0;
2451}
2452
2453static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2454{
2455        local_inc(&cpu_buffer->committing);
2456        local_inc(&cpu_buffer->commits);
2457}
2458
2459static __always_inline void
2460rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2461{
2462        unsigned long max_count;
2463
2464        /*
2465         * We only race with interrupts and NMIs on this CPU.
2466         * If we own the commit event, then we can commit
2467         * all others that interrupted us, since the interruptions
2468         * are in stack format (they finish before they come
2469         * back to us). This allows us to do a simple loop to
2470         * assign the commit to the tail.
2471         */
2472 again:
2473        max_count = cpu_buffer->nr_pages * 100;
2474
2475        while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2476                if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2477                        return;
2478                if (RB_WARN_ON(cpu_buffer,
2479                               rb_is_reader_page(cpu_buffer->tail_page)))
2480                        return;
2481                local_set(&cpu_buffer->commit_page->page->commit,
2482                          rb_page_write(cpu_buffer->commit_page));
2483                rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2484                /* Only update the write stamp if the page has an event */
2485                if (rb_page_write(cpu_buffer->commit_page))
2486                        cpu_buffer->write_stamp =
2487                                cpu_buffer->commit_page->page->time_stamp;
2488                /* add barrier to keep gcc from optimizing too much */
2489                barrier();
2490        }
2491        while (rb_commit_index(cpu_buffer) !=
2492               rb_page_write(cpu_buffer->commit_page)) {
2493
2494                local_set(&cpu_buffer->commit_page->page->commit,
2495                          rb_page_write(cpu_buffer->commit_page));
2496                RB_WARN_ON(cpu_buffer,
2497                           local_read(&cpu_buffer->commit_page->page->commit) &
2498                           ~RB_WRITE_MASK);
2499                barrier();
2500        }
2501
2502        /* again, keep gcc from optimizing */
2503        barrier();
2504
2505        /*
2506         * If an interrupt came in just after the first while loop
2507         * and pushed the tail page forward, we will be left with
2508         * a dangling commit that will never go forward.
2509         */
2510        if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2511                goto again;
2512}
2513
2514static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2515{
2516        unsigned long commits;
2517
2518        if (RB_WARN_ON(cpu_buffer,
2519                       !local_read(&cpu_buffer->committing)))
2520                return;
2521
2522 again:
2523        commits = local_read(&cpu_buffer->commits);
2524        /* synchronize with interrupts */
2525        barrier();
2526        if (local_read(&cpu_buffer->committing) == 1)
2527                rb_set_commit_to_write(cpu_buffer);
2528
2529        local_dec(&cpu_buffer->committing);
2530
2531        /* synchronize with interrupts */
2532        barrier();
2533
2534        /*
2535         * Need to account for interrupts coming in between the
2536         * updating of the commit page and the clearing of the
2537         * committing counter.
2538         */
2539        if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2540            !local_read(&cpu_buffer->committing)) {
2541                local_inc(&cpu_buffer->committing);
2542                goto again;
2543        }
2544}
2545
2546static inline void rb_event_discard(struct ring_buffer_event *event)
2547{
2548        if (extended_time(event))
2549                event = skip_time_extend(event);
2550
2551        /* array[0] holds the actual length for the discarded event */
2552        event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2553        event->type_len = RINGBUF_TYPE_PADDING;
2554        /* time delta must be non zero */
2555        if (!event->time_delta)
2556                event->time_delta = 1;
2557}
2558
2559static __always_inline bool
2560rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2561                   struct ring_buffer_event *event)
2562{
2563        unsigned long addr = (unsigned long)event;
2564        unsigned long index;
2565
2566        index = rb_event_index(event);
2567        addr &= PAGE_MASK;
2568
2569        return cpu_buffer->commit_page->page == (void *)addr &&
2570                rb_commit_index(cpu_buffer) == index;
2571}
2572
2573static __always_inline void
2574rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2575                      struct ring_buffer_event *event)
2576{
2577        u64 delta;
2578
2579        /*
2580         * The event first in the commit queue updates the
2581         * time stamp.
2582         */
2583        if (rb_event_is_commit(cpu_buffer, event)) {
2584                /*
2585                 * A commit event that is first on a page
2586                 * updates the write timestamp with the page stamp
2587                 */
2588                if (!rb_event_index(event))
2589                        cpu_buffer->write_stamp =
2590                                cpu_buffer->commit_page->page->time_stamp;
2591                else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2592                        delta = ring_buffer_event_time_stamp(event);
2593                        cpu_buffer->write_stamp += delta;
2594                } else if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
2595                        delta = ring_buffer_event_time_stamp(event);
2596                        cpu_buffer->write_stamp = delta;
2597                } else
2598                        cpu_buffer->write_stamp += event->time_delta;
2599        }
2600}
2601
2602static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2603                      struct ring_buffer_event *event)
2604{
2605        local_inc(&cpu_buffer->entries);
2606        rb_update_write_stamp(cpu_buffer, event);
2607        rb_end_commit(cpu_buffer);
2608}
2609
2610static __always_inline void
2611rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2612{
2613        size_t nr_pages;
2614        size_t dirty;
2615        size_t full;
2616
2617        if (buffer->irq_work.waiters_pending) {
2618                buffer->irq_work.waiters_pending = false;
2619                /* irq_work_queue() supplies it's own memory barriers */
2620                irq_work_queue(&buffer->irq_work.work);
2621        }
2622
2623        if (cpu_buffer->irq_work.waiters_pending) {
2624                cpu_buffer->irq_work.waiters_pending = false;
2625                /* irq_work_queue() supplies it's own memory barriers */
2626                irq_work_queue(&cpu_buffer->irq_work.work);
2627        }
2628
2629        if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2630                return;
2631
2632        if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2633                return;
2634
2635        if (!cpu_buffer->irq_work.full_waiters_pending)
2636                return;
2637
2638        cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2639
2640        full = cpu_buffer->shortest_full;
2641        nr_pages = cpu_buffer->nr_pages;
2642        dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2643        if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2644                return;
2645
2646        cpu_buffer->irq_work.wakeup_full = true;
2647        cpu_buffer->irq_work.full_waiters_pending = false;
2648        /* irq_work_queue() supplies it's own memory barriers */
2649        irq_work_queue(&cpu_buffer->irq_work.work);
2650}
2651
2652/*
2653 * The lock and unlock are done within a preempt disable section.
2654 * The current_context per_cpu variable can only be modified
2655 * by the current task between lock and unlock. But it can
2656 * be modified more than once via an interrupt. To pass this
2657 * information from the lock to the unlock without having to
2658 * access the 'in_interrupt()' functions again (which do show
2659 * a bit of overhead in something as critical as function tracing,
2660 * we use a bitmask trick.
2661 *
2662 *  bit 0 =  NMI context
2663 *  bit 1 =  IRQ context
2664 *  bit 2 =  SoftIRQ context
2665 *  bit 3 =  normal context.
2666 *
2667 * This works because this is the order of contexts that can
2668 * preempt other contexts. A SoftIRQ never preempts an IRQ
2669 * context.
2670 *
2671 * When the context is determined, the corresponding bit is
2672 * checked and set (if it was set, then a recursion of that context
2673 * happened).
2674 *
2675 * On unlock, we need to clear this bit. To do so, just subtract
2676 * 1 from the current_context and AND it to itself.
2677 *
2678 * (binary)
2679 *  101 - 1 = 100
2680 *  101 & 100 = 100 (clearing bit zero)
2681 *
2682 *  1010 - 1 = 1001
2683 *  1010 & 1001 = 1000 (clearing bit 1)
2684 *
2685 * The least significant bit can be cleared this way, and it
2686 * just so happens that it is the same bit corresponding to
2687 * the current context.
2688 */
2689
2690static __always_inline int
2691trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2692{
2693        unsigned int val = cpu_buffer->current_context;
2694        unsigned long pc = preempt_count();
2695        int bit;
2696
2697        if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2698                bit = RB_CTX_NORMAL;
2699        else
2700                bit = pc & NMI_MASK ? RB_CTX_NMI :
2701                        pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2702
2703        if (unlikely(val & (1 << (bit + cpu_buffer->nest))))
2704                return 1;
2705
2706        val |= (1 << (bit + cpu_buffer->nest));
2707        cpu_buffer->current_context = val;
2708
2709        return 0;
2710}
2711
2712static __always_inline void
2713trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2714{
2715        cpu_buffer->current_context &=
2716                cpu_buffer->current_context - (1 << cpu_buffer->nest);
2717}
2718
2719/* The recursive locking above uses 4 bits */
2720#define NESTED_BITS 4
2721
2722/**
2723 * ring_buffer_nest_start - Allow to trace while nested
2724 * @buffer: The ring buffer to modify
2725 *
2726 * The ring buffer has a safety mechanism to prevent recursion.
2727 * But there may be a case where a trace needs to be done while
2728 * tracing something else. In this case, calling this function
2729 * will allow this function to nest within a currently active
2730 * ring_buffer_lock_reserve().
2731 *
2732 * Call this function before calling another ring_buffer_lock_reserve() and
2733 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2734 */
2735void ring_buffer_nest_start(struct ring_buffer *buffer)
2736{
2737        struct ring_buffer_per_cpu *cpu_buffer;
2738        int cpu;
2739
2740        /* Enabled by ring_buffer_nest_end() */
2741        preempt_disable_notrace();
2742        cpu = raw_smp_processor_id();
2743        cpu_buffer = buffer->buffers[cpu];
2744        /* This is the shift value for the above recursive locking */
2745        cpu_buffer->nest += NESTED_BITS;
2746}
2747
2748/**
2749 * ring_buffer_nest_end - Allow to trace while nested
2750 * @buffer: The ring buffer to modify
2751 *
2752 * Must be called after ring_buffer_nest_start() and after the
2753 * ring_buffer_unlock_commit().
2754 */
2755void ring_buffer_nest_end(struct ring_buffer *buffer)
2756{
2757        struct ring_buffer_per_cpu *cpu_buffer;
2758        int cpu;
2759
2760        /* disabled by ring_buffer_nest_start() */
2761        cpu = raw_smp_processor_id();
2762        cpu_buffer = buffer->buffers[cpu];
2763        /* This is the shift value for the above recursive locking */
2764        cpu_buffer->nest -= NESTED_BITS;
2765        preempt_enable_notrace();
2766}
2767
2768/**
2769 * ring_buffer_unlock_commit - commit a reserved
2770 * @buffer: The buffer to commit to
2771 * @event: The event pointer to commit.
2772 *
2773 * This commits the data to the ring buffer, and releases any locks held.
2774 *
2775 * Must be paired with ring_buffer_lock_reserve.
