linux/mm/huge_memory.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 2009  Red Hat, Inc.
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/sched/coredump.h>
  11#include <linux/sched/numa_balancing.h>
  12#include <linux/highmem.h>
  13#include <linux/hugetlb.h>
  14#include <linux/mmu_notifier.h>
  15#include <linux/rmap.h>
  16#include <linux/swap.h>
  17#include <linux/shrinker.h>
  18#include <linux/mm_inline.h>
  19#include <linux/swapops.h>
  20#include <linux/dax.h>
  21#include <linux/khugepaged.h>
  22#include <linux/freezer.h>
  23#include <linux/pfn_t.h>
  24#include <linux/mman.h>
  25#include <linux/memremap.h>
  26#include <linux/pagemap.h>
  27#include <linux/debugfs.h>
  28#include <linux/migrate.h>
  29#include <linux/hashtable.h>
  30#include <linux/userfaultfd_k.h>
  31#include <linux/page_idle.h>
  32#include <linux/shmem_fs.h>
  33#include <linux/oom.h>
  34#include <linux/numa.h>
  35#include <linux/page_owner.h>
  36
  37#include <asm/tlb.h>
  38#include <asm/pgalloc.h>
  39#include "internal.h"
  40
  41/*
  42 * By default, transparent hugepage support is disabled in order to avoid
  43 * risking an increased memory footprint for applications that are not
  44 * guaranteed to benefit from it. When transparent hugepage support is
  45 * enabled, it is for all mappings, and khugepaged scans all mappings.
  46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  47 * for all hugepage allocations.
  48 */
  49unsigned long transparent_hugepage_flags __read_mostly =
  50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  51        (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  52#endif
  53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  54        (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  55#endif
  56        (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  57        (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  58        (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  59
  60static struct shrinker deferred_split_shrinker;
  61
  62static atomic_t huge_zero_refcount;
  63struct page *huge_zero_page __read_mostly;
  64
  65bool transparent_hugepage_enabled(struct vm_area_struct *vma)
  66{
  67        /* The addr is used to check if the vma size fits */
  68        unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
  69
  70        if (!transhuge_vma_suitable(vma, addr))
  71                return false;
  72        if (vma_is_anonymous(vma))
  73                return __transparent_hugepage_enabled(vma);
  74        if (vma_is_shmem(vma))
  75                return shmem_huge_enabled(vma);
  76
  77        return false;
  78}
  79
  80static struct page *get_huge_zero_page(void)
  81{
  82        struct page *zero_page;
  83retry:
  84        if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  85                return READ_ONCE(huge_zero_page);
  86
  87        zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  88                        HPAGE_PMD_ORDER);
  89        if (!zero_page) {
  90                count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  91                return NULL;
  92        }
  93        count_vm_event(THP_ZERO_PAGE_ALLOC);
  94        preempt_disable();
  95        if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  96                preempt_enable();
  97                __free_pages(zero_page, compound_order(zero_page));
  98                goto retry;
  99        }
 100
 101        /* We take additional reference here. It will be put back by shrinker */
 102        atomic_set(&huge_zero_refcount, 2);
 103        preempt_enable();
 104        return READ_ONCE(huge_zero_page);
 105}
 106
 107static void put_huge_zero_page(void)
 108{
 109        /*
 110         * Counter should never go to zero here. Only shrinker can put
 111         * last reference.
 112         */
 113        BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 114}
 115
 116struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 117{
 118        if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 119                return READ_ONCE(huge_zero_page);
 120
 121        if (!get_huge_zero_page())
 122                return NULL;
 123
 124        if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 125                put_huge_zero_page();
 126
 127        return READ_ONCE(huge_zero_page);
 128}
 129
 130void mm_put_huge_zero_page(struct mm_struct *mm)
 131{
 132        if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 133                put_huge_zero_page();
 134}
 135
 136static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 137                                        struct shrink_control *sc)
 138{
 139        /* we can free zero page only if last reference remains */
 140        return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 141}
 142
 143static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 144                                       struct shrink_control *sc)
 145{
 146        if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 147                struct page *zero_page = xchg(&huge_zero_page, NULL);
 148                BUG_ON(zero_page == NULL);
 149                __free_pages(zero_page, compound_order(zero_page));
 150                return HPAGE_PMD_NR;
 151        }
 152
 153        return 0;
 154}
 155
 156static struct shrinker huge_zero_page_shrinker = {
 157        .count_objects = shrink_huge_zero_page_count,
 158        .scan_objects = shrink_huge_zero_page_scan,
 159        .seeks = DEFAULT_SEEKS,
 160};
 161
 162#ifdef CONFIG_SYSFS
 163static ssize_t enabled_show(struct kobject *kobj,
 164                            struct kobj_attribute *attr, char *buf)
 165{
 166        if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 167                return sprintf(buf, "[always] madvise never\n");
 168        else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 169                return sprintf(buf, "always [madvise] never\n");
 170        else
 171                return sprintf(buf, "always madvise [never]\n");
 172}
 173
 174static ssize_t enabled_store(struct kobject *kobj,
 175                             struct kobj_attribute *attr,
 176                             const char *buf, size_t count)
 177{
 178        ssize_t ret = count;
 179
 180        if (!memcmp("always", buf,
 181                    min(sizeof("always")-1, count))) {
 182                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 183                set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 184        } else if (!memcmp("madvise", buf,
 185                           min(sizeof("madvise")-1, count))) {
 186                clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 187                set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 188        } else if (!memcmp("never", buf,
 189                           min(sizeof("never")-1, count))) {
 190                clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 191                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 192        } else
 193                ret = -EINVAL;
 194
 195        if (ret > 0) {
 196                int err = start_stop_khugepaged();
 197                if (err)
 198                        ret = err;
 199        }
 200        return ret;
 201}
 202static struct kobj_attribute enabled_attr =
 203        __ATTR(enabled, 0644, enabled_show, enabled_store);
 204
 205ssize_t single_hugepage_flag_show(struct kobject *kobj,
 206                                struct kobj_attribute *attr, char *buf,
 207                                enum transparent_hugepage_flag flag)
 208{
 209        return sprintf(buf, "%d\n",
 210                       !!test_bit(flag, &transparent_hugepage_flags));
 211}
 212
 213ssize_t single_hugepage_flag_store(struct kobject *kobj,
 214                                 struct kobj_attribute *attr,
 215                                 const char *buf, size_t count,
 216                                 enum transparent_hugepage_flag flag)
 217{
 218        unsigned long value;
 219        int ret;
 220
 221        ret = kstrtoul(buf, 10, &value);
 222        if (ret < 0)
 223                return ret;
 224        if (value > 1)
 225                return -EINVAL;
 226
 227        if (value)
 228                set_bit(flag, &transparent_hugepage_flags);
 229        else
 230                clear_bit(flag, &transparent_hugepage_flags);
 231
 232        return count;
 233}
 234
 235static ssize_t defrag_show(struct kobject *kobj,
 236                           struct kobj_attribute *attr, char *buf)
 237{
 238        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 239                return sprintf(buf, "[always] defer defer+madvise madvise never\n");
 240        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 241                return sprintf(buf, "always [defer] defer+madvise madvise never\n");
 242        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 243                return sprintf(buf, "always defer [defer+madvise] madvise never\n");
 244        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 245                return sprintf(buf, "always defer defer+madvise [madvise] never\n");
 246        return sprintf(buf, "always defer defer+madvise madvise [never]\n");
 247}
 248
 249static ssize_t defrag_store(struct kobject *kobj,
 250                            struct kobj_attribute *attr,
 251                            const char *buf, size_t count)
 252{
 253        if (!memcmp("always", buf,
 254                    min(sizeof("always")-1, count))) {
 255                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 256                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 257                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 258                set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 259        } else if (!memcmp("defer+madvise", buf,
 260                    min(sizeof("defer+madvise")-1, count))) {
 261                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 262                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 263                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 264                set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 265        } else if (!memcmp("defer", buf,
 266                    min(sizeof("defer")-1, count))) {
 267                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 268                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 269                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 270                set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 271        } else if (!memcmp("madvise", buf,
 272                           min(sizeof("madvise")-1, count))) {
 273                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 274                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 275                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 276                set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 277        } else if (!memcmp("never", buf,
 278                           min(sizeof("never")-1, count))) {
 279                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 280                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 281                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 282                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 283        } else
 284                return -EINVAL;
 285
 286        return count;
 287}
 288static struct kobj_attribute defrag_attr =
 289        __ATTR(defrag, 0644, defrag_show, defrag_store);
 290
 291static ssize_t use_zero_page_show(struct kobject *kobj,
 292                struct kobj_attribute *attr, char *buf)
 293{
 294        return single_hugepage_flag_show(kobj, attr, buf,
 295                                TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 296}
 297static ssize_t use_zero_page_store(struct kobject *kobj,
 298                struct kobj_attribute *attr, const char *buf, size_t count)
 299{
 300        return single_hugepage_flag_store(kobj, attr, buf, count,
 301                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 302}
 303static struct kobj_attribute use_zero_page_attr =
 304        __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 305
 306static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 307                struct kobj_attribute *attr, char *buf)
 308{
 309        return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
 310}
 311static struct kobj_attribute hpage_pmd_size_attr =
 312        __ATTR_RO(hpage_pmd_size);
 313
 314#ifdef CONFIG_DEBUG_VM
 315static ssize_t debug_cow_show(struct kobject *kobj,
 316                                struct kobj_attribute *attr, char *buf)
 317{
 318        return single_hugepage_flag_show(kobj, attr, buf,
 319                                TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 320}
 321static ssize_t debug_cow_store(struct kobject *kobj,
 322                               struct kobj_attribute *attr,
 323                               const char *buf, size_t count)
 324{
 325        return single_hugepage_flag_store(kobj, attr, buf, count,
 326                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 327}
 328static struct kobj_attribute debug_cow_attr =
 329        __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 330#endif /* CONFIG_DEBUG_VM */
 331
 332static struct attribute *hugepage_attr[] = {
 333        &enabled_attr.attr,
 334        &defrag_attr.attr,
 335        &use_zero_page_attr.attr,
 336        &hpage_pmd_size_attr.attr,
 337#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
 338        &shmem_enabled_attr.attr,
 339#endif
 340#ifdef CONFIG_DEBUG_VM
 341        &debug_cow_attr.attr,
 342#endif
 343        NULL,
 344};
 345
 346static const struct attribute_group hugepage_attr_group = {
 347        .attrs = hugepage_attr,
 348};
 349
 350static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 351{
 352        int err;
 353
 354        *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 355        if (unlikely(!*hugepage_kobj)) {
 356                pr_err("failed to create transparent hugepage kobject\n");
 357                return -ENOMEM;
 358        }
 359
 360        err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 361        if (err) {
 362                pr_err("failed to register transparent hugepage group\n");
 363                goto delete_obj;
 364        }
 365
 366        err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 367        if (err) {
 368                pr_err("failed to register transparent hugepage group\n");
 369                goto remove_hp_group;
 370        }
 371
 372        return 0;
 373
 374remove_hp_group:
 375        sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 376delete_obj:
 377        kobject_put(*hugepage_kobj);
 378        return err;
 379}
 380
 381static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 382{
 383        sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 384        sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 385        kobject_put(hugepage_kobj);
 386}
 387#else
 388static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 389{
 390        return 0;
 391}
 392
 393static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 394{
 395}
 396#endif /* CONFIG_SYSFS */
 397
 398static int __init hugepage_init(void)
 399{
 400        int err;
 401        struct kobject *hugepage_kobj;
 402
 403        if (!has_transparent_hugepage()) {
 404                transparent_hugepage_flags = 0;
 405                return -EINVAL;
 406        }
 407
 408        /*
 409         * hugepages can't be allocated by the buddy allocator
 410         */
 411        MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 412        /*
 413         * we use page->mapping and page->index in second tail page
 414         * as list_head: assuming THP order >= 2
 415         */
 416        MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 417
 418        err = hugepage_init_sysfs(&hugepage_kobj);
 419        if (err)
 420                goto err_sysfs;
 421
 422        err = khugepaged_init();
 423        if (err)
 424                goto err_slab;
 425
 426        err = register_shrinker(&huge_zero_page_shrinker);
 427        if (err)
 428                goto err_hzp_shrinker;
 429        err = register_shrinker(&deferred_split_shrinker);
 430        if (err)
 431                goto err_split_shrinker;
 432
 433        /*
 434         * By default disable transparent hugepages on smaller systems,
 435         * where the extra memory used could hurt more than TLB overhead
 436         * is likely to save.  The admin can still enable it through /sys.
