linux/mm/hmm.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright 2013 Red Hat Inc.
   4 *
   5 * Authors: Jérôme Glisse <jglisse@redhat.com>
   6 */
   7/*
   8 * Refer to include/linux/hmm.h for information about heterogeneous memory
   9 * management or HMM for short.
  10 */
  11#include <linux/mm.h>
  12#include <linux/hmm.h>
  13#include <linux/init.h>
  14#include <linux/rmap.h>
  15#include <linux/swap.h>
  16#include <linux/slab.h>
  17#include <linux/sched.h>
  18#include <linux/mmzone.h>
  19#include <linux/pagemap.h>
  20#include <linux/swapops.h>
  21#include <linux/hugetlb.h>
  22#include <linux/memremap.h>
  23#include <linux/sched/mm.h>
  24#include <linux/jump_label.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/mmu_notifier.h>
  27#include <linux/memory_hotplug.h>
  28
  29static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
  30
  31/**
  32 * hmm_get_or_create - register HMM against an mm (HMM internal)
  33 *
  34 * @mm: mm struct to attach to
  35 * Returns: returns an HMM object, either by referencing the existing
  36 *          (per-process) object, or by creating a new one.
  37 *
  38 * This is not intended to be used directly by device drivers. If mm already
  39 * has an HMM struct then it get a reference on it and returns it. Otherwise
  40 * it allocates an HMM struct, initializes it, associate it with the mm and
  41 * returns it.
  42 */
  43static struct hmm *hmm_get_or_create(struct mm_struct *mm)
  44{
  45        struct hmm *hmm;
  46
  47        lockdep_assert_held_write(&mm->mmap_sem);
  48
  49        /* Abuse the page_table_lock to also protect mm->hmm. */
  50        spin_lock(&mm->page_table_lock);
  51        hmm = mm->hmm;
  52        if (mm->hmm && kref_get_unless_zero(&mm->hmm->kref))
  53                goto out_unlock;
  54        spin_unlock(&mm->page_table_lock);
  55
  56        hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
  57        if (!hmm)
  58                return NULL;
  59        init_waitqueue_head(&hmm->wq);
  60        INIT_LIST_HEAD(&hmm->mirrors);
  61        init_rwsem(&hmm->mirrors_sem);
  62        hmm->mmu_notifier.ops = NULL;
  63        INIT_LIST_HEAD(&hmm->ranges);
  64        spin_lock_init(&hmm->ranges_lock);
  65        kref_init(&hmm->kref);
  66        hmm->notifiers = 0;
  67        hmm->mm = mm;
  68
  69        hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
  70        if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
  71                kfree(hmm);
  72                return NULL;
  73        }
  74
  75        mmgrab(hmm->mm);
  76
  77        /*
  78         * We hold the exclusive mmap_sem here so we know that mm->hmm is
  79         * still NULL or 0 kref, and is safe to update.
  80         */
  81        spin_lock(&mm->page_table_lock);
  82        mm->hmm = hmm;
  83
  84out_unlock:
  85        spin_unlock(&mm->page_table_lock);
  86        return hmm;
  87}
  88
  89static void hmm_free_rcu(struct rcu_head *rcu)
  90{
  91        struct hmm *hmm = container_of(rcu, struct hmm, rcu);
  92
  93        mmdrop(hmm->mm);
  94        kfree(hmm);
  95}
  96
  97static void hmm_free(struct kref *kref)
  98{
  99        struct hmm *hmm = container_of(kref, struct hmm, kref);
 100
 101        spin_lock(&hmm->mm->page_table_lock);
 102        if (hmm->mm->hmm == hmm)
 103                hmm->mm->hmm = NULL;
 104        spin_unlock(&hmm->mm->page_table_lock);
 105
 106        mmu_notifier_unregister_no_release(&hmm->mmu_notifier, hmm->mm);
 107        mmu_notifier_call_srcu(&hmm->rcu, hmm_free_rcu);
 108}
 109
 110static inline void hmm_put(struct hmm *hmm)
 111{
 112        kref_put(&hmm->kref, hmm_free);
 113}
 114
 115static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
 116{
 117        struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
 118        struct hmm_mirror *mirror;
 119
 120        /* Bail out if hmm is in the process of being freed */
 121        if (!kref_get_unless_zero(&hmm->kref))
 122                return;
 123
 124        /*
 125         * Since hmm_range_register() holds the mmget() lock hmm_release() is
 126         * prevented as long as a range exists.
 127         */
 128        WARN_ON(!list_empty_careful(&hmm->ranges));
 129
 130        down_read(&hmm->mirrors_sem);
 131        list_for_each_entry(mirror, &hmm->mirrors, list) {
 132                /*
 133                 * Note: The driver is not allowed to trigger
 134                 * hmm_mirror_unregister() from this thread.
