linux/lib/xz/xz_dec_lzma2.c
<<
>>
Prefs
   1/*
   2 * LZMA2 decoder
   3 *
   4 * Authors: Lasse Collin <lasse.collin@tukaani.org>
   5 *          Igor Pavlov <http://7-zip.org/>
   6 *
   7 * This file has been put into the public domain.
   8 * You can do whatever you want with this file.
   9 */
  10
  11#include "xz_private.h"
  12#include "xz_lzma2.h"
  13
  14/*
  15 * Range decoder initialization eats the first five bytes of each LZMA chunk.
  16 */
  17#define RC_INIT_BYTES 5
  18
  19/*
  20 * Minimum number of usable input buffer to safely decode one LZMA symbol.
  21 * The worst case is that we decode 22 bits using probabilities and 26
  22 * direct bits. This may decode at maximum of 20 bytes of input. However,
  23 * lzma_main() does an extra normalization before returning, thus we
  24 * need to put 21 here.
  25 */
  26#define LZMA_IN_REQUIRED 21
  27
  28/*
  29 * Dictionary (history buffer)
  30 *
  31 * These are always true:
  32 *    start <= pos <= full <= end
  33 *    pos <= limit <= end
  34 *
  35 * In multi-call mode, also these are true:
  36 *    end == size
  37 *    size <= size_max
  38 *    allocated <= size
  39 *
  40 * Most of these variables are size_t to support single-call mode,
  41 * in which the dictionary variables address the actual output
  42 * buffer directly.
  43 */
  44struct dictionary {
  45        /* Beginning of the history buffer */
  46        uint8_t *buf;
  47
  48        /* Old position in buf (before decoding more data) */
  49        size_t start;
  50
  51        /* Position in buf */
  52        size_t pos;
  53
  54        /*
  55         * How full dictionary is. This is used to detect corrupt input that
  56         * would read beyond the beginning of the uncompressed stream.
  57         */
  58        size_t full;
  59
  60        /* Write limit; we don't write to buf[limit] or later bytes. */
  61        size_t limit;
  62
  63        /*
  64         * End of the dictionary buffer. In multi-call mode, this is
  65         * the same as the dictionary size. In single-call mode, this
  66         * indicates the size of the output buffer.
  67         */
  68        size_t end;
  69
  70        /*
  71         * Size of the dictionary as specified in Block Header. This is used
  72         * together with "full" to detect corrupt input that would make us
  73         * read beyond the beginning of the uncompressed stream.
  74         */
  75        uint32_t size;
  76
  77        /*
  78         * Maximum allowed dictionary size in multi-call mode.
  79         * This is ignored in single-call mode.
  80         */
  81        uint32_t size_max;
  82
  83        /*
  84         * Amount of memory currently allocated for the dictionary.
  85         * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC,
  86         * size_max is always the same as the allocated size.)
  87         */
  88        uint32_t allocated;
  89
  90        /* Operation mode */
  91        enum xz_mode mode;
  92};
  93
  94/* Range decoder */
  95struct rc_dec {
  96        uint32_t range;
  97        uint32_t code;
  98
  99        /*
 100         * Number of initializing bytes remaining to be read
 101         * by rc_read_init().
 102         */
 103        uint32_t init_bytes_left;
 104
 105        /*
 106         * Buffer from which we read our input. It can be either
 107         * temp.buf or the caller-provided input buffer.
 108         */
 109        const uint8_t *in;
 110        size_t in_pos;
 111        size_t in_limit;
 112};
 113
 114/* Probabilities for a length decoder. */
 115struct lzma_len_dec {
 116        /* Probability of match length being at least 10 */
 117        uint16_t choice;
 118
 119        /* Probability of match length being at least 18 */
 120        uint16_t choice2;
 121
 122        /* Probabilities for match lengths 2-9 */
 123        uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS];
 124
 125        /* Probabilities for match lengths 10-17 */
 126        uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS];
 127
 128        /* Probabilities for match lengths 18-273 */
 129        uint16_t high[LEN_HIGH_SYMBOLS];
 130};
 131
 132struct lzma_dec {
 133        /* Distances of latest four matches */
 134        uint32_t rep0;
 135        uint32_t rep1;
 136        uint32_t rep2;
 137        uint32_t rep3;
 138
 139        /* Types of the most recently seen LZMA symbols */
 140        enum lzma_state state;
 141
 142        /*
 143         * Length of a match. This is updated so that dict_repeat can
 144         * be called again to finish repeating the whole match.
 145         */
 146        uint32_t len;
 147
 148        /*
 149         * LZMA properties or related bit masks (number of literal
 150         * context bits, a mask dervied from the number of literal
 151         * position bits, and a mask dervied from the number
 152         * position bits)
 153         */
 154        uint32_t lc;
 155        uint32_t literal_pos_mask; /* (1 << lp) - 1 */
 156        uint32_t pos_mask;         /* (1 << pb) - 1 */
 157
 158        /* If 1, it's a match. Otherwise it's a single 8-bit literal. */
 159        uint16_t is_match[STATES][POS_STATES_MAX];
 160
 161        /* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */
 162        uint16_t is_rep[STATES];
 163
 164        /*
 165         * If 0, distance of a repeated match is rep0.