 437         */
 438        if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
 439                transparent_hugepage_flags = 0;
 440                return 0;
 441        }
 442
 443        err = start_stop_khugepaged();
 444        if (err)
 445                goto err_khugepaged;
 446
 447        return 0;
 448err_khugepaged:
 449        unregister_shrinker(&deferred_split_shrinker);
 450err_split_shrinker:
 451        unregister_shrinker(&huge_zero_page_shrinker);
 452err_hzp_shrinker:
 453        khugepaged_destroy();
 454err_slab:
 455        hugepage_exit_sysfs(hugepage_kobj);
 456err_sysfs:
 457        return err;
 458}
 459subsys_initcall(hugepage_init);
 460
 461static int __init setup_transparent_hugepage(char *str)
 462{
 463        int ret = 0;
 464        if (!str)
 465                goto out;
 466        if (!strcmp(str, "always")) {
 467                set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 468                        &transparent_hugepage_flags);
 469                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 470                          &transparent_hugepage_flags);
 471                ret = 1;
 472        } else if (!strcmp(str, "madvise")) {
 473                clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 474                          &transparent_hugepage_flags);
 475                set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 476                        &transparent_hugepage_flags);
 477                ret = 1;
 478        } else if (!strcmp(str, "never")) {
 479                clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 480                          &transparent_hugepage_flags);
 481                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 482                          &transparent_hugepage_flags);
 483                ret = 1;
 484        }
 485out:
 486        if (!ret)
 487                pr_warn("transparent_hugepage= cannot parse, ignored\n");
 488        return ret;
 489}
 490__setup("transparent_hugepage=", setup_transparent_hugepage);
 491
 492pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 493{
 494        if (likely(vma->vm_flags & VM_WRITE))
 495                pmd = pmd_mkwrite(pmd);
 496        return pmd;
 497}
 498
 499static inline struct list_head *page_deferred_list(struct page *page)
 500{
 501        /* ->lru in the tail pages is occupied by compound_head. */
 502        return &page[2].deferred_list;
 503}
 504
 505void prep_transhuge_page(struct page *page)
 506{
 507        /*
 508         * we use page->mapping and page->indexlru in second tail page
 509         * as list_head: assuming THP order >= 2
 510         */
 511
 512        INIT_LIST_HEAD(page_deferred_list(page));
 513        set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 514}
 515
 516static unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
 517                loff_t off, unsigned long flags, unsigned long size)
 518{
 519        unsigned long addr;
 520        loff_t off_end = off + len;
 521        loff_t off_align = round_up(off, size);
 522        unsigned long len_pad;
 523
 524        if (off_end <= off_align || (off_end - off_align) < size)
 525                return 0;
 526
 527        len_pad = len + size;
 528        if (len_pad < len || (off + len_pad) < off)
 529                return 0;
 530
 531        addr = current->mm->get_unmapped_area(filp, 0, len_pad,
 532                                              off >> PAGE_SHIFT, flags);
 533        if (IS_ERR_VALUE(addr))
 534                return 0;
 535
 536        addr += (off - addr) & (size - 1);
 537        return addr;
 538}
 539
 540unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 541                unsigned long len, unsigned long pgoff, unsigned long flags)
 542{
 543        loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 544
 545        if (addr)
 546                goto out;
 547        if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 548                goto out;
 549
 550        addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
 551        if (addr)
 552                return addr;
 553
 554 out:
 555        return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 556}
 557EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 558
 559static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
 560                        struct page *page, gfp_t gfp)
 561{
 562        struct vm_area_struct *vma = vmf->vma;
 563        struct mem_cgroup *memcg;
 564        pgtable_t pgtable;
 565        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 566        vm_fault_t ret = 0;
 567
 568        VM_BUG_ON_PAGE(!PageCompound(page), page);
 569
 570        if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
 571                put_page(page);
 572                count_vm_event(THP_FAULT_FALLBACK);
 573                return VM_FAULT_FALLBACK;
 574        }
 575
 576        pgtable = pte_alloc_one(vma->vm_mm);
 577        if (unlikely(!pgtable)) {
 578                ret = VM_FAULT_OOM;
 579                goto release;
 580        }
 581
 582        clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 583        /*
 584         * The memory barrier inside __SetPageUptodate makes sure that
 585         * clear_huge_page writes become visible before the set_pmd_at()
 586         * write.
 587         */
 588        __SetPageUptodate(page);
 589
 590        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 591        if (unlikely(!pmd_none(*vmf->pmd))) {
 592                goto unlock_release;
 593        } else {
 594                pmd_t entry;
 595
 596                ret = check_stable_address_space(vma->vm_mm);
 597                if (ret)
 598                        goto unlock_release;
 599
 600                /* Deliver the page fault to userland */
 601                if (userfaultfd_missing(vma)) {
 602                        vm_fault_t ret2;
 603
 604                        spin_unlock(vmf->ptl);
 605                        mem_cgroup_cancel_charge(page, memcg, true);
 606                        put_page(page);
 607                        pte_free(vma->vm_mm, pgtable);
 608                        ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
 609                        VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
 610                        return ret2;
 611                }
 612
 613                entry = mk_huge_pmd(page, vma->vm_page_prot);
 614                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 615                page_add_new_anon_rmap(page, vma, haddr, true);
 616                mem_cgroup_commit_charge(page, memcg, false, true);
 617                lru_cache_add_active_or_unevictable(page, vma);
 618                pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 619                set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 620                add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 621                mm_inc_nr_ptes(vma->vm_mm);
 622                spin_unlock(vmf->ptl);
 623                count_vm_event(THP_FAULT_ALLOC);
 624                count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
 625        }
 626
 627        return 0;
 628unlock_release:
 629        spin_unlock(vmf->ptl);
 630release:
 631        if (pgtable)
 632                pte_free(vma->vm_mm, pgtable);
 633        mem_cgroup_cancel_charge(page, memcg, true);
 634        put_page(page);
 635        return ret;
 636
 637}
 638
 639/*
 640 * always: directly stall for all thp allocations
 641 * defer: wake kswapd and fail if not immediately available
 642 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 643 *                fail if not immediately available
 644 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 645 *          available
 646 * never: never stall for any thp allocation
 647 */
 648static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma, unsigned long addr)
 649{
 650        const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
 651        gfp_t this_node = 0;
 652
 653#ifdef CONFIG_NUMA
 654        struct mempolicy *pol;
 655        /*
 656         * __GFP_THISNODE is used only when __GFP_DIRECT_RECLAIM is not
 657         * specified, to express a general desire to stay on the current
 658         * node for optimistic allocation attempts. If the defrag mode
 659         * and/or madvise hint requires the direct reclaim then we prefer
 660         * to fallback to other node rather than node reclaim because that
 661         * can lead to excessive reclaim even though there is free memory
 662         * on other nodes. We expect that NUMA preferences are specified
 663         * by memory policies.
 664         */
 665        pol = get_vma_policy(vma, addr);
 666        if (pol->mode != MPOL_BIND)
 667                this_node = __GFP_THISNODE;
 668        mpol_cond_put(pol);
 669#endif
 670
 671        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 672                return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 673        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 674                return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM | this_node;
 675        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 676                return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 677                                                             __GFP_KSWAPD_RECLAIM | this_node);
 678        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 679                return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 680                                                             this_node);
 681        return GFP_TRANSHUGE_LIGHT | this_node;
 682}
 683
 684/* Caller must hold page table lock. */
 685static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 686                struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 687                struct page *zero_page)
 688{
 689        pmd_t entry;
 690        if (!pmd_none(*pmd))
 691                return false;
 692        entry = mk_pmd(zero_page, vma->vm_page_prot);
 693        entry = pmd_mkhuge(entry);
 694        if (pgtable)
 695                pgtable_trans_huge_deposit(mm, pmd, pgtable);
 696        set_pmd_at(mm, haddr, pmd, entry);
 697        mm_inc_nr_ptes(mm);
 698        return true;
 699}
 700
 701vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 702{
 703        struct vm_area_struct *vma = vmf->vma;
 704        gfp_t gfp;
 705        struct page *page;
 706        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 707
 708        if (!transhuge_vma_suitable(vma, haddr))
 709                return VM_FAULT_FALLBACK;
 710        if (unlikely(anon_vma_prepare(vma)))
 711                return VM_FAULT_OOM;
 712        if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 713                return VM_FAULT_OOM;
 714        if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 715                        !mm_forbids_zeropage(vma->vm_mm) &&
 716                        transparent_hugepage_use_zero_page()) {
 717                pgtable_t pgtable;
 718                struct page *zero_page;
 719                bool set;
 720                vm_fault_t ret;
 721                pgtable = pte_alloc_one(vma->vm_mm);
 722                if (unlikely(!pgtable))
 723                        return VM_FAULT_OOM;
 724                zero_page = mm_get_huge_zero_page(vma->vm_mm);
 725                if (unlikely(!zero_page)) {
 726                        pte_free(vma->vm_mm, pgtable);
 727                        count_vm_event(THP_FAULT_FALLBACK);
 728                        return VM_FAULT_FALLBACK;
 729                }
 730                vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 731                ret = 0;
 732                set = false;
 733                if (pmd_none(*vmf->pmd)) {
 734                        ret = check_stable_address_space(vma->vm_mm);
 735                        if (ret) {
 736                                spin_unlock(vmf->ptl);
 737                        } else if (userfaultfd_missing(vma)) {
 738                                spin_unlock(vmf->ptl);
 739                                ret = handle_userfault(vmf, VM_UFFD_MISSING);
 740                                VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 741                        } else {
 742                                set_huge_zero_page(pgtable, vma->vm_mm, vma,
 743                                                   haddr, vmf->pmd, zero_page);
 744                                spin_unlock(vmf->ptl);
 745                                set = true;
 746                        }
 747                } else
 748                        spin_unlock(vmf->ptl);
 749                if (!set)
 750                        pte_free(vma->vm_mm, pgtable);
 751                return ret;
 752        }
 753        gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
 754        page = alloc_pages_vma(gfp, HPAGE_PMD_ORDER, vma, haddr, numa_node_id());
 755        if (unlikely(!page)) {
 756                count_vm_event(THP_FAULT_FALLBACK);
 757                return VM_FAULT_FALLBACK;
 758        }
 759        prep_transhuge_page(page);
 760        return __do_huge_pmd_anonymous_page(vmf, page, gfp);
 761}
 762
 763static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 764                pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 765                pgtable_t pgtable)
 766{
 767        struct mm_struct *mm = vma->vm_mm;
 768        pmd_t entry;
 769        spinlock_t *ptl;
 770
 771        ptl = pmd_lock(mm, pmd);
 772        if (!pmd_none(*pmd)) {
 773                if (write) {
 774                        if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
 775                                WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
 776                                goto out_unlock;
 777                        }
 778                        entry = pmd_mkyoung(*pmd);
 779                        entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 780                        if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
 781                                update_mmu_cache_pmd(vma, addr, pmd);
 782                }
 783
 784                goto out_unlock;
 785        }
 786
 787        entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 788        if (pfn_t_devmap(pfn))
 789                entry = pmd_mkdevmap(entry);
 790        if (write) {
 791                entry = pmd_mkyoung(pmd_mkdirty(entry));
 792                entry = maybe_pmd_mkwrite(entry, vma);
 793        }
 794
 795        if (pgtable) {
 796                pgtable_trans_huge_deposit(mm, pmd, pgtable);
 797                mm_inc_nr_ptes(mm);
 798                pgtable = NULL;
 799        }
 800
 801        set_pmd_at(mm, addr, pmd, entry);
 802        update_mmu_cache_pmd(vma, addr, pmd);
 803
 804out_unlock:
 805        spin_unlock(ptl);
 806        if (pgtable)
 807                pte_free(mm, pgtable);
 808}
 809
 810vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
 811{
 812        unsigned long addr = vmf->address & PMD_MASK;
 813        struct vm_area_struct *vma = vmf->vma;
 814        pgprot_t pgprot = vma->vm_page_prot;
 815        pgtable_t pgtable = NULL;
 816
 817        /*
 818         * If we had pmd_special, we could avoid all these restrictions,
 819         * but we need to be consistent with PTEs and architectures that
 820         * can't support a 'special' bit.
