linux/mm/memcontrol.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* memcontrol.c - Memory Controller
   3 *
   4 * Copyright IBM Corporation, 2007
   5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
   6 *
   7 * Copyright 2007 OpenVZ SWsoft Inc
   8 * Author: Pavel Emelianov <xemul@openvz.org>
   9 *
  10 * Memory thresholds
  11 * Copyright (C) 2009 Nokia Corporation
  12 * Author: Kirill A. Shutemov
  13 *
  14 * Kernel Memory Controller
  15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
  16 * Authors: Glauber Costa and Suleiman Souhlal
  17 *
  18 * Native page reclaim
  19 * Charge lifetime sanitation
  20 * Lockless page tracking & accounting
  21 * Unified hierarchy configuration model
  22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
  23 */
  24
  25#include <linux/page_counter.h>
  26#include <linux/memcontrol.h>
  27#include <linux/cgroup.h>
  28#include <linux/mm.h>
  29#include <linux/sched/mm.h>
  30#include <linux/shmem_fs.h>
  31#include <linux/hugetlb.h>
  32#include <linux/pagemap.h>
  33#include <linux/vm_event_item.h>
  34#include <linux/smp.h>
  35#include <linux/page-flags.h>
  36#include <linux/backing-dev.h>
  37#include <linux/bit_spinlock.h>
  38#include <linux/rcupdate.h>
  39#include <linux/limits.h>
  40#include <linux/export.h>
  41#include <linux/mutex.h>
  42#include <linux/rbtree.h>
  43#include <linux/slab.h>
  44#include <linux/swap.h>
  45#include <linux/swapops.h>
  46#include <linux/spinlock.h>
  47#include <linux/eventfd.h>
  48#include <linux/poll.h>
  49#include <linux/sort.h>
  50#include <linux/fs.h>
  51#include <linux/seq_file.h>
  52#include <linux/vmpressure.h>
  53#include <linux/mm_inline.h>
  54#include <linux/swap_cgroup.h>
  55#include <linux/cpu.h>
  56#include <linux/oom.h>
  57#include <linux/lockdep.h>
  58#include <linux/file.h>
  59#include <linux/tracehook.h>
  60#include <linux/seq_buf.h>
  61#include "internal.h"
  62#include <net/sock.h>
  63#include <net/ip.h>
  64#include "slab.h"
  65
  66#include <linux/uaccess.h>
  67
  68#include <trace/events/vmscan.h>
  69
  70struct cgroup_subsys memory_cgrp_subsys __read_mostly;
  71EXPORT_SYMBOL(memory_cgrp_subsys);
  72
  73struct mem_cgroup *root_mem_cgroup __read_mostly;
  74
  75#define MEM_CGROUP_RECLAIM_RETRIES      5
  76
  77/* Socket memory accounting disabled? */
  78static bool cgroup_memory_nosocket;
  79
  80/* Kernel memory accounting disabled? */
  81static bool cgroup_memory_nokmem;
  82
  83/* Whether the swap controller is active */
  84#ifdef CONFIG_MEMCG_SWAP
  85int do_swap_account __read_mostly;
  86#else
  87#define do_swap_account         0
  88#endif
  89
  90/* Whether legacy memory+swap accounting is active */
  91static bool do_memsw_account(void)
  92{
  93        return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
  94}
  95
  96static const char *const mem_cgroup_lru_names[] = {
  97        "inactive_anon",
  98        "active_anon",
  99        "inactive_file",
 100        "active_file",
 101        "unevictable",
 102};
 103
 104#define THRESHOLDS_EVENTS_TARGET 128
 105#define SOFTLIMIT_EVENTS_TARGET 1024
 106#define NUMAINFO_EVENTS_TARGET  1024
 107
 108/*
 109 * Cgroups above their limits are maintained in a RB-Tree, independent of
 110 * their hierarchy representation
 111 */
 112
 113struct mem_cgroup_tree_per_node {
 114        struct rb_root rb_root;
 115        struct rb_node *rb_rightmost;
 116        spinlock_t lock;
 117};
 118
 119struct mem_cgroup_tree {
 120        struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
 121};
 122
 123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
 124
 125/* for OOM */
 126struct mem_cgroup_eventfd_list {
 127        struct list_head list;
 128        struct eventfd_ctx *eventfd;
 129};
 130
 131/*
 132 * cgroup_event represents events which userspace want to receive.
 133 */
 134struct mem_cgroup_event {
 135        /*
 136         * memcg which the event belongs to.
 137         */
 138        struct mem_cgroup *memcg;
 139        /*
 140         * eventfd to signal userspace about the event.
 141         */
 142        struct eventfd_ctx *eventfd;
 143        /*
 144         * Each of these stored in a list by the cgroup.
 145         */
 146        struct list_head list;
 147        /*
 148         * register_event() callback will be used to add new userspace
 149         * waiter for changes related to this event.  Use eventfd_signal()
 150         * on eventfd to send notification to userspace.
 151         */
 152        int (*register_event)(struct mem_cgroup *memcg,
 153                              struct eventfd_ctx *eventfd, const char *args);
 154        /*
 155         * unregister_event() callback will be called when userspace closes
 156         * the eventfd or on cgroup removing.  This callback must be set,
 157         * if you want provide notification functionality.
 158         */
 159        void (*unregister_event)(struct mem_cgroup *memcg,
 160                                 struct eventfd_ctx *eventfd);
 161        /*
 162         * All fields below needed to unregister event when
 163         * userspace closes eventfd.
 164         */
 165        poll_table pt;
 166        wait_queue_head_t *wqh;
 167        wait_queue_entry_t wait;
 168        struct work_struct remove;
 169};
 170
 171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
 172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
 173
 174/* Stuffs for move charges at task migration. */
 175/*
 176 * Types of charges to be moved.
 177 */
 178#define MOVE_ANON       0x1U
 179#define MOVE_FILE       0x2U
 180#define MOVE_MASK       (MOVE_ANON | MOVE_FILE)
 181
 182/* "mc" and its members are protected by cgroup_mutex */
 183static struct move_charge_struct {
 184        spinlock_t        lock; /* for from, to */
 185        struct mm_struct  *mm;
 186        struct mem_cgroup *from;
 187        struct mem_cgroup *to;
 188        unsigned long flags;
 189        unsigned long precharge;
 190        unsigned long moved_charge;
 191        unsigned long moved_swap;
 192        struct task_struct *moving_task;        /* a task moving charges */
 193        wait_queue_head_t waitq;                /* a waitq for other context */
 194} mc = {
 195        .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
 196        .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
 197};
 198
 199/*
 200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 201 * limit reclaim to prevent infinite loops, if they ever occur.
 202 */
 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS            100
 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
 205
 206enum charge_type {
 207        MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
 208        MEM_CGROUP_CHARGE_TYPE_ANON,
 209        MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
 210        MEM_CGROUP_CHARGE_TYPE_DROP,    /* a page was unused swap cache */
 211        NR_CHARGE_TYPE,
 212};
 213
 214/* for encoding cft->private value on file */
 215enum res_type {
 216        _MEM,
 217        _MEMSWAP,
 218        _OOM_TYPE,
 219        _KMEM,
 220        _TCP,
 221};
 222
 223#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
 224#define MEMFILE_TYPE(val)       ((val) >> 16 & 0xffff)
 225#define MEMFILE_ATTR(val)       ((val) & 0xffff)
 226/* Used for OOM nofiier */
 227#define OOM_CONTROL             (0)
 228
 229/*
 230 * Iteration constructs for visiting all cgroups (under a tree).  If
 231 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 232 * be used for reference counting.
 233 */
 234#define for_each_mem_cgroup_tree(iter, root)            \
 235        for (iter = mem_cgroup_iter(root, NULL, NULL);  \
 236             iter != NULL;                              \
 237             iter = mem_cgroup_iter(root, iter, NULL))
 238
 239#define for_each_mem_cgroup(iter)                       \
 240        for (iter = mem_cgroup_iter(NULL, NULL, NULL);  \
 241             iter != NULL;                              \
 242             iter = mem_cgroup_iter(NULL, iter, NULL))
 243
 244static inline bool should_force_charge(void)
 245{
 246        return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
 247                (current->flags & PF_EXITING);
 248}
 249
 250/* Some nice accessors for the vmpressure. */
 251struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
 252{
 253        if (!memcg)
 254                memcg = root_mem_cgroup;
 255        return &memcg->vmpressure;
 256}
 257
 258struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
 259{
 260        return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
 261}
 262
 263#ifdef CONFIG_MEMCG_KMEM
 264/*
 265 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
 266 * The main reason for not using cgroup id for this:
 267 *  this works better in sparse environments, where we have a lot of memcgs,
 268 *  but only a few kmem-limited. Or also, if we have, for instance, 200
 269 *  memcgs, and none but the 200th is kmem-limited, we'd have to have a
 270 *  200 entry array for that.
 271 *
 272 * The current size of the caches array is stored in memcg_nr_cache_ids. It
 273 * will double each time we have to increase it.