 166         * Otherwise check is_rep1.
 167         */
 168        uint16_t is_rep0[STATES];
 169
 170        /*
 171         * If 0, distance of a repeated match is rep1.
 172         * Otherwise check is_rep2.
 173         */
 174        uint16_t is_rep1[STATES];
 175
 176        /* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */
 177        uint16_t is_rep2[STATES];
 178
 179        /*
 180         * If 1, the repeated match has length of one byte. Otherwise
 181         * the length is decoded from rep_len_decoder.
 182         */
 183        uint16_t is_rep0_long[STATES][POS_STATES_MAX];
 184
 185        /*
 186         * Probability tree for the highest two bits of the match
 187         * distance. There is a separate probability tree for match
 188         * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273].
 189         */
 190        uint16_t dist_slot[DIST_STATES][DIST_SLOTS];
 191
 192        /*
 193         * Probility trees for additional bits for match distance
 194         * when the distance is in the range [4, 127].
 195         */
 196        uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END];
 197
 198        /*
 199         * Probability tree for the lowest four bits of a match
 200         * distance that is equal to or greater than 128.
 201         */
 202        uint16_t dist_align[ALIGN_SIZE];
 203
 204        /* Length of a normal match */
 205        struct lzma_len_dec match_len_dec;
 206
 207        /* Length of a repeated match */
 208        struct lzma_len_dec rep_len_dec;
 209
 210        /* Probabilities of literals */
 211        uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE];
 212};
 213
 214struct lzma2_dec {
 215        /* Position in xz_dec_lzma2_run(). */
 216        enum lzma2_seq {
 217                SEQ_CONTROL,
 218                SEQ_UNCOMPRESSED_1,
 219                SEQ_UNCOMPRESSED_2,
 220                SEQ_COMPRESSED_0,
 221                SEQ_COMPRESSED_1,
 222                SEQ_PROPERTIES,
 223                SEQ_LZMA_PREPARE,
 224                SEQ_LZMA_RUN,
 225                SEQ_COPY
 226        } sequence;
 227
 228        /* Next position after decoding the compressed size of the chunk. */
 229        enum lzma2_seq next_sequence;
 230
 231        /* Uncompressed size of LZMA chunk (2 MiB at maximum) */
 232        uint32_t uncompressed;
 233
 234        /*
 235         * Compressed size of LZMA chunk or compressed/uncompressed
 236         * size of uncompressed chunk (64 KiB at maximum)
 237         */
 238        uint32_t compressed;
 239
 240        /*
 241         * True if dictionary reset is needed. This is false before
 242         * the first chunk (LZMA or uncompressed).
 243         */
 244        bool need_dict_reset;
 245
 246        /*
 247         * True if new LZMA properties are needed. This is false
 248         * before the first LZMA chunk.
 249         */
 250        bool need_props;
 251};
 252
 253struct xz_dec_lzma2 {
 254        /*
 255         * The order below is important on x86 to reduce code size and
 256         * it shouldn't hurt on other platforms. Everything up to and
 257         * including lzma.pos_mask are in the first 128 bytes on x86-32,
 258         * which allows using smaller instructions to access those
 259         * variables. On x86-64, fewer variables fit into the first 128
 260         * bytes, but this is still the best order without sacrificing
 261         * the readability by splitting the structures.
 262         */
 263        struct rc_dec rc;
 264        struct dictionary dict;
 265        struct lzma2_dec lzma2;
 266        struct lzma_dec lzma;
 267
 268        /*
 269         * Temporary buffer which holds small number of input bytes between
 270         * decoder calls. See lzma2_lzma() for details.
 271         */
 272        struct {
 273                uint32_t size;
 274                uint8_t buf[3 * LZMA_IN_REQUIRED];
 275        } temp;
 276};
 277
 278/**************
 279 * Dictionary *
 280 **************/
 281
 282/*
 283 * Reset the dictionary state. When in single-call mode, set up the beginning
 284 * of the dictionary to point to the actual output buffer.
 285 */
 286static void dict_reset(struct dictionary *dict, struct xz_buf *b)
 287{
 288        if (DEC_IS_SINGLE(dict->mode)) {
 289                dict->buf = b->out + b->out_pos;
 290                dict->end = b->out_size - b->out_pos;
 291        }
 292
 293        dict->start = 0;
 294        dict->pos = 0;
 295        dict->limit = 0;
 296        dict->full = 0;
 297}
 298
 299/* Set dictionary write limit */
 300static void dict_limit(struct dictionary *dict, size_t out_max)
 301{
 302        if (dict->end - dict->pos <= out_max)
 303                dict->limit = dict->end;
 304        else
 305                dict->limit = dict->pos + out_max;
 306}
 307
 308/* Return true if at least one byte can be written into the dictionary. */
 309static inline bool dict_has_space(const struct dictionary *dict)
 310{
 311        return dict->pos < dict->limit;
 312}
 313
 314/*
 315 * Get a byte from the dictionary at the given distance. The distance is
 316 * assumed to valid, or as a special case, zero when the dictionary is
 317 * still empty. This special case is needed for single-call decoding to
 318 * avoid writing a '\0' to the end of the destination buffer.