 821         */
 822        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
 823                        !pfn_t_devmap(pfn));
 824        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 825                                                (VM_PFNMAP|VM_MIXEDMAP));
 826        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 827
 828        if (addr < vma->vm_start || addr >= vma->vm_end)
 829                return VM_FAULT_SIGBUS;
 830
 831        if (arch_needs_pgtable_deposit()) {
 832                pgtable = pte_alloc_one(vma->vm_mm);
 833                if (!pgtable)
 834                        return VM_FAULT_OOM;
 835        }
 836
 837        track_pfn_insert(vma, &pgprot, pfn);
 838
 839        insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
 840        return VM_FAULT_NOPAGE;
 841}
 842EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
 843
 844#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 845static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 846{
 847        if (likely(vma->vm_flags & VM_WRITE))
 848                pud = pud_mkwrite(pud);
 849        return pud;
 850}
 851
 852static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 853                pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 854{
 855        struct mm_struct *mm = vma->vm_mm;
 856        pud_t entry;
 857        spinlock_t *ptl;
 858
 859        ptl = pud_lock(mm, pud);
 860        if (!pud_none(*pud)) {
 861                if (write) {
 862                        if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
 863                                WARN_ON_ONCE(!is_huge_zero_pud(*pud));
 864                                goto out_unlock;
 865                        }
 866                        entry = pud_mkyoung(*pud);
 867                        entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
 868                        if (pudp_set_access_flags(vma, addr, pud, entry, 1))
 869                                update_mmu_cache_pud(vma, addr, pud);
 870                }
 871                goto out_unlock;
 872        }
 873
 874        entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 875        if (pfn_t_devmap(pfn))
 876                entry = pud_mkdevmap(entry);
 877        if (write) {
 878                entry = pud_mkyoung(pud_mkdirty(entry));
 879                entry = maybe_pud_mkwrite(entry, vma);
 880        }
 881        set_pud_at(mm, addr, pud, entry);
 882        update_mmu_cache_pud(vma, addr, pud);
 883
 884out_unlock:
 885        spin_unlock(ptl);
 886}
 887
 888vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
 889{
 890        unsigned long addr = vmf->address & PUD_MASK;
 891        struct vm_area_struct *vma = vmf->vma;
 892        pgprot_t pgprot = vma->vm_page_prot;
 893
 894        /*
 895         * If we had pud_special, we could avoid all these restrictions,
 896         * but we need to be consistent with PTEs and architectures that
 897         * can't support a 'special' bit.
 898         */
 899        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
 900                        !pfn_t_devmap(pfn));
 901        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 902                                                (VM_PFNMAP|VM_MIXEDMAP));
 903        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 904
 905        if (addr < vma->vm_start || addr >= vma->vm_end)
 906                return VM_FAULT_SIGBUS;
 907
 908        track_pfn_insert(vma, &pgprot, pfn);
 909
 910        insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
 911        return VM_FAULT_NOPAGE;
 912}
 913EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
 914#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 915
 916static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 917                pmd_t *pmd, int flags)
 918{
 919        pmd_t _pmd;
 920
 921        _pmd = pmd_mkyoung(*pmd);
 922        if (flags & FOLL_WRITE)
 923                _pmd = pmd_mkdirty(_pmd);
 924        if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 925                                pmd, _pmd, flags & FOLL_WRITE))
 926                update_mmu_cache_pmd(vma, addr, pmd);
 927}
 928
 929struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 930                pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
 931{
 932        unsigned long pfn = pmd_pfn(*pmd);
 933        struct mm_struct *mm = vma->vm_mm;
 934        struct page *page;
 935
 936        assert_spin_locked(pmd_lockptr(mm, pmd));
 937
 938        /*
 939         * When we COW a devmap PMD entry, we split it into PTEs, so we should
 940         * not be in this function with `flags & FOLL_COW` set.
 941         */
 942        WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
 943
 944        if (flags & FOLL_WRITE && !pmd_write(*pmd))
 945                return NULL;
 946
 947        if (pmd_present(*pmd) && pmd_devmap(*pmd))
 948                /* pass */;
 949        else
 950                return NULL;
 951
 952        if (flags & FOLL_TOUCH)
 953                touch_pmd(vma, addr, pmd, flags);
 954
 955        /*
 956         * device mapped pages can only be returned if the
 957         * caller will manage the page reference count.
 958         */
 959        if (!(flags & FOLL_GET))
 960                return ERR_PTR(-EEXIST);
 961
 962        pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 963        *pgmap = get_dev_pagemap(pfn, *pgmap);
 964        if (!*pgmap)
 965                return ERR_PTR(-EFAULT);
 966        page = pfn_to_page(pfn);
 967        get_page(page);
 968
 969        return page;
 970}
 971
 972int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 973                  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 974                  struct vm_area_struct *vma)
 975{
 976        spinlock_t *dst_ptl, *src_ptl;
 977        struct page *src_page;
 978        pmd_t pmd;
 979        pgtable_t pgtable = NULL;
 980        int ret = -ENOMEM;
 981
 982        /* Skip if can be re-fill on fault */
 983        if (!vma_is_anonymous(vma))
 984                return 0;
 985
 986        pgtable = pte_alloc_one(dst_mm);
 987        if (unlikely(!pgtable))
 988                goto out;
 989
 990        dst_ptl = pmd_lock(dst_mm, dst_pmd);
 991        src_ptl = pmd_lockptr(src_mm, src_pmd);
 992        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 993
 994        ret = -EAGAIN;
 995        pmd = *src_pmd;
 996
 997#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 998        if (unlikely(is_swap_pmd(pmd))) {
 999                swp_entry_t entry = pmd_to_swp_entry(pmd);
1000
1001                VM_BUG_ON(!is_pmd_migration_entry(pmd));
1002                if (is_write_migration_entry(entry)) {
1003                        make_migration_entry_read(&entry);
1004                        pmd = swp_entry_to_pmd(entry);
1005                        if (pmd_swp_soft_dirty(*src_pmd))
1006                                pmd = pmd_swp_mksoft_dirty(pmd);
1007                        set_pmd_at(src_mm, addr, src_pmd, pmd);
1008                }
1009                add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1010                mm_inc_nr_ptes(dst_mm);
1011                pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1012                set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1013                ret = 0;
1014                goto out_unlock;
1015        }
1016#endif
1017
1018        if (unlikely(!pmd_trans_huge(pmd))) {
1019                pte_free(dst_mm, pgtable);
1020                goto out_unlock;
1021        }
1022        /*
1023         * When page table lock is held, the huge zero pmd should not be
1024         * under splitting since we don't split the page itself, only pmd to
1025         * a page table.
1026         */
1027        if (is_huge_zero_pmd(pmd)) {
1028                struct page *zero_page;
1029                /*
1030                 * get_huge_zero_page() will never allocate a new page here,
1031                 * since we already have a zero page to copy. It just takes a
1032                 * reference.
1033                 */
1034                zero_page = mm_get_huge_zero_page(dst_mm);
1035                set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1036                                zero_page);
1037                ret = 0;
1038                goto out_unlock;
1039        }
1040
1041        src_page = pmd_page(pmd);
1042        VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1043        get_page(src_page);
1044        page_dup_rmap(src_page, true);
1045        add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1046        mm_inc_nr_ptes(dst_mm);
1047        pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1048
1049        pmdp_set_wrprotect(src_mm, addr, src_pmd);
1050        pmd = pmd_mkold(pmd_wrprotect(pmd));
1051        set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1052
1053        ret = 0;
1054out_unlock:
1055        spin_unlock(src_ptl);
1056        spin_unlock(dst_ptl);
1057out:
1058        return ret;
1059}
1060
1061#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1062static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1063                pud_t *pud, int flags)
1064{
1065        pud_t _pud;
1066
1067        _pud = pud_mkyoung(*pud);
1068        if (flags & FOLL_WRITE)
1069                _pud = pud_mkdirty(_pud);
1070        if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1071                                pud, _pud, flags & FOLL_WRITE))
1072                update_mmu_cache_pud(vma, addr, pud);
1073}
1074
1075struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1076                pud_t *pud, int flags, struct dev_pagemap **pgmap)
1077{
1078        unsigned long pfn = pud_pfn(*pud);
1079        struct mm_struct *mm = vma->vm_mm;
1080        struct page *page;
1081
1082        assert_spin_locked(pud_lockptr(mm, pud));
1083
1084        if (flags & FOLL_WRITE && !pud_write(*pud))
1085                return NULL;
1086
1087        if (pud_present(*pud) && pud_devmap(*pud))
1088                /* pass */;
1089        else
1090                return NULL;
1091
1092        if (flags & FOLL_TOUCH)
1093                touch_pud(vma, addr, pud, flags);
1094
1095        /*
1096         * device mapped pages can only be returned if the
1097         * caller will manage the page reference count.
1098         */
1099        if (!(flags & FOLL_GET))
1100                return ERR_PTR(-EEXIST);
1101
1102        pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1103        *pgmap = get_dev_pagemap(pfn, *pgmap);
1104        if (!*pgmap)
1105                return ERR_PTR(-EFAULT);
1106        page = pfn_to_page(pfn);
1107        get_page(page);
1108
1109        return page;
1110}
1111
1112int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1113                  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1114                  struct vm_area_struct *vma)
1115{
1116        spinlock_t *dst_ptl, *src_ptl;
1117        pud_t pud;
1118        int ret;
1119
1120        dst_ptl = pud_lock(dst_mm, dst_pud);
1121        src_ptl = pud_lockptr(src_mm, src_pud);
1122        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1123
1124        ret = -EAGAIN;
1125        pud = *src_pud;
1126        if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1127                goto out_unlock;
1128
1129        /*
1130         * When page table lock is held, the huge zero pud should not be
1131         * under splitting since we don't split the page itself, only pud to
1132         * a page table.