 274 */
 275static DEFINE_IDA(memcg_cache_ida);
 276int memcg_nr_cache_ids;
 277
 278/* Protects memcg_nr_cache_ids */
 279static DECLARE_RWSEM(memcg_cache_ids_sem);
 280
 281void memcg_get_cache_ids(void)
 282{
 283        down_read(&memcg_cache_ids_sem);
 284}
 285
 286void memcg_put_cache_ids(void)
 287{
 288        up_read(&memcg_cache_ids_sem);
 289}
 290
 291/*
 292 * MIN_SIZE is different than 1, because we would like to avoid going through
 293 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 294 * cgroups is a reasonable guess. In the future, it could be a parameter or
 295 * tunable, but that is strictly not necessary.
 296 *
 297 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
 298 * this constant directly from cgroup, but it is understandable that this is
 299 * better kept as an internal representation in cgroup.c. In any case, the
 300 * cgrp_id space is not getting any smaller, and we don't have to necessarily
 301 * increase ours as well if it increases.
 302 */
 303#define MEMCG_CACHES_MIN_SIZE 4
 304#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
 305
 306/*
 307 * A lot of the calls to the cache allocation functions are expected to be
 308 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 309 * conditional to this static branch, we'll have to allow modules that does
 310 * kmem_cache_alloc and the such to see this symbol as well
 311 */
 312DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
 313EXPORT_SYMBOL(memcg_kmem_enabled_key);
 314
 315struct workqueue_struct *memcg_kmem_cache_wq;
 316
 317static int memcg_shrinker_map_size;
 318static DEFINE_MUTEX(memcg_shrinker_map_mutex);
 319
 320static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
 321{
 322        kvfree(container_of(head, struct memcg_shrinker_map, rcu));
 323}
 324
 325static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
 326                                         int size, int old_size)
 327{
 328        struct memcg_shrinker_map *new, *old;
 329        int nid;
 330
 331        lockdep_assert_held(&memcg_shrinker_map_mutex);
 332
 333        for_each_node(nid) {
 334                old = rcu_dereference_protected(
 335                        mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
 336                /* Not yet online memcg */
 337                if (!old)
 338                        return 0;
 339
 340                new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
 341                if (!new)
 342                        return -ENOMEM;
 343
 344                /* Set all old bits, clear all new bits */
 345                memset(new->map, (int)0xff, old_size);
 346                memset((void *)new->map + old_size, 0, size - old_size);
 347
 348                rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
 349                call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
 350        }
 351
 352        return 0;
 353}
 354
 355static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
 356{
 357        struct mem_cgroup_per_node *pn;
 358        struct memcg_shrinker_map *map;
 359        int nid;
 360
 361        if (mem_cgroup_is_root(memcg))
 362                return;
 363
 364        for_each_node(nid) {
 365                pn = mem_cgroup_nodeinfo(memcg, nid);
 366                map = rcu_dereference_protected(pn->shrinker_map, true);
 367                if (map)
 368                        kvfree(map);
 369                rcu_assign_pointer(pn->shrinker_map, NULL);
 370        }
 371}
 372
 373static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
 374{
 375        struct memcg_shrinker_map *map;
 376        int nid, size, ret = 0;
 377
 378        if (mem_cgroup_is_root(memcg))
 379                return 0;
 380
 381        mutex_lock(&memcg_shrinker_map_mutex);
 382        size = memcg_shrinker_map_size;
 383        for_each_node(nid) {
 384                map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
 385                if (!map) {
 386                        memcg_free_shrinker_maps(memcg);
 387                        ret = -ENOMEM;
 388                        break;
 389                }
 390                rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
 391        }
 392        mutex_unlock(&memcg_shrinker_map_mutex);
 393
 394        return ret;
 395}
 396
 397int memcg_expand_shrinker_maps(int new_id)
 398{
 399        int size, old_size, ret = 0;
 400        struct mem_cgroup *memcg;
 401
 402        size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
 403        old_size = memcg_shrinker_map_size;
 404        if (size <= old_size)
 405                return 0;
 406
 407        mutex_lock(&memcg_shrinker_map_mutex);
 408        if (!root_mem_cgroup)
 409                goto unlock;
 410
 411        for_each_mem_cgroup(memcg) {
 412                if (mem_cgroup_is_root(memcg))
 413                        continue;
 414                ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
 415                if (ret)
 416                        goto unlock;
 417        }
 418unlock:
 419        if (!ret)
 420                memcg_shrinker_map_size = size;
 421        mutex_unlock(&memcg_shrinker_map_mutex);
 422        return ret;
 423}
 424
 425void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
 426{
 427        if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
 428                struct memcg_shrinker_map *map;
 429
 430                rcu_read_lock();
 431                map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
 432                /* Pairs with smp mb in shrink_slab() */
 433                smp_mb__before_atomic();
 434                set_bit(shrinker_id, map->map);
 435                rcu_read_unlock();
 436        }
 437}
 438
 439#else /* CONFIG_MEMCG_KMEM */
 440static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
 441{
 442        return 0;
 443}
 444static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
 445#endif /* CONFIG_MEMCG_KMEM */
 446
 447/**
 448 * mem_cgroup_css_from_page - css of the memcg associated with a page
 449 * @page: page of interest
 450 *
 451 * If memcg is bound to the default hierarchy, css of the memcg associated
 452 * with @page is returned.  The returned css remains associated with @page
 453 * until it is released.
 454 *
 455 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
 456 * is returned.
 457 */
 458struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
 459{
 460        struct mem_cgroup *memcg;
 461
 462        memcg = page->mem_cgroup;
 463
 464        if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
 465                memcg = root_mem_cgroup;
 466
 467        return &memcg->css;
 468}
 469
 470/**
 471 * page_cgroup_ino - return inode number of the memcg a page is charged to
 472 * @page: the page
 473 *
 474 * Look up the closest online ancestor of the memory cgroup @page is charged to
 475 * and return its inode number or 0 if @page is not charged to any cgroup. It
 476 * is safe to call this function without holding a reference to @page.
 477 *
 478 * Note, this function is inherently racy, because there is nothing to prevent
 479 * the cgroup inode from getting torn down and potentially reallocated a moment
 480 * after page_cgroup_ino() returns, so it only should be used by callers that
 481 * do not care (such as procfs interfaces).
 482 */
 483ino_t page_cgroup_ino(struct page *page)
 484{
 485        struct mem_cgroup *memcg;
 486        unsigned long ino = 0;
 487
 488        rcu_read_lock();
 489        if (PageHead(page) && PageSlab(page))
 490                memcg = memcg_from_slab_page(page);
 491        else
 492                memcg = READ_ONCE(page->mem_cgroup);
 493        while (memcg && !(memcg->css.flags & CSS_ONLINE))
 494                memcg = parent_mem_cgroup(memcg);
 495        if (memcg)
 496                ino = cgroup_ino(memcg->css.cgroup);
 497        rcu_read_unlock();
 498        return ino;
 499}
 500
 501static struct mem_cgroup_per_node *
 502mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
 503{
 504        int nid = page_to_nid(page);
 505
 506        return memcg->nodeinfo[nid];
 507}
 508
 509static struct mem_cgroup_tree_per_node *
 510soft_limit_tree_node(int nid)
 511{
 512        return soft_limit_tree.rb_tree_per_node[nid];
 513}
 514
 515static struct mem_cgroup_tree_per_node *
 516soft_limit_tree_from_page(struct page *page)
 517{
 518        int nid = page_to_nid(page);
 519
 520        return soft_limit_tree.rb_tree_per_node[nid];
 521}
 522
 523static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
 524                                         struct mem_cgroup_tree_per_node *mctz,
 525                                         unsigned long new_usage_in_excess)
 526{
 527        struct rb_node **p = &mctz->rb_root.rb_node;
 528        struct rb_node *parent = NULL;
 529        struct mem_cgroup_per_node *mz_node;
 530        bool rightmost = true;
 531
 532        if (mz->on_tree)
 533                return;
 534
 535        mz->usage_in_excess = new_usage_in_excess;
 536        if (!mz->usage_in_excess)
 537                return;
 538        while (*p) {
 539                parent = *p;
 540                mz_node = rb_entry(parent, struct mem_cgroup_per_node,
 541                                        tree_node);
 542                if (mz->usage_in_excess < mz_node->usage_in_excess) {
 543                        p = &(*p)->rb_left;
 544                        rightmost = false;
 545                }
 546
 547                /*
 548                 * We can't avoid mem cgroups that are over their soft
 549                 * limit by the same amount
 550                 */
 551                else if (mz->usage_in_excess >= mz_node->usage_in_excess)
 552                        p = &(*p)->rb_right;
 553        }
 554
 555        if (rightmost)
 556                mctz->rb_rightmost = &mz->tree_node;
 557
 558        rb_link_node(&mz->tree_node, parent, p);
 559        rb_insert_color(&mz->tree_node, &mctz->rb_root);
 560        mz->on_tree = true;
 561}
 562
 563static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 564                                         struct mem_cgroup_tree_per_node *mctz)
 565{
 566        if (!mz->on_tree)
 567                return;
 568
 569        if (&mz->tree_node == mctz->rb_rightmost)
 570                mctz->rb_rightmost = rb_prev(&mz->tree_node);
 571
 572        rb_erase(&mz->tree_node, &mctz->rb_root);
 573        mz->on_tree = false;
 574}
 575
 576static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
 577                                       struct mem_cgroup_tree_per_node *mctz)
 578{
 579        unsigned long flags;
 580
 581        spin_lock_irqsave(&mctz->lock, flags);
 582        __mem_cgroup_remove_exceeded(mz, mctz);
 583        spin_unlock_irqrestore(&mctz->lock, flags);
 584}
 585
 586static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
 587{
 588        unsigned long nr_pages = page_counter_read(&memcg->memory);
 589        unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
 590        unsigned long excess = 0;
 591
 592        if (nr_pages > soft_limit)
 593                excess = nr_pages - soft_limit;
 594
 595        return excess;
 596}
 597
 598static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
 599{
 600        unsigned long excess;
 601        struct mem_cgroup_per_node *mz;
 602        struct mem_cgroup_tree_per_node *mctz;
 603
 604        mctz = soft_limit_tree_from_page(page);
 605        if (!mctz)
 606                return;
 607        /*
 608         * Necessary to update all ancestors when hierarchy is used.