 319 */
 320static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist)
 321{
 322        size_t offset = dict->pos - dist - 1;
 323
 324        if (dist >= dict->pos)
 325                offset += dict->end;
 326
 327        return dict->full > 0 ? dict->buf[offset] : 0;
 328}
 329
 330/*
 331 * Put one byte into the dictionary. It is assumed that there is space for it.
 332 */
 333static inline void dict_put(struct dictionary *dict, uint8_t byte)
 334{
 335        dict->buf[dict->pos++] = byte;
 336
 337        if (dict->full < dict->pos)
 338                dict->full = dict->pos;
 339}
 340
 341/*
 342 * Repeat given number of bytes from the given distance. If the distance is
 343 * invalid, false is returned. On success, true is returned and *len is
 344 * updated to indicate how many bytes were left to be repeated.
 345 */
 346static bool dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist)
 347{
 348        size_t back;
 349        uint32_t left;
 350
 351        if (dist >= dict->full || dist >= dict->size)
 352                return false;
 353
 354        left = min_t(size_t, dict->limit - dict->pos, *len);
 355        *len -= left;
 356
 357        back = dict->pos - dist - 1;
 358        if (dist >= dict->pos)
 359                back += dict->end;
 360
 361        do {
 362                dict->buf[dict->pos++] = dict->buf[back++];
 363                if (back == dict->end)
 364                        back = 0;
 365        } while (--left > 0);
 366
 367        if (dict->full < dict->pos)
 368                dict->full = dict->pos;
 369
 370        return true;
 371}
 372
 373/* Copy uncompressed data as is from input to dictionary and output buffers. */
 374static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b,
 375                              uint32_t *left)
 376{
 377        size_t copy_size;
 378
 379        while (*left > 0 && b->in_pos < b->in_size
 380                        && b->out_pos < b->out_size) {
 381                copy_size = min(b->in_size - b->in_pos,
 382                                b->out_size - b->out_pos);
 383                if (copy_size > dict->end - dict->pos)
 384                        copy_size = dict->end - dict->pos;
 385                if (copy_size > *left)
 386                        copy_size = *left;
 387
 388                *left -= copy_size;
 389
 390                memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size);
 391                dict->pos += copy_size;
 392
 393                if (dict->full < dict->pos)
 394                        dict->full = dict->pos;
 395
 396                if (DEC_IS_MULTI(dict->mode)) {
 397                        if (dict->pos == dict->end)
 398                                dict->pos = 0;
 399
 400                        memcpy(b->out + b->out_pos, b->in + b->in_pos,
 401                                        copy_size);
 402                }
 403
 404                dict->start = dict->pos;
 405
 406                b->out_pos += copy_size;
 407                b->in_pos += copy_size;
 408        }
 409}
 410
 411/*
 412 * Flush pending data from dictionary to b->out. It is assumed that there is
 413 * enough space in b->out. This is guaranteed because caller uses dict_limit()
 414 * before decoding data into the dictionary.
 415 */
 416static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b)
 417{
 418        size_t copy_size = dict->pos - dict->start;
 419
 420        if (DEC_IS_MULTI(dict->mode)) {
 421                if (dict->pos == dict->end)
 422                        dict->pos = 0;
 423
 424                memcpy(b->out + b->out_pos, dict->buf + dict->start,
 425                                copy_size);
 426        }
 427
 428        dict->start = dict->pos;
 429        b->out_pos += copy_size;
 430        return copy_size;
 431}
 432
 433/*****************
 434 * Range decoder *
 435 *****************/
 436
 437/* Reset the range decoder. */
 438static void rc_reset(struct rc_dec *rc)
 439{
 440        rc->range = (uint32_t)-1;
 441        rc->code = 0;
 442        rc->init_bytes_left = RC_INIT_BYTES;
 443}
 444
 445/*
 446 * Read the first five initial bytes into rc->code if they haven't been
 447 * read already. (Yes, the first byte gets completely ignored.)
 448 */
 449static bool rc_read_init(struct rc_dec *rc, struct xz_buf *b)
 450{
 451        while (rc->init_bytes_left > 0) {
 452                if (b->in_pos == b->in_size)
 453                        return false;
 454
 455                rc->code = (rc->code << 8) + b->in[b->in_pos++];
 456                --rc->init_bytes_left;
 457        }
 458
 459        return true;
 460}
 461
 462/* Return true if there may not be enough input for the next decoding loop. */
 463static inline bool rc_limit_exceeded(const struct rc_dec *rc)
 464{
 465        return rc->in_pos > rc->in_limit;
 466}
 467
 468/*
 469 * Return true if it is possible (from point of view of range decoder) that
 470 * we have reached the end of the LZMA chunk.