1133         */
1134        if (is_huge_zero_pud(pud)) {
1135                /* No huge zero pud yet */
1136        }
1137
1138        pudp_set_wrprotect(src_mm, addr, src_pud);
1139        pud = pud_mkold(pud_wrprotect(pud));
1140        set_pud_at(dst_mm, addr, dst_pud, pud);
1141
1142        ret = 0;
1143out_unlock:
1144        spin_unlock(src_ptl);
1145        spin_unlock(dst_ptl);
1146        return ret;
1147}
1148
1149void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1150{
1151        pud_t entry;
1152        unsigned long haddr;
1153        bool write = vmf->flags & FAULT_FLAG_WRITE;
1154
1155        vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1156        if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1157                goto unlock;
1158
1159        entry = pud_mkyoung(orig_pud);
1160        if (write)
1161                entry = pud_mkdirty(entry);
1162        haddr = vmf->address & HPAGE_PUD_MASK;
1163        if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1164                update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1165
1166unlock:
1167        spin_unlock(vmf->ptl);
1168}
1169#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1170
1171void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1172{
1173        pmd_t entry;
1174        unsigned long haddr;
1175        bool write = vmf->flags & FAULT_FLAG_WRITE;
1176
1177        vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1178        if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1179                goto unlock;
1180
1181        entry = pmd_mkyoung(orig_pmd);
1182        if (write)
1183                entry = pmd_mkdirty(entry);
1184        haddr = vmf->address & HPAGE_PMD_MASK;
1185        if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1186                update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1187
1188unlock:
1189        spin_unlock(vmf->ptl);
1190}
1191
1192static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1193                        pmd_t orig_pmd, struct page *page)
1194{
1195        struct vm_area_struct *vma = vmf->vma;
1196        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1197        struct mem_cgroup *memcg;
1198        pgtable_t pgtable;
1199        pmd_t _pmd;
1200        int i;
1201        vm_fault_t ret = 0;
1202        struct page **pages;
1203        struct mmu_notifier_range range;
1204
1205        pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1206                              GFP_KERNEL);
1207        if (unlikely(!pages)) {
1208                ret |= VM_FAULT_OOM;
1209                goto out;
1210        }
1211
1212        for (i = 0; i < HPAGE_PMD_NR; i++) {
1213                pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1214                                               vmf->address, page_to_nid(page));
1215                if (unlikely(!pages[i] ||
1216                             mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1217                                     GFP_KERNEL, &memcg, false))) {
1218                        if (pages[i])
1219                                put_page(pages[i]);
1220                        while (--i >= 0) {
1221                                memcg = (void *)page_private(pages[i]);
1222                                set_page_private(pages[i], 0);
1223                                mem_cgroup_cancel_charge(pages[i], memcg,
1224                                                false);
1225                                put_page(pages[i]);
1226                        }
1227                        kfree(pages);
1228                        ret |= VM_FAULT_OOM;
1229                        goto out;
1230                }
1231                set_page_private(pages[i], (unsigned long)memcg);
1232        }
1233
1234        for (i = 0; i < HPAGE_PMD_NR; i++) {
1235                copy_user_highpage(pages[i], page + i,
1236                                   haddr + PAGE_SIZE * i, vma);
1237                __SetPageUptodate(pages[i]);
1238                cond_resched();
1239        }
1240
1241        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1242                                haddr, haddr + HPAGE_PMD_SIZE);
1243        mmu_notifier_invalidate_range_start(&range);
1244
1245        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1246        if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1247                goto out_free_pages;
1248        VM_BUG_ON_PAGE(!PageHead(page), page);
1249
1250        /*
1251         * Leave pmd empty until pte is filled note we must notify here as
1252         * concurrent CPU thread might write to new page before the call to
1253         * mmu_notifier_invalidate_range_end() happens which can lead to a
1254         * device seeing memory write in different order than CPU.
1255         *
1256         * See Documentation/vm/mmu_notifier.rst
1257         */
1258        pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1259
1260        pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1261        pmd_populate(vma->vm_mm, &_pmd, pgtable);
1262
1263        for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1264                pte_t entry;
1265                entry = mk_pte(pages[i], vma->vm_page_prot);
1266                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1267                memcg = (void *)page_private(pages[i]);
1268                set_page_private(pages[i], 0);
1269                page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1270                mem_cgroup_commit_charge(pages[i], memcg, false, false);
1271                lru_cache_add_active_or_unevictable(pages[i], vma);
1272                vmf->pte = pte_offset_map(&_pmd, haddr);
1273                VM_BUG_ON(!pte_none(*vmf->pte));
1274                set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1275                pte_unmap(vmf->pte);
1276        }
1277        kfree(pages);
1278
1279        smp_wmb(); /* make pte visible before pmd */
1280        pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1281        page_remove_rmap(page, true);
1282        spin_unlock(vmf->ptl);
1283
1284        /*
1285         * No need to double call mmu_notifier->invalidate_range() callback as
1286         * the above pmdp_huge_clear_flush_notify() did already call it.
1287         */
1288        mmu_notifier_invalidate_range_only_end(&range);
1289
1290        ret |= VM_FAULT_WRITE;
1291        put_page(page);
1292
1293out:
1294        return ret;
1295
1296out_free_pages:
1297        spin_unlock(vmf->ptl);
1298        mmu_notifier_invalidate_range_end(&range);
1299        for (i = 0; i < HPAGE_PMD_NR; i++) {
1300                memcg = (void *)page_private(pages[i]);
1301                set_page_private(pages[i], 0);
1302                mem_cgroup_cancel_charge(pages[i], memcg, false);
1303                put_page(pages[i]);
1304        }
1305        kfree(pages);
1306        goto out;
1307}
1308
1309vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1310{
1311        struct vm_area_struct *vma = vmf->vma;
1312        struct page *page = NULL, *new_page;
1313        struct mem_cgroup *memcg;
1314        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1315        struct mmu_notifier_range range;
1316        gfp_t huge_gfp;                 /* for allocation and charge */
1317        vm_fault_t ret = 0;
1318
1319        vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1320        VM_BUG_ON_VMA(!vma->anon_vma, vma);
1321        if (is_huge_zero_pmd(orig_pmd))
1322                goto alloc;
1323        spin_lock(vmf->ptl);
1324        if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1325                goto out_unlock;
1326
1327        page = pmd_page(orig_pmd);
1328        VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1329        /*
1330         * We can only reuse the page if nobody else maps the huge page or it's
1331         * part.
1332         */
1333        if (!trylock_page(page)) {
1334                get_page(page);
1335                spin_unlock(vmf->ptl);
1336                lock_page(page);
1337                spin_lock(vmf->ptl);
1338                if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1339                        unlock_page(page);
1340                        put_page(page);
1341                        goto out_unlock;
1342                }
1343                put_page(page);
1344        }
1345        if (reuse_swap_page(page, NULL)) {
1346                pmd_t entry;
1347                entry = pmd_mkyoung(orig_pmd);
1348                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1349                if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1350                        update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1351                ret |= VM_FAULT_WRITE;
1352                unlock_page(page);
1353                goto out_unlock;
1354        }
1355        unlock_page(page);
1356        get_page(page);
1357        spin_unlock(vmf->ptl);
1358alloc:
1359        if (__transparent_hugepage_enabled(vma) &&
1360            !transparent_hugepage_debug_cow()) {
1361                huge_gfp = alloc_hugepage_direct_gfpmask(vma, haddr);
1362                new_page = alloc_pages_vma(huge_gfp, HPAGE_PMD_ORDER, vma,
1363                                haddr, numa_node_id());
1364        } else
1365                new_page = NULL;
1366
1367        if (likely(new_page)) {
1368                prep_transhuge_page(new_page);
1369        } else {
1370                if (!page) {
1371                        split_huge_pmd(vma, vmf->pmd, vmf->address);
1372                        ret |= VM_FAULT_FALLBACK;
1373                } else {
1374                        ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1375                        if (ret & VM_FAULT_OOM) {
1376                                split_huge_pmd(vma, vmf->pmd, vmf->address);
1377                                ret |= VM_FAULT_FALLBACK;
1378                        }
1379                        put_page(page);
1380                }
1381                count_vm_event(THP_FAULT_FALLBACK);
1382                goto out;
1383        }
1384
1385        if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1386                                        huge_gfp, &memcg, true))) {
1387                put_page(new_page);
1388                split_huge_pmd(vma, vmf->pmd, vmf->address);
1389                if (page)
1390                        put_page(page);
1391                ret |= VM_FAULT_FALLBACK;
1392                count_vm_event(THP_FAULT_FALLBACK);
1393                goto out;
1394        }
1395
1396        count_vm_event(THP_FAULT_ALLOC);
1397        count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
1398
1399        if (!page)
1400                clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1401        else
1402                copy_user_huge_page(new_page, page, vmf->address,
1403                                    vma, HPAGE_PMD_NR);
1404        __SetPageUptodate(new_page);
1405
1406        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1407                                haddr, haddr + HPAGE_PMD_SIZE);
1408        mmu_notifier_invalidate_range_start(&range);
1409
1410        spin_lock(vmf->ptl);
1411        if (page)
1412                put_page(page);
1413        if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1414                spin_unlock(vmf->ptl);
1415                mem_cgroup_cancel_charge(new_page, memcg, true);
1416                put_page(new_page);
1417                goto out_mn;
1418        } else {
1419                pmd_t entry;
1420                entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1421                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1422                pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1423                page_add_new_anon_rmap(new_page, vma, haddr, true);
1424                mem_cgroup_commit_charge(new_page, memcg, false, true);
1425                lru_cache_add_active_or_unevictable(new_page, vma);
1426                set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1427                update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1428                if (!page) {
1429                        add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1430                } else {
1431                        VM_BUG_ON_PAGE(!PageHead(page), page);
1432                        page_remove_rmap(page, true);
1433                        put_page(page);
1434                }
1435                ret |= VM_FAULT_WRITE;
1436        }
1437        spin_unlock(vmf->ptl);
1438out_mn:
1439        /*
1440         * No need to double call mmu_notifier->invalidate_range() callback as
1441         * the above pmdp_huge_clear_flush_notify() did already call it.
1442         */
1443        mmu_notifier_invalidate_range_only_end(&range);
1444out:
1445        return ret;
1446out_unlock:
1447        spin_unlock(vmf->ptl);
1448        return ret;
1449}
1450
1451/*
1452 * FOLL_FORCE can write to even unwritable pmd's, but only
1453 * after we've gone through a COW cycle and they are dirty.
1454 */
1455static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1456{
1457        return pmd_write(pmd) ||
1458               ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1459}
1460
1461struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1462                                   unsigned long addr,
1463                                   pmd_t *pmd,
1464                                   unsigned int flags)
1465{
1466        struct mm_struct *mm = vma->vm_mm;
1467        struct page *page = NULL;
1468
1469        assert_spin_locked(pmd_lockptr(mm, pmd));
1470
1471        if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1472                goto out;
1473
1474        /* Avoid dumping huge zero page */
1475        if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1476                return ERR_PTR(-EFAULT);
1477
1478        /* Full NUMA hinting faults to serialise migration in fault paths */
1479        if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1480                goto out;
1481
1482        page = pmd_page(*pmd);
1483        VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1484        if (flags & FOLL_TOUCH)
1485                touch_pmd(vma, addr, pmd, flags);
1486        if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1487                /*
1488                 * We don't mlock() pte-mapped THPs. This way we can avoid
1489                 * leaking mlocked pages into non-VM_LOCKED VMAs.
1490                 *
1491                 * For anon THP:
1492                 *
1493                 * In most cases the pmd is the only mapping of the page as we
1494                 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1495                 * writable private mappings in populate_vma_page_range().
1496                 *
1497                 * The only scenario when we have the page shared here is if we
1498                 * mlocking read-only mapping shared over fork(). We skip
1499                 * mlocking such pages.
1500                 *
1501                 * For file THP:
1502                 *
1503                 * We can expect PageDoubleMap() to be stable under page lock:
1504                 * for file pages we set it in page_add_file_rmap(), which
1505                 * requires page to be locked.
1506                 */
1507
1508                if (PageAnon(page) && compound_mapcount(page) != 1)
1509                        goto skip_mlock;
1510                if (PageDoubleMap(page) || !page->mapping)
1511                        goto skip_mlock;
1512                if (!trylock_page(page))
1513                        goto skip_mlock;
1514                lru_add_drain();
1515                if (page->mapping && !PageDoubleMap(page))
1516                        mlock_vma_page(page);
1517                unlock_page(page);
1518        }
1519skip_mlock:
1520        page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1521        VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1522        if (flags & FOLL_GET)
1523                get_page(page);
1524
1525out:
1526        return page;
1527}
1528
1529/* NUMA hinting page fault entry point for trans huge pmds */
1530vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1531{
1532        struct vm_area_struct *vma = vmf->vma;
1533        struct anon_vma *anon_vma = NULL;
1534        struct page *page;
1535        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1536        int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
1537        int target_nid, last_cpupid = -1;
1538        bool page_locked;
1539        bool migrated = false;
1540        bool was_writable;
1541        int flags = 0;
1542
1543        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1544        if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1545                goto out_unlock;
1546
1547        /*
1548         * If there are potential migrations, wait for completion and retry
1549         * without disrupting NUMA hinting information. Do not relock and
1550         * check_same as the page may no longer be mapped.