 609         * because their event counter is not touched.
 610         */
 611        for (; memcg; memcg = parent_mem_cgroup(memcg)) {
 612                mz = mem_cgroup_page_nodeinfo(memcg, page);
 613                excess = soft_limit_excess(memcg);
 614                /*
 615                 * We have to update the tree if mz is on RB-tree or
 616                 * mem is over its softlimit.
 617                 */
 618                if (excess || mz->on_tree) {
 619                        unsigned long flags;
 620
 621                        spin_lock_irqsave(&mctz->lock, flags);
 622                        /* if on-tree, remove it */
 623                        if (mz->on_tree)
 624                                __mem_cgroup_remove_exceeded(mz, mctz);
 625                        /*
 626                         * Insert again. mz->usage_in_excess will be updated.
 627                         * If excess is 0, no tree ops.
 628                         */
 629                        __mem_cgroup_insert_exceeded(mz, mctz, excess);
 630                        spin_unlock_irqrestore(&mctz->lock, flags);
 631                }
 632        }
 633}
 634
 635static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
 636{
 637        struct mem_cgroup_tree_per_node *mctz;
 638        struct mem_cgroup_per_node *mz;
 639        int nid;
 640
 641        for_each_node(nid) {
 642                mz = mem_cgroup_nodeinfo(memcg, nid);
 643                mctz = soft_limit_tree_node(nid);
 644                if (mctz)
 645                        mem_cgroup_remove_exceeded(mz, mctz);
 646        }
 647}
 648
 649static struct mem_cgroup_per_node *
 650__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 651{
 652        struct mem_cgroup_per_node *mz;
 653
 654retry:
 655        mz = NULL;
 656        if (!mctz->rb_rightmost)
 657                goto done;              /* Nothing to reclaim from */
 658
 659        mz = rb_entry(mctz->rb_rightmost,
 660                      struct mem_cgroup_per_node, tree_node);
 661        /*
 662         * Remove the node now but someone else can add it back,
 663         * we will to add it back at the end of reclaim to its correct
 664         * position in the tree.
 665         */
 666        __mem_cgroup_remove_exceeded(mz, mctz);
 667        if (!soft_limit_excess(mz->memcg) ||
 668            !css_tryget_online(&mz->memcg->css))
 669                goto retry;
 670done:
 671        return mz;
 672}
 673
 674static struct mem_cgroup_per_node *
 675mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
 676{
 677        struct mem_cgroup_per_node *mz;
 678
 679        spin_lock_irq(&mctz->lock);
 680        mz = __mem_cgroup_largest_soft_limit_node(mctz);
 681        spin_unlock_irq(&mctz->lock);
 682        return mz;
 683}
 684
 685/**
 686 * __mod_memcg_state - update cgroup memory statistics
 687 * @memcg: the memory cgroup
 688 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
 689 * @val: delta to add to the counter, can be negative
 690 */
 691void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
 692{
 693        long x;
 694
 695        if (mem_cgroup_disabled())
 696                return;
 697
 698        x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
 699        if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
 700                struct mem_cgroup *mi;
 701
 702                /*
 703                 * Batch local counters to keep them in sync with
 704                 * the hierarchical ones.
 705                 */
 706                __this_cpu_add(memcg->vmstats_local->stat[idx], x);
 707                for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
 708                        atomic_long_add(x, &mi->vmstats[idx]);
 709                x = 0;
 710        }
 711        __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
 712}
 713
 714static struct mem_cgroup_per_node *
 715parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
 716{
 717        struct mem_cgroup *parent;
 718
 719        parent = parent_mem_cgroup(pn->memcg);
 720        if (!parent)
 721                return NULL;
 722        return mem_cgroup_nodeinfo(parent, nid);
 723}
 724
 725/**
 726 * __mod_lruvec_state - update lruvec memory statistics
 727 * @lruvec: the lruvec
 728 * @idx: the stat item
 729 * @val: delta to add to the counter, can be negative
 730 *
 731 * The lruvec is the intersection of the NUMA node and a cgroup. This
 732 * function updates the all three counters that are affected by a
 733 * change of state at this level: per-node, per-cgroup, per-lruvec.
 734 */
 735void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
 736                        int val)
 737{
 738        pg_data_t *pgdat = lruvec_pgdat(lruvec);
 739        struct mem_cgroup_per_node *pn;
 740        struct mem_cgroup *memcg;
 741        long x;
 742
 743        /* Update node */
 744        __mod_node_page_state(pgdat, idx, val);
 745
 746        if (mem_cgroup_disabled())
 747                return;
 748
 749        pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
 750        memcg = pn->memcg;
 751
 752        /* Update memcg */
 753        __mod_memcg_state(memcg, idx, val);
 754
 755        /* Update lruvec */
 756        __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
 757
 758        x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
 759        if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
 760                struct mem_cgroup_per_node *pi;
 761
 762                for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
 763                        atomic_long_add(x, &pi->lruvec_stat[idx]);
 764                x = 0;
 765        }
 766        __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
 767}
 768
 769void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
 770{
 771        struct page *page = virt_to_head_page(p);
 772        pg_data_t *pgdat = page_pgdat(page);
 773        struct mem_cgroup *memcg;
 774        struct lruvec *lruvec;
 775
 776        rcu_read_lock();
 777        memcg = memcg_from_slab_page(page);
 778
 779        /* Untracked pages have no memcg, no lruvec. Update only the node */
 780        if (!memcg || memcg == root_mem_cgroup) {
 781                __mod_node_page_state(pgdat, idx, val);
 782        } else {
 783                lruvec = mem_cgroup_lruvec(pgdat, memcg);
 784                __mod_lruvec_state(lruvec, idx, val);
 785        }
 786        rcu_read_unlock();
 787}
 788
 789/**
 790 * __count_memcg_events - account VM events in a cgroup
 791 * @memcg: the memory cgroup
 792 * @idx: the event item
 793 * @count: the number of events that occured
 794 */
 795void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
 796                          unsigned long count)
 797{
 798        unsigned long x;
 799
 800        if (mem_cgroup_disabled())
 801                return;
 802
 803        x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
 804        if (unlikely(x > MEMCG_CHARGE_BATCH)) {
 805                struct mem_cgroup *mi;
 806
 807                /*
 808                 * Batch local counters to keep them in sync with
 809                 * the hierarchical ones.
 810                 */
 811                __this_cpu_add(memcg->vmstats_local->events[idx], x);
 812                for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
 813                        atomic_long_add(x, &mi->vmevents[idx]);
 814                x = 0;
 815        }
 816        __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
 817}
 818
 819static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
 820{
 821        return atomic_long_read(&memcg->vmevents[event]);
 822}
 823
 824static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
 825{
 826        long x = 0;
 827        int cpu;
 828
 829        for_each_possible_cpu(cpu)
 830                x += per_cpu(memcg->vmstats_local->events[event], cpu);
 831        return x;
 832}
 833
 834static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
 835                                         struct page *page,
 836                                         bool compound, int nr_pages)
 837{
 838        /*
 839         * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
 840         * counted as CACHE even if it's on ANON LRU.
 841         */
 842        if (PageAnon(page))
 843                __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
 844        else {
 845                __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
 846                if (PageSwapBacked(page))
 847                        __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
 848        }
 849
 850        if (compound) {
 851                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
 852                __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
 853        }
 854
 855        /* pagein of a big page is an event. So, ignore page size */
 856        if (nr_pages > 0)
 857                __count_memcg_events(memcg, PGPGIN, 1);
 858        else {
 859                __count_memcg_events(memcg, PGPGOUT, 1);
 860                nr_pages = -nr_pages; /* for event */
 861        }
 862
 863        __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
 864}
 865
 866static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
 867                                       enum mem_cgroup_events_target target)
 868{
 869        unsigned long val, next;
 870
 871        val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
 872        next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
 873        /* from time_after() in jiffies.h */
 874        if ((long)(next - val) < 0) {
 875                switch (target) {
 876                case MEM_CGROUP_TARGET_THRESH:
 877                        next = val + THRESHOLDS_EVENTS_TARGET;
 878                        break;
 879                case MEM_CGROUP_TARGET_SOFTLIMIT:
 880                        next = val + SOFTLIMIT_EVENTS_TARGET;
 881                        break;
 882                case MEM_CGROUP_TARGET_NUMAINFO:
 883                        next = val + NUMAINFO_EVENTS_TARGET;
 884                        break;
 885                default:
 886                        break;
 887                }
 888                __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
 889                return true;
 890        }
 891        return false;
 892}
 893
 894/*
 895 * Check events in order.