 135                 */
 136                if (mirror->ops->release)
 137                        mirror->ops->release(mirror);
 138        }
 139        up_read(&hmm->mirrors_sem);
 140
 141        hmm_put(hmm);
 142}
 143
 144static void notifiers_decrement(struct hmm *hmm)
 145{
 146        unsigned long flags;
 147
 148        spin_lock_irqsave(&hmm->ranges_lock, flags);
 149        hmm->notifiers--;
 150        if (!hmm->notifiers) {
 151                struct hmm_range *range;
 152
 153                list_for_each_entry(range, &hmm->ranges, list) {
 154                        if (range->valid)
 155                                continue;
 156                        range->valid = true;
 157                }
 158                wake_up_all(&hmm->wq);
 159        }
 160        spin_unlock_irqrestore(&hmm->ranges_lock, flags);
 161}
 162
 163static int hmm_invalidate_range_start(struct mmu_notifier *mn,
 164                        const struct mmu_notifier_range *nrange)
 165{
 166        struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
 167        struct hmm_mirror *mirror;
 168        struct hmm_update update;
 169        struct hmm_range *range;
 170        unsigned long flags;
 171        int ret = 0;
 172
 173        if (!kref_get_unless_zero(&hmm->kref))
 174                return 0;
 175
 176        update.start = nrange->start;
 177        update.end = nrange->end;
 178        update.event = HMM_UPDATE_INVALIDATE;
 179        update.blockable = mmu_notifier_range_blockable(nrange);
 180
 181        spin_lock_irqsave(&hmm->ranges_lock, flags);
 182        hmm->notifiers++;
 183        list_for_each_entry(range, &hmm->ranges, list) {
 184                if (update.end < range->start || update.start >= range->end)
 185                        continue;
 186
 187                range->valid = false;
 188        }
 189        spin_unlock_irqrestore(&hmm->ranges_lock, flags);
 190
 191        if (mmu_notifier_range_blockable(nrange))
 192                down_read(&hmm->mirrors_sem);
 193        else if (!down_read_trylock(&hmm->mirrors_sem)) {
 194                ret = -EAGAIN;
 195                goto out;
 196        }
 197
 198        list_for_each_entry(mirror, &hmm->mirrors, list) {
 199                int rc;
 200
 201                rc = mirror->ops->sync_cpu_device_pagetables(mirror, &update);
 202                if (rc) {
 203                        if (WARN_ON(update.blockable || rc != -EAGAIN))
 204                                continue;
 205                        ret = -EAGAIN;
 206                        break;
 207                }
 208        }
 209        up_read(&hmm->mirrors_sem);
 210
 211out:
 212        if (ret)
 213                notifiers_decrement(hmm);
 214        hmm_put(hmm);
 215        return ret;
 216}
 217
 218static void hmm_invalidate_range_end(struct mmu_notifier *mn,
 219                        const struct mmu_notifier_range *nrange)
 220{
 221        struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
 222
 223        if (!kref_get_unless_zero(&hmm->kref))
 224                return;
 225
 226        notifiers_decrement(hmm);
 227        hmm_put(hmm);
 228}
 229
 230static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
 231        .release                = hmm_release,
 232        .invalidate_range_start = hmm_invalidate_range_start,
 233        .invalidate_range_end   = hmm_invalidate_range_end,
 234};
 235
 236/*
 237 * hmm_mirror_register() - register a mirror against an mm
 238 *
 239 * @mirror: new mirror struct to register
 240 * @mm: mm to register against
 241 * Return: 0 on success, -ENOMEM if no memory, -EINVAL if invalid arguments
 242 *
 243 * To start mirroring a process address space, the device driver must register
 244 * an HMM mirror struct.
 245 */
 246int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
 247{
 248        lockdep_assert_held_write(&mm->mmap_sem);
 249
 250        /* Sanity check */
 251        if (!mm || !mirror || !mirror->ops)
 252                return -EINVAL;
 253
 254        mirror->hmm = hmm_get_or_create(mm);
 255        if (!mirror->hmm)
 256                return -ENOMEM;
 257
 258        down_write(&mirror->hmm->mirrors_sem);
 259        list_add(&mirror->list, &mirror->hmm->mirrors);
 260        up_write(&mirror->hmm->mirrors_sem);
 261
 262        return 0;
 263}
 264EXPORT_SYMBOL(hmm_mirror_register);
 265
 266/*
 267 * hmm_mirror_unregister() - unregister a mirror
 268 *
 269 * @mirror: mirror struct to unregister
 270 *
 271 * Stop mirroring a process address space, and cleanup.
 272 */
 273void hmm_mirror_unregister(struct hmm_mirror *mirror)
 274{
 275        struct hmm *hmm = mirror->hmm;
 276
 277        down_write(&hmm->mirrors_sem);
 278        list_del(&mirror->list);
 279        up_write(&hmm->mirrors_sem);
 280        hmm_put(hmm);
 281}
 282EXPORT_SYMBOL(hmm_mirror_unregister);
 283
 284struct hmm_vma_walk {
 285        struct hmm_range        *range;
 286        struct dev_pagemap      *pgmap;
 287        unsigned long           last;
 288        bool                    fault;
 289        bool                    block;
 290};
 291
 292static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
 293                            bool write_fault, uint64_t *pfn)
 294{
 295        unsigned int flags = FAULT_FLAG_REMOTE;
 296        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 297        struct hmm_range *range = hmm_vma_walk->range;
 298        struct vm_area_struct *vma = walk->vma;
 299        vm_fault_t ret;
 300
 301        flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
 302        flags |= write_fault ? FAULT_FLAG_WRITE : 0;
 303        ret = handle_mm_fault(vma, addr, flags);
 304        if (ret & VM_FAULT_RETRY)
 305                return -EAGAIN;
 306        if (ret & VM_FAULT_ERROR) {
 307                *pfn = range->values[HMM_PFN_ERROR];
 308                return -EFAULT;
 309        }
 310
 311        return -EBUSY;
 312}
 313
 314static int hmm_pfns_bad(unsigned long addr,
 315                        unsigned long end,
 316                        struct mm_walk *walk)
 317{
 318        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 319        struct hmm_range *range = hmm_vma_walk->range;
 320        uint64_t *pfns = range->pfns;
 321        unsigned long i;
 322
 323        i = (addr - range->start) >> PAGE_SHIFT;
 324        for (; addr < end; addr += PAGE_SIZE, i++)
 325                pfns[i] = range->values[HMM_PFN_ERROR];
 326
 327        return 0;
 328}
 329
 330/*
 331 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
 332 * @start: range virtual start address (inclusive)
 333 * @end: range virtual end address (exclusive)
 334 * @fault: should we fault or not ?