2776 */
2777int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2778                              struct ring_buffer_event *event)
2779{
2780        struct ring_buffer_per_cpu *cpu_buffer;
2781        int cpu = raw_smp_processor_id();
2782
2783        cpu_buffer = buffer->buffers[cpu];
2784
2785        rb_commit(cpu_buffer, event);
2786
2787        rb_wakeups(buffer, cpu_buffer);
2788
2789        trace_recursive_unlock(cpu_buffer);
2790
2791        preempt_enable_notrace();
2792
2793        return 0;
2794}
2795EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2796
2797static noinline void
2798rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2799                    struct rb_event_info *info)
2800{
2801        WARN_ONCE(info->delta > (1ULL << 59),
2802                  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2803                  (unsigned long long)info->delta,
2804                  (unsigned long long)info->ts,
2805                  (unsigned long long)cpu_buffer->write_stamp,
2806                  sched_clock_stable() ? "" :
2807                  "If you just came from a suspend/resume,\n"
2808                  "please switch to the trace global clock:\n"
2809                  "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2810                  "or add trace_clock=global to the kernel command line\n");
2811        info->add_timestamp = 1;
2812}
2813
2814static struct ring_buffer_event *
2815__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2816                  struct rb_event_info *info)
2817{
2818        struct ring_buffer_event *event;
2819        struct buffer_page *tail_page;
2820        unsigned long tail, write;
2821
2822        /*
2823         * If the time delta since the last event is too big to
2824         * hold in the time field of the event, then we append a
2825         * TIME EXTEND event ahead of the data event.
2826         */
2827        if (unlikely(info->add_timestamp))
2828                info->length += RB_LEN_TIME_EXTEND;
2829
2830        /* Don't let the compiler play games with cpu_buffer->tail_page */
2831        tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2832        write = local_add_return(info->length, &tail_page->write);
2833
2834        /* set write to only the index of the write */
2835        write &= RB_WRITE_MASK;
2836        tail = write - info->length;
2837
2838        /*
2839         * If this is the first commit on the page, then it has the same
2840         * timestamp as the page itself.
2841         */
2842        if (!tail && !ring_buffer_time_stamp_abs(cpu_buffer->buffer))
2843                info->delta = 0;
2844
2845        /* See if we shot pass the end of this buffer page */
2846        if (unlikely(write > BUF_PAGE_SIZE))
2847                return rb_move_tail(cpu_buffer, tail, info);
2848
2849        /* We reserved something on the buffer */
2850
2851        event = __rb_page_index(tail_page, tail);
2852        rb_update_event(cpu_buffer, event, info);
2853
2854        local_inc(&tail_page->entries);
2855
2856        /*
2857         * If this is the first commit on the page, then update
2858         * its timestamp.
2859         */
2860        if (!tail)
2861                tail_page->page->time_stamp = info->ts;
2862
2863        /* account for these added bytes */
2864        local_add(info->length, &cpu_buffer->entries_bytes);
2865
2866        return event;
2867}
2868
2869static __always_inline struct ring_buffer_event *
2870rb_reserve_next_event(struct ring_buffer *buffer,
2871                      struct ring_buffer_per_cpu *cpu_buffer,
2872                      unsigned long length)
2873{
2874        struct ring_buffer_event *event;
2875        struct rb_event_info info;
2876        int nr_loops = 0;
2877        u64 diff;
2878
2879        rb_start_commit(cpu_buffer);
2880
2881#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2882        /*
2883         * Due to the ability to swap a cpu buffer from a buffer
2884         * it is possible it was swapped before we committed.
2885         * (committing stops a swap). We check for it here and
2886         * if it happened, we have to fail the write.
2887         */
2888        barrier();
2889        if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2890                local_dec(&cpu_buffer->committing);
2891                local_dec(&cpu_buffer->commits);
2892                return NULL;
2893        }
2894#endif
2895
2896        info.length = rb_calculate_event_length(length);
2897 again:
2898        info.add_timestamp = 0;
2899        info.delta = 0;
2900
2901        /*
2902         * We allow for interrupts to reenter here and do a trace.
2903         * If one does, it will cause this original code to loop
2904         * back here. Even with heavy interrupts happening, this
2905         * should only happen a few times in a row. If this happens
2906         * 1000 times in a row, there must be either an interrupt
2907         * storm or we have something buggy.
2908         * Bail!
2909         */
2910        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2911                goto out_fail;
2912
2913        info.ts = rb_time_stamp(cpu_buffer->buffer);
2914        diff = info.ts - cpu_buffer->write_stamp;
2915
2916        /* make sure this diff is calculated here */
2917        barrier();
2918
2919        if (ring_buffer_time_stamp_abs(buffer)) {
2920                info.delta = info.ts;
2921                rb_handle_timestamp(cpu_buffer, &info);
2922        } else /* Did the write stamp get updated already? */
2923                if (likely(info.ts >= cpu_buffer->write_stamp)) {
2924                info.delta = diff;
2925                if (unlikely(test_time_stamp(info.delta)))
2926                        rb_handle_timestamp(cpu_buffer, &info);
2927        }
2928
2929        event = __rb_reserve_next(cpu_buffer, &info);
2930
2931        if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2932                if (info.add_timestamp)
2933                        info.length -= RB_LEN_TIME_EXTEND;
2934                goto again;
2935        }
2936
2937        if (!event)
2938                goto out_fail;
2939
2940        return event;
2941
2942 out_fail:
2943        rb_end_commit(cpu_buffer);
2944        return NULL;
2945}
2946
2947/**
2948 * ring_buffer_lock_reserve - reserve a part of the buffer
2949 * @buffer: the ring buffer to reserve from
2950 * @length: the length of the data to reserve (excluding event header)
2951 *
2952 * Returns a reserved event on the ring buffer to copy directly to.
2953 * The user of this interface will need to get the body to write into
2954 * and can use the ring_buffer_event_data() interface.
2955 *
2956 * The length is the length of the data needed, not the event length
2957 * which also includes the event header.
2958 *
2959 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2960 * If NULL is returned, then nothing has been allocated or locked.
2961 */
2962struct ring_buffer_event *
2963ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2964{
2965        struct ring_buffer_per_cpu *cpu_buffer;
2966        struct ring_buffer_event *event;
2967        int cpu;
2968
2969        /* If we are tracing schedule, we don't want to recurse */
2970        preempt_disable_notrace();
2971
2972        if (unlikely(atomic_read(&buffer->record_disabled)))
2973                goto out;
2974
2975        cpu = raw_smp_processor_id();
2976
2977        if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2978                goto out;
2979
2980        cpu_buffer = buffer->buffers[cpu];
2981
2982        if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2983                goto out;
2984
2985        if (unlikely(length > BUF_MAX_DATA_SIZE))
2986                goto out;
2987
2988        if (unlikely(trace_recursive_lock(cpu_buffer)))
2989                goto out;
2990
2991        event = rb_reserve_next_event(buffer, cpu_buffer, length);
2992        if (!event)
2993                goto out_unlock;
2994
2995        return event;
2996
2997 out_unlock:
2998        trace_recursive_unlock(cpu_buffer);
2999 out:
3000        preempt_enable_notrace();
3001        return NULL;
3002}
3003EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3004
3005/*
3006 * Decrement the entries to the page that an event is on.
3007 * The event does not even need to exist, only the pointer
3008 * to the page it is on. This may only be called before the commit
3009 * takes place.
3010 */
3011static inline void
3012rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3013                   struct ring_buffer_event *event)
3014{
3015        unsigned long addr = (unsigned long)event;
3016        struct buffer_page *bpage = cpu_buffer->commit_page;
3017        struct buffer_page *start;
3018
3019        addr &= PAGE_MASK;
3020
3021        /* Do the likely case first */
3022        if (likely(bpage->page == (void *)addr)) {
3023                local_dec(&bpage->entries);
3024                return;
3025        }
3026
3027        /*
3028         * Because the commit page may be on the reader page we
3029         * start with the next page and check the end loop there.
3030         */
3031        rb_inc_page(cpu_buffer, &bpage);
3032        start = bpage;
3033        do {
3034                if (bpage->page == (void *)addr) {
3035                        local_dec(&bpage->entries);
3036                        return;
3037                }
3038                rb_inc_page(cpu_buffer, &bpage);
3039        } while (bpage != start);
3040
3041        /* commit not part of this buffer?? */
3042        RB_WARN_ON(cpu_buffer, 1);
3043}
3044
3045/**
3046 * ring_buffer_commit_discard - discard an event that has not been committed
3047 * @buffer: the ring buffer
3048 * @event: non committed event to discard
3049 *
3050 * Sometimes an event that is in the ring buffer needs to be ignored.
3051 * This function lets the user discard an event in the ring buffer
3052 * and then that event will not be read later.
3053 *
3054 * This function only works if it is called before the item has been
3055 * committed. It will try to free the event from the ring buffer
3056 * if another event has not been added behind it.
3057 *
3058 * If another event has been added behind it, it will set the event
3059 * up as discarded, and perform the commit.
3060 *
3061 * If this function is called, do not call ring_buffer_unlock_commit on
3062 * the event.
3063 */
3064void ring_buffer_discard_commit(struct ring_buffer *buffer,
3065                                struct ring_buffer_event *event)
3066{
3067        struct ring_buffer_per_cpu *cpu_buffer;
3068        int cpu;
3069
3070        /* The event is discarded regardless */
3071        rb_event_discard(event);
3072
3073        cpu = smp_processor_id();
3074        cpu_buffer = buffer->buffers[cpu];
3075
3076        /*
3077         * This must only be called if the event has not been
3078         * committed yet. Thus we can assume that preemption
3079         * is still disabled.
3080         */
3081        RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3082
3083        rb_decrement_entry(cpu_buffer, event);
3084        if (rb_try_to_discard(cpu_buffer, event))
3085                goto out;
3086
3087        /*
3088         * The commit is still visible by the reader, so we
3089         * must still update the timestamp.
3090         */
3091        rb_update_write_stamp(cpu_buffer, event);
3092 out:
3093        rb_end_commit(cpu_buffer);
3094
3095        trace_recursive_unlock(cpu_buffer);
3096
3097        preempt_enable_notrace();
3098
3099}
3100EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3101
3102/**
3103 * ring_buffer_write - write data to the buffer without reserving
3104 * @buffer: The ring buffer to write to.
3105 * @length: The length of the data being written (excluding the event header)
3106 * @data: The data to write to the buffer.
3107 *
3108 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3109 * one function. If you already have the data to write to the buffer, it
3110 * may be easier to simply call this function.
3111 *
3112 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3113 * and not the length of the event which would hold the header.