 896 *
 897 */
 898static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
 899{
 900        /* threshold event is triggered in finer grain than soft limit */
 901        if (unlikely(mem_cgroup_event_ratelimit(memcg,
 902                                                MEM_CGROUP_TARGET_THRESH))) {
 903                bool do_softlimit;
 904                bool do_numainfo __maybe_unused;
 905
 906                do_softlimit = mem_cgroup_event_ratelimit(memcg,
 907                                                MEM_CGROUP_TARGET_SOFTLIMIT);
 908#if MAX_NUMNODES > 1
 909                do_numainfo = mem_cgroup_event_ratelimit(memcg,
 910                                                MEM_CGROUP_TARGET_NUMAINFO);
 911#endif
 912                mem_cgroup_threshold(memcg);
 913                if (unlikely(do_softlimit))
 914                        mem_cgroup_update_tree(memcg, page);
 915#if MAX_NUMNODES > 1
 916                if (unlikely(do_numainfo))
 917                        atomic_inc(&memcg->numainfo_events);
 918#endif
 919        }
 920}
 921
 922struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
 923{
 924        /*
 925         * mm_update_next_owner() may clear mm->owner to NULL
 926         * if it races with swapoff, page migration, etc.
 927         * So this can be called with p == NULL.
 928         */
 929        if (unlikely(!p))
 930                return NULL;
 931
 932        return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
 933}
 934EXPORT_SYMBOL(mem_cgroup_from_task);
 935
 936/**
 937 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
 938 * @mm: mm from which memcg should be extracted. It can be NULL.
 939 *
 940 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
 941 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
 942 * returned.
 943 */
 944struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
 945{
 946        struct mem_cgroup *memcg;
 947
 948        if (mem_cgroup_disabled())
 949                return NULL;
 950
 951        rcu_read_lock();
 952        do {
 953                /*
 954                 * Page cache insertions can happen withou an
 955                 * actual mm context, e.g. during disk probing
 956                 * on boot, loopback IO, acct() writes etc.
 957                 */
 958                if (unlikely(!mm))
 959                        memcg = root_mem_cgroup;
 960                else {
 961                        memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
 962                        if (unlikely(!memcg))
 963                                memcg = root_mem_cgroup;
 964                }
 965        } while (!css_tryget_online(&memcg->css));
 966        rcu_read_unlock();
 967        return memcg;
 968}
 969EXPORT_SYMBOL(get_mem_cgroup_from_mm);
 970
 971/**
 972 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
 973 * @page: page from which memcg should be extracted.
 974 *
 975 * Obtain a reference on page->memcg and returns it if successful. Otherwise
 976 * root_mem_cgroup is returned.
 977 */
 978struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
 979{
 980        struct mem_cgroup *memcg = page->mem_cgroup;
 981
 982        if (mem_cgroup_disabled())
 983                return NULL;
 984
 985        rcu_read_lock();
 986        if (!memcg || !css_tryget_online(&memcg->css))
 987                memcg = root_mem_cgroup;
 988        rcu_read_unlock();
 989        return memcg;
 990}
 991EXPORT_SYMBOL(get_mem_cgroup_from_page);
 992
 993/**
 994 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
 995 */
 996static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
 997{
 998        if (unlikely(current->active_memcg)) {
 999                struct mem_cgroup *memcg = root_mem_cgroup;
1000
1001                rcu_read_lock();
1002                if (css_tryget_online(&current->active_memcg->css))
1003                        memcg = current->active_memcg;
1004                rcu_read_unlock();
1005                return memcg;
1006        }
1007        return get_mem_cgroup_from_mm(current->mm);
1008}
1009
1010/**
1011 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1012 * @root: hierarchy root
1013 * @prev: previously returned memcg, NULL on first invocation
1014 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1015 *
1016 * Returns references to children of the hierarchy below @root, or
1017 * @root itself, or %NULL after a full round-trip.
1018 *
1019 * Caller must pass the return value in @prev on subsequent
1020 * invocations for reference counting, or use mem_cgroup_iter_break()
1021 * to cancel a hierarchy walk before the round-trip is complete.
1022 *
1023 * Reclaimers can specify a node and a priority level in @reclaim to
1024 * divide up the memcgs in the hierarchy among all concurrent
1025 * reclaimers operating on the same node and priority.
1026 */
1027struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1028                                   struct mem_cgroup *prev,
1029                                   struct mem_cgroup_reclaim_cookie *reclaim)
1030{
1031        struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1032        struct cgroup_subsys_state *css = NULL;
1033        struct mem_cgroup *memcg = NULL;
1034        struct mem_cgroup *pos = NULL;
1035
1036        if (mem_cgroup_disabled())
1037                return NULL;
1038
1039        if (!root)
1040                root = root_mem_cgroup;
1041
1042        if (prev && !reclaim)
1043                pos = prev;
1044
1045        if (!root->use_hierarchy && root != root_mem_cgroup) {
1046                if (prev)
1047                        goto out;
1048                return root;
1049        }
1050
1051        rcu_read_lock();
1052
1053        if (reclaim) {
1054                struct mem_cgroup_per_node *mz;
1055
1056                mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1057                iter = &mz->iter[reclaim->priority];
1058
1059                if (prev && reclaim->generation != iter->generation)
1060                        goto out_unlock;
1061
1062                while (1) {
1063                        pos = READ_ONCE(iter->position);
1064                        if (!pos || css_tryget(&pos->css))
1065                                break;
1066                        /*
1067                         * css reference reached zero, so iter->position will
1068                         * be cleared by ->css_released. However, we should not
1069                         * rely on this happening soon, because ->css_released
1070                         * is called from a work queue, and by busy-waiting we
1071                         * might block it. So we clear iter->position right
1072                         * away.
1073                         */
1074                        (void)cmpxchg(&iter->position, pos, NULL);
1075                }
1076        }
1077
1078        if (pos)
1079                css = &pos->css;
1080
1081        for (;;) {
1082                css = css_next_descendant_pre(css, &root->css);
1083                if (!css) {
1084                        /*
1085                         * Reclaimers share the hierarchy walk, and a
1086                         * new one might jump in right at the end of
1087                         * the hierarchy - make sure they see at least
1088                         * one group and restart from the beginning.
1089                         */
1090                        if (!prev)
1091                                continue;
1092                        break;
1093                }
1094
1095                /*
1096                 * Verify the css and acquire a reference.  The root
1097                 * is provided by the caller, so we know it's alive
1098                 * and kicking, and don't take an extra reference.
1099                 */
1100                memcg = mem_cgroup_from_css(css);
1101
1102                if (css == &root->css)
1103                        break;
1104
1105                if (css_tryget(css))
1106                        break;
1107
1108                memcg = NULL;
1109        }
1110
1111        if (reclaim) {
1112                /*
1113                 * The position could have already been updated by a competing
1114                 * thread, so check that the value hasn't changed since we read
1115                 * it to avoid reclaiming from the same cgroup twice.
1116                 */
1117                (void)cmpxchg(&iter->position, pos, memcg);
1118
1119                if (pos)
1120                        css_put(&pos->css);
1121
1122                if (!memcg)
1123                        iter->generation++;
1124                else if (!prev)
1125                        reclaim->generation = iter->generation;
1126        }
1127
1128out_unlock:
1129        rcu_read_unlock();
1130out:
1131        if (prev && prev != root)
1132                css_put(&prev->css);
1133
1134        return memcg;
1135}
1136
1137/**
1138 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1139 * @root: hierarchy root
1140 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1141 */
1142void mem_cgroup_iter_break(struct mem_cgroup *root,
1143                           struct mem_cgroup *prev)
1144{
1145        if (!root)
1146                root = root_mem_cgroup;
1147        if (prev && prev != root)
1148                css_put(&prev->css);
1149}
1150
1151static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1152                                        struct mem_cgroup *dead_memcg)
1153{
1154        struct mem_cgroup_reclaim_iter *iter;
1155        struct mem_cgroup_per_node *mz;
1156        int nid;
1157        int i;
1158
1159        for_each_node(nid) {
1160                mz = mem_cgroup_nodeinfo(from, nid);
1161                for (i = 0; i <= DEF_PRIORITY; i++) {
1162                        iter = &mz->iter[i];
1163                        cmpxchg(&iter->position,
1164                                dead_memcg, NULL);
1165                }
1166        }
1167}
1168
1169static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1170{
1171        struct mem_cgroup *memcg = dead_memcg;
1172        struct mem_cgroup *last;
1173
1174        do {
1175                __invalidate_reclaim_iterators(memcg, dead_memcg);
1176                last = memcg;
1177        } while ((memcg = parent_mem_cgroup(memcg)));
1178
1179        /*
1180         * When cgruop1 non-hierarchy mode is used,
1181         * parent_mem_cgroup() does not walk all the way up to the
1182         * cgroup root (root_mem_cgroup). So we have to handle
1183         * dead_memcg from cgroup root separately.