 471 */
 472static inline bool rc_is_finished(const struct rc_dec *rc)
 473{
 474        return rc->code == 0;
 475}
 476
 477/* Read the next input byte if needed. */
 478static __always_inline void rc_normalize(struct rc_dec *rc)
 479{
 480        if (rc->range < RC_TOP_VALUE) {
 481                rc->range <<= RC_SHIFT_BITS;
 482                rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++];
 483        }
 484}
 485
 486/*
 487 * Decode one bit. In some versions, this function has been splitted in three
 488 * functions so that the compiler is supposed to be able to more easily avoid
 489 * an extra branch. In this particular version of the LZMA decoder, this
 490 * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3
 491 * on x86). Using a non-splitted version results in nicer looking code too.
 492 *
 493 * NOTE: This must return an int. Do not make it return a bool or the speed
 494 * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care,
 495 * and it generates 10-20 % faster code than GCC 3.x from this file anyway.)
 496 */
 497static __always_inline int rc_bit(struct rc_dec *rc, uint16_t *prob)
 498{
 499        uint32_t bound;
 500        int bit;
 501
 502        rc_normalize(rc);
 503        bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob;
 504        if (rc->code < bound) {
 505                rc->range = bound;
 506                *prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS;
 507                bit = 0;
 508        } else {
 509                rc->range -= bound;
 510                rc->code -= bound;
 511                *prob -= *prob >> RC_MOVE_BITS;
 512                bit = 1;
 513        }
 514
 515        return bit;
 516}
 517
 518/* Decode a bittree starting from the most significant bit. */
 519static __always_inline uint32_t rc_bittree(struct rc_dec *rc,
 520                                           uint16_t *probs, uint32_t limit)
 521{
 522        uint32_t symbol = 1;
 523
 524        do {
 525                if (rc_bit(rc, &probs[symbol]))
 526                        symbol = (symbol << 1) + 1;
 527                else
 528                        symbol <<= 1;
 529        } while (symbol < limit);
 530
 531        return symbol;
 532}
 533
 534/* Decode a bittree starting from the least significant bit. */
 535static __always_inline void rc_bittree_reverse(struct rc_dec *rc,
 536                                               uint16_t *probs,
 537                                               uint32_t *dest, uint32_t limit)
 538{
 539        uint32_t symbol = 1;
 540        uint32_t i = 0;
 541
 542        do {
 543                if (rc_bit(rc, &probs[symbol])) {
 544                        symbol = (symbol << 1) + 1;
 545                        *dest += 1 << i;
 546                } else {
 547                        symbol <<= 1;
 548                }
 549        } while (++i < limit);
 550}
 551
 552/* Decode direct bits (fixed fifty-fifty probability) */
 553static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit)
 554{
 555        uint32_t mask;
 556
 557        do {
 558                rc_normalize(rc);
 559                rc->range >>= 1;
 560                rc->code -= rc->range;
 561                mask = (uint32_t)0 - (rc->code >> 31);
 562                rc->code += rc->range & mask;
 563                *dest = (*dest << 1) + (mask + 1);
 564        } while (--limit > 0);
 565}
 566
 567/********
 568 * LZMA *
 569 ********/
 570
 571/* Get pointer to literal coder probability array. */
 572static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s)
 573{
 574        uint32_t prev_byte = dict_get(&s->dict, 0);
 575        uint32_t low = prev_byte >> (8 - s->lzma.lc);
 576        uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc;
 577        return s->lzma.literal[low + high];
 578}
 579
 580/* Decode a literal (one 8-bit byte) */
 581static void lzma_literal(struct xz_dec_lzma2 *s)
 582{
 583        uint16_t *probs;
 584        uint32_t symbol;
 585        uint32_t match_byte;
 586        uint32_t match_bit;
 587        uint32_t offset;
 588        uint32_t i;
 589
 590        probs = lzma_literal_probs(s);
 591
 592        if (lzma_state_is_literal(s->lzma.state)) {
 593                symbol = rc_bittree(&s->rc, probs, 0x100);
 594        } else {
 595                symbol = 1;
 596                match_byte = dict_get(&s->dict, s->lzma.rep0) << 1;
 597                offset = 0x100;
 598
 599                do {
 600                        match_bit = match_byte & offset;
 601                        match_byte <<= 1;
 602                        i = offset + match_bit + symbol;
 603
 604                        if (rc_bit(&s->rc, &probs[i])) {
 605                                symbol = (symbol << 1) + 1;
 606                                offset &= match_bit;
 607                        } else {
 608                                symbol <<= 1;
 609                                offset &= ~match_bit;
 610                        }
 611                } while (symbol < 0x100);
 612        }
 613
 614        dict_put(&s->dict, (uint8_t)symbol);
 615        lzma_state_literal(&s->lzma.state);
 616}
 617
 618/* Decode the length of the match into s->lzma.len. */
 619static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l,
 620                     uint32_t pos_state)
 621{
 622        uint16_t *probs;
 623        uint32_t limit;
 624
 625        if (!rc_bit(&s->rc, &l->choice)) {
 626                probs = l->low[pos_state];
 627                limit = LEN_LOW_SYMBOLS;