1551         */
1552        if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1553                page = pmd_page(*vmf->pmd);
1554                if (!get_page_unless_zero(page))
1555                        goto out_unlock;
1556                spin_unlock(vmf->ptl);
1557                put_and_wait_on_page_locked(page);
1558                goto out;
1559        }
1560
1561        page = pmd_page(pmd);
1562        BUG_ON(is_huge_zero_page(page));
1563        page_nid = page_to_nid(page);
1564        last_cpupid = page_cpupid_last(page);
1565        count_vm_numa_event(NUMA_HINT_FAULTS);
1566        if (page_nid == this_nid) {
1567                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1568                flags |= TNF_FAULT_LOCAL;
1569        }
1570
1571        /* See similar comment in do_numa_page for explanation */
1572        if (!pmd_savedwrite(pmd))
1573                flags |= TNF_NO_GROUP;
1574
1575        /*
1576         * Acquire the page lock to serialise THP migrations but avoid dropping
1577         * page_table_lock if at all possible
1578         */
1579        page_locked = trylock_page(page);
1580        target_nid = mpol_misplaced(page, vma, haddr);
1581        if (target_nid == NUMA_NO_NODE) {
1582                /* If the page was locked, there are no parallel migrations */
1583                if (page_locked)
1584                        goto clear_pmdnuma;
1585        }
1586
1587        /* Migration could have started since the pmd_trans_migrating check */
1588        if (!page_locked) {
1589                page_nid = NUMA_NO_NODE;
1590                if (!get_page_unless_zero(page))
1591                        goto out_unlock;
1592                spin_unlock(vmf->ptl);
1593                put_and_wait_on_page_locked(page);
1594                goto out;
1595        }
1596
1597        /*
1598         * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1599         * to serialises splits
1600         */
1601        get_page(page);
1602        spin_unlock(vmf->ptl);
1603        anon_vma = page_lock_anon_vma_read(page);
1604
1605        /* Confirm the PMD did not change while page_table_lock was released */
1606        spin_lock(vmf->ptl);
1607        if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1608                unlock_page(page);
1609                put_page(page);
1610                page_nid = NUMA_NO_NODE;
1611                goto out_unlock;
1612        }
1613
1614        /* Bail if we fail to protect against THP splits for any reason */
1615        if (unlikely(!anon_vma)) {
1616                put_page(page);
1617                page_nid = NUMA_NO_NODE;
1618                goto clear_pmdnuma;
1619        }
1620
1621        /*
1622         * Since we took the NUMA fault, we must have observed the !accessible
1623         * bit. Make sure all other CPUs agree with that, to avoid them
1624         * modifying the page we're about to migrate.
1625         *
1626         * Must be done under PTL such that we'll observe the relevant
1627         * inc_tlb_flush_pending().
1628         *
1629         * We are not sure a pending tlb flush here is for a huge page
1630         * mapping or not. Hence use the tlb range variant
1631         */
1632        if (mm_tlb_flush_pending(vma->vm_mm)) {
1633                flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1634                /*
1635                 * change_huge_pmd() released the pmd lock before
1636                 * invalidating the secondary MMUs sharing the primary
1637                 * MMU pagetables (with ->invalidate_range()). The
1638                 * mmu_notifier_invalidate_range_end() (which
1639                 * internally calls ->invalidate_range()) in
1640                 * change_pmd_range() will run after us, so we can't
1641                 * rely on it here and we need an explicit invalidate.
1642                 */
1643                mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1644                                              haddr + HPAGE_PMD_SIZE);
1645        }
1646
1647        /*
1648         * Migrate the THP to the requested node, returns with page unlocked
1649         * and access rights restored.
1650         */
1651        spin_unlock(vmf->ptl);
1652
1653        migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1654                                vmf->pmd, pmd, vmf->address, page, target_nid);
1655        if (migrated) {
1656                flags |= TNF_MIGRATED;
1657                page_nid = target_nid;
1658        } else
1659                flags |= TNF_MIGRATE_FAIL;
1660
1661        goto out;
1662clear_pmdnuma:
1663        BUG_ON(!PageLocked(page));
1664        was_writable = pmd_savedwrite(pmd);
1665        pmd = pmd_modify(pmd, vma->vm_page_prot);
1666        pmd = pmd_mkyoung(pmd);
1667        if (was_writable)
1668                pmd = pmd_mkwrite(pmd);
1669        set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1670        update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1671        unlock_page(page);
1672out_unlock:
1673        spin_unlock(vmf->ptl);
1674
1675out:
1676        if (anon_vma)
1677                page_unlock_anon_vma_read(anon_vma);
1678
1679        if (page_nid != NUMA_NO_NODE)
1680                task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1681                                flags);
1682
1683        return 0;
1684}
1685
1686/*
1687 * Return true if we do MADV_FREE successfully on entire pmd page.
1688 * Otherwise, return false.
1689 */
1690bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1691                pmd_t *pmd, unsigned long addr, unsigned long next)
1692{
1693        spinlock_t *ptl;
1694        pmd_t orig_pmd;
1695        struct page *page;
1696        struct mm_struct *mm = tlb->mm;
1697        bool ret = false;
1698
1699        tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1700
1701        ptl = pmd_trans_huge_lock(pmd, vma);
1702        if (!ptl)
1703                goto out_unlocked;
1704
1705        orig_pmd = *pmd;
1706        if (is_huge_zero_pmd(orig_pmd))
1707                goto out;
1708
1709        if (unlikely(!pmd_present(orig_pmd))) {
1710                VM_BUG_ON(thp_migration_supported() &&
1711                                  !is_pmd_migration_entry(orig_pmd));
1712                goto out;
1713        }
1714
1715        page = pmd_page(orig_pmd);
1716        /*
1717         * If other processes are mapping this page, we couldn't discard
1718         * the page unless they all do MADV_FREE so let's skip the page.
1719         */
1720        if (page_mapcount(page) != 1)
1721                goto out;
1722
1723        if (!trylock_page(page))
1724                goto out;
1725
1726        /*
1727         * If user want to discard part-pages of THP, split it so MADV_FREE
1728         * will deactivate only them.
1729         */
1730        if (next - addr != HPAGE_PMD_SIZE) {
1731                get_page(page);
1732                spin_unlock(ptl);
1733                split_huge_page(page);
1734                unlock_page(page);
1735                put_page(page);
1736                goto out_unlocked;
1737        }
1738
1739        if (PageDirty(page))
1740                ClearPageDirty(page);
1741        unlock_page(page);
1742
1743        if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1744                pmdp_invalidate(vma, addr, pmd);
1745                orig_pmd = pmd_mkold(orig_pmd);
1746                orig_pmd = pmd_mkclean(orig_pmd);
1747
1748                set_pmd_at(mm, addr, pmd, orig_pmd);
1749                tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1750        }
1751
1752        mark_page_lazyfree(page);
1753        ret = true;
1754out:
1755        spin_unlock(ptl);
1756out_unlocked:
1757        return ret;
1758}
1759
1760static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1761{
1762        pgtable_t pgtable;
1763
1764        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1765        pte_free(mm, pgtable);
1766        mm_dec_nr_ptes(mm);
1767}
1768
1769int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1770                 pmd_t *pmd, unsigned long addr)
1771{
1772        pmd_t orig_pmd;
1773        spinlock_t *ptl;
1774
1775        tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
1776
1777        ptl = __pmd_trans_huge_lock(pmd, vma);
1778        if (!ptl)
1779                return 0;
1780        /*
1781         * For architectures like ppc64 we look at deposited pgtable
1782         * when calling pmdp_huge_get_and_clear. So do the
1783         * pgtable_trans_huge_withdraw after finishing pmdp related
1784         * operations.
1785         */
1786        orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1787                        tlb->fullmm);
1788        tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1789        if (vma_is_dax(vma)) {
1790                if (arch_needs_pgtable_deposit())
1791                        zap_deposited_table(tlb->mm, pmd);
1792                spin_unlock(ptl);
1793                if (is_huge_zero_pmd(orig_pmd))
1794                        tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1795        } else if (is_huge_zero_pmd(orig_pmd)) {
1796                zap_deposited_table(tlb->mm, pmd);
1797                spin_unlock(ptl);
1798                tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1799        } else {
1800                struct page *page = NULL;
1801                int flush_needed = 1;
1802
1803                if (pmd_present(orig_pmd)) {
1804                        page = pmd_page(orig_pmd);
1805                        page_remove_rmap(page, true);
1806                        VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1807                        VM_BUG_ON_PAGE(!PageHead(page), page);
1808                } else if (thp_migration_supported()) {
1809                        swp_entry_t entry;
1810
1811                        VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1812                        entry = pmd_to_swp_entry(orig_pmd);
1813                        page = pfn_to_page(swp_offset(entry));
1814                        flush_needed = 0;
1815                } else
1816                        WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1817
1818                if (PageAnon(page)) {
1819                        zap_deposited_table(tlb->mm, pmd);
1820                        add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1821                } else {
1822                        if (arch_needs_pgtable_deposit())
1823                                zap_deposited_table(tlb->mm, pmd);
1824                        add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1825                }
1826
1827                spin_unlock(ptl);
1828                if (flush_needed)
1829                        tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1830        }
1831        return 1;
1832}
1833
1834#ifndef pmd_move_must_withdraw
1835static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1836                                         spinlock_t *old_pmd_ptl,
1837                                         struct vm_area_struct *vma)
1838{
1839        /*
1840         * With split pmd lock we also need to move preallocated
1841         * PTE page table if new_pmd is on different PMD page table.
1842         *
1843         * We also don't deposit and withdraw tables for file pages.
1844         */
1845        return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1846}
1847#endif
1848
1849static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1850{
1851#ifdef CONFIG_MEM_SOFT_DIRTY
1852        if (unlikely(is_pmd_migration_entry(pmd)))
1853                pmd = pmd_swp_mksoft_dirty(pmd);
1854        else if (pmd_present(pmd))
1855                pmd = pmd_mksoft_dirty(pmd);
1856#endif
1857        return pmd;
1858}
1859
1860bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1861                  unsigned long new_addr, unsigned long old_end,
1862                  pmd_t *old_pmd, pmd_t *new_pmd)
1863{
1864        spinlock_t *old_ptl, *new_ptl;
1865        pmd_t pmd;
1866        struct mm_struct *mm = vma->vm_mm;
1867        bool force_flush = false;
1868
1869        if ((old_addr & ~HPAGE_PMD_MASK) ||
1870            (new_addr & ~HPAGE_PMD_MASK) ||
1871            old_end - old_addr < HPAGE_PMD_SIZE)
1872                return false;
1873
1874        /*
1875         * The destination pmd shouldn't be established, free_pgtables()
1876         * should have release it.
1877         */
1878        if (WARN_ON(!pmd_none(*new_pmd))) {
1879                VM_BUG_ON(pmd_trans_huge(*new_pmd));
1880                return false;
1881        }
1882
1883        /*
1884         * We don't have to worry about the ordering of src and dst
1885         * ptlocks because exclusive mmap_sem prevents deadlock.
1886         */
1887        old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1888        if (old_ptl) {
1889                new_ptl = pmd_lockptr(mm, new_pmd);
1890                if (new_ptl != old_ptl)
1891                        spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1892                pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1893                if (pmd_present(pmd))
1894                        force_flush = true;
1895                VM_BUG_ON(!pmd_none(*new_pmd));
1896
1897                if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1898                        pgtable_t pgtable;
1899                        pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1900                        pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1901                }
1902                pmd = move_soft_dirty_pmd(pmd);
1903                set_pmd_at(mm, new_addr, new_pmd, pmd);
1904                if (force_flush)
1905                        flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1906                if (new_ptl != old_ptl)
1907                        spin_unlock(new_ptl);
1908                spin_unlock(old_ptl);
1909                return true;
1910        }
1911        return false;
1912}
1913
1914/*
1915 * Returns
1916 *  - 0 if PMD could not be locked
1917 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1918 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1919 */
1920int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1921                unsigned long addr, pgprot_t newprot, int prot_numa)
1922{
1923        struct mm_struct *mm = vma->vm_mm;
1924        spinlock_t *ptl;
1925        pmd_t entry;
1926        bool preserve_write;
1927        int ret;
1928
1929        ptl = __pmd_trans_huge_lock(pmd, vma);
1930        if (!ptl)
1931                return 0;
1932
1933        preserve_write = prot_numa && pmd_write(*pmd);
1934        ret = 1;
1935
1936#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1937        if (is_swap_pmd(*pmd)) {
1938                swp_entry_t entry = pmd_to_swp_entry(*pmd);
1939
1940                VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1941                if (is_write_migration_entry(entry)) {
1942                        pmd_t newpmd;
1943                        /*
1944                         * A protection check is difficult so
1945                         * just be safe and disable write
1946                         */
1947                        make_migration_entry_read(&entry);
1948                        newpmd = swp_entry_to_pmd(entry);
1949                        if (pmd_swp_soft_dirty(*pmd))
1950                                newpmd = pmd_swp_mksoft_dirty(newpmd);
1951                        set_pmd_at(mm, addr, pmd, newpmd);
1952                }
1953                goto unlock;
1954        }
1955#endif
1956
1957        /*
1958         * Avoid trapping faults against the zero page. The read-only
1959         * data is likely to be read-cached on the local CPU and
1960         * local/remote hits to the zero page are not interesting.
