linux/lib/sort.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * A fast, small, non-recursive O(n log n) sort for the Linux kernel
   4 *
   5 * This performs n*log2(n) + 0.37*n + o(n) comparisons on average,
   6 * and 1.5*n*log2(n) + O(n) in the (very contrived) worst case.
   7 *
   8 * Glibc qsort() manages n*log2(n) - 1.26*n for random inputs (1.63*n
   9 * better) at the expense of stack usage and much larger code to avoid
  10 * quicksort's O(n^2) worst case.
  11 */
  12
  13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  14
  15#include <linux/types.h>
  16#include <linux/export.h>
  17#include <linux/sort.h>
  18
  19/**
  20 * is_aligned - is this pointer & size okay for word-wide copying?
  21 * @base: pointer to data
  22 * @size: size of each element
  23 * @align: required alignment (typically 4 or 8)
  24 *
  25 * Returns true if elements can be copied using word loads and stores.
  26 * The size must be a multiple of the alignment, and the base address must
  27 * be if we do not have CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS.
  28 *
  29 * For some reason, gcc doesn't know to optimize "if (a & mask || b & mask)"
  30 * to "if ((a | b) & mask)", so we do that by hand.
  31 */
  32__attribute_const__ __always_inline
  33static bool is_aligned(const void *base, size_t size, unsigned char align)
  34{
  35        unsigned char lsbits = (unsigned char)size;
  36
  37        (void)base;
  38#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
  39        lsbits |= (unsigned char)(uintptr_t)base;
  40#endif
  41        return (lsbits & (align - 1)) == 0;
  42}
  43
  44/**
  45 * swap_words_32 - swap two elements in 32-bit chunks
  46 * @a: pointer to the first element to swap
  47 * @b: pointer to the second element to swap
  48 * @n: element size (must be a multiple of 4)
  49 *
  50 * Exchange the two objects in memory.  This exploits base+index addressing,
  51 * which basically all CPUs have, to minimize loop overhead computations.
  52 *
  53 * For some reason, on x86 gcc 7.3.0 adds a redundant test of n at the
  54 * bottom of the loop, even though the zero flag is stil valid from the
  55 * subtract (since the intervening mov instructions don't alter the flags).
  56 * Gcc 8.1.0 doesn't have that problem.
  57 */
  58static void swap_words_32(void *a, void *b, size_t n)
  59{
  60        do {
  61                u32 t = *(u32 *)(a + (n -= 4));
  62                *(u32 *)(a + n) = *(u32 *)(b + n);
  63                *(u32 *)(b + n) = t;
  64        } while (n);
  65}
  66
  67/**
  68 * swap_words_64 - swap two elements in 64-bit chunks
  69 * @a: pointer to the first element to swap
  70 * @b: pointer to the second element to swap
  71 * @n: element size (must be a multiple of 8)
  72 *
  73 * Exchange the two objects in memory.  This exploits base+index
  74 * addressing, which basically all CPUs have, to minimize loop overhead
  75 * computations.
  76 *
  77 * We'd like to use 64-bit loads if possible.  If they're not, emulating
  78 * one requires base+index+4 addressing which x86 has but most other
  79 * processors do not.  If CONFIG_64BIT, we definitely have 64-bit loads,
  80 * but it's possible to have 64-bit loads without 64-bit pointers (e.g.
  81 * x32 ABI).  Are there any cases the kernel needs to worry about?
  82 */
  83static void swap_words_64(void *a, void *b, size_t n)
  84{
  85        do {
  86#ifdef CONFIG_64BIT
  87                u64 t = *(u64 *)(a + (n -= 8));
  88                *(u64 *)(a + n) = *(u64 *)(b + n);
  89                *(u64 *)(b + n) = t;
  90#else
  91                /* Use two 32-bit transfers to avoid base+index+4 addressing */
  92                u32 t = *(u32 *)(a + (n -= 4));
  93                *(u32 *)(a + n) = *(u32 *)(b + n);
  94                *(u32 *)(b + n) = t;
  95
  96                t = *(u32 *)(a + (n -= 4));
  97                *(u32 *)(a + n) = *(u32 *)(b + n);
  98                *(u32 *)(b + n) = t;
  99#endif
 100        } while (n);
 101}
 102
 103/**
 104 * swap_bytes - swap two elements a byte at a time
 105 * @a: pointer to the first element to swap
 106 * @b: pointer to the second element to swap
 107 * @n: element size
 108 *
 109 * This is the fallback if alignment doesn't allow using larger chunks.
 110 */
 111static void swap_bytes(void *a, void *b, size_t n)
 112{
 113        do {
 114                char t = ((char *)a)[--n];
 115                ((char *)a)[n] = ((char *)b)[n];
 116                ((char *)b)[n] = t;
 117        } while (n);
 118}
 119
 120typedef void (*swap_func_t)(void *a, void *b, int size);
 121
 122/*
 123 * The values are arbitrary as long as they can't be confused with
 124 * a pointer, but small integers make for the smallest compare
 125 * instructions.
 126 */
 127#define SWAP_WORDS_64 (swap_func_t)0
 128#define SWAP_WORDS_32 (swap_func_t)1
 129#define SWAP_BYTES    (swap_func_t)2
 130
 131/*
 132 * The function pointer is last to make tail calls most efficient if the
 133 * compiler decides not to inline this function.