 628                s->lzma.len = MATCH_LEN_MIN;
 629        } else {
 630                if (!rc_bit(&s->rc, &l->choice2)) {
 631                        probs = l->mid[pos_state];
 632                        limit = LEN_MID_SYMBOLS;
 633                        s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS;
 634                } else {
 635                        probs = l->high;
 636                        limit = LEN_HIGH_SYMBOLS;
 637                        s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS
 638                                        + LEN_MID_SYMBOLS;
 639                }
 640        }
 641
 642        s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit;
 643}
 644
 645/* Decode a match. The distance will be stored in s->lzma.rep0. */
 646static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
 647{
 648        uint16_t *probs;
 649        uint32_t dist_slot;
 650        uint32_t limit;
 651
 652        lzma_state_match(&s->lzma.state);
 653
 654        s->lzma.rep3 = s->lzma.rep2;
 655        s->lzma.rep2 = s->lzma.rep1;
 656        s->lzma.rep1 = s->lzma.rep0;
 657
 658        lzma_len(s, &s->lzma.match_len_dec, pos_state);
 659
 660        probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)];
 661        dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS;
 662
 663        if (dist_slot < DIST_MODEL_START) {
 664                s->lzma.rep0 = dist_slot;
 665        } else {
 666                limit = (dist_slot >> 1) - 1;
 667                s->lzma.rep0 = 2 + (dist_slot & 1);
 668
 669                if (dist_slot < DIST_MODEL_END) {
 670                        s->lzma.rep0 <<= limit;
 671                        probs = s->lzma.dist_special + s->lzma.rep0
 672                                        - dist_slot - 1;
 673                        rc_bittree_reverse(&s->rc, probs,
 674                                        &s->lzma.rep0, limit);
 675                } else {
 676                        rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS);
 677                        s->lzma.rep0 <<= ALIGN_BITS;
 678                        rc_bittree_reverse(&s->rc, s->lzma.dist_align,
 679                                        &s->lzma.rep0, ALIGN_BITS);
 680                }
 681        }
 682}
 683
 684/*
 685 * Decode a repeated match. The distance is one of the four most recently
 686 * seen matches. The distance will be stored in s->lzma.rep0.
 687 */
 688static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state)
 689{
 690        uint32_t tmp;
 691
 692        if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) {
 693                if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[
 694                                s->lzma.state][pos_state])) {
 695                        lzma_state_short_rep(&s->lzma.state);
 696                        s->lzma.len = 1;
 697                        return;
 698                }
 699        } else {
 700                if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) {
 701                        tmp = s->lzma.rep1;
 702                } else {
 703                        if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) {
 704                                tmp = s->lzma.rep2;
 705                        } else {
 706                                tmp = s->lzma.rep3;
 707                                s->lzma.rep3 = s->lzma.rep2;
 708                        }
 709
 710                        s->lzma.rep2 = s->lzma.rep1;
 711                }
 712
 713                s->lzma.rep1 = s->lzma.rep0;
 714                s->lzma.rep0 = tmp;
 715        }
 716
 717        lzma_state_long_rep(&s->lzma.state);
 718        lzma_len(s, &s->lzma.rep_len_dec, pos_state);
 719}
 720
 721/* LZMA decoder core */
 722static bool lzma_main(struct xz_dec_lzma2 *s)
 723{
 724        uint32_t pos_state;
 725
 726        /*
 727         * If the dictionary was reached during the previous call, try to
 728         * finish the possibly pending repeat in the dictionary.
 729         */
 730        if (dict_has_space(&s->dict) && s->lzma.len > 0)
 731                dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0);
 732
 733        /*
 734         * Decode more LZMA symbols. One iteration may consume up to
 735         * LZMA_IN_REQUIRED - 1 bytes.
 736         */
 737        while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) {
 738                pos_state = s->dict.pos & s->lzma.pos_mask;
 739
 740                if (!rc_bit(&s->rc, &s->lzma.is_match[
 741                                s->lzma.state][pos_state])) {
 742                        lzma_literal(s);
 743                } else {
 744                        if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state]))
 745                                lzma_rep_match(s, pos_state);
 746                        else
 747                                lzma_match(s, pos_state);
 748
 749                        if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0))
 750                                return false;
 751                }
 752        }
 753
 754        /*
 755         * Having the range decoder always normalized when we are outside
 756         * this function makes it easier to correctly handle end of the chunk.
 757         */
 758        rc_normalize(&s->rc);
 759
 760        return true;
 761}
 762
 763/*
 764 * Reset the LZMA decoder and range decoder state. Dictionary is nore reset
 765 * here, because LZMA state may be reset without resetting the dictionary.
