linux/lib/idr.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/bitmap.h>
   3#include <linux/bug.h>
   4#include <linux/export.h>
   5#include <linux/idr.h>
   6#include <linux/slab.h>
   7#include <linux/spinlock.h>
   8#include <linux/xarray.h>
   9
  10/**
  11 * idr_alloc_u32() - Allocate an ID.
  12 * @idr: IDR handle.
  13 * @ptr: Pointer to be associated with the new ID.
  14 * @nextid: Pointer to an ID.
  15 * @max: The maximum ID to allocate (inclusive).
  16 * @gfp: Memory allocation flags.
  17 *
  18 * Allocates an unused ID in the range specified by @nextid and @max.
  19 * Note that @max is inclusive whereas the @end parameter to idr_alloc()
  20 * is exclusive.  The new ID is assigned to @nextid before the pointer
  21 * is inserted into the IDR, so if @nextid points into the object pointed
  22 * to by @ptr, a concurrent lookup will not find an uninitialised ID.
  23 *
  24 * The caller should provide their own locking to ensure that two
  25 * concurrent modifications to the IDR are not possible.  Read-only
  26 * accesses to the IDR may be done under the RCU read lock or may
  27 * exclude simultaneous writers.
  28 *
  29 * Return: 0 if an ID was allocated, -ENOMEM if memory allocation failed,
  30 * or -ENOSPC if no free IDs could be found.  If an error occurred,
  31 * @nextid is unchanged.
  32 */
  33int idr_alloc_u32(struct idr *idr, void *ptr, u32 *nextid,
  34                        unsigned long max, gfp_t gfp)
  35{
  36        struct radix_tree_iter iter;
  37        void __rcu **slot;
  38        unsigned int base = idr->idr_base;
  39        unsigned int id = *nextid;
  40
  41        if (WARN_ON_ONCE(!(idr->idr_rt.xa_flags & ROOT_IS_IDR)))
  42                idr->idr_rt.xa_flags |= IDR_RT_MARKER;
  43
  44        id = (id < base) ? 0 : id - base;
  45        radix_tree_iter_init(&iter, id);
  46        slot = idr_get_free(&idr->idr_rt, &iter, gfp, max - base);
  47        if (IS_ERR(slot))
  48                return PTR_ERR(slot);
  49
  50        *nextid = iter.index + base;
  51        /* there is a memory barrier inside radix_tree_iter_replace() */
  52        radix_tree_iter_replace(&idr->idr_rt, &iter, slot, ptr);
  53        radix_tree_iter_tag_clear(&idr->idr_rt, &iter, IDR_FREE);
  54
  55        return 0;
  56}
  57EXPORT_SYMBOL_GPL(idr_alloc_u32);
  58
  59/**
  60 * idr_alloc() - Allocate an ID.
  61 * @idr: IDR handle.
  62 * @ptr: Pointer to be associated with the new ID.
  63 * @start: The minimum ID (inclusive).
  64 * @end: The maximum ID (exclusive).
  65 * @gfp: Memory allocation flags.
  66 *
  67 * Allocates an unused ID in the range specified by @start and @end.  If
  68 * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
  69 * callers to use @start + N as @end as long as N is within integer range.
  70 *
  71 * The caller should provide their own locking to ensure that two
  72 * concurrent modifications to the IDR are not possible.  Read-only
  73 * accesses to the IDR may be done under the RCU read lock or may
  74 * exclude simultaneous writers.
  75 *
  76 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
  77 * or -ENOSPC if no free IDs could be found.
  78 */
  79int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
  80{
  81        u32 id = start;
  82        int ret;
  83
  84        if (WARN_ON_ONCE(start < 0))
  85                return -EINVAL;
  86
  87        ret = idr_alloc_u32(idr, ptr, &id, end > 0 ? end - 1 : INT_MAX, gfp);
  88        if (ret)
  89                return ret;
  90
  91        return id;
  92}
  93EXPORT_SYMBOL_GPL(idr_alloc);
  94
  95/**
  96 * idr_alloc_cyclic() - Allocate an ID cyclically.
  97 * @idr: IDR handle.
  98 * @ptr: Pointer to be associated with the new ID.