1961         */
1962        if (prot_numa && is_huge_zero_pmd(*pmd))
1963                goto unlock;
1964
1965        if (prot_numa && pmd_protnone(*pmd))
1966                goto unlock;
1967
1968        /*
1969         * In case prot_numa, we are under down_read(mmap_sem). It's critical
1970         * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1971         * which is also under down_read(mmap_sem):
1972         *
1973         *      CPU0:                           CPU1:
1974         *                              change_huge_pmd(prot_numa=1)
1975         *                               pmdp_huge_get_and_clear_notify()
1976         * madvise_dontneed()
1977         *  zap_pmd_range()
1978         *   pmd_trans_huge(*pmd) == 0 (without ptl)
1979         *   // skip the pmd
1980         *                               set_pmd_at();
1981         *                               // pmd is re-established
1982         *
1983         * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1984         * which may break userspace.
1985         *
1986         * pmdp_invalidate() is required to make sure we don't miss
1987         * dirty/young flags set by hardware.
1988         */
1989        entry = pmdp_invalidate(vma, addr, pmd);
1990
1991        entry = pmd_modify(entry, newprot);
1992        if (preserve_write)
1993                entry = pmd_mk_savedwrite(entry);
1994        ret = HPAGE_PMD_NR;
1995        set_pmd_at(mm, addr, pmd, entry);
1996        BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1997unlock:
1998        spin_unlock(ptl);
1999        return ret;
2000}
2001
2002/*
2003 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
2004 *
2005 * Note that if it returns page table lock pointer, this routine returns without
2006 * unlocking page table lock. So callers must unlock it.
2007 */
2008spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
2009{
2010        spinlock_t *ptl;
2011        ptl = pmd_lock(vma->vm_mm, pmd);
2012        if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2013                        pmd_devmap(*pmd)))
2014                return ptl;
2015        spin_unlock(ptl);
2016        return NULL;
2017}
2018
2019/*
2020 * Returns true if a given pud maps a thp, false otherwise.
2021 *
2022 * Note that if it returns true, this routine returns without unlocking page
2023 * table lock. So callers must unlock it.
2024 */
2025spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2026{
2027        spinlock_t *ptl;
2028
2029        ptl = pud_lock(vma->vm_mm, pud);
2030        if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2031                return ptl;
2032        spin_unlock(ptl);
2033        return NULL;
2034}
2035
2036#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2037int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2038                 pud_t *pud, unsigned long addr)
2039{
2040        spinlock_t *ptl;
2041
2042        ptl = __pud_trans_huge_lock(pud, vma);
2043        if (!ptl)
2044                return 0;
2045        /*
2046         * For architectures like ppc64 we look at deposited pgtable
2047         * when calling pudp_huge_get_and_clear. So do the
2048         * pgtable_trans_huge_withdraw after finishing pudp related
2049         * operations.
2050         */
2051        pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
2052        tlb_remove_pud_tlb_entry(tlb, pud, addr);
2053        if (vma_is_dax(vma)) {
2054                spin_unlock(ptl);
2055                /* No zero page support yet */
2056        } else {
2057                /* No support for anonymous PUD pages yet */
2058                BUG();
2059        }
2060        return 1;
2061}
2062
2063static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2064                unsigned long haddr)
2065{
2066        VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2067        VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2068        VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2069        VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2070
2071        count_vm_event(THP_SPLIT_PUD);
2072
2073        pudp_huge_clear_flush_notify(vma, haddr, pud);
2074}
2075
2076void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2077                unsigned long address)
2078{
2079        spinlock_t *ptl;
2080        struct mmu_notifier_range range;
2081
2082        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2083                                address & HPAGE_PUD_MASK,
2084                                (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2085        mmu_notifier_invalidate_range_start(&range);
2086        ptl = pud_lock(vma->vm_mm, pud);
2087        if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2088                goto out;
2089        __split_huge_pud_locked(vma, pud, range.start);
2090
2091out:
2092        spin_unlock(ptl);
2093        /*
2094         * No need to double call mmu_notifier->invalidate_range() callback as
2095         * the above pudp_huge_clear_flush_notify() did already call it.
2096         */
2097        mmu_notifier_invalidate_range_only_end(&range);
2098}
2099#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2100
2101static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2102                unsigned long haddr, pmd_t *pmd)
2103{
2104        struct mm_struct *mm = vma->vm_mm;
2105        pgtable_t pgtable;
2106        pmd_t _pmd;
2107        int i;
2108
2109        /*
2110         * Leave pmd empty until pte is filled note that it is fine to delay
2111         * notification until mmu_notifier_invalidate_range_end() as we are
2112         * replacing a zero pmd write protected page with a zero pte write
2113         * protected page.
2114         *
2115         * See Documentation/vm/mmu_notifier.rst
2116         */
2117        pmdp_huge_clear_flush(vma, haddr, pmd);
2118
2119        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2120        pmd_populate(mm, &_pmd, pgtable);
2121
2122        for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2123                pte_t *pte, entry;
2124                entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2125                entry = pte_mkspecial(entry);
2126                pte = pte_offset_map(&_pmd, haddr);
2127                VM_BUG_ON(!pte_none(*pte));
2128                set_pte_at(mm, haddr, pte, entry);
2129                pte_unmap(pte);
2130        }
2131        smp_wmb(); /* make pte visible before pmd */
2132        pmd_populate(mm, pmd, pgtable);
2133}
2134
2135static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2136                unsigned long haddr, bool freeze)
2137{
2138        struct mm_struct *mm = vma->vm_mm;
2139        struct page *page;
2140        pgtable_t pgtable;
2141        pmd_t old_pmd, _pmd;
2142        bool young, write, soft_dirty, pmd_migration = false;
2143        unsigned long addr;
2144        int i;
2145
2146        VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2147        VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2148        VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2149        VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2150                                && !pmd_devmap(*pmd));
2151
2152        count_vm_event(THP_SPLIT_PMD);
2153
2154        if (!vma_is_anonymous(vma)) {
2155                _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2156                /*
2157                 * We are going to unmap this huge page. So
2158                 * just go ahead and zap it
2159                 */
2160                if (arch_needs_pgtable_deposit())
2161                        zap_deposited_table(mm, pmd);
2162                if (vma_is_dax(vma))
2163                        return;
2164                page = pmd_page(_pmd);
2165                if (!PageDirty(page) && pmd_dirty(_pmd))
2166                        set_page_dirty(page);
2167                if (!PageReferenced(page) && pmd_young(_pmd))
2168                        SetPageReferenced(page);
2169                page_remove_rmap(page, true);
2170                put_page(page);
2171                add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2172                return;
2173        } else if (is_huge_zero_pmd(*pmd)) {
2174                /*
2175                 * FIXME: Do we want to invalidate secondary mmu by calling
2176                 * mmu_notifier_invalidate_range() see comments below inside
2177                 * __split_huge_pmd() ?
2178                 *
2179                 * We are going from a zero huge page write protected to zero
2180                 * small page also write protected so it does not seems useful
2181                 * to invalidate secondary mmu at this time.
2182                 */
2183                return __split_huge_zero_page_pmd(vma, haddr, pmd);
2184        }
2185
2186        /*
2187         * Up to this point the pmd is present and huge and userland has the
2188         * whole access to the hugepage during the split (which happens in
2189         * place). If we overwrite the pmd with the not-huge version pointing
2190         * to the pte here (which of course we could if all CPUs were bug
2191         * free), userland could trigger a small page size TLB miss on the
2192         * small sized TLB while the hugepage TLB entry is still established in
2193         * the huge TLB. Some CPU doesn't like that.
2194         * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2195         * 383 on page 93. Intel should be safe but is also warns that it's
2196         * only safe if the permission and cache attributes of the two entries
2197         * loaded in the two TLB is identical (which should be the case here).
2198         * But it is generally safer to never allow small and huge TLB entries
2199         * for the same virtual address to be loaded simultaneously. So instead
2200         * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2201         * current pmd notpresent (atomically because here the pmd_trans_huge
2202         * must remain set at all times on the pmd until the split is complete
2203         * for this pmd), then we flush the SMP TLB and finally we write the
2204         * non-huge version of the pmd entry with pmd_populate.
2205         */
2206        old_pmd = pmdp_invalidate(vma, haddr, pmd);
2207
2208        pmd_migration = is_pmd_migration_entry(old_pmd);
2209        if (unlikely(pmd_migration)) {
2210                swp_entry_t entry;
2211
2212                entry = pmd_to_swp_entry(old_pmd);
2213                page = pfn_to_page(swp_offset(entry));
2214                write = is_write_migration_entry(entry);
2215                young = false;
2216                soft_dirty = pmd_swp_soft_dirty(old_pmd);
2217        } else {
2218                page = pmd_page(old_pmd);
2219                if (pmd_dirty(old_pmd))
2220                        SetPageDirty(page);
2221                write = pmd_write(old_pmd);
2222                young = pmd_young(old_pmd);
2223                soft_dirty = pmd_soft_dirty(old_pmd);
2224        }
2225        VM_BUG_ON_PAGE(!page_count(page), page);
2226        page_ref_add(page, HPAGE_PMD_NR - 1);
2227
2228        /*
2229         * Withdraw the table only after we mark the pmd entry invalid.
2230         * This's critical for some architectures (Power).
2231         */
2232        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2233        pmd_populate(mm, &_pmd, pgtable);
2234
2235        for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2236                pte_t entry, *pte;
2237                /*
2238                 * Note that NUMA hinting access restrictions are not
2239                 * transferred to avoid any possibility of altering
2240                 * permissions across VMAs.
2241                 */
2242                if (freeze || pmd_migration) {
2243                        swp_entry_t swp_entry;
2244                        swp_entry = make_migration_entry(page + i, write);
2245                        entry = swp_entry_to_pte(swp_entry);
2246                        if (soft_dirty)
2247                                entry = pte_swp_mksoft_dirty(entry);
2248                } else {
2249                        entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2250                        entry = maybe_mkwrite(entry, vma);
2251                        if (!write)
2252                                entry = pte_wrprotect(entry);
2253                        if (!young)
2254                                entry = pte_mkold(entry);
2255                        if (soft_dirty)
2256                                entry = pte_mksoft_dirty(entry);
2257                }
2258                pte = pte_offset_map(&_pmd, addr);
2259                BUG_ON(!pte_none(*pte));
2260                set_pte_at(mm, addr, pte, entry);
2261                atomic_inc(&page[i]._mapcount);
2262                pte_unmap(pte);
2263        }
2264
2265        /*
2266         * Set PG_double_map before dropping compound_mapcount to avoid
2267         * false-negative page_mapped().
2268         */
2269        if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2270                for (i = 0; i < HPAGE_PMD_NR; i++)
2271                        atomic_inc(&page[i]._mapcount);
2272        }
2273
2274        if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2275                /* Last compound_mapcount is gone. */
2276                __dec_node_page_state(page, NR_ANON_THPS);
2277                if (TestClearPageDoubleMap(page)) {
2278                        /* No need in mapcount reference anymore */
2279                        for (i = 0; i < HPAGE_PMD_NR; i++)
2280                                atomic_dec(&page[i]._mapcount);
2281                }
2282        }
2283
2284        smp_wmb(); /* make pte visible before pmd */
2285        pmd_populate(mm, pmd, pgtable);
2286
2287        if (freeze) {
2288                for (i = 0; i < HPAGE_PMD_NR; i++) {
2289                        page_remove_rmap(page + i, false);
2290                        put_page(page + i);
2291                }
2292        }
2293}
2294
2295void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2296                unsigned long address, bool freeze, struct page *page)
2297{
2298        spinlock_t *ptl;
2299        struct mmu_notifier_range range;
2300
2301        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
2302                                address & HPAGE_PMD_MASK,
2303                                (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2304        mmu_notifier_invalidate_range_start(&range);
2305        ptl = pmd_lock(vma->vm_mm, pmd);
2306
2307        /*
2308         * If caller asks to setup a migration entries, we need a page to check
2309         * pmd against. Otherwise we can end up replacing wrong page.