 335 * @write_fault: write fault ?
 336 * @walk: mm_walk structure
 337 * Return: 0 on success, -EBUSY after page fault, or page fault error
 338 *
 339 * This function will be called whenever pmd_none() or pte_none() returns true,
 340 * or whenever there is no page directory covering the virtual address range.
 341 */
 342static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
 343                              bool fault, bool write_fault,
 344                              struct mm_walk *walk)
 345{
 346        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 347        struct hmm_range *range = hmm_vma_walk->range;
 348        uint64_t *pfns = range->pfns;
 349        unsigned long i, page_size;
 350
 351        hmm_vma_walk->last = addr;
 352        page_size = hmm_range_page_size(range);
 353        i = (addr - range->start) >> range->page_shift;
 354
 355        for (; addr < end; addr += page_size, i++) {
 356                pfns[i] = range->values[HMM_PFN_NONE];
 357                if (fault || write_fault) {
 358                        int ret;
 359
 360                        ret = hmm_vma_do_fault(walk, addr, write_fault,
 361                                               &pfns[i]);
 362                        if (ret != -EBUSY)
 363                                return ret;
 364                }
 365        }
 366
 367        return (fault || write_fault) ? -EBUSY : 0;
 368}
 369
 370static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
 371                                      uint64_t pfns, uint64_t cpu_flags,
 372                                      bool *fault, bool *write_fault)
 373{
 374        struct hmm_range *range = hmm_vma_walk->range;
 375
 376        if (!hmm_vma_walk->fault)
 377                return;
 378
 379        /*
 380         * So we not only consider the individual per page request we also
 381         * consider the default flags requested for the range. The API can
 382         * be use in 2 fashions. The first one where the HMM user coalesce
 383         * multiple page fault into one request and set flags per pfns for
 384         * of those faults. The second one where the HMM user want to pre-
 385         * fault a range with specific flags. For the latter one it is a
 386         * waste to have the user pre-fill the pfn arrays with a default
 387         * flags value.
 388         */
 389        pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
 390
 391        /* We aren't ask to do anything ... */
 392        if (!(pfns & range->flags[HMM_PFN_VALID]))
 393                return;
 394        /* If this is device memory than only fault if explicitly requested */
 395        if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
 396                /* Do we fault on device memory ? */
 397                if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
 398                        *write_fault = pfns & range->flags[HMM_PFN_WRITE];
 399                        *fault = true;
 400                }
 401                return;
 402        }
 403
 404        /* If CPU page table is not valid then we need to fault */
 405        *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
 406        /* Need to write fault ? */
 407        if ((pfns & range->flags[HMM_PFN_WRITE]) &&
 408            !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
 409                *write_fault = true;
 410                *fault = true;
 411        }
 412}
 413
 414static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
 415                                 const uint64_t *pfns, unsigned long npages,
 416                                 uint64_t cpu_flags, bool *fault,
 417                                 bool *write_fault)
 418{
 419        unsigned long i;
 420
 421        if (!hmm_vma_walk->fault) {
 422                *fault = *write_fault = false;
 423                return;
 424        }
 425
 426        *fault = *write_fault = false;
 427        for (i = 0; i < npages; ++i) {
 428                hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
 429                                   fault, write_fault);
 430                if ((*write_fault))
 431                        return;
 432        }
 433}
 434
 435static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
 436                             struct mm_walk *walk)
 437{
 438        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 439        struct hmm_range *range = hmm_vma_walk->range;
 440        bool fault, write_fault;
 441        unsigned long i, npages;
 442        uint64_t *pfns;
 443
 444        i = (addr - range->start) >> PAGE_SHIFT;
 445        npages = (end - addr) >> PAGE_SHIFT;
 446        pfns = &range->pfns[i];
 447        hmm_range_need_fault(hmm_vma_walk, pfns, npages,
 448                             0, &fault, &write_fault);
 449        return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
 450}
 451
 452static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
 453{
 454        if (pmd_protnone(pmd))
 455                return 0;
 456        return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
 457                                range->flags[HMM_PFN_WRITE] :
 458                                range->flags[HMM_PFN_VALID];
 459}
 460
 461static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
 462{
 463        if (!pud_present(pud))
 464                return 0;
 465        return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
 466                                range->flags[HMM_PFN_WRITE] :
 467                                range->flags[HMM_PFN_VALID];
 468}
 469
 470static int hmm_vma_handle_pmd(struct mm_walk *walk,
 471                              unsigned long addr,
 472                              unsigned long end,
 473                              uint64_t *pfns,
 474                              pmd_t pmd)
 475{
 476#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 477        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 478        struct hmm_range *range = hmm_vma_walk->range;
 479        unsigned long pfn, npages, i;
 480        bool fault, write_fault;
 481        uint64_t cpu_flags;
 482
 483        npages = (end - addr) >> PAGE_SHIFT;
 484        cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
 485        hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
 486                             &fault, &write_fault);
 487
 488        if (pmd_protnone(pmd) || fault || write_fault)
 489                return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
 490
 491        pfn = pmd_pfn(pmd) + pte_index(addr);
 492        for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
 493                if (pmd_devmap(pmd)) {
 494                        hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
 495                                              hmm_vma_walk->pgmap);
 496                        if (unlikely(!hmm_vma_walk->pgmap))
 497                                return -EBUSY;