  99 * @start: The minimum ID (inclusive).
 100 * @end: The maximum ID (exclusive).
 101 * @gfp: Memory allocation flags.
 102 *
 103 * Allocates an unused ID in the range specified by @nextid and @end.  If
 104 * @end is <= 0, it is treated as one larger than %INT_MAX.  This allows
 105 * callers to use @start + N as @end as long as N is within integer range.
 106 * The search for an unused ID will start at the last ID allocated and will
 107 * wrap around to @start if no free IDs are found before reaching @end.
 108 *
 109 * The caller should provide their own locking to ensure that two
 110 * concurrent modifications to the IDR are not possible.  Read-only
 111 * accesses to the IDR may be done under the RCU read lock or may
 112 * exclude simultaneous writers.
 113 *
 114 * Return: The newly allocated ID, -ENOMEM if memory allocation failed,
 115 * or -ENOSPC if no free IDs could be found.
 116 */
 117int idr_alloc_cyclic(struct idr *idr, void *ptr, int start, int end, gfp_t gfp)
 118{
 119        u32 id = idr->idr_next;
 120        int err, max = end > 0 ? end - 1 : INT_MAX;
 121
 122        if ((int)id < start)
 123                id = start;
 124
 125        err = idr_alloc_u32(idr, ptr, &id, max, gfp);
 126        if ((err == -ENOSPC) && (id > start)) {
 127                id = start;
 128                err = idr_alloc_u32(idr, ptr, &id, max, gfp);
 129        }
 130        if (err)
 131                return err;
 132
 133        idr->idr_next = id + 1;
 134        return id;
 135}
 136EXPORT_SYMBOL(idr_alloc_cyclic);
 137
 138/**
 139 * idr_remove() - Remove an ID from the IDR.
 140 * @idr: IDR handle.
 141 * @id: Pointer ID.
 142 *
 143 * Removes this ID from the IDR.  If the ID was not previously in the IDR,
 144 * this function returns %NULL.
 145 *
 146 * Since this function modifies the IDR, the caller should provide their
 147 * own locking to ensure that concurrent modification of the same IDR is
 148 * not possible.
 149 *
 150 * Return: The pointer formerly associated with this ID.
 151 */
 152void *idr_remove(struct idr *idr, unsigned long id)
 153{
 154        return radix_tree_delete_item(&idr->idr_rt, id - idr->idr_base, NULL);
 155}
 156EXPORT_SYMBOL_GPL(idr_remove);
 157
 158/**
 159 * idr_find() - Return pointer for given ID.
 160 * @idr: IDR handle.
 161 * @id: Pointer ID.
 162 *
 163 * Looks up the pointer associated with this ID.  A %NULL pointer may
 164 * indicate that @id is not allocated or that the %NULL pointer was
 165 * associated with this ID.
 166 *
 167 * This function can be called under rcu_read_lock(), given that the leaf
 168 * pointers lifetimes are correctly managed.
 169 *
 170 * Return: The pointer associated with this ID.
 171 */
 172void *idr_find(const struct idr *idr, unsigned long id)
 173{
 174        return radix_tree_lookup(&idr->idr_rt, id - idr->idr_base);
 175}
 176EXPORT_SYMBOL_GPL(idr_find);
 177
 178/**
 179 * idr_for_each() - Iterate through all stored pointers.
 180 * @idr: IDR handle.
 181 * @fn: Function to be called for each pointer.
 182 * @data: Data passed to callback function.
 183 *
 184 * The callback function will be called for each entry in @idr, passing
 185 * the ID, the entry and @data.
 186 *
 187 * If @fn returns anything other than %0, the iteration stops and that
 188 * value is returned from this function.
 189 *
 190 * idr_for_each() can be called concurrently with idr_alloc() and
 191 * idr_remove() if protected by RCU.  Newly added entries may not be
 192 * seen and deleted entries may be seen, but adding and removing entries
 193 * will not cause other entries to be skipped, nor spurious ones to be seen.