3114 */
3115int ring_buffer_write(struct ring_buffer *buffer,
3116                      unsigned long length,
3117                      void *data)
3118{
3119        struct ring_buffer_per_cpu *cpu_buffer;
3120        struct ring_buffer_event *event;
3121        void *body;
3122        int ret = -EBUSY;
3123        int cpu;
3124
3125        preempt_disable_notrace();
3126
3127        if (atomic_read(&buffer->record_disabled))
3128                goto out;
3129
3130        cpu = raw_smp_processor_id();
3131
3132        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3133                goto out;
3134
3135        cpu_buffer = buffer->buffers[cpu];
3136
3137        if (atomic_read(&cpu_buffer->record_disabled))
3138                goto out;
3139
3140        if (length > BUF_MAX_DATA_SIZE)
3141                goto out;
3142
3143        if (unlikely(trace_recursive_lock(cpu_buffer)))
3144                goto out;
3145
3146        event = rb_reserve_next_event(buffer, cpu_buffer, length);
3147        if (!event)
3148                goto out_unlock;
3149
3150        body = rb_event_data(event);
3151
3152        memcpy(body, data, length);
3153
3154        rb_commit(cpu_buffer, event);
3155
3156        rb_wakeups(buffer, cpu_buffer);
3157
3158        ret = 0;
3159
3160 out_unlock:
3161        trace_recursive_unlock(cpu_buffer);
3162
3163 out:
3164        preempt_enable_notrace();
3165
3166        return ret;
3167}
3168EXPORT_SYMBOL_GPL(ring_buffer_write);
3169
3170static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3171{
3172        struct buffer_page *reader = cpu_buffer->reader_page;
3173        struct buffer_page *head = rb_set_head_page(cpu_buffer);
3174        struct buffer_page *commit = cpu_buffer->commit_page;
3175
3176        /* In case of error, head will be NULL */
3177        if (unlikely(!head))
3178                return true;
3179
3180        return reader->read == rb_page_commit(reader) &&
3181                (commit == reader ||
3182                 (commit == head &&
3183                  head->read == rb_page_commit(commit)));
3184}
3185
3186/**
3187 * ring_buffer_record_disable - stop all writes into the buffer
3188 * @buffer: The ring buffer to stop writes to.
3189 *
3190 * This prevents all writes to the buffer. Any attempt to write
3191 * to the buffer after this will fail and return NULL.
3192 *
3193 * The caller should call synchronize_rcu() after this.
3194 */
3195void ring_buffer_record_disable(struct ring_buffer *buffer)
3196{
3197        atomic_inc(&buffer->record_disabled);
3198}
3199EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3200
3201/**
3202 * ring_buffer_record_enable - enable writes to the buffer
3203 * @buffer: The ring buffer to enable writes
3204 *
3205 * Note, multiple disables will need the same number of enables
3206 * to truly enable the writing (much like preempt_disable).
3207 */
3208void ring_buffer_record_enable(struct ring_buffer *buffer)
3209{
3210        atomic_dec(&buffer->record_disabled);
3211}
3212EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3213
3214/**
3215 * ring_buffer_record_off - stop all writes into the buffer
3216 * @buffer: The ring buffer to stop writes to.
3217 *
3218 * This prevents all writes to the buffer. Any attempt to write
3219 * to the buffer after this will fail and return NULL.
3220 *
3221 * This is different than ring_buffer_record_disable() as
3222 * it works like an on/off switch, where as the disable() version
3223 * must be paired with a enable().
3224 */
3225void ring_buffer_record_off(struct ring_buffer *buffer)
3226{
3227        unsigned int rd;
3228        unsigned int new_rd;
3229
3230        do {
3231                rd = atomic_read(&buffer->record_disabled);
3232                new_rd = rd | RB_BUFFER_OFF;
3233        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3234}
3235EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3236
3237/**
3238 * ring_buffer_record_on - restart writes into the buffer
3239 * @buffer: The ring buffer to start writes to.
3240 *
3241 * This enables all writes to the buffer that was disabled by
3242 * ring_buffer_record_off().
3243 *
3244 * This is different than ring_buffer_record_enable() as
3245 * it works like an on/off switch, where as the enable() version
3246 * must be paired with a disable().
3247 */
3248void ring_buffer_record_on(struct ring_buffer *buffer)
3249{
3250        unsigned int rd;
3251        unsigned int new_rd;
3252
3253        do {
3254                rd = atomic_read(&buffer->record_disabled);
3255                new_rd = rd & ~RB_BUFFER_OFF;
3256        } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3257}
3258EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3259
3260/**
3261 * ring_buffer_record_is_on - return true if the ring buffer can write
3262 * @buffer: The ring buffer to see if write is enabled
3263 *
3264 * Returns true if the ring buffer is in a state that it accepts writes.
3265 */
3266bool ring_buffer_record_is_on(struct ring_buffer *buffer)
3267{
3268        return !atomic_read(&buffer->record_disabled);
3269}
3270
3271/**
3272 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3273 * @buffer: The ring buffer to see if write is set enabled
3274 *
3275 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3276 * Note that this does NOT mean it is in a writable state.
3277 *
3278 * It may return true when the ring buffer has been disabled by
3279 * ring_buffer_record_disable(), as that is a temporary disabling of
3280 * the ring buffer.
3281 */
3282bool ring_buffer_record_is_set_on(struct ring_buffer *buffer)
3283{
3284        return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3285}
3286
3287/**
3288 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3289 * @buffer: The ring buffer to stop writes to.
3290 * @cpu: The CPU buffer to stop
3291 *
3292 * This prevents all writes to the buffer. Any attempt to write
3293 * to the buffer after this will fail and return NULL.
3294 *
3295 * The caller should call synchronize_rcu() after this.
3296 */
3297void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3298{
3299        struct ring_buffer_per_cpu *cpu_buffer;
3300
3301        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3302                return;
3303
3304        cpu_buffer = buffer->buffers[cpu];
3305        atomic_inc(&cpu_buffer->record_disabled);
3306}
3307EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3308
3309/**
3310 * ring_buffer_record_enable_cpu - enable writes to the buffer
3311 * @buffer: The ring buffer to enable writes
3312 * @cpu: The CPU to enable.
3313 *
3314 * Note, multiple disables will need the same number of enables
3315 * to truly enable the writing (much like preempt_disable).
3316 */
3317void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3318{
3319        struct ring_buffer_per_cpu *cpu_buffer;
3320
3321        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3322                return;
3323
3324        cpu_buffer = buffer->buffers[cpu];
3325        atomic_dec(&cpu_buffer->record_disabled);
3326}
3327EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3328
3329/*
3330 * The total entries in the ring buffer is the running counter
3331 * of entries entered into the ring buffer, minus the sum of
3332 * the entries read from the ring buffer and the number of
3333 * entries that were overwritten.
3334 */
3335static inline unsigned long
3336rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3337{
3338        return local_read(&cpu_buffer->entries) -
3339                (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3340}
3341
3342/**
3343 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3344 * @buffer: The ring buffer
3345 * @cpu: The per CPU buffer to read from.
3346 */
3347u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3348{
3349        unsigned long flags;
3350        struct ring_buffer_per_cpu *cpu_buffer;
3351        struct buffer_page *bpage;
3352        u64 ret = 0;
3353
3354        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3355                return 0;
3356
3357        cpu_buffer = buffer->buffers[cpu];
3358        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3359        /*
3360         * if the tail is on reader_page, oldest time stamp is on the reader
3361         * page
3362         */
3363        if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3364                bpage = cpu_buffer->reader_page;
3365        else
3366                bpage = rb_set_head_page(cpu_buffer);
3367        if (bpage)
3368                ret = bpage->page->time_stamp;
3369        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3370
3371        return ret;
3372}
3373EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3374
3375/**
3376 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3377 * @buffer: The ring buffer
3378 * @cpu: The per CPU buffer to read from.
3379 */
3380unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3381{
3382        struct ring_buffer_per_cpu *cpu_buffer;
3383        unsigned long ret;
3384
3385        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3386                return 0;
3387
3388        cpu_buffer = buffer->buffers[cpu];
3389        ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3390
3391        return ret;
3392}
3393EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3394
3395/**
3396 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3397 * @buffer: The ring buffer
3398 * @cpu: The per CPU buffer to get the entries from.
3399 */
3400unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3401{
3402        struct ring_buffer_per_cpu *cpu_buffer;
3403
3404        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3405                return 0;
3406
3407        cpu_buffer = buffer->buffers[cpu];
3408
3409        return rb_num_of_entries(cpu_buffer);
3410}
3411EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3412
3413/**
3414 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3415 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3416 * @buffer: The ring buffer
3417 * @cpu: The per CPU buffer to get the number of overruns from
3418 */
3419unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3420{
3421        struct ring_buffer_per_cpu *cpu_buffer;
3422        unsigned long ret;
3423
3424        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3425                return 0;
3426
3427        cpu_buffer = buffer->buffers[cpu];
3428        ret = local_read(&cpu_buffer->overrun);
3429
3430        return ret;
3431}
3432EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3433
3434/**
3435 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3436 * commits failing due to the buffer wrapping around while there are uncommitted
3437 * events, such as during an interrupt storm.
3438 * @buffer: The ring buffer
3439 * @cpu: The per CPU buffer to get the number of overruns from
3440 */
3441unsigned long
3442ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3443{
3444        struct ring_buffer_per_cpu *cpu_buffer;
3445        unsigned long ret;
3446
3447        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3448                return 0;
3449
3450        cpu_buffer = buffer->buffers[cpu];
3451        ret = local_read(&cpu_buffer->commit_overrun);
3452
3453        return ret;
3454}
3455EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3456
3457/**
3458 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3459 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3460 * @buffer: The ring buffer
3461 * @cpu: The per CPU buffer to get the number of overruns from
3462 */
3463unsigned long
3464ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3465{
3466        struct ring_buffer_per_cpu *cpu_buffer;
3467        unsigned long ret;
3468
3469        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3470                return 0;
3471
3472        cpu_buffer = buffer->buffers[cpu];
3473        ret = local_read(&cpu_buffer->dropped_events);
3474
3475        return ret;
3476}
3477EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3478
3479/**
3480 * ring_buffer_read_events_cpu - get the number of events successfully read
3481 * @buffer: The ring buffer
3482 * @cpu: The per CPU buffer to get the number of events read
3483 */
3484unsigned long
3485ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3486{
3487        struct ring_buffer_per_cpu *cpu_buffer;
3488
3489        if (!cpumask_test_cpu(cpu, buffer->cpumask))
3490                return 0;
3491
3492        cpu_buffer = buffer->buffers[cpu];
3493        return cpu_buffer->read;
3494}
3495EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3496
3497/**
3498 * ring_buffer_entries - get the number of entries in a buffer
3499 * @buffer: The ring buffer
3500 *
3501 * Returns the total number of entries in the ring buffer
3502 * (all CPU entries)
3503 */
3504unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3505{
3506        struct ring_buffer_per_cpu *cpu_buffer;
3507        unsigned long entries = 0;
3508        int cpu;
3509
3510        /* if you care about this being correct, lock the buffer */
3511        for_each_buffer_cpu(buffer, cpu) {
3512                cpu_buffer = buffer->buffers[cpu];
3513                entries += rb_num_of_entries(cpu_buffer);
3514        }
3515
3516        return entries;
3517}
3518EXPORT_SYMBOL_GPL(ring_buffer_entries);
3519
3520/**
3521 * ring_buffer_overruns - get the number of overruns in buffer
3522 * @buffer: The ring buffer
3523 *
3524 * Returns the total number of overruns in the ring buffer
3525 * (all CPU entries)
3526 */
3527unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3528{
3529        struct ring_buffer_per_cpu *cpu_buffer;
3530        unsigned long overruns = 0;
3531        int cpu;
3532
3533        /* if you care about this being correct, lock the buffer */
3534        for_each_buffer_cpu(buffer, cpu) {
3535                cpu_buffer = buffer->buffers[cpu];
3536                overruns += local_read(&cpu_buffer->overrun);
3537        }
3538
3539        return overruns;
3540}
3541EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3542
3543static void rb_iter_reset(struct ring_buffer_iter *iter)
3544{
3545        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3546
3547        /* Iterator usage is expected to have record disabled */
3548        iter->head_page = cpu_buffer->reader_page;
3549        iter->head = cpu_buffer->reader_page->read;
3550
3551        iter->cache_reader_page = iter->head_page;
3552        iter->cache_read = cpu_buffer->read;
3553
3554        if (iter->head)
3555                iter->read_stamp = cpu_buffer->read_stamp;
3556        else
3557                iter->read_stamp = iter->head_page->page->time_stamp;
3558}
3559
3560/**
3561 * ring_buffer_iter_reset - reset an iterator
3562 * @iter: The iterator to reset
3563 *
3564 * Resets the iterator, so that it will start from the beginning
3565 * again.