2310         */
2311        VM_BUG_ON(freeze && !page);
2312        if (page && page != pmd_page(*pmd))
2313                goto out;
2314
2315        if (pmd_trans_huge(*pmd)) {
2316                page = pmd_page(*pmd);
2317                if (PageMlocked(page))
2318                        clear_page_mlock(page);
2319        } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2320                goto out;
2321        __split_huge_pmd_locked(vma, pmd, range.start, freeze);
2322out:
2323        spin_unlock(ptl);
2324        /*
2325         * No need to double call mmu_notifier->invalidate_range() callback.
2326         * They are 3 cases to consider inside __split_huge_pmd_locked():
2327         *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2328         *  2) __split_huge_zero_page_pmd() read only zero page and any write
2329         *    fault will trigger a flush_notify before pointing to a new page
2330         *    (it is fine if the secondary mmu keeps pointing to the old zero
2331         *    page in the meantime)
2332         *  3) Split a huge pmd into pte pointing to the same page. No need
2333         *     to invalidate secondary tlb entry they are all still valid.
2334         *     any further changes to individual pte will notify. So no need
2335         *     to call mmu_notifier->invalidate_range()
2336         */
2337        mmu_notifier_invalidate_range_only_end(&range);
2338}
2339
2340void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2341                bool freeze, struct page *page)
2342{
2343        pgd_t *pgd;
2344        p4d_t *p4d;
2345        pud_t *pud;
2346        pmd_t *pmd;
2347
2348        pgd = pgd_offset(vma->vm_mm, address);
2349        if (!pgd_present(*pgd))
2350                return;
2351
2352        p4d = p4d_offset(pgd, address);
2353        if (!p4d_present(*p4d))
2354                return;
2355
2356        pud = pud_offset(p4d, address);
2357        if (!pud_present(*pud))
2358                return;
2359
2360        pmd = pmd_offset(pud, address);
2361
2362        __split_huge_pmd(vma, pmd, address, freeze, page);
2363}
2364
2365void vma_adjust_trans_huge(struct vm_area_struct *vma,
2366                             unsigned long start,
2367                             unsigned long end,
2368                             long adjust_next)
2369{
2370        /*
2371         * If the new start address isn't hpage aligned and it could
2372         * previously contain an hugepage: check if we need to split
2373         * an huge pmd.
2374         */
2375        if (start & ~HPAGE_PMD_MASK &&
2376            (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2377            (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2378                split_huge_pmd_address(vma, start, false, NULL);
2379
2380        /*
2381         * If the new end address isn't hpage aligned and it could
2382         * previously contain an hugepage: check if we need to split
2383         * an huge pmd.
2384         */
2385        if (end & ~HPAGE_PMD_MASK &&
2386            (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2387            (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2388                split_huge_pmd_address(vma, end, false, NULL);
2389
2390        /*
2391         * If we're also updating the vma->vm_next->vm_start, if the new
2392         * vm_next->vm_start isn't page aligned and it could previously
2393         * contain an hugepage: check if we need to split an huge pmd.
2394         */
2395        if (adjust_next > 0) {
2396                struct vm_area_struct *next = vma->vm_next;
2397                unsigned long nstart = next->vm_start;
2398                nstart += adjust_next << PAGE_SHIFT;
2399                if (nstart & ~HPAGE_PMD_MASK &&
2400                    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2401                    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2402                        split_huge_pmd_address(next, nstart, false, NULL);
2403        }
2404}
2405
2406static void unmap_page(struct page *page)
2407{
2408        enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2409                TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2410        bool unmap_success;
2411
2412        VM_BUG_ON_PAGE(!PageHead(page), page);
2413
2414        if (PageAnon(page))
2415                ttu_flags |= TTU_SPLIT_FREEZE;
2416
2417        unmap_success = try_to_unmap(page, ttu_flags);
2418        VM_BUG_ON_PAGE(!unmap_success, page);
2419}
2420
2421static void remap_page(struct page *page)
2422{
2423        int i;
2424        if (PageTransHuge(page)) {
2425                remove_migration_ptes(page, page, true);
2426        } else {
2427                for (i = 0; i < HPAGE_PMD_NR; i++)
2428                        remove_migration_ptes(page + i, page + i, true);
2429        }
2430}
2431
2432static void __split_huge_page_tail(struct page *head, int tail,
2433                struct lruvec *lruvec, struct list_head *list)
2434{
2435        struct page *page_tail = head + tail;
2436
2437        VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2438
2439        /*
2440         * Clone page flags before unfreezing refcount.
2441         *
2442         * After successful get_page_unless_zero() might follow flags change,
2443         * for exmaple lock_page() which set PG_waiters.
2444         */
2445        page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2446        page_tail->flags |= (head->flags &
2447                        ((1L << PG_referenced) |
2448                         (1L << PG_swapbacked) |
2449                         (1L << PG_swapcache) |
2450                         (1L << PG_mlocked) |
2451                         (1L << PG_uptodate) |
2452                         (1L << PG_active) |
2453                         (1L << PG_workingset) |
2454                         (1L << PG_locked) |
2455                         (1L << PG_unevictable) |
2456                         (1L << PG_dirty)));
2457
2458        /* ->mapping in first tail page is compound_mapcount */
2459        VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2460                        page_tail);
2461        page_tail->mapping = head->mapping;
2462        page_tail->index = head->index + tail;
2463
2464        /* Page flags must be visible before we make the page non-compound. */
2465        smp_wmb();
2466
2467        /*
2468         * Clear PageTail before unfreezing page refcount.
2469         *
2470         * After successful get_page_unless_zero() might follow put_page()
2471         * which needs correct compound_head().
2472         */
2473        clear_compound_head(page_tail);
2474
2475        /* Finally unfreeze refcount. Additional reference from page cache. */
2476        page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2477                                          PageSwapCache(head)));
2478
2479        if (page_is_young(head))
2480                set_page_young(page_tail);
2481        if (page_is_idle(head))
2482                set_page_idle(page_tail);
2483
2484        page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2485
2486        /*
2487         * always add to the tail because some iterators expect new
2488         * pages to show after the currently processed elements - e.g.
2489         * migrate_pages
2490         */
2491        lru_add_page_tail(head, page_tail, lruvec, list);
2492}
2493
2494static void __split_huge_page(struct page *page, struct list_head *list,
2495                pgoff_t end, unsigned long flags)
2496{
2497        struct page *head = compound_head(page);
2498        pg_data_t *pgdat = page_pgdat(head);
2499        struct lruvec *lruvec;
2500        int i;
2501
2502        lruvec = mem_cgroup_page_lruvec(head, pgdat);
2503
2504        /* complete memcg works before add pages to LRU */
2505        mem_cgroup_split_huge_fixup(head);
2506
2507        for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2508                __split_huge_page_tail(head, i, lruvec, list);
2509                /* Some pages can be beyond i_size: drop them from page cache */
2510                if (head[i].index >= end) {
2511                        ClearPageDirty(head + i);
2512                        __delete_from_page_cache(head + i, NULL);
2513                        if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2514                                shmem_uncharge(head->mapping->host, 1);
2515                        put_page(head + i);
2516                }
2517        }
2518
2519        ClearPageCompound(head);
2520
2521        split_page_owner(head, HPAGE_PMD_ORDER);
2522
2523        /* See comment in __split_huge_page_tail() */
2524        if (PageAnon(head)) {
2525                /* Additional pin to swap cache */
2526                if (PageSwapCache(head))
2527                        page_ref_add(head, 2);
2528                else
2529                        page_ref_inc(head);
2530        } else {
2531                /* Additional pin to page cache */
2532                page_ref_add(head, 2);
2533                xa_unlock(&head->mapping->i_pages);
2534        }
2535
2536        spin_unlock_irqrestore(&pgdat->lru_lock, flags);
2537
2538        remap_page(head);
2539
2540        for (i = 0; i < HPAGE_PMD_NR; i++) {
2541                struct page *subpage = head + i;
2542                if (subpage == page)
2543                        continue;
2544                unlock_page(subpage);
2545
2546                /*
2547                 * Subpages may be freed if there wasn't any mapping
2548                 * like if add_to_swap() is running on a lru page that
2549                 * had its mapping zapped. And freeing these pages
2550                 * requires taking the lru_lock so we do the put_page
2551                 * of the tail pages after the split is complete.
2552                 */
2553                put_page(subpage);
2554        }
2555}
2556
2557int total_mapcount(struct page *page)
2558{
2559        int i, compound, ret;
2560
2561        VM_BUG_ON_PAGE(PageTail(page), page);
2562
2563        if (likely(!PageCompound(page)))
2564                return atomic_read(&page->_mapcount) + 1;
2565
2566        compound = compound_mapcount(page);
2567        if (PageHuge(page))
2568                return compound;
2569        ret = compound;
2570        for (i = 0; i < HPAGE_PMD_NR; i++)
2571                ret += atomic_read(&page[i]._mapcount) + 1;
2572        /* File pages has compound_mapcount included in _mapcount */
2573        if (!PageAnon(page))
2574                return ret - compound * HPAGE_PMD_NR;
2575        if (PageDoubleMap(page))
2576                ret -= HPAGE_PMD_NR;
2577        return ret;
2578}
2579
2580/*
2581 * This calculates accurately how many mappings a transparent hugepage
2582 * has (unlike page_mapcount() which isn't fully accurate). This full
2583 * accuracy is primarily needed to know if copy-on-write faults can
2584 * reuse the page and change the mapping to read-write instead of
2585 * copying them. At the same time this returns the total_mapcount too.
2586 *
2587 * The function returns the highest mapcount any one of the subpages
2588 * has. If the return value is one, even if different processes are
2589 * mapping different subpages of the transparent hugepage, they can
2590 * all reuse it, because each process is reusing a different subpage.
2591 *
2592 * The total_mapcount is instead counting all virtual mappings of the
2593 * subpages. If the total_mapcount is equal to "one", it tells the
2594 * caller all mappings belong to the same "mm" and in turn the
2595 * anon_vma of the transparent hugepage can become the vma->anon_vma
2596 * local one as no other process may be mapping any of the subpages.
2597 *
2598 * It would be more accurate to replace page_mapcount() with
2599 * page_trans_huge_mapcount(), however we only use
2600 * page_trans_huge_mapcount() in the copy-on-write faults where we
2601 * need full accuracy to avoid breaking page pinning, because
2602 * page_trans_huge_mapcount() is slower than page_mapcount().
2603 */
2604int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2605{
2606        int i, ret, _total_mapcount, mapcount;
2607
2608        /* hugetlbfs shouldn't call it */
2609        VM_BUG_ON_PAGE(PageHuge(page), page);
2610
2611        if (likely(!PageTransCompound(page))) {
2612                mapcount = atomic_read(&page->_mapcount) + 1;
2613                if (total_mapcount)
2614                        *total_mapcount = mapcount;
2615                return mapcount;
2616        }
2617
2618        page = compound_head(page);
2619
2620        _total_mapcount = ret = 0;
2621        for (i = 0; i < HPAGE_PMD_NR; i++) {
2622                mapcount = atomic_read(&page[i]._mapcount) + 1;
2623                ret = max(ret, mapcount);
2624                _total_mapcount += mapcount;
2625        }
2626        if (PageDoubleMap(page)) {
2627                ret -= 1;
2628                _total_mapcount -= HPAGE_PMD_NR;
2629        }
2630        mapcount = compound_mapcount(page);
2631        ret += mapcount;
2632        _total_mapcount += mapcount;
2633        if (total_mapcount)
2634                *total_mapcount = _total_mapcount;
2635        return ret;
2636}
2637
2638/* Racy check whether the huge page can be split */
2639bool can_split_huge_page(struct page *page, int *pextra_pins)
2640{
2641        int extra_pins;
2642
2643        /* Additional pins from page cache */
2644        if (PageAnon(page))
2645                extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2646        else
2647                extra_pins = HPAGE_PMD_NR;
2648        if (pextra_pins)
2649                *pextra_pins = extra_pins;
2650        return total_mapcount(page) == page_count(page) - extra_pins - 1;
2651}
2652
2653/*
2654 * This function splits huge page into normal pages. @page can point to any
2655 * subpage of huge page to split. Split doesn't change the position of @page.