 194 */
 195int idr_for_each(const struct idr *idr,
 196                int (*fn)(int id, void *p, void *data), void *data)
 197{
 198        struct radix_tree_iter iter;
 199        void __rcu **slot;
 200        int base = idr->idr_base;
 201
 202        radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, 0) {
 203                int ret;
 204                unsigned long id = iter.index + base;
 205
 206                if (WARN_ON_ONCE(id > INT_MAX))
 207                        break;
 208                ret = fn(id, rcu_dereference_raw(*slot), data);
 209                if (ret)
 210                        return ret;
 211        }
 212
 213        return 0;
 214}
 215EXPORT_SYMBOL(idr_for_each);
 216
 217/**
 218 * idr_get_next() - Find next populated entry.
 219 * @idr: IDR handle.
 220 * @nextid: Pointer to an ID.
 221 *
 222 * Returns the next populated entry in the tree with an ID greater than
 223 * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
 224 * to the ID of the found value.  To use in a loop, the value pointed to by
 225 * nextid must be incremented by the user.
 226 */
 227void *idr_get_next(struct idr *idr, int *nextid)
 228{
 229        struct radix_tree_iter iter;
 230        void __rcu **slot;
 231        void *entry = NULL;
 232        unsigned long base = idr->idr_base;
 233        unsigned long id = *nextid;
 234
 235        id = (id < base) ? 0 : id - base;
 236        radix_tree_for_each_slot(slot, &idr->idr_rt, &iter, id) {
 237                entry = rcu_dereference_raw(*slot);
 238                if (!entry)
 239                        continue;
 240                if (!xa_is_internal(entry))
 241                        break;
 242                if (slot != &idr->idr_rt.xa_head && !xa_is_retry(entry))
 243                        break;
 244                slot = radix_tree_iter_retry(&iter);
 245        }
 246        if (!slot)
 247                return NULL;
 248        id = iter.index + base;
 249
 250        if (WARN_ON_ONCE(id > INT_MAX))
 251                return NULL;
 252
 253        *nextid = id;
 254        return entry;
 255}
 256EXPORT_SYMBOL(idr_get_next);
 257
 258/**
 259 * idr_get_next_ul() - Find next populated entry.
 260 * @idr: IDR handle.
 261 * @nextid: Pointer to an ID.
 262 *
 263 * Returns the next populated entry in the tree with an ID greater than
 264 * or equal to the value pointed to by @nextid.  On exit, @nextid is updated
 265 * to the ID of the found value.  To use in a loop, the value pointed to by
 266 * nextid must be incremented by the user.
 267 */
 268void *idr_get_next_ul(struct idr *idr, unsigned long *nextid)
 269{
 270        struct radix_tree_iter iter;
 271        void __rcu **slot;
 272        unsigned long base = idr->idr_base;
 273        unsigned long id = *nextid;
 274
 275        id = (id < base) ? 0 : id - base;
 276        slot = radix_tree_iter_find(&idr->idr_rt, &iter, id);
 277        if (!slot)
 278                return NULL;
 279
 280        *nextid = iter.index + base;
 281        return rcu_dereference_raw(*slot);
 282}
 283EXPORT_SYMBOL(idr_get_next_ul);
 284
 285/**
 286 * idr_replace() - replace pointer for given ID.
 287 * @idr: IDR handle.
 288 * @ptr: New pointer to associate with the ID.
 289 * @id: ID to change.
 290 *
 291 * Replace the pointer registered with an ID and return the old value.
 292 * This function can be called under the RCU read lock concurrently with
 293 * idr_alloc() and idr_remove() (as long as the ID being removed is not
 294 * the one being replaced!).
 295 *
 296 * Returns: the old value on success.  %-ENOENT indicates that @id was not
 297 * found.  %-EINVAL indicates that @ptr was not valid.