3566 */
3567void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3568{
3569        struct ring_buffer_per_cpu *cpu_buffer;
3570        unsigned long flags;
3571
3572        if (!iter)
3573                return;
3574
3575        cpu_buffer = iter->cpu_buffer;
3576
3577        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3578        rb_iter_reset(iter);
3579        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3580}
3581EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3582
3583/**
3584 * ring_buffer_iter_empty - check if an iterator has no more to read
3585 * @iter: The iterator to check
3586 */
3587int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3588{
3589        struct ring_buffer_per_cpu *cpu_buffer;
3590        struct buffer_page *reader;
3591        struct buffer_page *head_page;
3592        struct buffer_page *commit_page;
3593        unsigned commit;
3594
3595        cpu_buffer = iter->cpu_buffer;
3596
3597        /* Remember, trace recording is off when iterator is in use */
3598        reader = cpu_buffer->reader_page;
3599        head_page = cpu_buffer->head_page;
3600        commit_page = cpu_buffer->commit_page;
3601        commit = rb_page_commit(commit_page);
3602
3603        return ((iter->head_page == commit_page && iter->head == commit) ||
3604                (iter->head_page == reader && commit_page == head_page &&
3605                 head_page->read == commit &&
3606                 iter->head == rb_page_commit(cpu_buffer->reader_page)));
3607}
3608EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3609
3610static void
3611rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3612                     struct ring_buffer_event *event)
3613{
3614        u64 delta;
3615
3616        switch (event->type_len) {
3617        case RINGBUF_TYPE_PADDING:
3618                return;
3619
3620        case RINGBUF_TYPE_TIME_EXTEND:
3621                delta = ring_buffer_event_time_stamp(event);
3622                cpu_buffer->read_stamp += delta;
3623                return;
3624
3625        case RINGBUF_TYPE_TIME_STAMP:
3626                delta = ring_buffer_event_time_stamp(event);
3627                cpu_buffer->read_stamp = delta;
3628                return;
3629
3630        case RINGBUF_TYPE_DATA:
3631                cpu_buffer->read_stamp += event->time_delta;
3632                return;
3633
3634        default:
3635                BUG();
3636        }
3637        return;
3638}
3639
3640static void
3641rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3642                          struct ring_buffer_event *event)
3643{
3644        u64 delta;
3645
3646        switch (event->type_len) {
3647        case RINGBUF_TYPE_PADDING:
3648                return;
3649
3650        case RINGBUF_TYPE_TIME_EXTEND:
3651                delta = ring_buffer_event_time_stamp(event);
3652                iter->read_stamp += delta;
3653                return;
3654
3655        case RINGBUF_TYPE_TIME_STAMP:
3656                delta = ring_buffer_event_time_stamp(event);
3657                iter->read_stamp = delta;
3658                return;
3659
3660        case RINGBUF_TYPE_DATA:
3661                iter->read_stamp += event->time_delta;
3662                return;
3663
3664        default:
3665                BUG();
3666        }
3667        return;
3668}
3669
3670static struct buffer_page *
3671rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3672{
3673        struct buffer_page *reader = NULL;
3674        unsigned long overwrite;
3675        unsigned long flags;
3676        int nr_loops = 0;
3677        int ret;
3678
3679        local_irq_save(flags);
3680        arch_spin_lock(&cpu_buffer->lock);
3681
3682 again:
3683        /*
3684         * This should normally only loop twice. But because the
3685         * start of the reader inserts an empty page, it causes
3686         * a case where we will loop three times. There should be no
3687         * reason to loop four times (that I know of).
3688         */
3689        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3690                reader = NULL;
3691                goto out;
3692        }
3693
3694        reader = cpu_buffer->reader_page;
3695
3696        /* If there's more to read, return this page */
3697        if (cpu_buffer->reader_page->read < rb_page_size(reader))
3698                goto out;
3699
3700        /* Never should we have an index greater than the size */
3701        if (RB_WARN_ON(cpu_buffer,
3702                       cpu_buffer->reader_page->read > rb_page_size(reader)))
3703                goto out;
3704
3705        /* check if we caught up to the tail */
3706        reader = NULL;
3707        if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3708                goto out;
3709
3710        /* Don't bother swapping if the ring buffer is empty */
3711        if (rb_num_of_entries(cpu_buffer) == 0)
3712                goto out;
3713
3714        /*
3715         * Reset the reader page to size zero.
3716         */
3717        local_set(&cpu_buffer->reader_page->write, 0);
3718        local_set(&cpu_buffer->reader_page->entries, 0);
3719        local_set(&cpu_buffer->reader_page->page->commit, 0);
3720        cpu_buffer->reader_page->real_end = 0;
3721
3722 spin:
3723        /*
3724         * Splice the empty reader page into the list around the head.
3725         */
3726        reader = rb_set_head_page(cpu_buffer);
3727        if (!reader)
3728                goto out;
3729        cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3730        cpu_buffer->reader_page->list.prev = reader->list.prev;
3731
3732        /*
3733         * cpu_buffer->pages just needs to point to the buffer, it
3734         *  has no specific buffer page to point to. Lets move it out
3735         *  of our way so we don't accidentally swap it.
3736         */
3737        cpu_buffer->pages = reader->list.prev;
3738
3739        /* The reader page will be pointing to the new head */
3740        rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3741
3742        /*
3743         * We want to make sure we read the overruns after we set up our
3744         * pointers to the next object. The writer side does a
3745         * cmpxchg to cross pages which acts as the mb on the writer
3746         * side. Note, the reader will constantly fail the swap
3747         * while the writer is updating the pointers, so this
3748         * guarantees that the overwrite recorded here is the one we
3749         * want to compare with the last_overrun.
3750         */
3751        smp_mb();
3752        overwrite = local_read(&(cpu_buffer->overrun));
3753
3754        /*
3755         * Here's the tricky part.
3756         *
3757         * We need to move the pointer past the header page.
3758         * But we can only do that if a writer is not currently
3759         * moving it. The page before the header page has the
3760         * flag bit '1' set if it is pointing to the page we want.
3761         * but if the writer is in the process of moving it
3762         * than it will be '2' or already moved '0'.
3763         */
3764
3765        ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3766
3767        /*
3768         * If we did not convert it, then we must try again.
3769         */
3770        if (!ret)
3771                goto spin;
3772
3773        /*
3774         * Yay! We succeeded in replacing the page.
3775         *
3776         * Now make the new head point back to the reader page.
3777         */
3778        rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3779        rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3780
3781        local_inc(&cpu_buffer->pages_read);
3782
3783        /* Finally update the reader page to the new head */
3784        cpu_buffer->reader_page = reader;
3785        cpu_buffer->reader_page->read = 0;
3786
3787        if (overwrite != cpu_buffer->last_overrun) {
3788                cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3789                cpu_buffer->last_overrun = overwrite;
3790        }
3791
3792        goto again;
3793
3794 out:
3795        /* Update the read_stamp on the first event */
3796        if (reader && reader->read == 0)
3797                cpu_buffer->read_stamp = reader->page->time_stamp;
3798
3799        arch_spin_unlock(&cpu_buffer->lock);
3800        local_irq_restore(flags);
3801
3802        return reader;
3803}
3804
3805static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3806{
3807        struct ring_buffer_event *event;
3808        struct buffer_page *reader;
3809        unsigned length;
3810
3811        reader = rb_get_reader_page(cpu_buffer);
3812
3813        /* This function should not be called when buffer is empty */
3814        if (RB_WARN_ON(cpu_buffer, !reader))
3815                return;
3816
3817        event = rb_reader_event(cpu_buffer);
3818
3819        if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3820                cpu_buffer->read++;
3821
3822        rb_update_read_stamp(cpu_buffer, event);
3823
3824        length = rb_event_length(event);
3825        cpu_buffer->reader_page->read += length;
3826}
3827
3828static void rb_advance_iter(struct ring_buffer_iter *iter)
3829{
3830        struct ring_buffer_per_cpu *cpu_buffer;
3831        struct ring_buffer_event *event;
3832        unsigned length;
3833
3834        cpu_buffer = iter->cpu_buffer;
3835
3836        /*
3837         * Check if we are at the end of the buffer.
3838         */
3839        if (iter->head >= rb_page_size(iter->head_page)) {
3840                /* discarded commits can make the page empty */
3841                if (iter->head_page == cpu_buffer->commit_page)
3842                        return;
3843                rb_inc_iter(iter);
3844                return;
3845        }
3846
3847        event = rb_iter_head_event(iter);
3848
3849        length = rb_event_length(event);
3850
3851        /*
3852         * This should not be called to advance the header if we are
3853         * at the tail of the buffer.