 498                }
 499                pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
 500        }
 501        if (hmm_vma_walk->pgmap) {
 502                put_dev_pagemap(hmm_vma_walk->pgmap);
 503                hmm_vma_walk->pgmap = NULL;
 504        }
 505        hmm_vma_walk->last = end;
 506        return 0;
 507#else
 508        /* If THP is not enabled then we should never reach that code ! */
 509        return -EINVAL;
 510#endif
 511}
 512
 513static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
 514{
 515        if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
 516                return 0;
 517        return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
 518                                range->flags[HMM_PFN_WRITE] :
 519                                range->flags[HMM_PFN_VALID];
 520}
 521
 522static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
 523                              unsigned long end, pmd_t *pmdp, pte_t *ptep,
 524                              uint64_t *pfn)
 525{
 526        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 527        struct hmm_range *range = hmm_vma_walk->range;
 528        struct vm_area_struct *vma = walk->vma;
 529        bool fault, write_fault;
 530        uint64_t cpu_flags;
 531        pte_t pte = *ptep;
 532        uint64_t orig_pfn = *pfn;
 533
 534        *pfn = range->values[HMM_PFN_NONE];
 535        fault = write_fault = false;
 536
 537        if (pte_none(pte)) {
 538                hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
 539                                   &fault, &write_fault);
 540                if (fault || write_fault)
 541                        goto fault;
 542                return 0;
 543        }
 544
 545        if (!pte_present(pte)) {
 546                swp_entry_t entry = pte_to_swp_entry(pte);
 547
 548                if (!non_swap_entry(entry)) {
 549                        if (fault || write_fault)
 550                                goto fault;
 551                        return 0;
 552                }
 553
 554                /*
 555                 * This is a special swap entry, ignore migration, use
 556                 * device and report anything else as error.
 557                 */
 558                if (is_device_private_entry(entry)) {
 559                        cpu_flags = range->flags[HMM_PFN_VALID] |
 560                                range->flags[HMM_PFN_DEVICE_PRIVATE];
 561                        cpu_flags |= is_write_device_private_entry(entry) ?
 562                                range->flags[HMM_PFN_WRITE] : 0;
 563                        hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
 564                                           &fault, &write_fault);
 565                        if (fault || write_fault)
 566                                goto fault;
 567                        *pfn = hmm_device_entry_from_pfn(range,
 568                                            swp_offset(entry));
 569                        *pfn |= cpu_flags;
 570                        return 0;
 571                }
 572
 573                if (is_migration_entry(entry)) {
 574                        if (fault || write_fault) {
 575                                pte_unmap(ptep);
 576                                hmm_vma_walk->last = addr;
 577                                migration_entry_wait(vma->vm_mm,
 578                                                     pmdp, addr);
 579                                return -EBUSY;
 580                        }
 581                        return 0;
 582                }
 583
 584                /* Report error for everything else */
 585                *pfn = range->values[HMM_PFN_ERROR];
 586                return -EFAULT;
 587        } else {
 588                cpu_flags = pte_to_hmm_pfn_flags(range, pte);
 589                hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
 590                                   &fault, &write_fault);
 591        }
 592
 593        if (fault || write_fault)
 594                goto fault;
 595
 596        if (pte_devmap(pte)) {
 597                hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
 598                                              hmm_vma_walk->pgmap);
 599                if (unlikely(!hmm_vma_walk->pgmap))
 600                        return -EBUSY;
 601        } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) {
 602                *pfn = range->values[HMM_PFN_SPECIAL];
 603                return -EFAULT;
 604        }
 605
 606        *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
 607        return 0;
 608
 609fault:
 610        if (hmm_vma_walk->pgmap) {
 611                put_dev_pagemap(hmm_vma_walk->pgmap);
 612                hmm_vma_walk->pgmap = NULL;
 613        }
 614        pte_unmap(ptep);
 615        /* Fault any virtual address we were asked to fault */
 616        return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
 617}
 618
 619static int hmm_vma_walk_pmd(pmd_t *pmdp,
 620                            unsigned long start,
 621                            unsigned long end,
 622                            struct mm_walk *walk)
 623{
 624        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 625        struct hmm_range *range = hmm_vma_walk->range;
 626        struct vm_area_struct *vma = walk->vma;
 627        uint64_t *pfns = range->pfns;
 628        unsigned long addr = start, i;
 629        pte_t *ptep;
 630        pmd_t pmd;
 631
 632
 633again:
 634        pmd = READ_ONCE(*pmdp);
 635        if (pmd_none(pmd))
 636                return hmm_vma_walk_hole(start, end, walk);
 637
 638        if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
 639                return hmm_pfns_bad(start, end, walk);
 640
 641        if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
 642                bool fault, write_fault;
 643                unsigned long npages;
 644                uint64_t *pfns;
 645
 646                i = (addr - range->start) >> PAGE_SHIFT;
 647                npages = (end - addr) >> PAGE_SHIFT;
 648                pfns = &range->pfns[i];
 649
 650                hmm_range_need_fault(hmm_vma_walk, pfns, npages,
 651                                     0, &fault, &write_fault);
 652                if (fault || write_fault) {
 653                        hmm_vma_walk->last = addr;
 654                        pmd_migration_entry_wait(vma->vm_mm, pmdp);
 655                        return -EBUSY;
 656                }
 657                return 0;
 658        } else if (!pmd_present(pmd))
 659                return hmm_pfns_bad(start, end, walk);
 660
 661        if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
 662                /*
 663                 * No need to take pmd_lock here, even if some other threads
 664                 * is splitting the huge pmd we will get that event through
 665                 * mmu_notifier callback.