 298 */
 299void *idr_replace(struct idr *idr, void *ptr, unsigned long id)
 300{
 301        struct radix_tree_node *node;
 302        void __rcu **slot = NULL;
 303        void *entry;
 304
 305        id -= idr->idr_base;
 306
 307        entry = __radix_tree_lookup(&idr->idr_rt, id, &node, &slot);
 308        if (!slot || radix_tree_tag_get(&idr->idr_rt, id, IDR_FREE))
 309                return ERR_PTR(-ENOENT);
 310
 311        __radix_tree_replace(&idr->idr_rt, node, slot, ptr);
 312
 313        return entry;
 314}
 315EXPORT_SYMBOL(idr_replace);
 316
 317/**
 318 * DOC: IDA description
 319 *
 320 * The IDA is an ID allocator which does not provide the ability to
 321 * associate an ID with a pointer.  As such, it only needs to store one
 322 * bit per ID, and so is more space efficient than an IDR.  To use an IDA,
 323 * define it using DEFINE_IDA() (or embed a &struct ida in a data structure,
 324 * then initialise it using ida_init()).  To allocate a new ID, call
 325 * ida_alloc(), ida_alloc_min(), ida_alloc_max() or ida_alloc_range().
 326 * To free an ID, call ida_free().
 327 *
 328 * ida_destroy() can be used to dispose of an IDA without needing to
 329 * free the individual IDs in it.  You can use ida_is_empty() to find
 330 * out whether the IDA has any IDs currently allocated.
 331 *
 332 * The IDA handles its own locking.  It is safe to call any of the IDA
 333 * functions without synchronisation in your code.
 334 *
 335 * IDs are currently limited to the range [0-INT_MAX].  If this is an awkward
 336 * limitation, it should be quite straightforward to raise the maximum.
 337 */
 338
 339/*
 340 * Developer's notes:
 341 *
 342 * The IDA uses the functionality provided by the XArray to store bitmaps in
 343 * each entry.  The XA_FREE_MARK is only cleared when all bits in the bitmap
 344 * have been set.
 345 *
 346 * I considered telling the XArray that each slot is an order-10 node
 347 * and indexing by bit number, but the XArray can't allow a single multi-index
 348 * entry in the head, which would significantly increase memory consumption
 349 * for the IDA.  So instead we divide the index by the number of bits in the
 350 * leaf bitmap before doing a radix tree lookup.
 351 *
 352 * As an optimisation, if there are only a few low bits set in any given
 353 * leaf, instead of allocating a 128-byte bitmap, we store the bits
 354 * as a value entry.  Value entries never have the XA_FREE_MARK cleared
 355 * because we can always convert them into a bitmap entry.
 356 *
 357 * It would be possible to optimise further; once we've run out of a
 358 * single 128-byte bitmap, we currently switch to a 576-byte node, put
 359 * the 128-byte bitmap in the first entry and then start allocating extra
 360 * 128-byte entries.  We could instead use the 512 bytes of the node's
 361 * data as a bitmap before moving to that scheme.  I do not believe this
 362 * is a worthwhile optimisation; Rasmus Villemoes surveyed the current
 363 * users of the IDA and almost none of them use more than 1024 entries.
 364 * Those that do use more than the 8192 IDs that the 512 bytes would
 365 * provide.
 366 *
 367 * The IDA always uses a lock to alloc/free.  If we add a 'test_bit'
 368 * equivalent, it will still need locking.  Going to RCU lookup would require
 369 * using RCU to free bitmaps, and that's not trivial without embedding an
 370 * RCU head in the bitmap, which adds a 2-pointer overhead to each 128-byte
 371 * bitmap, which is excessive.
 372 */
 373
 374/**
 375 * ida_alloc_range() - Allocate an unused ID.
 376 * @ida: IDA handle.
 377 * @min: Lowest ID to allocate.
 378 * @max: Highest ID to allocate.
 379 * @gfp: Memory allocation flags.
 380 *
 381 * Allocate an ID between @min and @max, inclusive.  The allocated ID will
 382 * not exceed %INT_MAX, even if @max is larger.
 383 *
 384 * Context: Any context.
 385 * Return: The allocated ID, or %-ENOMEM if memory could not be allocated,
 386 * or %-ENOSPC if there are no free IDs.