3854         */
3855        if (RB_WARN_ON(cpu_buffer,
3856                       (iter->head_page == cpu_buffer->commit_page) &&
3857                       (iter->head + length > rb_commit_index(cpu_buffer))))
3858                return;
3859
3860        rb_update_iter_read_stamp(iter, event);
3861
3862        iter->head += length;
3863
3864        /* check for end of page padding */
3865        if ((iter->head >= rb_page_size(iter->head_page)) &&
3866            (iter->head_page != cpu_buffer->commit_page))
3867                rb_inc_iter(iter);
3868}
3869
3870static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3871{
3872        return cpu_buffer->lost_events;
3873}
3874
3875static struct ring_buffer_event *
3876rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3877               unsigned long *lost_events)
3878{
3879        struct ring_buffer_event *event;
3880        struct buffer_page *reader;
3881        int nr_loops = 0;
3882
3883        if (ts)
3884                *ts = 0;
3885 again:
3886        /*
3887         * We repeat when a time extend is encountered.
3888         * Since the time extend is always attached to a data event,
3889         * we should never loop more than once.
3890         * (We never hit the following condition more than twice).
3891         */
3892        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3893                return NULL;
3894
3895        reader = rb_get_reader_page(cpu_buffer);
3896        if (!reader)
3897                return NULL;
3898
3899        event = rb_reader_event(cpu_buffer);
3900
3901        switch (event->type_len) {
3902        case RINGBUF_TYPE_PADDING:
3903                if (rb_null_event(event))
3904                        RB_WARN_ON(cpu_buffer, 1);
3905                /*
3906                 * Because the writer could be discarding every
3907                 * event it creates (which would probably be bad)
3908                 * if we were to go back to "again" then we may never
3909                 * catch up, and will trigger the warn on, or lock
3910                 * the box. Return the padding, and we will release
3911                 * the current locks, and try again.
3912                 */
3913                return event;
3914
3915        case RINGBUF_TYPE_TIME_EXTEND:
3916                /* Internal data, OK to advance */
3917                rb_advance_reader(cpu_buffer);
3918                goto again;
3919
3920        case RINGBUF_TYPE_TIME_STAMP:
3921                if (ts) {
3922                        *ts = ring_buffer_event_time_stamp(event);
3923                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3924                                                         cpu_buffer->cpu, ts);
3925                }
3926                /* Internal data, OK to advance */
3927                rb_advance_reader(cpu_buffer);
3928                goto again;
3929
3930        case RINGBUF_TYPE_DATA:
3931                if (ts && !(*ts)) {
3932                        *ts = cpu_buffer->read_stamp + event->time_delta;
3933                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3934                                                         cpu_buffer->cpu, ts);
3935                }
3936                if (lost_events)
3937                        *lost_events = rb_lost_events(cpu_buffer);
3938                return event;
3939
3940        default:
3941                BUG();
3942        }
3943
3944        return NULL;
3945}
3946EXPORT_SYMBOL_GPL(ring_buffer_peek);
3947
3948static struct ring_buffer_event *
3949rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3950{
3951        struct ring_buffer *buffer;
3952        struct ring_buffer_per_cpu *cpu_buffer;
3953        struct ring_buffer_event *event;
3954        int nr_loops = 0;
3955
3956        if (ts)
3957                *ts = 0;
3958
3959        cpu_buffer = iter->cpu_buffer;
3960        buffer = cpu_buffer->buffer;
3961
3962        /*
3963         * Check if someone performed a consuming read to
3964         * the buffer. A consuming read invalidates the iterator
3965         * and we need to reset the iterator in this case.
3966         */
3967        if (unlikely(iter->cache_read != cpu_buffer->read ||
3968                     iter->cache_reader_page != cpu_buffer->reader_page))
3969                rb_iter_reset(iter);
3970
3971 again:
3972        if (ring_buffer_iter_empty(iter))
3973                return NULL;
3974
3975        /*
3976         * We repeat when a time extend is encountered or we hit
3977         * the end of the page. Since the time extend is always attached
3978         * to a data event, we should never loop more than three times.
3979         * Once for going to next page, once on time extend, and
3980         * finally once to get the event.
3981         * (We never hit the following condition more than thrice).
3982         */
3983        if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3984                return NULL;
3985
3986        if (rb_per_cpu_empty(cpu_buffer))
3987                return NULL;
3988
3989        if (iter->head >= rb_page_size(iter->head_page)) {
3990                rb_inc_iter(iter);
3991                goto again;
3992        }
3993
3994        event = rb_iter_head_event(iter);
3995
3996        switch (event->type_len) {
3997        case RINGBUF_TYPE_PADDING:
3998                if (rb_null_event(event)) {
3999                        rb_inc_iter(iter);
4000                        goto again;
4001                }
4002                rb_advance_iter(iter);
4003                return event;
4004
4005        case RINGBUF_TYPE_TIME_EXTEND:
4006                /* Internal data, OK to advance */
4007                rb_advance_iter(iter);
4008                goto again;
4009
4010        case RINGBUF_TYPE_TIME_STAMP:
4011                if (ts) {
4012                        *ts = ring_buffer_event_time_stamp(event);
4013                        ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4014                                                         cpu_buffer->cpu, ts);
4015                }
4016                /* Internal data, OK to advance */
4017                rb_advance_iter(iter);
4018                goto again;
4019
4020        case RINGBUF_TYPE_DATA:
4021                if (ts && !(*ts)) {
4022                        *ts = iter->read_stamp + event->time_delta;
4023                        ring_buffer_normalize_time_stamp(buffer,
4024                                                         cpu_buffer->cpu, ts);
4025                }
4026                return event;
4027
4028        default:
4029                BUG();
4030        }
4031
4032        return NULL;
4033}
4034EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4035
4036static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4037{
4038        if (likely(!in_nmi())) {
4039                raw_spin_lock(&cpu_buffer->reader_lock);
4040                return true;
4041        }
4042
4043        /*
4044         * If an NMI die dumps out the content of the ring buffer
4045         * trylock must be used to prevent a deadlock if the NMI
4046         * preempted a task that holds the ring buffer locks. If
4047         * we get the lock then all is fine, if not, then continue
4048         * to do the read, but this can corrupt the ring buffer,
4049         * so it must be permanently disabled from future writes.
4050         * Reading from NMI is a oneshot deal.
4051         */
4052        if (raw_spin_trylock(&cpu_buffer->reader_lock))
4053                return true;
4054
4055        /* Continue without locking, but disable the ring buffer */
4056        atomic_inc(&cpu_buffer->record_disabled);
4057        return false;
4058}
4059
4060static inline void
4061rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4062{
4063        if (likely(locked))
4064                raw_spin_unlock(&cpu_buffer->reader_lock);
4065        return;
4066}
4067
4068/**
4069 * ring_buffer_peek - peek at the next event to be read
4070 * @buffer: The ring buffer to read
4071 * @cpu: The cpu to peak at
4072 * @ts: The timestamp counter of this event.
4073 * @lost_events: a variable to store if events were lost (may be NULL)
4074 *
4075 * This will return the event that will be read next, but does
4076 * not consume the data.
4077 */
4078struct ring_buffer_event *
4079ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
4080                 unsigned long *lost_events)
4081{
4082        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4083        struct ring_buffer_event *event;
4084        unsigned long flags;
4085        bool dolock;
4086
4087        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4088                return NULL;
4089
4090 again:
4091        local_irq_save(flags);
4092        dolock = rb_reader_lock(cpu_buffer);
4093        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4094        if (event && event->type_len == RINGBUF_TYPE_PADDING)
4095                rb_advance_reader(cpu_buffer);
4096        rb_reader_unlock(cpu_buffer, dolock);
4097        local_irq_restore(flags);
4098
4099        if (event && event->type_len == RINGBUF_TYPE_PADDING)
4100                goto again;
4101
4102        return event;
4103}
4104
4105/**
4106 * ring_buffer_iter_peek - peek at the next event to be read
4107 * @iter: The ring buffer iterator
4108 * @ts: The timestamp counter of this event.
4109 *
4110 * This will return the event that will be read next, but does
4111 * not increment the iterator.
4112 */
4113struct ring_buffer_event *
4114ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4115{
4116        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4117        struct ring_buffer_event *event;
4118        unsigned long flags;
4119
4120 again:
4121        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4122        event = rb_iter_peek(iter, ts);
4123        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4124
4125        if (event && event->type_len == RINGBUF_TYPE_PADDING)
4126                goto again;
4127
4128        return event;
4129}
4130
4131/**
4132 * ring_buffer_consume - return an event and consume it
4133 * @buffer: The ring buffer to get the next event from
4134 * @cpu: the cpu to read the buffer from
4135 * @ts: a variable to store the timestamp (may be NULL)
4136 * @lost_events: a variable to store if events were lost (may be NULL)
4137 *
4138 * Returns the next event in the ring buffer, and that event is consumed.
4139 * Meaning, that sequential reads will keep returning a different event,
4140 * and eventually empty the ring buffer if the producer is slower.
4141 */
4142struct ring_buffer_event *
4143ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
4144                    unsigned long *lost_events)
4145{
4146        struct ring_buffer_per_cpu *cpu_buffer;
4147        struct ring_buffer_event *event = NULL;
4148        unsigned long flags;
4149        bool dolock;
4150
4151 again:
4152        /* might be called in atomic */
4153        preempt_disable();
4154
4155        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4156                goto out;
4157
4158        cpu_buffer = buffer->buffers[cpu];
4159        local_irq_save(flags);
4160        dolock = rb_reader_lock(cpu_buffer);
4161
4162        event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4163        if (event) {
4164                cpu_buffer->lost_events = 0;
4165                rb_advance_reader(cpu_buffer);
4166        }
4167
4168        rb_reader_unlock(cpu_buffer, dolock);
4169        local_irq_restore(flags);
4170
4171 out:
4172        preempt_enable();
4173
4174        if (event && event->type_len == RINGBUF_TYPE_PADDING)
4175                goto again;
4176
4177        return event;
4178}
4179EXPORT_SYMBOL_GPL(ring_buffer_consume);
4180
4181/**
4182 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4183 * @buffer: The ring buffer to read from
4184 * @cpu: The cpu buffer to iterate over
4185 * @flags: gfp flags to use for memory allocation
4186 *
4187 * This performs the initial preparations necessary to iterate
4188 * through the buffer.  Memory is allocated, buffer recording
4189 * is disabled, and the iterator pointer is returned to the caller.
4190 *
4191 * Disabling buffer recording prevents the reading from being
4192 * corrupted. This is not a consuming read, so a producer is not
4193 * expected.
4194 *
4195 * After a sequence of ring_buffer_read_prepare calls, the user is
4196 * expected to make at least one call to ring_buffer_read_prepare_sync.
4197 * Afterwards, ring_buffer_read_start is invoked to get things going
4198 * for real.
4199 *
4200 * This overall must be paired with ring_buffer_read_finish.