 666                 *
 667                 * So just read pmd value and check again its a transparent
 668                 * huge or device mapping one and compute corresponding pfn
 669                 * values.
 670                 */
 671                pmd = pmd_read_atomic(pmdp);
 672                barrier();
 673                if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
 674                        goto again;
 675
 676                i = (addr - range->start) >> PAGE_SHIFT;
 677                return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
 678        }
 679
 680        /*
 681         * We have handled all the valid case above ie either none, migration,
 682         * huge or transparent huge. At this point either it is a valid pmd
 683         * entry pointing to pte directory or it is a bad pmd that will not
 684         * recover.
 685         */
 686        if (pmd_bad(pmd))
 687                return hmm_pfns_bad(start, end, walk);
 688
 689        ptep = pte_offset_map(pmdp, addr);
 690        i = (addr - range->start) >> PAGE_SHIFT;
 691        for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
 692                int r;
 693
 694                r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
 695                if (r) {
 696                        /* hmm_vma_handle_pte() did unmap pte directory */
 697                        hmm_vma_walk->last = addr;
 698                        return r;
 699                }
 700        }
 701        if (hmm_vma_walk->pgmap) {
 702                /*
 703                 * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
 704                 * so that we can leverage get_dev_pagemap() optimization which
 705                 * will not re-take a reference on a pgmap if we already have
 706                 * one.
 707                 */
 708                put_dev_pagemap(hmm_vma_walk->pgmap);
 709                hmm_vma_walk->pgmap = NULL;
 710        }
 711        pte_unmap(ptep - 1);
 712
 713        hmm_vma_walk->last = addr;
 714        return 0;
 715}
 716
 717static int hmm_vma_walk_pud(pud_t *pudp,
 718                            unsigned long start,
 719                            unsigned long end,
 720                            struct mm_walk *walk)
 721{
 722        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 723        struct hmm_range *range = hmm_vma_walk->range;
 724        unsigned long addr = start, next;
 725        pmd_t *pmdp;
 726        pud_t pud;
 727        int ret;
 728
 729again:
 730        pud = READ_ONCE(*pudp);
 731        if (pud_none(pud))
 732                return hmm_vma_walk_hole(start, end, walk);
 733
 734        if (pud_huge(pud) && pud_devmap(pud)) {
 735                unsigned long i, npages, pfn;
 736                uint64_t *pfns, cpu_flags;
 737                bool fault, write_fault;
 738
 739                if (!pud_present(pud))
 740                        return hmm_vma_walk_hole(start, end, walk);
 741
 742                i = (addr - range->start) >> PAGE_SHIFT;
 743                npages = (end - addr) >> PAGE_SHIFT;
 744                pfns = &range->pfns[i];
 745
 746                cpu_flags = pud_to_hmm_pfn_flags(range, pud);
 747                hmm_range_need_fault(hmm_vma_walk, pfns, npages,
 748                                     cpu_flags, &fault, &write_fault);
 749                if (fault || write_fault)
 750                        return hmm_vma_walk_hole_(addr, end, fault,
 751                                                write_fault, walk);
 752
 753                pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
 754                for (i = 0; i < npages; ++i, ++pfn) {
 755                        hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
 756                                              hmm_vma_walk->pgmap);
 757                        if (unlikely(!hmm_vma_walk->pgmap))
 758                                return -EBUSY;
 759                        pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
 760                                  cpu_flags;
 761                }
 762                if (hmm_vma_walk->pgmap) {
 763                        put_dev_pagemap(hmm_vma_walk->pgmap);
 764                        hmm_vma_walk->pgmap = NULL;
 765                }
 766                hmm_vma_walk->last = end;
 767                return 0;
 768        }
 769
 770        split_huge_pud(walk->vma, pudp, addr);
 771        if (pud_none(*pudp))
 772                goto again;
 773
 774        pmdp = pmd_offset(pudp, addr);
 775        do {
 776                next = pmd_addr_end(addr, end);
 777                ret = hmm_vma_walk_pmd(pmdp, addr, next, walk);
 778                if (ret)
 779                        return ret;
 780        } while (pmdp++, addr = next, addr != end);
 781
 782        return 0;
 783}
 784
 785static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
 786                                      unsigned long start, unsigned long end,
 787                                      struct mm_walk *walk)
 788{
 789#ifdef CONFIG_HUGETLB_PAGE
 790        unsigned long addr = start, i, pfn, mask, size, pfn_inc;
 791        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 792        struct hmm_range *range = hmm_vma_walk->range;
 793        struct vm_area_struct *vma = walk->vma;
 794        struct hstate *h = hstate_vma(vma);
 795        uint64_t orig_pfn, cpu_flags;
 796        bool fault, write_fault;
 797        spinlock_t *ptl;
 798        pte_t entry;
 799        int ret = 0;
 800
 801        size = 1UL << huge_page_shift(h);
 802        mask = size - 1;
 803        if (range->page_shift != PAGE_SHIFT) {
 804                /* Make sure we are looking at full page. */
 805                if (start & mask)
 806                        return -EINVAL;
 807                if (end < (start + size))
 808                        return -EINVAL;
 809                pfn_inc = size >> PAGE_SHIFT;
 810        } else {
 811                pfn_inc = 1;
 812                size = PAGE_SIZE;
 813        }
 814
 815
 816        ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
 817        entry = huge_ptep_get(pte);
 818
 819        i = (start - range->start) >> range->page_shift;
 820        orig_pfn = range->pfns[i];
 821        range->pfns[i] = range->values[HMM_PFN_NONE];
 822        cpu_flags = pte_to_hmm_pfn_flags(range, entry);
 823        fault = write_fault = false;