 766 */
 767static void lzma_reset(struct xz_dec_lzma2 *s)
 768{
 769        uint16_t *probs;
 770        size_t i;
 771
 772        s->lzma.state = STATE_LIT_LIT;
 773        s->lzma.rep0 = 0;
 774        s->lzma.rep1 = 0;
 775        s->lzma.rep2 = 0;
 776        s->lzma.rep3 = 0;
 777
 778        /*
 779         * All probabilities are initialized to the same value. This hack
 780         * makes the code smaller by avoiding a separate loop for each
 781         * probability array.
 782         *
 783         * This could be optimized so that only that part of literal
 784         * probabilities that are actually required. In the common case
 785         * we would write 12 KiB less.
 786         */
 787        probs = s->lzma.is_match[0];
 788        for (i = 0; i < PROBS_TOTAL; ++i)
 789                probs[i] = RC_BIT_MODEL_TOTAL / 2;
 790
 791        rc_reset(&s->rc);
 792}
 793
 794/*
 795 * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks
 796 * from the decoded lp and pb values. On success, the LZMA decoder state is
 797 * reset and true is returned.
 798 */
 799static bool lzma_props(struct xz_dec_lzma2 *s, uint8_t props)
 800{
 801        if (props > (4 * 5 + 4) * 9 + 8)
 802                return false;
 803
 804        s->lzma.pos_mask = 0;
 805        while (props >= 9 * 5) {
 806                props -= 9 * 5;
 807                ++s->lzma.pos_mask;
 808        }
 809
 810        s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1;
 811
 812        s->lzma.literal_pos_mask = 0;
 813        while (props >= 9) {
 814                props -= 9;
 815                ++s->lzma.literal_pos_mask;
 816        }
 817
 818        s->lzma.lc = props;
 819
 820        if (s->lzma.lc + s->lzma.literal_pos_mask > 4)
 821                return false;
 822
 823        s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1;
 824
 825        lzma_reset(s);
 826
 827        return true;
 828}
 829
 830/*********
 831 * LZMA2 *
 832 *********/
 833
 834/*
 835 * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't
 836 * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This
 837 * wrapper function takes care of making the LZMA decoder's assumption safe.
 838 *
 839 * As long as there is plenty of input left to be decoded in the current LZMA
 840 * chunk, we decode directly from the caller-supplied input buffer until
 841 * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into
 842 * s->temp.buf, which (hopefully) gets filled on the next call to this
 843 * function. We decode a few bytes from the temporary buffer so that we can
 844 * continue decoding from the caller-supplied input buffer again.
 845 */
 846static bool lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b)
 847{
 848        size_t in_avail;
 849        uint32_t tmp;
 850
 851        in_avail = b->in_size - b->in_pos;
 852        if (s->temp.size > 0 || s->lzma2.compressed == 0) {
 853                tmp = 2 * LZMA_IN_REQUIRED - s->temp.size;
 854                if (tmp > s->lzma2.compressed - s->temp.size)
 855                        tmp = s->lzma2.compressed - s->temp.size;
 856                if (tmp > in_avail)
 857                        tmp = in_avail;
 858
 859                memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp);
 860
 861                if (s->temp.size + tmp == s->lzma2.compressed) {
 862                        memzero(s->temp.buf + s->temp.size + tmp,
 863                                        sizeof(s->temp.buf)
 864                                                - s->temp.size - tmp);
 865                        s->rc.in_limit = s->temp.size + tmp;
 866                } else if (s->temp.size + tmp < LZMA_IN_REQUIRED) {
 867                        s->temp.size += tmp;
 868                        b->in_pos += tmp;
 869                        return true;
 870                } else {
 871                        s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED;
 872                }
 873
 874                s->rc.in = s->temp.buf;
 875                s->rc.in_pos = 0;
 876
 877                if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp)
 878                        return false;
 879
 880                s->lzma2.compressed -= s->rc.in_pos;
 881
 882                if (s->rc.in_pos < s->temp.size) {
 883                        s->temp.size -= s->rc.in_pos;
 884                        memmove(s->temp.buf, s->temp.buf + s->rc.in_pos,
 885                                        s->temp.size);
 886                        return true;
 887                }
 888
 889                b->in_pos += s->rc.in_pos - s->temp.size;
 890                s->temp.size = 0;
 891        }
 892
 893        in_avail = b->in_size - b->in_pos;
 894        if (in_avail >= LZMA_IN_REQUIRED) {
 895                s->rc.in = b->in;
 896                s->rc.in_pos = b->in_pos;
 897
 898                if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED)
 899                        s->rc.in_limit = b->in_pos + s->lzma2.compressed;
 900                else
 901                        s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED;
 902
 903                if (!lzma_main(s))
 904                        return false;
 905
 906                in_avail = s->rc.in_pos - b->in_pos;
 907                if (in_avail > s->lzma2.compressed)
 908                        return false;
 909
 910                s->lzma2.compressed -= in_avail;
 911                b->in_pos = s->rc.in_pos;
 912        }
 913
 914        in_avail = b->in_size - b->in_pos;
 915        if (in_avail < LZMA_IN_REQUIRED) {
 916                if (in_avail > s->lzma2.compressed)
 917                        in_avail = s->lzma2.compressed;
 918
 919                memcpy(s->temp.buf, b->in + b->in_pos, in_avail);
 920                s->temp.size = in_avail;
 921                b->in_pos += in_avail;
 922        }
 923
 924        return true;
 925}
 926
 927/*
 928 * Take care of the LZMA2 control layer, and forward the job of actual LZMA
 929 * decoding or copying of uncompressed chunks to other functions.