4201 */
4202struct ring_buffer_iter *
4203ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu, gfp_t flags)
4204{
4205        struct ring_buffer_per_cpu *cpu_buffer;
4206        struct ring_buffer_iter *iter;
4207
4208        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4209                return NULL;
4210
4211        iter = kmalloc(sizeof(*iter), flags);
4212        if (!iter)
4213                return NULL;
4214
4215        cpu_buffer = buffer->buffers[cpu];
4216
4217        iter->cpu_buffer = cpu_buffer;
4218
4219        atomic_inc(&buffer->resize_disabled);
4220        atomic_inc(&cpu_buffer->record_disabled);
4221
4222        return iter;
4223}
4224EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4225
4226/**
4227 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4228 *
4229 * All previously invoked ring_buffer_read_prepare calls to prepare
4230 * iterators will be synchronized.  Afterwards, read_buffer_read_start
4231 * calls on those iterators are allowed.
4232 */
4233void
4234ring_buffer_read_prepare_sync(void)
4235{
4236        synchronize_rcu();
4237}
4238EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4239
4240/**
4241 * ring_buffer_read_start - start a non consuming read of the buffer
4242 * @iter: The iterator returned by ring_buffer_read_prepare
4243 *
4244 * This finalizes the startup of an iteration through the buffer.
4245 * The iterator comes from a call to ring_buffer_read_prepare and
4246 * an intervening ring_buffer_read_prepare_sync must have been
4247 * performed.
4248 *
4249 * Must be paired with ring_buffer_read_finish.
4250 */
4251void
4252ring_buffer_read_start(struct ring_buffer_iter *iter)
4253{
4254        struct ring_buffer_per_cpu *cpu_buffer;
4255        unsigned long flags;
4256
4257        if (!iter)
4258                return;
4259
4260        cpu_buffer = iter->cpu_buffer;
4261
4262        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4263        arch_spin_lock(&cpu_buffer->lock);
4264        rb_iter_reset(iter);
4265        arch_spin_unlock(&cpu_buffer->lock);
4266        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4267}
4268EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4269
4270/**
4271 * ring_buffer_read_finish - finish reading the iterator of the buffer
4272 * @iter: The iterator retrieved by ring_buffer_start
4273 *
4274 * This re-enables the recording to the buffer, and frees the
4275 * iterator.
4276 */
4277void
4278ring_buffer_read_finish(struct ring_buffer_iter *iter)
4279{
4280        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4281        unsigned long flags;
4282
4283        /*
4284         * Ring buffer is disabled from recording, here's a good place
4285         * to check the integrity of the ring buffer.
4286         * Must prevent readers from trying to read, as the check
4287         * clears the HEAD page and readers require it.
4288         */
4289        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4290        rb_check_pages(cpu_buffer);
4291        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4292
4293        atomic_dec(&cpu_buffer->record_disabled);
4294        atomic_dec(&cpu_buffer->buffer->resize_disabled);
4295        kfree(iter);
4296}
4297EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4298
4299/**
4300 * ring_buffer_read - read the next item in the ring buffer by the iterator
4301 * @iter: The ring buffer iterator
4302 * @ts: The time stamp of the event read.
4303 *
4304 * This reads the next event in the ring buffer and increments the iterator.
4305 */
4306struct ring_buffer_event *
4307ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4308{
4309        struct ring_buffer_event *event;
4310        struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4311        unsigned long flags;
4312
4313        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4314 again:
4315        event = rb_iter_peek(iter, ts);
4316        if (!event)
4317                goto out;
4318
4319        if (event->type_len == RINGBUF_TYPE_PADDING)
4320                goto again;
4321
4322        rb_advance_iter(iter);
4323 out:
4324        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4325
4326        return event;
4327}
4328EXPORT_SYMBOL_GPL(ring_buffer_read);
4329
4330/**
4331 * ring_buffer_size - return the size of the ring buffer (in bytes)
4332 * @buffer: The ring buffer.
4333 */
4334unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4335{
4336        /*
4337         * Earlier, this method returned
4338         *      BUF_PAGE_SIZE * buffer->nr_pages
4339         * Since the nr_pages field is now removed, we have converted this to
4340         * return the per cpu buffer value.
4341         */
4342        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4343                return 0;
4344
4345        return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4346}
4347EXPORT_SYMBOL_GPL(ring_buffer_size);
4348
4349static void
4350rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4351{
4352        rb_head_page_deactivate(cpu_buffer);
4353
4354        cpu_buffer->head_page
4355                = list_entry(cpu_buffer->pages, struct buffer_page, list);
4356        local_set(&cpu_buffer->head_page->write, 0);
4357        local_set(&cpu_buffer->head_page->entries, 0);
4358        local_set(&cpu_buffer->head_page->page->commit, 0);
4359
4360        cpu_buffer->head_page->read = 0;
4361
4362        cpu_buffer->tail_page = cpu_buffer->head_page;
4363        cpu_buffer->commit_page = cpu_buffer->head_page;
4364
4365        INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4366        INIT_LIST_HEAD(&cpu_buffer->new_pages);
4367        local_set(&cpu_buffer->reader_page->write, 0);
4368        local_set(&cpu_buffer->reader_page->entries, 0);
4369        local_set(&cpu_buffer->reader_page->page->commit, 0);
4370        cpu_buffer->reader_page->read = 0;
4371
4372        local_set(&cpu_buffer->entries_bytes, 0);
4373        local_set(&cpu_buffer->overrun, 0);
4374        local_set(&cpu_buffer->commit_overrun, 0);
4375        local_set(&cpu_buffer->dropped_events, 0);
4376        local_set(&cpu_buffer->entries, 0);
4377        local_set(&cpu_buffer->committing, 0);
4378        local_set(&cpu_buffer->commits, 0);
4379        local_set(&cpu_buffer->pages_touched, 0);
4380        local_set(&cpu_buffer->pages_read, 0);
4381        cpu_buffer->last_pages_touch = 0;
4382        cpu_buffer->shortest_full = 0;
4383        cpu_buffer->read = 0;
4384        cpu_buffer->read_bytes = 0;
4385
4386        cpu_buffer->write_stamp = 0;
4387        cpu_buffer->read_stamp = 0;
4388
4389        cpu_buffer->lost_events = 0;
4390        cpu_buffer->last_overrun = 0;
4391
4392        rb_head_page_activate(cpu_buffer);
4393}
4394
4395/**
4396 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4397 * @buffer: The ring buffer to reset a per cpu buffer of
4398 * @cpu: The CPU buffer to be reset
4399 */
4400void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4401{
4402        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4403        unsigned long flags;
4404
4405        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4406                return;
4407
4408        atomic_inc(&buffer->resize_disabled);
4409        atomic_inc(&cpu_buffer->record_disabled);
4410
4411        /* Make sure all commits have finished */
4412        synchronize_rcu();
4413
4414        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4415
4416        if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4417                goto out;
4418
4419        arch_spin_lock(&cpu_buffer->lock);
4420
4421        rb_reset_cpu(cpu_buffer);
4422
4423        arch_spin_unlock(&cpu_buffer->lock);
4424
4425 out:
4426        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4427
4428        atomic_dec(&cpu_buffer->record_disabled);
4429        atomic_dec(&buffer->resize_disabled);
4430}
4431EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4432
4433/**
4434 * ring_buffer_reset - reset a ring buffer
4435 * @buffer: The ring buffer to reset all cpu buffers
4436 */
4437void ring_buffer_reset(struct ring_buffer *buffer)
4438{
4439        int cpu;
4440
4441        for_each_buffer_cpu(buffer, cpu)
4442                ring_buffer_reset_cpu(buffer, cpu);
4443}
4444EXPORT_SYMBOL_GPL(ring_buffer_reset);
4445
4446/**
4447 * rind_buffer_empty - is the ring buffer empty?
4448 * @buffer: The ring buffer to test
4449 */
4450bool ring_buffer_empty(struct ring_buffer *buffer)
4451{
4452        struct ring_buffer_per_cpu *cpu_buffer;
4453        unsigned long flags;
4454        bool dolock;
4455        int cpu;
4456        int ret;
4457
4458        /* yes this is racy, but if you don't like the race, lock the buffer */
4459        for_each_buffer_cpu(buffer, cpu) {
4460                cpu_buffer = buffer->buffers[cpu];
4461                local_irq_save(flags);
4462                dolock = rb_reader_lock(cpu_buffer);
4463                ret = rb_per_cpu_empty(cpu_buffer);
4464                rb_reader_unlock(cpu_buffer, dolock);
4465                local_irq_restore(flags);
4466
4467                if (!ret)
4468                        return false;
4469        }
4470
4471        return true;
4472}
4473EXPORT_SYMBOL_GPL(ring_buffer_empty);
4474
4475/**
4476 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4477 * @buffer: The ring buffer
4478 * @cpu: The CPU buffer to test
4479 */
4480bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4481{
4482        struct ring_buffer_per_cpu *cpu_buffer;
4483        unsigned long flags;
4484        bool dolock;
4485        int ret;
4486
4487        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4488                return true;
4489
4490        cpu_buffer = buffer->buffers[cpu];
4491        local_irq_save(flags);
4492        dolock = rb_reader_lock(cpu_buffer);
4493        ret = rb_per_cpu_empty(cpu_buffer);
4494        rb_reader_unlock(cpu_buffer, dolock);
4495        local_irq_restore(flags);
4496
4497        return ret;
4498}
4499EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4500
4501#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4502/**
4503 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4504 * @buffer_a: One buffer to swap with
4505 * @buffer_b: The other buffer to swap with
4506 *
4507 * This function is useful for tracers that want to take a "snapshot"
4508 * of a CPU buffer and has another back up buffer lying around.
4509 * it is expected that the tracer handles the cpu buffer not being
4510 * used at the moment.
4511 */
4512int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4513                         struct ring_buffer *buffer_b, int cpu)
4514{
4515        struct ring_buffer_per_cpu *cpu_buffer_a;
4516        struct ring_buffer_per_cpu *cpu_buffer_b;
4517        int ret = -EINVAL;
4518
4519        if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4520            !cpumask_test_cpu(cpu, buffer_b->cpumask))
4521                goto out;
4522
4523        cpu_buffer_a = buffer_a->buffers[cpu];
4524        cpu_buffer_b = buffer_b->buffers[cpu];
4525
4526        /* At least make sure the two buffers are somewhat the same */
4527        if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4528                goto out;
4529
4530        ret = -EAGAIN;
4531
4532        if (atomic_read(&buffer_a->record_disabled))
4533                goto out;
4534
4535        if (atomic_read(&buffer_b->record_disabled))
4536                goto out;
4537
4538        if (atomic_read(&cpu_buffer_a->record_disabled))
4539                goto out;
4540
4541        if (atomic_read(&cpu_buffer_b->record_disabled))
4542                goto out;
4543
4544        /*
4545         * We can't do a synchronize_rcu here because this
4546         * function can be called in atomic context.
4547         * Normally this will be called from the same CPU as cpu.
4548         * If not it's up to the caller to protect this.