 824        hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
 825                           &fault, &write_fault);
 826        if (fault || write_fault) {
 827                ret = -ENOENT;
 828                goto unlock;
 829        }
 830
 831        pfn = pte_pfn(entry) + ((start & mask) >> range->page_shift);
 832        for (; addr < end; addr += size, i++, pfn += pfn_inc)
 833                range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
 834                                 cpu_flags;
 835        hmm_vma_walk->last = end;
 836
 837unlock:
 838        spin_unlock(ptl);
 839
 840        if (ret == -ENOENT)
 841                return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
 842
 843        return ret;
 844#else /* CONFIG_HUGETLB_PAGE */
 845        return -EINVAL;
 846#endif
 847}
 848
 849static void hmm_pfns_clear(struct hmm_range *range,
 850                           uint64_t *pfns,
 851                           unsigned long addr,
 852                           unsigned long end)
 853{
 854        for (; addr < end; addr += PAGE_SIZE, pfns++)
 855                *pfns = range->values[HMM_PFN_NONE];
 856}
 857
 858/*
 859 * hmm_range_register() - start tracking change to CPU page table over a range
 860 * @range: range
 861 * @mm: the mm struct for the range of virtual address
 862 * @start: start virtual address (inclusive)
 863 * @end: end virtual address (exclusive)
 864 * @page_shift: expect page shift for the range
 865 * Returns 0 on success, -EFAULT if the address space is no longer valid
 866 *
 867 * Track updates to the CPU page table see include/linux/hmm.h
 868 */
 869int hmm_range_register(struct hmm_range *range,
 870                       struct hmm_mirror *mirror,
 871                       unsigned long start,
 872                       unsigned long end,
 873                       unsigned page_shift)
 874{
 875        unsigned long mask = ((1UL << page_shift) - 1UL);
 876        struct hmm *hmm = mirror->hmm;
 877        unsigned long flags;
 878
 879        range->valid = false;
 880        range->hmm = NULL;
 881
 882        if ((start & mask) || (end & mask))
 883                return -EINVAL;
 884        if (start >= end)
 885                return -EINVAL;
 886
 887        range->page_shift = page_shift;
 888        range->start = start;
 889        range->end = end;
 890
 891        /* Prevent hmm_release() from running while the range is valid */
 892        if (!mmget_not_zero(hmm->mm))
 893                return -EFAULT;
 894
 895        /* Initialize range to track CPU page table updates. */
 896        spin_lock_irqsave(&hmm->ranges_lock, flags);
 897
 898        range->hmm = hmm;
 899        kref_get(&hmm->kref);
 900        list_add(&range->list, &hmm->ranges);
 901
 902        /*
 903         * If there are any concurrent notifiers we have to wait for them for
 904         * the range to be valid (see hmm_range_wait_until_valid()).
 905         */
 906        if (!hmm->notifiers)
 907                range->valid = true;
 908        spin_unlock_irqrestore(&hmm->ranges_lock, flags);
 909
 910        return 0;
 911}
 912EXPORT_SYMBOL(hmm_range_register);
 913
 914/*
 915 * hmm_range_unregister() - stop tracking change to CPU page table over a range
 916 * @range: range
 917 *
 918 * Range struct is used to track updates to the CPU page table after a call to
 919 * hmm_range_register(). See include/linux/hmm.h for how to use it.
 920 */
 921void hmm_range_unregister(struct hmm_range *range)
 922{
 923        struct hmm *hmm = range->hmm;
 924        unsigned long flags;
 925
 926        spin_lock_irqsave(&hmm->ranges_lock, flags);
 927        list_del_init(&range->list);
 928        spin_unlock_irqrestore(&hmm->ranges_lock, flags);
 929
 930        /* Drop reference taken by hmm_range_register() */
 931        mmput(hmm->mm);
 932        hmm_put(hmm);
 933
 934        /*
 935         * The range is now invalid and the ref on the hmm is dropped, so
 936         * poison the pointer.  Leave other fields in place, for the caller's
 937         * use.
 938         */
 939        range->valid = false;
 940        memset(&range->hmm, POISON_INUSE, sizeof(range->hmm));
 941}
 942EXPORT_SYMBOL(hmm_range_unregister);
 943
 944/*
 945 * hmm_range_snapshot() - snapshot CPU page table for a range
 946 * @range: range
 947 * Return: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
 948 *          permission (for instance asking for write and range is read only),
 949 *          -EBUSY if you need to retry, -EFAULT invalid (ie either no valid
 950 *          vma or it is illegal to access that range), number of valid pages
 951 *          in range->pfns[] (from range start address).
 952 *
 953 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
 954 * validity is tracked by range struct. See in include/linux/hmm.h for example
 955 * on how to use.
 956 */
 957long hmm_range_snapshot(struct hmm_range *range)
 958{
 959        const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
 960        unsigned long start = range->start, end;
 961        struct hmm_vma_walk hmm_vma_walk;
 962        struct hmm *hmm = range->hmm;
 963        struct vm_area_struct *vma;
 964        struct mm_walk mm_walk;
 965
 966        lockdep_assert_held(&hmm->mm->mmap_sem);
 967        do {
 968                /* If range is no longer valid force retry. */
 969                if (!range->valid)
 970                        return -EBUSY;
 971
 972                vma = find_vma(hmm->mm, start);
 973                if (vma == NULL || (vma->vm_flags & device_vma))
 974                        return -EFAULT;
 975
 976                if (is_vm_hugetlb_page(vma)) {
 977                        if (huge_page_shift(hstate_vma(vma)) !=
 978                                    range->page_shift &&
 979                            range->page_shift != PAGE_SHIFT)
 980                                return -EINVAL;
 981                } else {
 982                        if (range->page_shift != PAGE_SHIFT)
 983                                return -EINVAL;
 984                }
 985
 986                if (!(vma->vm_flags & VM_READ)) {
 987                        /*
 988                         * If vma do not allow read access, then assume that it
 989                         * does not allow write access, either. HMM does not
 990                         * support architecture that allow write without read.