1184         */
1185        if (last != root_mem_cgroup)
1186                __invalidate_reclaim_iterators(root_mem_cgroup,
1187                                                dead_memcg);
1188}
1189
1190/**
1191 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1192 * @memcg: hierarchy root
1193 * @fn: function to call for each task
1194 * @arg: argument passed to @fn
1195 *
1196 * This function iterates over tasks attached to @memcg or to any of its
1197 * descendants and calls @fn for each task. If @fn returns a non-zero
1198 * value, the function breaks the iteration loop and returns the value.
1199 * Otherwise, it will iterate over all tasks and return 0.
1200 *
1201 * This function must not be called for the root memory cgroup.
1202 */
1203int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1204                          int (*fn)(struct task_struct *, void *), void *arg)
1205{
1206        struct mem_cgroup *iter;
1207        int ret = 0;
1208
1209        BUG_ON(memcg == root_mem_cgroup);
1210
1211        for_each_mem_cgroup_tree(iter, memcg) {
1212                struct css_task_iter it;
1213                struct task_struct *task;
1214
1215                css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1216                while (!ret && (task = css_task_iter_next(&it)))
1217                        ret = fn(task, arg);
1218                css_task_iter_end(&it);
1219                if (ret) {
1220                        mem_cgroup_iter_break(memcg, iter);
1221                        break;
1222                }
1223        }
1224        return ret;
1225}
1226
1227/**
1228 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1229 * @page: the page
1230 * @pgdat: pgdat of the page
1231 *
1232 * This function is only safe when following the LRU page isolation
1233 * and putback protocol: the LRU lock must be held, and the page must
1234 * either be PageLRU() or the caller must have isolated/allocated it.
1235 */
1236struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1237{
1238        struct mem_cgroup_per_node *mz;
1239        struct mem_cgroup *memcg;
1240        struct lruvec *lruvec;
1241
1242        if (mem_cgroup_disabled()) {
1243                lruvec = &pgdat->lruvec;
1244                goto out;
1245        }
1246
1247        memcg = page->mem_cgroup;
1248        /*
1249         * Swapcache readahead pages are added to the LRU - and
1250         * possibly migrated - before they are charged.
1251         */
1252        if (!memcg)
1253                memcg = root_mem_cgroup;
1254
1255        mz = mem_cgroup_page_nodeinfo(memcg, page);
1256        lruvec = &mz->lruvec;
1257out:
1258        /*
1259         * Since a node can be onlined after the mem_cgroup was created,
1260         * we have to be prepared to initialize lruvec->zone here;
1261         * and if offlined then reonlined, we need to reinitialize it.
1262         */
1263        if (unlikely(lruvec->pgdat != pgdat))
1264                lruvec->pgdat = pgdat;
1265        return lruvec;
1266}
1267
1268/**
1269 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1270 * @lruvec: mem_cgroup per zone lru vector
1271 * @lru: index of lru list the page is sitting on
1272 * @zid: zone id of the accounted pages
1273 * @nr_pages: positive when adding or negative when removing
1274 *
1275 * This function must be called under lru_lock, just before a page is added
1276 * to or just after a page is removed from an lru list (that ordering being
1277 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1278 */
1279void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1280                                int zid, int nr_pages)
1281{
1282        struct mem_cgroup_per_node *mz;
1283        unsigned long *lru_size;
1284        long size;
1285
1286        if (mem_cgroup_disabled())
1287                return;
1288
1289        mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1290        lru_size = &mz->lru_zone_size[zid][lru];
1291
1292        if (nr_pages < 0)
1293                *lru_size += nr_pages;
1294
1295        size = *lru_size;
1296        if (WARN_ONCE(size < 0,
1297                "%s(%p, %d, %d): lru_size %ld\n",
1298                __func__, lruvec, lru, nr_pages, size)) {
1299                VM_BUG_ON(1);
1300                *lru_size = 0;
1301        }
1302
1303        if (nr_pages > 0)
1304                *lru_size += nr_pages;
1305}
1306
1307/**
1308 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1309 * @memcg: the memory cgroup
1310 *
1311 * Returns the maximum amount of memory @mem can be charged with, in
1312 * pages.
1313 */
1314static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1315{
1316        unsigned long margin = 0;
1317        unsigned long count;
1318        unsigned long limit;
1319
1320        count = page_counter_read(&memcg->memory);
1321        limit = READ_ONCE(memcg->memory.max);
1322        if (count < limit)
1323                margin = limit - count;
1324
1325        if (do_memsw_account()) {
1326                count = page_counter_read(&memcg->memsw);
1327                limit = READ_ONCE(memcg->memsw.max);
1328                if (count <= limit)
1329                        margin = min(margin, limit - count);
1330                else
1331                        margin = 0;
1332        }
1333
1334        return margin;
1335}
1336
1337/*
1338 * A routine for checking "mem" is under move_account() or not.
1339 *
1340 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1341 * moving cgroups. This is for waiting at high-memory pressure
1342 * caused by "move".
1343 */
1344static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1345{
1346        struct mem_cgroup *from;
1347        struct mem_cgroup *to;
1348        bool ret = false;
1349        /*
1350         * Unlike task_move routines, we access mc.to, mc.from not under
1351         * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1352         */
1353        spin_lock(&mc.lock);
1354        from = mc.from;
1355        to = mc.to;
1356        if (!from)
1357                goto unlock;
1358
1359        ret = mem_cgroup_is_descendant(from, memcg) ||
1360                mem_cgroup_is_descendant(to, memcg);
1361unlock:
1362        spin_unlock(&mc.lock);
1363        return ret;
1364}
1365
1366static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1367{
1368        if (mc.moving_task && current != mc.moving_task) {
1369                if (mem_cgroup_under_move(memcg)) {
1370                        DEFINE_WAIT(wait);
1371                        prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1372                        /* moving charge context might have finished. */
1373                        if (mc.moving_task)
1374                                schedule();
1375                        finish_wait(&mc.waitq, &wait);
1376                        return true;
1377                }
1378        }
1379        return false;
1380}
1381
1382static char *memory_stat_format(struct mem_cgroup *memcg)
1383{
1384        struct seq_buf s;
1385        int i;
1386
1387        seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1388        if (!s.buffer)
1389                return NULL;
1390
1391        /*
1392         * Provide statistics on the state of the memory subsystem as
1393         * well as cumulative event counters that show past behavior.
1394         *
1395         * This list is ordered following a combination of these gradients:
1396         * 1) generic big picture -> specifics and details
1397         * 2) reflecting userspace activity -> reflecting kernel heuristics
1398         *
1399         * Current memory state:
1400         */
1401
1402        seq_buf_printf(&s, "anon %llu\n",
1403                       (u64)memcg_page_state(memcg, MEMCG_RSS) *
1404                       PAGE_SIZE);
1405        seq_buf_printf(&s, "file %llu\n",
1406                       (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1407                       PAGE_SIZE);
1408        seq_buf_printf(&s, "kernel_stack %llu\n",
1409                       (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1410                       1024);
1411        seq_buf_printf(&s, "slab %llu\n",
1412                       (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1413                             memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1414                       PAGE_SIZE);
1415        seq_buf_printf(&s, "sock %llu\n",
1416                       (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1417                       PAGE_SIZE);
1418
1419        seq_buf_printf(&s, "shmem %llu\n",
1420                       (u64)memcg_page_state(memcg, NR_SHMEM) *
1421                       PAGE_SIZE);
1422        seq_buf_printf(&s, "file_mapped %llu\n",
1423                       (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1424                       PAGE_SIZE);
1425        seq_buf_printf(&s, "file_dirty %llu\n",
1426                       (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1427                       PAGE_SIZE);
1428        seq_buf_printf(&s, "file_writeback %llu\n",
1429                       (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1430                       PAGE_SIZE);
1431
1432        /*
1433         * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1434         * with the NR_ANON_THP vm counter, but right now it's a pain in the
1435         * arse because it requires migrating the work out of rmap to a place
1436         * where the page->mem_cgroup is set up and stable.
1437         */
1438        seq_buf_printf(&s, "anon_thp %llu\n",
1439                       (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1440                       PAGE_SIZE);
1441
1442        for (i = 0; i < NR_LRU_LISTS; i++)
1443                seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1444                               (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1445                               PAGE_SIZE);
1446
1447        seq_buf_printf(&s, "slab_reclaimable %llu\n",
1448                       (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1449                       PAGE_SIZE);
1450        seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1451                       (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1452                       PAGE_SIZE);
1453
1454        /* Accumulated memory events */
1455
1456        seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1457        seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1458
1459        seq_buf_printf(&s, "workingset_refault %lu\n",
1460                       memcg_page_state(memcg, WORKINGSET_REFAULT));
1461        seq_buf_printf(&s, "workingset_activate %lu\n",
1462                       memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1463        seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1464                       memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1465
1466        seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1467        seq_buf_printf(&s, "pgscan %lu\n",
1468                       memcg_events(memcg, PGSCAN_KSWAPD) +
1469                       memcg_events(memcg, PGSCAN_DIRECT));
1470        seq_buf_printf(&s, "pgsteal %lu\n",
1471                       memcg_events(memcg, PGSTEAL_KSWAPD) +
1472                       memcg_events(memcg, PGSTEAL_DIRECT));
1473        seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1474        seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1475        seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1476        seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1477
1478#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1479        seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1480                       memcg_events(memcg, THP_FAULT_ALLOC));
1481        seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1482                       memcg_events(memcg, THP_COLLAPSE_ALLOC));
1483#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1484
1485        /* The above should easily fit into one page */
1486        WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1487
1488        return s.buffer;
1489}
1490
1491#define K(x) ((x) << (PAGE_SHIFT-10))
1492/**
1493 * mem_cgroup_print_oom_context: Print OOM information relevant to
1494 * memory controller.