4549         */
4550        atomic_inc(&cpu_buffer_a->record_disabled);
4551        atomic_inc(&cpu_buffer_b->record_disabled);
4552
4553        ret = -EBUSY;
4554        if (local_read(&cpu_buffer_a->committing))
4555                goto out_dec;
4556        if (local_read(&cpu_buffer_b->committing))
4557                goto out_dec;
4558
4559        buffer_a->buffers[cpu] = cpu_buffer_b;
4560        buffer_b->buffers[cpu] = cpu_buffer_a;
4561
4562        cpu_buffer_b->buffer = buffer_a;
4563        cpu_buffer_a->buffer = buffer_b;
4564
4565        ret = 0;
4566
4567out_dec:
4568        atomic_dec(&cpu_buffer_a->record_disabled);
4569        atomic_dec(&cpu_buffer_b->record_disabled);
4570out:
4571        return ret;
4572}
4573EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4574#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4575
4576/**
4577 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4578 * @buffer: the buffer to allocate for.
4579 * @cpu: the cpu buffer to allocate.
4580 *
4581 * This function is used in conjunction with ring_buffer_read_page.
4582 * When reading a full page from the ring buffer, these functions
4583 * can be used to speed up the process. The calling function should
4584 * allocate a few pages first with this function. Then when it
4585 * needs to get pages from the ring buffer, it passes the result
4586 * of this function into ring_buffer_read_page, which will swap
4587 * the page that was allocated, with the read page of the buffer.
4588 *
4589 * Returns:
4590 *  The page allocated, or ERR_PTR
4591 */
4592void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4593{
4594        struct ring_buffer_per_cpu *cpu_buffer;
4595        struct buffer_data_page *bpage = NULL;
4596        unsigned long flags;
4597        struct page *page;
4598
4599        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4600                return ERR_PTR(-ENODEV);
4601
4602        cpu_buffer = buffer->buffers[cpu];
4603        local_irq_save(flags);
4604        arch_spin_lock(&cpu_buffer->lock);
4605
4606        if (cpu_buffer->free_page) {
4607                bpage = cpu_buffer->free_page;
4608                cpu_buffer->free_page = NULL;
4609        }
4610
4611        arch_spin_unlock(&cpu_buffer->lock);
4612        local_irq_restore(flags);
4613
4614        if (bpage)
4615                goto out;
4616
4617        page = alloc_pages_node(cpu_to_node(cpu),
4618                                GFP_KERNEL | __GFP_NORETRY, 0);
4619        if (!page)
4620                return ERR_PTR(-ENOMEM);
4621
4622        bpage = page_address(page);
4623
4624 out:
4625        rb_init_page(bpage);
4626
4627        return bpage;
4628}
4629EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4630
4631/**
4632 * ring_buffer_free_read_page - free an allocated read page
4633 * @buffer: the buffer the page was allocate for
4634 * @cpu: the cpu buffer the page came from
4635 * @data: the page to free
4636 *
4637 * Free a page allocated from ring_buffer_alloc_read_page.
4638 */
4639void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4640{
4641        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4642        struct buffer_data_page *bpage = data;
4643        struct page *page = virt_to_page(bpage);
4644        unsigned long flags;
4645
4646        /* If the page is still in use someplace else, we can't reuse it */
4647        if (page_ref_count(page) > 1)
4648                goto out;
4649
4650        local_irq_save(flags);
4651        arch_spin_lock(&cpu_buffer->lock);
4652
4653        if (!cpu_buffer->free_page) {
4654                cpu_buffer->free_page = bpage;
4655                bpage = NULL;
4656        }
4657
4658        arch_spin_unlock(&cpu_buffer->lock);
4659        local_irq_restore(flags);
4660
4661 out:
4662        free_page((unsigned long)bpage);
4663}
4664EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4665
4666/**
4667 * ring_buffer_read_page - extract a page from the ring buffer
4668 * @buffer: buffer to extract from
4669 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4670 * @len: amount to extract
4671 * @cpu: the cpu of the buffer to extract
4672 * @full: should the extraction only happen when the page is full.
4673 *
4674 * This function will pull out a page from the ring buffer and consume it.
4675 * @data_page must be the address of the variable that was returned
4676 * from ring_buffer_alloc_read_page. This is because the page might be used
4677 * to swap with a page in the ring buffer.
4678 *
4679 * for example:
4680 *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4681 *      if (IS_ERR(rpage))
4682 *              return PTR_ERR(rpage);
4683 *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4684 *      if (ret >= 0)
4685 *              process_page(rpage, ret);
4686 *
4687 * When @full is set, the function will not return true unless
4688 * the writer is off the reader page.
4689 *
4690 * Note: it is up to the calling functions to handle sleeps and wakeups.
4691 *  The ring buffer can be used anywhere in the kernel and can not
4692 *  blindly call wake_up. The layer that uses the ring buffer must be
4693 *  responsible for that.
4694 *
4695 * Returns:
4696 *  >=0 if data has been transferred, returns the offset of consumed data.
4697 *  <0 if no data has been transferred.
4698 */
4699int ring_buffer_read_page(struct ring_buffer *buffer,
4700                          void **data_page, size_t len, int cpu, int full)
4701{
4702        struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4703        struct ring_buffer_event *event;
4704        struct buffer_data_page *bpage;
4705        struct buffer_page *reader;
4706        unsigned long missed_events;
4707        unsigned long flags;
4708        unsigned int commit;
4709        unsigned int read;
4710        u64 save_timestamp;
4711        int ret = -1;
4712
4713        if (!cpumask_test_cpu(cpu, buffer->cpumask))
4714                goto out;
4715
4716        /*
4717         * If len is not big enough to hold the page header, then
4718         * we can not copy anything.
4719         */
4720        if (len <= BUF_PAGE_HDR_SIZE)
4721                goto out;
4722
4723        len -= BUF_PAGE_HDR_SIZE;
4724
4725        if (!data_page)
4726                goto out;
4727
4728        bpage = *data_page;
4729        if (!bpage)
4730                goto out;
4731
4732        raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4733
4734        reader = rb_get_reader_page(cpu_buffer);
4735        if (!reader)
4736                goto out_unlock;
4737
4738        event = rb_reader_event(cpu_buffer);
4739
4740        read = reader->read;
4741        commit = rb_page_commit(reader);
4742
4743        /* Check if any events were dropped */
4744        missed_events = cpu_buffer->lost_events;
4745
4746        /*
4747         * If this page has been partially read or
4748         * if len is not big enough to read the rest of the page or
4749         * a writer is still on the page, then
4750         * we must copy the data from the page to the buffer.
4751         * Otherwise, we can simply swap the page with the one passed in.
4752         */
4753        if (read || (len < (commit - read)) ||
4754            cpu_buffer->reader_page == cpu_buffer->commit_page) {
4755                struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4756                unsigned int rpos = read;
4757                unsigned int pos = 0;
4758                unsigned int size;
4759
4760                if (full)
4761                        goto out_unlock;
4762
4763                if (len > (commit - read))
4764                        len = (commit - read);
4765
4766                /* Always keep the time extend and data together */
4767                size = rb_event_ts_length(event);
4768
4769                if (len < size)
4770                        goto out_unlock;
4771
4772                /* save the current timestamp, since the user will need it */
4773                save_timestamp = cpu_buffer->read_stamp;
4774
4775                /* Need to copy one event at a time */
4776                do {
4777                        /* We need the size of one event, because
4778                         * rb_advance_reader only advances by one event,
4779                         * whereas rb_event_ts_length may include the size of
4780                         * one or two events.
4781                         * We have already ensured there's enough space if this
4782                         * is a time extend. */
4783                        size = rb_event_length(event);
4784                        memcpy(bpage->data + pos, rpage->data + rpos, size);
4785
4786                        len -= size;
4787
4788                        rb_advance_reader(cpu_buffer);
4789                        rpos = reader->read;
4790                        pos += size;
4791
4792                        if (rpos >= commit)
4793                                break;
4794
4795                        event = rb_reader_event(cpu_buffer);
4796                        /* Always keep the time extend and data together */
4797                        size = rb_event_ts_length(event);
4798                } while (len >= size);
4799
4800                /* update bpage */
4801                local_set(&bpage->commit, pos);
4802                bpage->time_stamp = save_timestamp;
4803
4804                /* we copied everything to the beginning */
4805                read = 0;
4806        } else {
4807                /* update the entry counter */
4808                cpu_buffer->read += rb_page_entries(reader);
4809                cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4810
4811                /* swap the pages */
4812                rb_init_page(bpage);
4813                bpage = reader->page;
4814                reader->page = *data_page;
4815                local_set(&reader->write, 0);
4816                local_set(&reader->entries, 0);
4817                reader->read = 0;
4818                *data_page = bpage;
4819
4820                /*
4821                 * Use the real_end for the data size,
4822                 * This gives us a chance to store the lost events
4823                 * on the page.
4824                 */
4825                if (reader->real_end)
4826                        local_set(&bpage->commit, reader->real_end);
4827        }
4828        ret = read;
4829
4830        cpu_buffer->lost_events = 0;
4831
4832        commit = local_read(&bpage->commit);
4833        /*
4834         * Set a flag in the commit field if we lost events
4835         */
4836        if (missed_events) {
4837                /* If there is room at the end of the page to save the
4838                 * missed events, then record it there.
4839                 */
4840                if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4841                        memcpy(&bpage->data[commit], &missed_events,
4842                               sizeof(missed_events));
4843                        local_add(RB_MISSED_STORED, &bpage->commit);
4844                        commit += sizeof(missed_events);
4845                }
4846                local_add(RB_MISSED_EVENTS, &bpage->commit);
4847        }
4848
4849        /*
4850         * This page may be off to user land. Zero it out here.
4851         */
4852        if (commit < BUF_PAGE_SIZE)
4853                memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4854
4855 out_unlock:
4856        raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4857
4858 out:
4859        return ret;
4860}
4861EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4862
4863/*
4864 * We only allocate new buffers, never free them if the CPU goes down.
4865 * If we were to free the buffer, then the user would lose any trace that was in
4866 * the buffer.
4867 */
4868int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4869{
4870        struct ring_buffer *buffer;
4871        long nr_pages_same;
4872        int cpu_i;
4873        unsigned long nr_pages;
4874
4875        buffer = container_of(node, struct ring_buffer, node);
4876        if (cpumask_test_cpu(cpu, buffer->cpumask))
4877                return 0;
4878
4879        nr_pages = 0;
4880        nr_pages_same = 1;
4881        /* check if all cpu sizes are same */
4882        for_each_buffer_cpu(buffer, cpu_i) {
4883                /* fill in the size from first enabled cpu */
4884                if (nr_pages == 0)
4885                        nr_pages = buffer->buffers[cpu_i]->nr_pages;
4886                if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4887                        nr_pages_same = 0;
4888                        break;
4889                }
4890        }
4891        /* allocate minimum pages, user can later expand it */
4892        if (!nr_pages_same)
4893                nr_pages = 2;
4894        buffer->buffers[cpu] =
4895                rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4896        if (!buffer->buffers[cpu]) {
4897                WARN(1, "failed to allocate ring buffer on CPU %u\n",
4898                     cpu);
4899                return -ENOMEM;
4900        }
4901        smp_wmb();
4902        cpumask_set_cpu(cpu, buffer->cpumask);
4903        return 0;
4904}
4905
4906#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4907/*
4908 * This is a basic integrity check of the ring buffer.