2656 *
2657 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2658 * The huge page must be locked.
2659 *
2660 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2661 *
2662 * Both head page and tail pages will inherit mapping, flags, and so on from
2663 * the hugepage.
2664 *
2665 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2666 * they are not mapped.
2667 *
2668 * Returns 0 if the hugepage is split successfully.
2669 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2670 * us.
2671 */
2672int split_huge_page_to_list(struct page *page, struct list_head *list)
2673{
2674        struct page *head = compound_head(page);
2675        struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2676        struct anon_vma *anon_vma = NULL;
2677        struct address_space *mapping = NULL;
2678        int count, mapcount, extra_pins, ret;
2679        bool mlocked;
2680        unsigned long flags;
2681        pgoff_t end;
2682
2683        VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2684        VM_BUG_ON_PAGE(!PageLocked(page), page);
2685        VM_BUG_ON_PAGE(!PageCompound(page), page);
2686
2687        if (PageWriteback(page))
2688                return -EBUSY;
2689
2690        if (PageAnon(head)) {
2691                /*
2692                 * The caller does not necessarily hold an mmap_sem that would
2693                 * prevent the anon_vma disappearing so we first we take a
2694                 * reference to it and then lock the anon_vma for write. This
2695                 * is similar to page_lock_anon_vma_read except the write lock
2696                 * is taken to serialise against parallel split or collapse
2697                 * operations.
2698                 */
2699                anon_vma = page_get_anon_vma(head);
2700                if (!anon_vma) {
2701                        ret = -EBUSY;
2702                        goto out;
2703                }
2704                end = -1;
2705                mapping = NULL;
2706                anon_vma_lock_write(anon_vma);
2707        } else {
2708                mapping = head->mapping;
2709
2710                /* Truncated ? */
2711                if (!mapping) {
2712                        ret = -EBUSY;
2713                        goto out;
2714                }
2715
2716                anon_vma = NULL;
2717                i_mmap_lock_read(mapping);
2718
2719                /*
2720                 *__split_huge_page() may need to trim off pages beyond EOF:
2721                 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2722                 * which cannot be nested inside the page tree lock. So note
2723                 * end now: i_size itself may be changed at any moment, but
2724                 * head page lock is good enough to serialize the trimming.
2725                 */
2726                end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2727        }
2728
2729        /*
2730         * Racy check if we can split the page, before unmap_page() will
2731         * split PMDs
2732         */
2733        if (!can_split_huge_page(head, &extra_pins)) {
2734                ret = -EBUSY;
2735                goto out_unlock;
2736        }
2737
2738        mlocked = PageMlocked(page);
2739        unmap_page(head);
2740        VM_BUG_ON_PAGE(compound_mapcount(head), head);
2741
2742        /* Make sure the page is not on per-CPU pagevec as it takes pin */
2743        if (mlocked)
2744                lru_add_drain();
2745
2746        /* prevent PageLRU to go away from under us, and freeze lru stats */
2747        spin_lock_irqsave(&pgdata->lru_lock, flags);
2748
2749        if (mapping) {
2750                XA_STATE(xas, &mapping->i_pages, page_index(head));
2751
2752                /*
2753                 * Check if the head page is present in page cache.
2754                 * We assume all tail are present too, if head is there.
2755                 */
2756                xa_lock(&mapping->i_pages);
2757                if (xas_load(&xas) != head)
2758                        goto fail;
2759        }
2760
2761        /* Prevent deferred_split_scan() touching ->_refcount */
2762        spin_lock(&pgdata->split_queue_lock);
2763        count = page_count(head);
2764        mapcount = total_mapcount(head);
2765        if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2766                if (!list_empty(page_deferred_list(head))) {
2767                        pgdata->split_queue_len--;
2768                        list_del(page_deferred_list(head));
2769                }
2770                if (mapping)
2771                        __dec_node_page_state(page, NR_SHMEM_THPS);
2772                spin_unlock(&pgdata->split_queue_lock);
2773                __split_huge_page(page, list, end, flags);
2774                if (PageSwapCache(head)) {
2775                        swp_entry_t entry = { .val = page_private(head) };
2776
2777                        ret = split_swap_cluster(entry);
2778                } else
2779                        ret = 0;
2780        } else {
2781                if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2782                        pr_alert("total_mapcount: %u, page_count(): %u\n",
2783                                        mapcount, count);
2784                        if (PageTail(page))
2785                                dump_page(head, NULL);
2786                        dump_page(page, "total_mapcount(head) > 0");
2787                        BUG();
2788                }
2789                spin_unlock(&pgdata->split_queue_lock);
2790fail:           if (mapping)
2791                        xa_unlock(&mapping->i_pages);
2792                spin_unlock_irqrestore(&pgdata->lru_lock, flags);
2793                remap_page(head);
2794                ret = -EBUSY;
2795        }
2796
2797out_unlock:
2798        if (anon_vma) {
2799                anon_vma_unlock_write(anon_vma);
2800                put_anon_vma(anon_vma);
2801        }
2802        if (mapping)
2803                i_mmap_unlock_read(mapping);
2804out:
2805        count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2806        return ret;
2807}
2808
2809void free_transhuge_page(struct page *page)
2810{
2811        struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2812        unsigned long flags;
2813
2814        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2815        if (!list_empty(page_deferred_list(page))) {
2816                pgdata->split_queue_len--;
2817                list_del(page_deferred_list(page));
2818        }
2819        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2820        free_compound_page(page);
2821}
2822
2823void deferred_split_huge_page(struct page *page)
2824{
2825        struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2826        unsigned long flags;
2827
2828        VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2829
2830        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2831        if (list_empty(page_deferred_list(page))) {
2832                count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2833                list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2834                pgdata->split_queue_len++;
2835        }
2836        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2837}
2838
2839static unsigned long deferred_split_count(struct shrinker *shrink,
2840                struct shrink_control *sc)
2841{
2842        struct pglist_data *pgdata = NODE_DATA(sc->nid);
2843        return READ_ONCE(pgdata->split_queue_len);
2844}
2845
2846static unsigned long deferred_split_scan(struct shrinker *shrink,
2847                struct shrink_control *sc)
2848{
2849        struct pglist_data *pgdata = NODE_DATA(sc->nid);
2850        unsigned long flags;
2851        LIST_HEAD(list), *pos, *next;
2852        struct page *page;
2853        int split = 0;
2854
2855        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2856        /* Take pin on all head pages to avoid freeing them under us */
2857        list_for_each_safe(pos, next, &pgdata->split_queue) {
2858                page = list_entry((void *)pos, struct page, mapping);
2859                page = compound_head(page);
2860                if (get_page_unless_zero(page)) {
2861                        list_move(page_deferred_list(page), &list);
2862                } else {
2863                        /* We lost race with put_compound_page() */
2864                        list_del_init(page_deferred_list(page));
2865                        pgdata->split_queue_len--;
2866                }
2867                if (!--sc->nr_to_scan)
2868                        break;
2869        }
2870        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2871
2872        list_for_each_safe(pos, next, &list) {
2873                page = list_entry((void *)pos, struct page, mapping);
2874                if (!trylock_page(page))
2875                        goto next;
2876                /* split_huge_page() removes page from list on success */
2877                if (!split_huge_page(page))
2878                        split++;
2879                unlock_page(page);
2880next:
2881                put_page(page);
2882        }
2883
2884        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2885        list_splice_tail(&list, &pgdata->split_queue);
2886        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2887
2888        /*
2889         * Stop shrinker if we didn't split any page, but the queue is empty.
2890         * This can happen if pages were freed under us.
2891         */
2892        if (!split && list_empty(&pgdata->split_queue))
2893                return SHRINK_STOP;
2894        return split;
2895}
2896
2897static struct shrinker deferred_split_shrinker = {
2898        .count_objects = deferred_split_count,
2899        .scan_objects = deferred_split_scan,
2900        .seeks = DEFAULT_SEEKS,
2901        .flags = SHRINKER_NUMA_AWARE,
2902};
2903
2904#ifdef CONFIG_DEBUG_FS
2905static int split_huge_pages_set(void *data, u64 val)
2906{
2907        struct zone *zone;
2908        struct page *page;
2909        unsigned long pfn, max_zone_pfn;
2910        unsigned long total = 0, split = 0;
2911
2912        if (val != 1)
2913                return -EINVAL;
2914
2915        for_each_populated_zone(zone) {
2916                max_zone_pfn = zone_end_pfn(zone);
2917                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2918                        if (!pfn_valid(pfn))
2919                                continue;
2920
2921                        page = pfn_to_page(pfn);
2922                        if (!get_page_unless_zero(page))
2923                                continue;
2924
2925                        if (zone != page_zone(page))
2926                                goto next;
2927
2928                        if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2929                                goto next;
2930
2931                        total++;
2932                        lock_page(page);
2933                        if (!split_huge_page(page))
2934                                split++;
2935                        unlock_page(page);
2936next:
2937                        put_page(page);
2938                }
2939        }
2940
2941        pr_info("%lu of %lu THP split\n", split, total);
2942
2943        return 0;
2944}
2945DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2946                "%llu\n");
2947
2948static int __init split_huge_pages_debugfs(void)
2949{
2950        debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2951                            &split_huge_pages_fops);
2952        return 0;
2953}
2954late_initcall(split_huge_pages_debugfs);
2955#endif
2956
2957#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2958void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2959                struct page *page)
2960{
2961        struct vm_area_struct *vma = pvmw->vma;
2962        struct mm_struct *mm = vma->vm_mm;
2963        unsigned long address = pvmw->address;
2964        pmd_t pmdval;
2965        swp_entry_t entry;
2966        pmd_t pmdswp;
2967
2968        if (!(pvmw->pmd && !pvmw->pte))
2969                return;
2970
2971        flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2972        pmdval = *pvmw->pmd;
2973        pmdp_invalidate(vma, address, pvmw->pmd);
2974        if (pmd_dirty(pmdval))
2975                set_page_dirty(page);
2976        entry = make_migration_entry(page, pmd_write(pmdval));
2977        pmdswp = swp_entry_to_pmd(entry);
2978        if (pmd_soft_dirty(pmdval))
2979                pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2980        set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2981        page_remove_rmap(page, true);
2982        put_page(page);
2983}
2984
2985void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2986{
2987        struct vm_area_struct *vma = pvmw->vma;
2988        struct mm_struct *mm = vma->vm_mm;
2989        unsigned long address = pvmw->address;
2990        unsigned long mmun_start = address & HPAGE_PMD_MASK;
2991        pmd_t pmde;
2992        swp_entry_t entry;
2993
2994        if (!(pvmw->pmd && !pvmw->pte))
2995                return;
2996
2997        entry = pmd_to_swp_entry(*pvmw->pmd);
2998        get_page(new);
2999        pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
3000        if (pmd_swp_soft_dirty(*pvmw->pmd))
3001                pmde = pmd_mksoft_dirty(pmde);
3002        if (is_write_migration_entry(entry))
3003                pmde = maybe_pmd_mkwrite(pmde, vma);
3004
3005        flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
3006        if (PageAnon(new))
3007                page_add_anon_rmap(new, vma, mmun_start, true);
3008        else
3009                page_add_file_rmap(new, true);
3010        set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
3011        if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
3012                mlock_vma_page(new);
3013        update_mmu_cache_pmd(vma, address, pvmw->pmd);
3014}
3015#endif
3016