1495 * @memcg: The memory cgroup that went over limit
1496 * @p: Task that is going to be killed
1497 *
1498 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1499 * enabled
1500 */
1501void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1502{
1503        rcu_read_lock();
1504
1505        if (memcg) {
1506                pr_cont(",oom_memcg=");
1507                pr_cont_cgroup_path(memcg->css.cgroup);
1508        } else
1509                pr_cont(",global_oom");
1510        if (p) {
1511                pr_cont(",task_memcg=");
1512                pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1513        }
1514        rcu_read_unlock();
1515}
1516
1517/**
1518 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1519 * memory controller.
1520 * @memcg: The memory cgroup that went over limit
1521 */
1522void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1523{
1524        char *buf;
1525
1526        pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1527                K((u64)page_counter_read(&memcg->memory)),
1528                K((u64)memcg->memory.max), memcg->memory.failcnt);
1529        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1530                pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1531                        K((u64)page_counter_read(&memcg->swap)),
1532                        K((u64)memcg->swap.max), memcg->swap.failcnt);
1533        else {
1534                pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1535                        K((u64)page_counter_read(&memcg->memsw)),
1536                        K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1537                pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1538                        K((u64)page_counter_read(&memcg->kmem)),
1539                        K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1540        }
1541
1542        pr_info("Memory cgroup stats for ");
1543        pr_cont_cgroup_path(memcg->css.cgroup);
1544        pr_cont(":");
1545        buf = memory_stat_format(memcg);
1546        if (!buf)
1547                return;
1548        pr_info("%s", buf);
1549        kfree(buf);
1550}
1551
1552/*
1553 * Return the memory (and swap, if configured) limit for a memcg.
1554 */
1555unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1556{
1557        unsigned long max;
1558
1559        max = memcg->memory.max;
1560        if (mem_cgroup_swappiness(memcg)) {
1561                unsigned long memsw_max;
1562                unsigned long swap_max;
1563
1564                memsw_max = memcg->memsw.max;
1565                swap_max = memcg->swap.max;
1566                swap_max = min(swap_max, (unsigned long)total_swap_pages);
1567                max = min(max + swap_max, memsw_max);
1568        }
1569        return max;
1570}
1571
1572static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1573                                     int order)
1574{
1575        struct oom_control oc = {
1576                .zonelist = NULL,
1577                .nodemask = NULL,
1578                .memcg = memcg,
1579                .gfp_mask = gfp_mask,
1580                .order = order,
1581        };
1582        bool ret;
1583
1584        if (mutex_lock_killable(&oom_lock))
1585                return true;
1586        /*
1587         * A few threads which were not waiting at mutex_lock_killable() can
1588         * fail to bail out. Therefore, check again after holding oom_lock.
1589         */
1590        ret = should_force_charge() || out_of_memory(&oc);
1591        mutex_unlock(&oom_lock);
1592        return ret;
1593}
1594
1595#if MAX_NUMNODES > 1
1596
1597/**
1598 * test_mem_cgroup_node_reclaimable
1599 * @memcg: the target memcg
1600 * @nid: the node ID to be checked.
1601 * @noswap : specify true here if the user wants flle only information.
1602 *
1603 * This function returns whether the specified memcg contains any
1604 * reclaimable pages on a node. Returns true if there are any reclaimable
1605 * pages in the node.
1606 */
1607static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1608                int nid, bool noswap)
1609{
1610        struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1611
1612        if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1613            lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1614                return true;
1615        if (noswap || !total_swap_pages)
1616                return false;
1617        if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1618            lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1619                return true;
1620        return false;
1621
1622}
1623
1624/*
1625 * Always updating the nodemask is not very good - even if we have an empty
1626 * list or the wrong list here, we can start from some node and traverse all
1627 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1628 *
1629 */
1630static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1631{
1632        int nid;
1633        /*
1634         * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1635         * pagein/pageout changes since the last update.
1636         */
1637        if (!atomic_read(&memcg->numainfo_events))
1638                return;
1639        if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1640                return;
1641
1642        /* make a nodemask where this memcg uses memory from */
1643        memcg->scan_nodes = node_states[N_MEMORY];
1644
1645        for_each_node_mask(nid, node_states[N_MEMORY]) {
1646
1647                if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1648                        node_clear(nid, memcg->scan_nodes);
1649        }
1650
1651        atomic_set(&memcg->numainfo_events, 0);
1652        atomic_set(&memcg->numainfo_updating, 0);
1653}
1654
1655/*
1656 * Selecting a node where we start reclaim from. Because what we need is just
1657 * reducing usage counter, start from anywhere is O,K. Considering
1658 * memory reclaim from current node, there are pros. and cons.
1659 *
1660 * Freeing memory from current node means freeing memory from a node which
1661 * we'll use or we've used. So, it may make LRU bad. And if several threads
1662 * hit limits, it will see a contention on a node. But freeing from remote
1663 * node means more costs for memory reclaim because of memory latency.
1664 *
1665 * Now, we use round-robin. Better algorithm is welcomed.
1666 */
1667int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1668{
1669        int node;
1670
1671        mem_cgroup_may_update_nodemask(memcg);
1672        node = memcg->last_scanned_node;
1673
1674        node = next_node_in(node, memcg->scan_nodes);
1675        /*
1676         * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1677         * last time it really checked all the LRUs due to rate limiting.
1678         * Fallback to the current node in that case for simplicity.
1679         */
1680        if (unlikely(node == MAX_NUMNODES))
1681                node = numa_node_id();
1682
1683        memcg->last_scanned_node = node;
1684        return node;
1685}
1686#else
1687int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1688{
1689        return 0;
1690}
1691#endif
1692
1693static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1694                                   pg_data_t *pgdat,
1695                                   gfp_t gfp_mask,
1696                                   unsigned long *total_scanned)
1697{
1698        struct mem_cgroup *victim = NULL;
1699        int total = 0;
1700        int loop = 0;
1701        unsigned long excess;
1702        unsigned long nr_scanned;
1703        struct mem_cgroup_reclaim_cookie reclaim = {
1704                .pgdat = pgdat,
1705                .priority = 0,
1706        };
1707
1708        excess = soft_limit_excess(root_memcg);
1709
1710        while (1) {
1711                victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1712                if (!victim) {
1713                        loop++;
1714                        if (loop >= 2) {
1715                                /*
1716                                 * If we have not been able to reclaim
1717                                 * anything, it might because there are
1718                                 * no reclaimable pages under this hierarchy
1719                                 */
1720                                if (!total)
1721                                        break;
1722                                /*
1723                                 * We want to do more targeted reclaim.
1724                                 * excess >> 2 is not to excessive so as to
1725                                 * reclaim too much, nor too less that we keep
1726                                 * coming back to reclaim from this cgroup
1727                                 */
1728                                if (total >= (excess >> 2) ||
1729                                        (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1730                                        break;
1731                        }
1732                        continue;
1733                }
1734                total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1735                                        pgdat, &nr_scanned);
1736                *total_scanned += nr_scanned;
1737                if (!soft_limit_excess(root_memcg))
1738                        break;
1739        }
1740        mem_cgroup_iter_break(root_memcg, victim);
1741        return total;
1742}
1743
1744#ifdef CONFIG_LOCKDEP
1745static struct lockdep_map memcg_oom_lock_dep_map = {
1746        .name = "memcg_oom_lock",
1747};
1748#endif
1749
1750static DEFINE_SPINLOCK(memcg_oom_lock);
1751
1752/*
1753 * Check OOM-Killer is already running under our hierarchy.
1754 * If someone is running, return false.
1755 */
1756static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1757{
1758        struct mem_cgroup *iter, *failed = NULL;
1759
1760        spin_lock(&memcg_oom_lock);
1761
1762        for_each_mem_cgroup_tree(iter, memcg) {
1763                if (iter->oom_lock) {
1764                        /*
1765                         * this subtree of our hierarchy is already locked
1766                         * so we cannot give a lock.