 387 */
 388int ida_alloc_range(struct ida *ida, unsigned int min, unsigned int max,
 389                        gfp_t gfp)
 390{
 391        XA_STATE(xas, &ida->xa, min / IDA_BITMAP_BITS);
 392        unsigned bit = min % IDA_BITMAP_BITS;
 393        unsigned long flags;
 394        struct ida_bitmap *bitmap, *alloc = NULL;
 395
 396        if ((int)min < 0)
 397                return -ENOSPC;
 398
 399        if ((int)max < 0)
 400                max = INT_MAX;
 401
 402retry:
 403        xas_lock_irqsave(&xas, flags);
 404next:
 405        bitmap = xas_find_marked(&xas, max / IDA_BITMAP_BITS, XA_FREE_MARK);
 406        if (xas.xa_index > min / IDA_BITMAP_BITS)
 407                bit = 0;
 408        if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
 409                goto nospc;
 410
 411        if (xa_is_value(bitmap)) {
 412                unsigned long tmp = xa_to_value(bitmap);
 413
 414                if (bit < BITS_PER_XA_VALUE) {
 415                        bit = find_next_zero_bit(&tmp, BITS_PER_XA_VALUE, bit);
 416                        if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
 417                                goto nospc;
 418                        if (bit < BITS_PER_XA_VALUE) {
 419                                tmp |= 1UL << bit;
 420                                xas_store(&xas, xa_mk_value(tmp));
 421                                goto out;
 422                        }
 423                }
 424                bitmap = alloc;
 425                if (!bitmap)
 426                        bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
 427                if (!bitmap)
 428                        goto alloc;
 429                bitmap->bitmap[0] = tmp;
 430                xas_store(&xas, bitmap);
 431                if (xas_error(&xas)) {
 432                        bitmap->bitmap[0] = 0;
 433                        goto out;
 434                }
 435        }
 436
 437        if (bitmap) {
 438                bit = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, bit);
 439                if (xas.xa_index * IDA_BITMAP_BITS + bit > max)
 440                        goto nospc;
 441                if (bit == IDA_BITMAP_BITS)
 442                        goto next;
 443
 444                __set_bit(bit, bitmap->bitmap);
 445                if (bitmap_full(bitmap->bitmap, IDA_BITMAP_BITS))
 446                        xas_clear_mark(&xas, XA_FREE_MARK);
 447        } else {
 448                if (bit < BITS_PER_XA_VALUE) {
 449                        bitmap = xa_mk_value(1UL << bit);
 450                } else {
 451                        bitmap = alloc;
 452                        if (!bitmap)
 453                                bitmap = kzalloc(sizeof(*bitmap), GFP_NOWAIT);
 454                        if (!bitmap)
 455                                goto alloc;
 456                        __set_bit(bit, bitmap->bitmap);
 457                }
 458                xas_store(&xas, bitmap);
 459        }
 460out:
 461        xas_unlock_irqrestore(&xas, flags);
 462        if (xas_nomem(&xas, gfp)) {
 463                xas.xa_index = min / IDA_BITMAP_BITS;
 464                bit = min % IDA_BITMAP_BITS;
 465                goto retry;
 466        }
 467        if (bitmap != alloc)
 468                kfree(alloc);
 469        if (xas_error(&xas))
 470                return xas_error(&xas);
 471        return xas.xa_index * IDA_BITMAP_BITS + bit;
 472alloc:
 473        xas_unlock_irqrestore(&xas, flags);
 474        alloc = kzalloc(sizeof(*bitmap), gfp);
 475        if (!alloc)
 476                return -ENOMEM;
 477        xas_set(&xas, min / IDA_BITMAP_BITS);
 478        bit = min % IDA_BITMAP_BITS;
 479        goto retry;
 480nospc:
 481        xas_unlock_irqrestore(&xas, flags);
 482        return -ENOSPC;
 483}
 484EXPORT_SYMBOL(ida_alloc_range);
 485
 486/**
 487 * ida_free() - Release an allocated ID.
 488 * @ida: IDA handle.
 489 * @id: Previously allocated ID.
 490 *
 491 * Context: Any context.