 930 */
 931XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s,
 932                                       struct xz_buf *b)
 933{
 934        uint32_t tmp;
 935
 936        while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) {
 937                switch (s->lzma2.sequence) {
 938                case SEQ_CONTROL:
 939                        /*
 940                         * LZMA2 control byte
 941                         *
 942                         * Exact values:
 943                         *   0x00   End marker
 944                         *   0x01   Dictionary reset followed by
 945                         *          an uncompressed chunk
 946                         *   0x02   Uncompressed chunk (no dictionary reset)
 947                         *
 948                         * Highest three bits (s->control & 0xE0):
 949                         *   0xE0   Dictionary reset, new properties and state
 950                         *          reset, followed by LZMA compressed chunk
 951                         *   0xC0   New properties and state reset, followed
 952                         *          by LZMA compressed chunk (no dictionary
 953                         *          reset)
 954                         *   0xA0   State reset using old properties,
 955                         *          followed by LZMA compressed chunk (no
 956                         *          dictionary reset)
 957                         *   0x80   LZMA chunk (no dictionary or state reset)
 958                         *
 959                         * For LZMA compressed chunks, the lowest five bits
 960                         * (s->control & 1F) are the highest bits of the
 961                         * uncompressed size (bits 16-20).
 962                         *
 963                         * A new LZMA2 stream must begin with a dictionary
 964                         * reset. The first LZMA chunk must set new
 965                         * properties and reset the LZMA state.
 966                         *
 967                         * Values that don't match anything described above
 968                         * are invalid and we return XZ_DATA_ERROR.
 969                         */
 970                        tmp = b->in[b->in_pos++];
 971
 972                        if (tmp == 0x00)
 973                                return XZ_STREAM_END;
 974
 975                        if (tmp >= 0xE0 || tmp == 0x01) {
 976                                s->lzma2.need_props = true;
 977                                s->lzma2.need_dict_reset = false;
 978                                dict_reset(&s->dict, b);
 979                        } else if (s->lzma2.need_dict_reset) {
 980                                return XZ_DATA_ERROR;
 981                        }
 982
 983                        if (tmp >= 0x80) {
 984                                s->lzma2.uncompressed = (tmp & 0x1F) << 16;
 985                                s->lzma2.sequence = SEQ_UNCOMPRESSED_1;
 986
 987                                if (tmp >= 0xC0) {
 988                                        /*
 989                                         * When there are new properties,
 990                                         * state reset is done at
 991                                         * SEQ_PROPERTIES.
 992                                         */
 993                                        s->lzma2.need_props = false;
 994                                        s->lzma2.next_sequence
 995                                                        = SEQ_PROPERTIES;
 996
 997                                } else if (s->lzma2.need_props) {
 998                                        return XZ_DATA_ERROR;
 999
1000                                } else {
1001                                        s->lzma2.next_sequence
1002                                                        = SEQ_LZMA_PREPARE;
1003                                        if (tmp >= 0xA0)
1004                                                lzma_reset(s);
1005                                }
1006                        } else {
1007                                if (tmp > 0x02)
1008                                        return XZ_DATA_ERROR;
1009
1010                                s->lzma2.sequence = SEQ_COMPRESSED_0;
1011                                s->lzma2.next_sequence = SEQ_COPY;
1012                        }
1013
1014                        break;
1015
1016                case SEQ_UNCOMPRESSED_1:
1017                        s->lzma2.uncompressed
1018                                        += (uint32_t)b->in[b->in_pos++] << 8;
1019                        s->lzma2.sequence = SEQ_UNCOMPRESSED_2;
1020                        break;
1021
1022                case SEQ_UNCOMPRESSED_2:
1023                        s->lzma2.uncompressed
1024                                        += (uint32_t)b->in[b->in_pos++] + 1;
1025                        s->lzma2.sequence = SEQ_COMPRESSED_0;
1026                        break;
1027
1028                case SEQ_COMPRESSED_0:
1029                        s->lzma2.compressed
1030                                        = (uint32_t)b->in[b->in_pos++] << 8;
1031                        s->lzma2.sequence = SEQ_COMPRESSED_1;
1032                        break;
1033
1034                case SEQ_COMPRESSED_1:
1035                        s->lzma2.compressed
1036                                        += (uint32_t)b->in[b->in_pos++] + 1;
1037                        s->lzma2.sequence = s->lzma2.next_sequence;
1038                        break;
1039
1040                case SEQ_PROPERTIES:
1041                        if (!lzma_props(s, b->in[b->in_pos++]))
1042                                return XZ_DATA_ERROR;
1043
1044                        s->lzma2.sequence = SEQ_LZMA_PREPARE;
1045
1046                /* Fall through */
1047
1048                case SEQ_LZMA_PREPARE:
1049                        if (s->lzma2.compressed < RC_INIT_BYTES)
1050                                return XZ_DATA_ERROR;
1051
1052                        if (!rc_read_init(&s->rc, b))
1053                                return XZ_OK;
1054
1055                        s->lzma2.compressed -= RC_INIT_BYTES;
1056                        s->lzma2.sequence = SEQ_LZMA_RUN;
1057
1058                /* Fall through */
1059
1060                case SEQ_LZMA_RUN:
1061                        /*
1062                         * Set dictionary limit to indicate how much we want
1063                         * to be encoded at maximum. Decode new data into the
1064                         * dictionary. Flush the new data from dictionary to
1065                         * b->out. Check if we finished decoding this chunk.