1767                         */
1768                        failed = iter;
1769                        mem_cgroup_iter_break(memcg, iter);
1770                        break;
1771                } else
1772                        iter->oom_lock = true;
1773        }
1774
1775        if (failed) {
1776                /*
1777                 * OK, we failed to lock the whole subtree so we have
1778                 * to clean up what we set up to the failing subtree
1779                 */
1780                for_each_mem_cgroup_tree(iter, memcg) {
1781                        if (iter == failed) {
1782                                mem_cgroup_iter_break(memcg, iter);
1783                                break;
1784                        }
1785                        iter->oom_lock = false;
1786                }
1787        } else
1788                mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1789
1790        spin_unlock(&memcg_oom_lock);
1791
1792        return !failed;
1793}
1794
1795static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1796{
1797        struct mem_cgroup *iter;
1798
1799        spin_lock(&memcg_oom_lock);
1800        mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1801        for_each_mem_cgroup_tree(iter, memcg)
1802                iter->oom_lock = false;
1803        spin_unlock(&memcg_oom_lock);
1804}
1805
1806static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1807{
1808        struct mem_cgroup *iter;
1809
1810        spin_lock(&memcg_oom_lock);
1811        for_each_mem_cgroup_tree(iter, memcg)
1812                iter->under_oom++;
1813        spin_unlock(&memcg_oom_lock);
1814}
1815
1816static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1817{
1818        struct mem_cgroup *iter;
1819
1820        /*
1821         * When a new child is created while the hierarchy is under oom,
1822         * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1823         */
1824        spin_lock(&memcg_oom_lock);
1825        for_each_mem_cgroup_tree(iter, memcg)
1826                if (iter->under_oom > 0)
1827                        iter->under_oom--;
1828        spin_unlock(&memcg_oom_lock);
1829}
1830
1831static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1832
1833struct oom_wait_info {
1834        struct mem_cgroup *memcg;
1835        wait_queue_entry_t      wait;
1836};
1837
1838static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1839        unsigned mode, int sync, void *arg)
1840{
1841        struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1842        struct mem_cgroup *oom_wait_memcg;
1843        struct oom_wait_info *oom_wait_info;
1844
1845        oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1846        oom_wait_memcg = oom_wait_info->memcg;
1847
1848        if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1849            !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1850                return 0;
1851        return autoremove_wake_function(wait, mode, sync, arg);
1852}
1853
1854static void memcg_oom_recover(struct mem_cgroup *memcg)
1855{
1856        /*
1857         * For the following lockless ->under_oom test, the only required
1858         * guarantee is that it must see the state asserted by an OOM when
1859         * this function is called as a result of userland actions
1860         * triggered by the notification of the OOM.  This is trivially
1861         * achieved by invoking mem_cgroup_mark_under_oom() before
1862         * triggering notification.
1863         */
1864        if (memcg && memcg->under_oom)
1865                __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1866}
1867
1868enum oom_status {
1869        OOM_SUCCESS,
1870        OOM_FAILED,
1871        OOM_ASYNC,
1872        OOM_SKIPPED
1873};
1874
1875static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1876{
1877        enum oom_status ret;
1878        bool locked;
1879
1880        if (order > PAGE_ALLOC_COSTLY_ORDER)
1881                return OOM_SKIPPED;
1882
1883        memcg_memory_event(memcg, MEMCG_OOM);
1884
1885        /*
1886         * We are in the middle of the charge context here, so we
1887         * don't want to block when potentially sitting on a callstack
1888         * that holds all kinds of filesystem and mm locks.
1889         *
1890         * cgroup1 allows disabling the OOM killer and waiting for outside
1891         * handling until the charge can succeed; remember the context and put
1892         * the task to sleep at the end of the page fault when all locks are
1893         * released.
1894         *
1895         * On the other hand, in-kernel OOM killer allows for an async victim
1896         * memory reclaim (oom_reaper) and that means that we are not solely
1897         * relying on the oom victim to make a forward progress and we can
1898         * invoke the oom killer here.
1899         *
1900         * Please note that mem_cgroup_out_of_memory might fail to find a
1901         * victim and then we have to bail out from the charge path.
1902         */
1903        if (memcg->oom_kill_disable) {
1904                if (!current->in_user_fault)
1905                        return OOM_SKIPPED;
1906                css_get(&memcg->css);
1907                current->memcg_in_oom = memcg;
1908                current->memcg_oom_gfp_mask = mask;
1909                current->memcg_oom_order = order;
1910
1911                return OOM_ASYNC;
1912        }
1913
1914        mem_cgroup_mark_under_oom(memcg);
1915
1916        locked = mem_cgroup_oom_trylock(memcg);
1917
1918        if (locked)
1919                mem_cgroup_oom_notify(memcg);
1920
1921        mem_cgroup_unmark_under_oom(memcg);
1922        if (mem_cgroup_out_of_memory(memcg, mask, order))
1923                ret = OOM_SUCCESS;
1924        else
1925                ret = OOM_FAILED;
1926
1927        if (locked)
1928                mem_cgroup_oom_unlock(memcg);
1929
1930        return ret;
1931}
1932
1933/**
1934 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1935 * @handle: actually kill/wait or just clean up the OOM state
1936 *
1937 * This has to be called at the end of a page fault if the memcg OOM
1938 * handler was enabled.
1939 *
1940 * Memcg supports userspace OOM handling where failed allocations must
1941 * sleep on a waitqueue until the userspace task resolves the
1942 * situation.  Sleeping directly in the charge context with all kinds
1943 * of locks held is not a good idea, instead we remember an OOM state
1944 * in the task and mem_cgroup_oom_synchronize() has to be called at
1945 * the end of the page fault to complete the OOM handling.
1946 *
1947 * Returns %true if an ongoing memcg OOM situation was detected and
1948 * completed, %false otherwise.
1949 */
1950bool mem_cgroup_oom_synchronize(bool handle)
1951{
1952        struct mem_cgroup *memcg = current->memcg_in_oom;
1953        struct oom_wait_info owait;
1954        bool locked;
1955
1956        /* OOM is global, do not handle */
1957        if (!memcg)
1958                return false;
1959
1960        if (!handle)
1961                goto cleanup;
1962
1963        owait.memcg = memcg;
1964        owait.wait.flags = 0;
1965        owait.wait.func = memcg_oom_wake_function;
1966        owait.wait.private = current;
1967        INIT_LIST_HEAD(&owait.wait.entry);
1968
1969        prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1970        mem_cgroup_mark_under_oom(memcg);
1971
1972        locked = mem_cgroup_oom_trylock(memcg);
1973
1974        if (locked)
1975                mem_cgroup_oom_notify(memcg);
1976
1977        if (locked && !memcg->oom_kill_disable) {
1978                mem_cgroup_unmark_under_oom(memcg);
1979                finish_wait(&memcg_oom_waitq, &owait.wait);
1980                mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1981                                         current->memcg_oom_order);
1982        } else {
1983                schedule();
1984                mem_cgroup_unmark_under_oom(memcg);
1985                finish_wait(&memcg_oom_waitq, &owait.wait);
1986        }
1987
1988        if (locked) {
1989                mem_cgroup_oom_unlock(memcg);
1990                /*
1991                 * There is no guarantee that an OOM-lock contender
1992                 * sees the wakeups triggered by the OOM kill
1993                 * uncharges.  Wake any sleepers explicitely.
1994                 */
1995                memcg_oom_recover(memcg);
1996        }
1997cleanup:
1998        current->memcg_in_oom = NULL;
1999        css_put(&memcg->css);
2000        return true;
2001}
2002
2003/**
2004 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2005 * @victim: task to be killed by the OOM killer
2006 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2007 *
2008 * Returns a pointer to a memory cgroup, which has to be cleaned up
2009 * by killing all belonging OOM-killable tasks.
2010 *
2011 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2012 */
2013struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2014                                            struct mem_cgroup *oom_domain)
2015{
2016        struct mem_cgroup *oom_group = NULL;
2017        struct mem_cgroup *memcg;
2018
2019        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2020                return NULL;
2021
2022        if (!oom_domain)
2023                oom_domain = root_mem_cgroup;
2024
2025        rcu_read_lock();
2026
2027        memcg = mem_cgroup_from_task(victim);
2028        if (memcg == root_mem_cgroup)
2029                goto out;
2030
2031        /*
2032         * Traverse the memory cgroup hierarchy from the victim task's
2033         * cgroup up to the OOMing cgroup (or root) to find the
2034         * highest-level memory cgroup with oom.group set.
2035         */
2036        for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2037                if (memcg->oom_group)
2038                        oom_group = memcg;
2039
2040                if (memcg == oom_domain)
2041                        break;
2042        }
2043
2044        if (oom_group)
2045                css_get(&oom_group->css);
2046out:
2047        rcu_read_unlock();
2048
2049        return oom_group;
2050}
2051
2052void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2053{
2054        pr_info("Tasks in ");
2055        pr_cont_cgroup_path(memcg->css.cgroup);
2056        pr_cont(" are going to be killed due to memory.oom.group set\n");
2057}
2058
2059/**
2060 * lock_page_memcg - lock a page->mem_cgroup binding
2061 * @page: the page
2062 *
2063 * This function protects unlocked LRU pages from being moved to
2064 * another cgroup.
2065 *
2066 * It ensures lifetime of the returned memcg. Caller is responsible
2067 * for the lifetime of the page; __unlock_page_memcg() is available
2068 * when @page might get freed inside the locked section.
2069 */
2070struct mem_cgroup *lock_page_memcg(struct page *page)
2071{
2072        struct mem_cgroup *memcg;
2073        unsigned long flags;
2074
2075        /*
2076         * The RCU lock is held throughout the transaction.  The fast
2077         * path can get away without acquiring the memcg->move_lock
2078         * because page moving starts with an RCU grace period.