 991                         */
 992                        hmm_pfns_clear(range, range->pfns,
 993                                range->start, range->end);
 994                        return -EPERM;
 995                }
 996
 997                range->vma = vma;
 998                hmm_vma_walk.pgmap = NULL;
 999                hmm_vma_walk.last = start;
1000                hmm_vma_walk.fault = false;
1001                hmm_vma_walk.range = range;
1002                mm_walk.private = &hmm_vma_walk;
1003                end = min(range->end, vma->vm_end);
1004
1005                mm_walk.vma = vma;
1006                mm_walk.mm = vma->vm_mm;
1007                mm_walk.pte_entry = NULL;
1008                mm_walk.test_walk = NULL;
1009                mm_walk.hugetlb_entry = NULL;
1010                mm_walk.pud_entry = hmm_vma_walk_pud;
1011                mm_walk.pmd_entry = hmm_vma_walk_pmd;
1012                mm_walk.pte_hole = hmm_vma_walk_hole;
1013                mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1014
1015                walk_page_range(start, end, &mm_walk);
1016                start = end;
1017        } while (start < range->end);
1018
1019        return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1020}
1021EXPORT_SYMBOL(hmm_range_snapshot);
1022
1023/*
1024 * hmm_range_fault() - try to fault some address in a virtual address range
1025 * @range: range being faulted
1026 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
1027 * Return: number of valid pages in range->pfns[] (from range start
1028 *          address). This may be zero. If the return value is negative,
1029 *          then one of the following values may be returned:
1030 *
1031 *           -EINVAL  invalid arguments or mm or virtual address are in an
1032 *                    invalid vma (for instance device file vma).
1033 *           -ENOMEM: Out of memory.
1034 *           -EPERM:  Invalid permission (for instance asking for write and
1035 *                    range is read only).
1036 *           -EAGAIN: If you need to retry and mmap_sem was drop. This can only
1037 *                    happens if block argument is false.
1038 *           -EBUSY:  If the the range is being invalidated and you should wait
1039 *                    for invalidation to finish.
1040 *           -EFAULT: Invalid (ie either no valid vma or it is illegal to access
1041 *                    that range), number of valid pages in range->pfns[] (from
1042 *                    range start address).
1043 *
1044 * This is similar to a regular CPU page fault except that it will not trigger
1045 * any memory migration if the memory being faulted is not accessible by CPUs
1046 * and caller does not ask for migration.
1047 *
1048 * On error, for one virtual address in the range, the function will mark the
1049 * corresponding HMM pfn entry with an error flag.
1050 */
1051long hmm_range_fault(struct hmm_range *range, bool block)
1052{
1053        const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
1054        unsigned long start = range->start, end;
1055        struct hmm_vma_walk hmm_vma_walk;
1056        struct hmm *hmm = range->hmm;
1057        struct vm_area_struct *vma;
1058        struct mm_walk mm_walk;
1059        int ret;
1060
1061        lockdep_assert_held(&hmm->mm->mmap_sem);
1062
1063        do {
1064                /* If range is no longer valid force retry. */
1065                if (!range->valid)
1066                        return -EBUSY;
1067
1068                vma = find_vma(hmm->mm, start);
1069                if (vma == NULL || (vma->vm_flags & device_vma))
1070                        return -EFAULT;
1071
1072                if (is_vm_hugetlb_page(vma)) {
1073                        if (huge_page_shift(hstate_vma(vma)) !=
1074                            range->page_shift &&
1075                            range->page_shift != PAGE_SHIFT)
1076                                return -EINVAL;
1077                } else {
1078                        if (range->page_shift != PAGE_SHIFT)
1079                                return -EINVAL;
1080                }
1081
1082                if (!(vma->vm_flags & VM_READ)) {
1083                        /*
1084                         * If vma do not allow read access, then assume that it
1085                         * does not allow write access, either. HMM does not
1086                         * support architecture that allow write without read.
1087                         */
1088                        hmm_pfns_clear(range, range->pfns,
1089                                range->start, range->end);
1090                        return -EPERM;
1091                }
1092
1093                range->vma = vma;
1094                hmm_vma_walk.pgmap = NULL;
1095                hmm_vma_walk.last = start;
1096                hmm_vma_walk.fault = true;
1097                hmm_vma_walk.block = block;
1098                hmm_vma_walk.range = range;
1099                mm_walk.private = &hmm_vma_walk;
1100                end = min(range->end, vma->vm_end);
1101
1102                mm_walk.vma = vma;
1103                mm_walk.mm = vma->vm_mm;
1104                mm_walk.pte_entry = NULL;
1105                mm_walk.test_walk = NULL;
1106                mm_walk.hugetlb_entry = NULL;
1107                mm_walk.pud_entry = hmm_vma_walk_pud;
1108                mm_walk.pmd_entry = hmm_vma_walk_pmd;
1109                mm_walk.pte_hole = hmm_vma_walk_hole;
1110                mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
1111
1112                do {
1113                        ret = walk_page_range(start, end, &mm_walk);
1114                        start = hmm_vma_walk.last;
1115
1116                        /* Keep trying while the range is valid. */
1117                } while (ret == -EBUSY && range->valid);
1118
1119                if (ret) {
1120                        unsigned long i;
1121
1122                        i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1123                        hmm_pfns_clear(range, &range->pfns[i],
1124                                hmm_vma_walk.last, range->end);
1125                        return ret;
1126                }
1127                start = end;
1128
1129        } while (start < range->end);
1130
1131        return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1132}
1133EXPORT_SYMBOL(hmm_range_fault);
1134
1135/**
1136 * hmm_range_dma_map() - hmm_range_fault() and dma map page all in one.