1066                         * In case the dictionary got full but we didn't fill
1067                         * the output buffer yet, we may run this loop
1068                         * multiple times without changing s->lzma2.sequence.
1069                         */
1070                        dict_limit(&s->dict, min_t(size_t,
1071                                        b->out_size - b->out_pos,
1072                                        s->lzma2.uncompressed));
1073                        if (!lzma2_lzma(s, b))
1074                                return XZ_DATA_ERROR;
1075
1076                        s->lzma2.uncompressed -= dict_flush(&s->dict, b);
1077
1078                        if (s->lzma2.uncompressed == 0) {
1079                                if (s->lzma2.compressed > 0 || s->lzma.len > 0
1080                                                || !rc_is_finished(&s->rc))
1081                                        return XZ_DATA_ERROR;
1082
1083                                rc_reset(&s->rc);
1084                                s->lzma2.sequence = SEQ_CONTROL;
1085
1086                        } else if (b->out_pos == b->out_size
1087                                        || (b->in_pos == b->in_size
1088                                                && s->temp.size
1089                                                < s->lzma2.compressed)) {
1090                                return XZ_OK;
1091                        }
1092
1093                        break;
1094
1095                case SEQ_COPY:
1096                        dict_uncompressed(&s->dict, b, &s->lzma2.compressed);
1097                        if (s->lzma2.compressed > 0)
1098                                return XZ_OK;
1099
1100                        s->lzma2.sequence = SEQ_CONTROL;
1101                        break;
1102                }
1103        }
1104
1105        return XZ_OK;
1106}
1107
1108XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode,
1109                                                   uint32_t dict_max)
1110{
1111        struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL);
1112        if (s == NULL)
1113                return NULL;
1114
1115        s->dict.mode = mode;
1116        s->dict.size_max = dict_max;
1117
1118        if (DEC_IS_PREALLOC(mode)) {
1119                s->dict.buf = vmalloc(dict_max);
1120                if (s->dict.buf == NULL) {
1121                        kfree(s);
1122                        return NULL;
1123                }
1124        } else if (DEC_IS_DYNALLOC(mode)) {
1125                s->dict.buf = NULL;
1126                s->dict.allocated = 0;
1127        }
1128
1129        return s;
1130}
1131
1132XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props)
1133{
1134        /* This limits dictionary size to 3 GiB to keep parsing simpler. */
1135        if (props > 39)
1136                return XZ_OPTIONS_ERROR;
1137
1138        s->dict.size = 2 + (props & 1);
1139        s->dict.size <<= (props >> 1) + 11;
1140
1141        if (DEC_IS_MULTI(s->dict.mode)) {
1142                if (s->dict.size > s->dict.size_max)
1143                        return XZ_MEMLIMIT_ERROR;
1144
1145                s->dict.end = s->dict.size;
1146
1147                if (DEC_IS_DYNALLOC(s->dict.mode)) {
1148                        if (s->dict.allocated < s->dict.size) {
1149                                vfree(s->dict.buf);
1150                                s->dict.buf = vmalloc(s->dict.size);
1151                                if (s->dict.buf == NULL) {
1152                                        s->dict.allocated = 0;
1153                                        return XZ_MEM_ERROR;
1154                                }
1155                        }
1156                }
1157        }
1158
1159        s->lzma.len = 0;
1160
1161        s->lzma2.sequence = SEQ_CONTROL;
1162        s->lzma2.need_dict_reset = true;
1163
1164        s->temp.size = 0;
1165
1166        return XZ_OK;
1167}
1168
1169XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s)
1170{
1171        if (DEC_IS_MULTI(s->dict.mode))
1172                vfree(s->dict.buf);
1173
1174        kfree(s);
1175}
1176