 134 */
 135static void do_swap(void *a, void *b, size_t size, swap_func_t swap_func)
 136{
 137        if (swap_func == SWAP_WORDS_64)
 138                swap_words_64(a, b, size);
 139        else if (swap_func == SWAP_WORDS_32)
 140                swap_words_32(a, b, size);
 141        else if (swap_func == SWAP_BYTES)
 142                swap_bytes(a, b, size);
 143        else
 144                swap_func(a, b, (int)size);
 145}
 146
 147/**
 148 * parent - given the offset of the child, find the offset of the parent.
 149 * @i: the offset of the heap element whose parent is sought.  Non-zero.
 150 * @lsbit: a precomputed 1-bit mask, equal to "size & -size"
 151 * @size: size of each element
 152 *
 153 * In terms of array indexes, the parent of element j = @i/@size is simply
 154 * (j-1)/2.  But when working in byte offsets, we can't use implicit
 155 * truncation of integer divides.
 156 *
 157 * Fortunately, we only need one bit of the quotient, not the full divide.
 158 * @size has a least significant bit.  That bit will be clear if @i is
 159 * an even multiple of @size, and set if it's an odd multiple.
 160 *
 161 * Logically, we're doing "if (i & lsbit) i -= size;", but since the
 162 * branch is unpredictable, it's done with a bit of clever branch-free
 163 * code instead.
 164 */
 165__attribute_const__ __always_inline
 166static size_t parent(size_t i, unsigned int lsbit, size_t size)
 167{
 168        i -= size;
 169        i -= size & -(i & lsbit);
 170        return i / 2;
 171}
 172
 173/**
 174 * sort - sort an array of elements
 175 * @base: pointer to data to sort
 176 * @num: number of elements
 177 * @size: size of each element
 178 * @cmp_func: pointer to comparison function
 179 * @swap_func: pointer to swap function or NULL
 180 *
 181 * This function does a heapsort on the given array.  You may provide
 182 * a swap_func function if you need to do something more than a memory
 183 * copy (e.g. fix up pointers or auxiliary data), but the built-in swap
 184 * avoids a slow retpoline and so is significantly faster.
 185 *
 186 * Sorting time is O(n log n) both on average and worst-case. While
 187 * quicksort is slightly faster on average, it suffers from exploitable
 188 * O(n*n) worst-case behavior and extra memory requirements that make
 189 * it less suitable for kernel use.
 190 */
 191void sort(void *base, size_t num, size_t size,
 192          int (*cmp_func)(const void *, const void *),
 193          void (*swap_func)(void *, void *, int size))
 194{
 195        /* pre-scale counters for performance */
 196        size_t n = num * size, a = (num/2) * size;
 197        const unsigned int lsbit = size & -size;  /* Used to find parent */
 198
 199        if (!a)         /* num < 2 || size == 0 */
 200                return;
 201
 202        if (!swap_func) {
 203                if (is_aligned(base, size, 8))
 204                        swap_func = SWAP_WORDS_64;
 205                else if (is_aligned(base, size, 4))
 206                        swap_func = SWAP_WORDS_32;
 207                else
 208                        swap_func = SWAP_BYTES;
 209        }
 210
 211        /*
 212         * Loop invariants:
 213         * 1. elements [a,n) satisfy the heap property (compare greater than
 214         *    all of their children),
 215         * 2. elements [n,num*size) are sorted, and
 216         * 3. a <= b <= c <= d <= n (whenever they are valid).
 217         */
 218        for (;;) {
 219                size_t b, c, d;
 220
 221                if (a)                  /* Building heap: sift down --a */
 222                        a -= size;
 223                else if (n -= size)     /* Sorting: Extract root to --n */
 224                        do_swap(base, base + n, size, swap_func);
 225                else                    /* Sort complete */
 226                        break;
 227
 228                /*
 229                 * Sift element at "a" down into heap.  This is the
 230                 * "bottom-up" variant, which significantly reduces
 231                 * calls to cmp_func(): we find the sift-down path all
 232                 * the way to the leaves (one compare per level), then
 233                 * backtrack to find where to insert the target element.
 234                 *
 235                 * Because elements tend to sift down close to the leaves,
 236                 * this uses fewer compares than doing two per level
 237                 * on the way down.  (A bit more than half as many on
 238                 * average, 3/4 worst-case.)
 239                 */
 240                for (b = a; c = 2*b + size, (d = c + size) < n;)
 241                        b = cmp_func(base + c, base + d) >= 0 ? c : d;
 242                if (d == n)     /* Special case last leaf with no sibling */
 243                        b = c;
 244
 245                /* Now backtrack from "b" to the correct location for "a" */
 246                while (b != a && cmp_func(base + a, base + b) >= 0)
 247                        b = parent(b, lsbit, size);
 248                c = b;                  /* Where "a" belongs */
 249                while (b != a) {        /* Shift it into place */
 250                        b = parent(b, lsbit, size);
 251                        do_swap(base + b, base + c, size, swap_func);
 252                }
 253        }
 254}
 255EXPORT_SYMBOL(sort);
 256