 492 */
 493void ida_free(struct ida *ida, unsigned int id)
 494{
 495        XA_STATE(xas, &ida->xa, id / IDA_BITMAP_BITS);
 496        unsigned bit = id % IDA_BITMAP_BITS;
 497        struct ida_bitmap *bitmap;
 498        unsigned long flags;
 499
 500        BUG_ON((int)id < 0);
 501
 502        xas_lock_irqsave(&xas, flags);
 503        bitmap = xas_load(&xas);
 504
 505        if (xa_is_value(bitmap)) {
 506                unsigned long v = xa_to_value(bitmap);
 507                if (bit >= BITS_PER_XA_VALUE)
 508                        goto err;
 509                if (!(v & (1UL << bit)))
 510                        goto err;
 511                v &= ~(1UL << bit);
 512                if (!v)
 513                        goto delete;
 514                xas_store(&xas, xa_mk_value(v));
 515        } else {
 516                if (!test_bit(bit, bitmap->bitmap))
 517                        goto err;
 518                __clear_bit(bit, bitmap->bitmap);
 519                xas_set_mark(&xas, XA_FREE_MARK);
 520                if (bitmap_empty(bitmap->bitmap, IDA_BITMAP_BITS)) {
 521                        kfree(bitmap);
 522delete:
 523                        xas_store(&xas, NULL);
 524                }
 525        }
 526        xas_unlock_irqrestore(&xas, flags);
 527        return;
 528 err:
 529        xas_unlock_irqrestore(&xas, flags);
 530        WARN(1, "ida_free called for id=%d which is not allocated.\n", id);
 531}
 532EXPORT_SYMBOL(ida_free);
 533
 534/**
 535 * ida_destroy() - Free all IDs.
 536 * @ida: IDA handle.
 537 *
 538 * Calling this function frees all IDs and releases all resources used
 539 * by an IDA.  When this call returns, the IDA is empty and can be reused
 540 * or freed.  If the IDA is already empty, there is no need to call this
 541 * function.
 542 *
 543 * Context: Any context.
 544 */
 545void ida_destroy(struct ida *ida)
 546{
 547        XA_STATE(xas, &ida->xa, 0);
 548        struct ida_bitmap *bitmap;
 549        unsigned long flags;
 550
 551        xas_lock_irqsave(&xas, flags);
 552        xas_for_each(&xas, bitmap, ULONG_MAX) {
 553                if (!xa_is_value(bitmap))
 554                        kfree(bitmap);
 555                xas_store(&xas, NULL);
 556        }
 557        xas_unlock_irqrestore(&xas, flags);
 558}
 559EXPORT_SYMBOL(ida_destroy);
 560
 561#ifndef __KERNEL__
 562extern void xa_dump_index(unsigned long index, unsigned int shift);
 563#define IDA_CHUNK_SHIFT         ilog2(IDA_BITMAP_BITS)
 564
 565static void ida_dump_entry(void *entry, unsigned long index)
 566{
 567        unsigned long i;
 568
 569        if (!entry)
 570                return;
 571
 572        if (xa_is_node(entry)) {
 573                struct xa_node *node = xa_to_node(entry);
 574                unsigned int shift = node->shift + IDA_CHUNK_SHIFT +
 575                        XA_CHUNK_SHIFT;
 576
 577                xa_dump_index(index * IDA_BITMAP_BITS, shift);
 578                xa_dump_node(node);
 579                for (i = 0; i < XA_CHUNK_SIZE; i++)
 580                        ida_dump_entry(node->slots[i],
 581                                        index | (i << node->shift));
 582        } else if (xa_is_value(entry)) {
 583                xa_dump_index(index * IDA_BITMAP_BITS, ilog2(BITS_PER_LONG));
 584                pr_cont("value: data %lx [%px]\n", xa_to_value(entry), entry);
 585        } else {
 586                struct ida_bitmap *bitmap = entry;
 587
 588                xa_dump_index(index * IDA_BITMAP_BITS, IDA_CHUNK_SHIFT);
 589                pr_cont("bitmap: %p data", bitmap);
 590                for (i = 0; i < IDA_BITMAP_LONGS; i++)
 591                        pr_cont(" %lx", bitmap->bitmap[i]);
 592                pr_cont("\n");
 593        }
 594}
 595
 596static void ida_dump(struct ida *ida)
 597{
 598        struct xarray *xa = &ida->xa;
 599        pr_debug("ida: %p node %p free %d\n", ida, xa->xa_head,
 600                                xa->xa_flags >> ROOT_TAG_SHIFT);
 601        ida_dump_entry(xa->xa_head, 0);
 602}
 603#endif
 604