4909 * Late in the boot cycle this test will run when configured in.
4910 * It will kick off a thread per CPU that will go into a loop
4911 * writing to the per cpu ring buffer various sizes of data.
4912 * Some of the data will be large items, some small.
4913 *
4914 * Another thread is created that goes into a spin, sending out
4915 * IPIs to the other CPUs to also write into the ring buffer.
4916 * this is to test the nesting ability of the buffer.
4917 *
4918 * Basic stats are recorded and reported. If something in the
4919 * ring buffer should happen that's not expected, a big warning
4920 * is displayed and all ring buffers are disabled.
4921 */
4922static struct task_struct *rb_threads[NR_CPUS] __initdata;
4923
4924struct rb_test_data {
4925        struct ring_buffer      *buffer;
4926        unsigned long           events;
4927        unsigned long           bytes_written;
4928        unsigned long           bytes_alloc;
4929        unsigned long           bytes_dropped;
4930        unsigned long           events_nested;
4931        unsigned long           bytes_written_nested;
4932        unsigned long           bytes_alloc_nested;
4933        unsigned long           bytes_dropped_nested;
4934        int                     min_size_nested;
4935        int                     max_size_nested;
4936        int                     max_size;
4937        int                     min_size;
4938        int                     cpu;
4939        int                     cnt;
4940};
4941
4942static struct rb_test_data rb_data[NR_CPUS] __initdata;
4943
4944/* 1 meg per cpu */
4945#define RB_TEST_BUFFER_SIZE     1048576
4946
4947static char rb_string[] __initdata =
4948        "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4949        "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4950        "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4951
4952static bool rb_test_started __initdata;
4953
4954struct rb_item {
4955        int size;
4956        char str[];
4957};
4958
4959static __init int rb_write_something(struct rb_test_data *data, bool nested)
4960{
4961        struct ring_buffer_event *event;
4962        struct rb_item *item;
4963        bool started;
4964        int event_len;
4965        int size;
4966        int len;
4967        int cnt;
4968
4969        /* Have nested writes different that what is written */
4970        cnt = data->cnt + (nested ? 27 : 0);
4971
4972        /* Multiply cnt by ~e, to make some unique increment */
4973        size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
4974
4975        len = size + sizeof(struct rb_item);
4976
4977        started = rb_test_started;
4978        /* read rb_test_started before checking buffer enabled */
4979        smp_rmb();
4980
4981        event = ring_buffer_lock_reserve(data->buffer, len);
4982        if (!event) {
4983                /* Ignore dropped events before test starts. */
4984                if (started) {
4985                        if (nested)
4986                                data->bytes_dropped += len;
4987                        else
4988                                data->bytes_dropped_nested += len;
4989                }
4990                return len;
4991        }
4992
4993        event_len = ring_buffer_event_length(event);
4994
4995        if (RB_WARN_ON(data->buffer, event_len < len))
4996                goto out;
4997
4998        item = ring_buffer_event_data(event);
4999        item->size = size;
5000        memcpy(item->str, rb_string, size);
5001
5002        if (nested) {
5003                data->bytes_alloc_nested += event_len;
5004                data->bytes_written_nested += len;
5005                data->events_nested++;
5006                if (!data->min_size_nested || len < data->min_size_nested)
5007                        data->min_size_nested = len;
5008                if (len > data->max_size_nested)
5009                        data->max_size_nested = len;
5010        } else {
5011                data->bytes_alloc += event_len;
5012                data->bytes_written += len;
5013                data->events++;
5014                if (!data->min_size || len < data->min_size)
5015                        data->max_size = len;
5016                if (len > data->max_size)
5017                        data->max_size = len;
5018        }
5019
5020 out:
5021        ring_buffer_unlock_commit(data->buffer, event);
5022
5023        return 0;
5024}
5025
5026static __init int rb_test(void *arg)
5027{
5028        struct rb_test_data *data = arg;
5029
5030        while (!kthread_should_stop()) {
5031                rb_write_something(data, false);
5032                data->cnt++;
5033
5034                set_current_state(TASK_INTERRUPTIBLE);
5035                /* Now sleep between a min of 100-300us and a max of 1ms */
5036                usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5037        }
5038
5039        return 0;
5040}
5041
5042static __init void rb_ipi(void *ignore)
5043{
5044        struct rb_test_data *data;
5045        int cpu = smp_processor_id();
5046
5047        data = &rb_data[cpu];
5048        rb_write_something(data, true);
5049}
5050
5051static __init int rb_hammer_test(void *arg)
5052{
5053        while (!kthread_should_stop()) {
5054
5055                /* Send an IPI to all cpus to write data! */
5056                smp_call_function(rb_ipi, NULL, 1);
5057                /* No sleep, but for non preempt, let others run */
5058                schedule();
5059        }
5060
5061        return 0;
5062}
5063
5064static __init int test_ringbuffer(void)
5065{
5066        struct task_struct *rb_hammer;
5067        struct ring_buffer *buffer;
5068        int cpu;
5069        int ret = 0;
5070
5071        pr_info("Running ring buffer tests...\n");
5072
5073        buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5074        if (WARN_ON(!buffer))
5075                return 0;
5076
5077        /* Disable buffer so that threads can't write to it yet */
5078        ring_buffer_record_off(buffer);
5079
5080        for_each_online_cpu(cpu) {
5081                rb_data[cpu].buffer = buffer;
5082                rb_data[cpu].cpu = cpu;
5083                rb_data[cpu].cnt = cpu;
5084                rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5085                                                 "rbtester/%d", cpu);
5086                if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5087                        pr_cont("FAILED\n");
5088                        ret = PTR_ERR(rb_threads[cpu]);
5089                        goto out_free;
5090                }
5091
5092                kthread_bind(rb_threads[cpu], cpu);
5093                wake_up_process(rb_threads[cpu]);
5094        }
5095
5096        /* Now create the rb hammer! */
5097        rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5098        if (WARN_ON(IS_ERR(rb_hammer))) {
5099                pr_cont("FAILED\n");
5100                ret = PTR_ERR(rb_hammer);
5101                goto out_free;
5102        }
5103
5104        ring_buffer_record_on(buffer);
5105        /*
5106         * Show buffer is enabled before setting rb_test_started.
5107         * Yes there's a small race window where events could be
5108         * dropped and the thread wont catch it. But when a ring
5109         * buffer gets enabled, there will always be some kind of
5110         * delay before other CPUs see it. Thus, we don't care about
5111         * those dropped events. We care about events dropped after
5112         * the threads see that the buffer is active.
5113         */
5114        smp_wmb();
5115        rb_test_started = true;
5116
5117        set_current_state(TASK_INTERRUPTIBLE);
5118        /* Just run for 10 seconds */;
5119        schedule_timeout(10 * HZ);
5120
5121        kthread_stop(rb_hammer);
5122
5123 out_free:
5124        for_each_online_cpu(cpu) {
5125                if (!rb_threads[cpu])
5126                        break;
5127                kthread_stop(rb_threads[cpu]);
5128        }
5129        if (ret) {
5130                ring_buffer_free(buffer);
5131                return ret;
5132        }
5133
5134        /* Report! */
5135        pr_info("finished\n");
5136        for_each_online_cpu(cpu) {
5137                struct ring_buffer_event *event;
5138                struct rb_test_data *data = &rb_data[cpu];
5139                struct rb_item *item;
5140                unsigned long total_events;
5141                unsigned long total_dropped;
5142                unsigned long total_written;
5143                unsigned long total_alloc;
5144                unsigned long total_read = 0;
5145                unsigned long total_size = 0;
5146                unsigned long total_len = 0;
5147                unsigned long total_lost = 0;
5148                unsigned long lost;
5149                int big_event_size;
5150                int small_event_size;
5151
5152                ret = -1;
5153
5154                total_events = data->events + data->events_nested;
5155                total_written = data->bytes_written + data->bytes_written_nested;
5156                total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5157                total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5158
5159                big_event_size = data->max_size + data->max_size_nested;
5160                small_event_size = data->min_size + data->min_size_nested;
5161
5162                pr_info("CPU %d:\n", cpu);
5163                pr_info("              events:    %ld\n", total_events);
5164                pr_info("       dropped bytes:    %ld\n", total_dropped);
5165                pr_info("       alloced bytes:    %ld\n", total_alloc);
5166                pr_info("       written bytes:    %ld\n", total_written);
5167                pr_info("       biggest event:    %d\n", big_event_size);
5168                pr_info("      smallest event:    %d\n", small_event_size);
5169
5170                if (RB_WARN_ON(buffer, total_dropped))
5171                        break;
5172
5173                ret = 0;
5174
5175                while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5176                        total_lost += lost;
5177                        item = ring_buffer_event_data(event);
5178                        total_len += ring_buffer_event_length(event);
5179                        total_size += item->size + sizeof(struct rb_item);
5180                        if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5181                                pr_info("FAILED!\n");
5182                                pr_info("buffer had: %.*s\n", item->size, item->str);
5183                                pr_info("expected:   %.*s\n", item->size, rb_string);
5184                                RB_WARN_ON(buffer, 1);
5185                                ret = -1;
5186                                break;
5187                        }
5188                        total_read++;
5189                }
5190                if (ret)
5191                        break;
5192
5193                ret = -1;
5194
5195                pr_info("         read events:   %ld\n", total_read);
5196                pr_info("         lost events:   %ld\n", total_lost);
5197                pr_info("        total events:   %ld\n", total_lost + total_read);
5198                pr_info("  recorded len bytes:   %ld\n", total_len);
5199                pr_info(" recorded size bytes:   %ld\n", total_size);
5200                if (total_lost)
5201                        pr_info(" With dropped events, record len and size may not match\n"
5202                                " alloced and written from above\n");
5203                if (!total_lost) {
5204                        if (RB_WARN_ON(buffer, total_len != total_alloc ||
5205                                       total_size != total_written))
5206                                break;
5207                }
5208                if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5209                        break;
5210
5211                ret = 0;
5212        }
5213        if (!ret)
5214                pr_info("Ring buffer PASSED!\n");
5215
5216        ring_buffer_free(buffer);
5217        return 0;
5218}
5219
5220late_initcall(test_ringbuffer);
5221#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
5222