1137 * @range: range being faulted
1138 * @device: device against to dma map page to
1139 * @daddrs: dma address of mapped pages
1140 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
1141 * Return: number of pages mapped on success, -EAGAIN if mmap_sem have been
1142 *          drop and you need to try again, some other error value otherwise
1143 *
1144 * Note same usage pattern as hmm_range_fault().
1145 */
1146long hmm_range_dma_map(struct hmm_range *range,
1147                       struct device *device,
1148                       dma_addr_t *daddrs,
1149                       bool block)
1150{
1151        unsigned long i, npages, mapped;
1152        long ret;
1153
1154        ret = hmm_range_fault(range, block);
1155        if (ret <= 0)
1156                return ret ? ret : -EBUSY;
1157
1158        npages = (range->end - range->start) >> PAGE_SHIFT;
1159        for (i = 0, mapped = 0; i < npages; ++i) {
1160                enum dma_data_direction dir = DMA_TO_DEVICE;
1161                struct page *page;
1162
1163                /*
1164                 * FIXME need to update DMA API to provide invalid DMA address
1165                 * value instead of a function to test dma address value. This
1166                 * would remove lot of dumb code duplicated accross many arch.
1167                 *
1168                 * For now setting it to 0 here is good enough as the pfns[]
1169                 * value is what is use to check what is valid and what isn't.
1170                 */
1171                daddrs[i] = 0;
1172
1173                page = hmm_device_entry_to_page(range, range->pfns[i]);
1174                if (page == NULL)
1175                        continue;
1176
1177                /* Check if range is being invalidated */
1178                if (!range->valid) {
1179                        ret = -EBUSY;
1180                        goto unmap;
1181                }
1182
1183                /* If it is read and write than map bi-directional. */
1184                if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1185                        dir = DMA_BIDIRECTIONAL;
1186
1187                daddrs[i] = dma_map_page(device, page, 0, PAGE_SIZE, dir);
1188                if (dma_mapping_error(device, daddrs[i])) {
1189                        ret = -EFAULT;
1190                        goto unmap;
1191                }
1192
1193                mapped++;
1194        }
1195
1196        return mapped;
1197
1198unmap:
1199        for (npages = i, i = 0; (i < npages) && mapped; ++i) {
1200                enum dma_data_direction dir = DMA_TO_DEVICE;
1201                struct page *page;
1202
1203                page = hmm_device_entry_to_page(range, range->pfns[i]);
1204                if (page == NULL)
1205                        continue;
1206
1207                if (dma_mapping_error(device, daddrs[i]))
1208                        continue;
1209
1210                /* If it is read and write than map bi-directional. */
1211                if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1212                        dir = DMA_BIDIRECTIONAL;
1213
1214                dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1215                mapped--;
1216        }
1217
1218        return ret;
1219}
1220EXPORT_SYMBOL(hmm_range_dma_map);
1221
1222/**
1223 * hmm_range_dma_unmap() - unmap range of that was map with hmm_range_dma_map()
1224 * @range: range being unmapped
1225 * @vma: the vma against which the range (optional)
1226 * @device: device against which dma map was done
1227 * @daddrs: dma address of mapped pages
1228 * @dirty: dirty page if it had the write flag set
1229 * Return: number of page unmapped on success, -EINVAL otherwise
1230 *
1231 * Note that caller MUST abide by mmu notifier or use HMM mirror and abide
1232 * to the sync_cpu_device_pagetables() callback so that it is safe here to
1233 * call set_page_dirty(). Caller must also take appropriate locks to avoid
1234 * concurrent mmu notifier or sync_cpu_device_pagetables() to make progress.
1235 */
1236long hmm_range_dma_unmap(struct hmm_range *range,
1237                         struct vm_area_struct *vma,
1238                         struct device *device,
1239                         dma_addr_t *daddrs,
1240                         bool dirty)
1241{
1242        unsigned long i, npages;
1243        long cpages = 0;
1244
1245        /* Sanity check. */
1246        if (range->end <= range->start)
1247                return -EINVAL;
1248        if (!daddrs)
1249                return -EINVAL;
1250        if (!range->pfns)
1251                return -EINVAL;
1252
1253        npages = (range->end - range->start) >> PAGE_SHIFT;
1254        for (i = 0; i < npages; ++i) {
1255                enum dma_data_direction dir = DMA_TO_DEVICE;
1256                struct page *page;
1257
1258                page = hmm_device_entry_to_page(range, range->pfns[i]);
1259                if (page == NULL)
1260                        continue;
1261
1262                /* If it is read and write than map bi-directional. */
1263                if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) {
1264                        dir = DMA_BIDIRECTIONAL;
1265
1266                        /*
1267                         * See comments in function description on why it is
1268                         * safe here to call set_page_dirty()
1269                         */
1270                        if (dirty)
1271                                set_page_dirty(page);
1272                }
1273
1274                /* Unmap and clear pfns/dma address */
1275                dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1276                range->pfns[i] = range->values[HMM_PFN_NONE];
1277                /* FIXME see comments in hmm_vma_dma_map() */
1278                daddrs[i] = 0;
1279                cpages++;
1280        }
1281
1282        return cpages;
1283}
1284EXPORT_SYMBOL(hmm_range_dma_unmap);
1285