2079         *
2080         * The RCU lock also protects the memcg from being freed when
2081         * the page state that is going to change is the only thing
2082         * preventing the page itself from being freed. E.g. writeback
2083         * doesn't hold a page reference and relies on PG_writeback to
2084         * keep off truncation, migration and so forth.
2085         */
2086        rcu_read_lock();
2087
2088        if (mem_cgroup_disabled())
2089                return NULL;
2090again:
2091        memcg = page->mem_cgroup;
2092        if (unlikely(!memcg))
2093                return NULL;
2094
2095        if (atomic_read(&memcg->moving_account) <= 0)
2096                return memcg;
2097
2098        spin_lock_irqsave(&memcg->move_lock, flags);
2099        if (memcg != page->mem_cgroup) {
2100                spin_unlock_irqrestore(&memcg->move_lock, flags);
2101                goto again;
2102        }
2103
2104        /*
2105         * When charge migration first begins, we can have locked and
2106         * unlocked page stat updates happening concurrently.  Track
2107         * the task who has the lock for unlock_page_memcg().
2108         */
2109        memcg->move_lock_task = current;
2110        memcg->move_lock_flags = flags;
2111
2112        return memcg;
2113}
2114EXPORT_SYMBOL(lock_page_memcg);
2115
2116/**
2117 * __unlock_page_memcg - unlock and unpin a memcg
2118 * @memcg: the memcg
2119 *
2120 * Unlock and unpin a memcg returned by lock_page_memcg().
2121 */
2122void __unlock_page_memcg(struct mem_cgroup *memcg)
2123{
2124        if (memcg && memcg->move_lock_task == current) {
2125                unsigned long flags = memcg->move_lock_flags;
2126
2127                memcg->move_lock_task = NULL;
2128                memcg->move_lock_flags = 0;
2129
2130                spin_unlock_irqrestore(&memcg->move_lock, flags);
2131        }
2132
2133        rcu_read_unlock();
2134}
2135
2136/**
2137 * unlock_page_memcg - unlock a page->mem_cgroup binding
2138 * @page: the page
2139 */
2140void unlock_page_memcg(struct page *page)
2141{
2142        __unlock_page_memcg(page->mem_cgroup);
2143}
2144EXPORT_SYMBOL(unlock_page_memcg);
2145
2146struct memcg_stock_pcp {
2147        struct mem_cgroup *cached; /* this never be root cgroup */
2148        unsigned int nr_pages;
2149        struct work_struct work;
2150        unsigned long flags;
2151#define FLUSHING_CACHED_CHARGE  0
2152};
2153static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2154static DEFINE_MUTEX(percpu_charge_mutex);
2155
2156/**
2157 * consume_stock: Try to consume stocked charge on this cpu.
2158 * @memcg: memcg to consume from.
2159 * @nr_pages: how many pages to charge.
2160 *
2161 * The charges will only happen if @memcg matches the current cpu's memcg
2162 * stock, and at least @nr_pages are available in that stock.  Failure to
2163 * service an allocation will refill the stock.
2164 *
2165 * returns true if successful, false otherwise.
2166 */
2167static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2168{
2169        struct memcg_stock_pcp *stock;
2170        unsigned long flags;
2171        bool ret = false;
2172
2173        if (nr_pages > MEMCG_CHARGE_BATCH)
2174                return ret;
2175
2176        local_irq_save(flags);
2177
2178        stock = this_cpu_ptr(&memcg_stock);
2179        if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2180                stock->nr_pages -= nr_pages;
2181                ret = true;
2182        }
2183
2184        local_irq_restore(flags);
2185
2186        return ret;
2187}
2188
2189/*
2190 * Returns stocks cached in percpu and reset cached information.
2191 */
2192static void drain_stock(struct memcg_stock_pcp *stock)
2193{
2194        struct mem_cgroup *old = stock->cached;
2195
2196        if (stock->nr_pages) {
2197                page_counter_uncharge(&old->memory, stock->nr_pages);
2198                if (do_memsw_account())
2199                        page_counter_uncharge(&old->memsw, stock->nr_pages);
2200                css_put_many(&old->css, stock->nr_pages);
2201                stock->nr_pages = 0;
2202        }
2203        stock->cached = NULL;
2204}
2205
2206static void drain_local_stock(struct work_struct *dummy)
2207{
2208        struct memcg_stock_pcp *stock;
2209        unsigned long flags;
2210
2211        /*
2212         * The only protection from memory hotplug vs. drain_stock races is
2213         * that we always operate on local CPU stock here with IRQ disabled
2214         */
2215        local_irq_save(flags);
2216
2217        stock = this_cpu_ptr(&memcg_stock);
2218        drain_stock(stock);
2219        clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2220
2221        local_irq_restore(flags);
2222}
2223
2224/*
2225 * Cache charges(val) to local per_cpu area.
2226 * This will be consumed by consume_stock() function, later.
2227 */
2228static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2229{
2230        struct memcg_stock_pcp *stock;
2231        unsigned long flags;
2232
2233        local_irq_save(flags);
2234
2235        stock = this_cpu_ptr(&memcg_stock);
2236        if (stock->cached != memcg) { /* reset if necessary */
2237                drain_stock(stock);
2238                stock->cached = memcg;
2239        }
2240        stock->nr_pages += nr_pages;
2241
2242        if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2243                drain_stock(stock);
2244
2245        local_irq_restore(flags);
2246}
2247
2248/*
2249 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2250 * of the hierarchy under it.
2251 */
2252static void drain_all_stock(struct mem_cgroup *root_memcg)
2253{
2254        int cpu, curcpu;
2255
2256        /* If someone's already draining, avoid adding running more workers. */
2257        if (!mutex_trylock(&percpu_charge_mutex))
2258                return;
2259        /*
2260         * Notify other cpus that system-wide "drain" is running
2261         * We do not care about races with the cpu hotplug because cpu down
2262         * as well as workers from this path always operate on the local
2263         * per-cpu data. CPU up doesn't touch memcg_stock at all.
2264         */
2265        curcpu = get_cpu();
2266        for_each_online_cpu(cpu) {
2267                struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2268                struct mem_cgroup *memcg;
2269
2270                memcg = stock->cached;
2271                if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2272                        continue;
2273                if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2274                        css_put(&memcg->css);
2275                        continue;
2276                }
2277                if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2278                        if (cpu == curcpu)
2279                                drain_local_stock(&stock->work);
2280                        else
2281                                schedule_work_on(cpu, &stock->work);
2282                }
2283                css_put(&memcg->css);
2284        }
2285        put_cpu();
2286        mutex_unlock(&percpu_charge_mutex);
2287}
2288
2289static int memcg_hotplug_cpu_dead(unsigned int cpu)
2290{
2291        struct memcg_stock_pcp *stock;
2292        struct mem_cgroup *memcg, *mi;
2293
2294        stock = &per_cpu(memcg_stock, cpu);
2295        drain_stock(stock);
2296
2297        for_each_mem_cgroup(memcg) {
2298                int i;
2299
2300                for (i = 0; i < MEMCG_NR_STAT; i++) {
2301                        int nid;
2302                        long x;
2303
2304                        x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2305                        if (x)
2306                                for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2307                                        atomic_long_add(x, &memcg->vmstats[i]);
2308
2309                        if (i >= NR_VM_NODE_STAT_ITEMS)
2310                                continue;
2311
2312                        for_each_node(nid) {
2313                                struct mem_cgroup_per_node *pn;
2314
2315                                pn = mem_cgroup_nodeinfo(memcg, nid);
2316                                x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2317                                if (x)
2318                                        do {
2319                                                atomic_long_add(x, &pn->lruvec_stat[i]);
2320                                        } while ((pn = parent_nodeinfo(pn, nid)));
2321                        }
2322                }
2323
2324                for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2325                        long x;
2326
2327                        x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2328                        if (x)
2329                                for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2330                                        atomic_long_add(x, &memcg->vmevents[i]);
2331                }
2332        }
2333
2334        return 0;
2335}
2336
2337static void reclaim_high(struct mem_cgroup *memcg,
2338                         unsigned int nr_pages,
2339                         gfp_t gfp_mask)
2340{
2341        do {
2342                if (page_counter_read(&memcg->memory) <= memcg->high)
2343                        continue;
2344                memcg_memory_event(memcg, MEMCG_HIGH);
2345                try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2346        } while ((memcg = parent_mem_cgroup(memcg)));
2347}
2348
2349static void high_work_func(struct work_struct *work)
2350{
2351        struct mem_cgroup *memcg;
2352
2353        memcg = container_of(work, struct mem_cgroup, high_work);
2354        reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2355}
2356
2357/*
2358 * Scheduled by try_charge() to be executed from the userland return path
2359 * and reclaims memory over the high limit.
2360 */
2361void mem_cgroup_handle_over_high(void)
2362{
2363        unsigned int nr_pages = current->memcg_nr_pages_over_high;
2364        struct mem_cgroup *memcg;
2365
2366        if (likely(!nr_pages))
2367                return;
2368
2369        memcg = get_mem_cgroup_from_mm(current->mm);
2370        reclaim_high(memcg, nr_pages, GFP_KERNEL);
2371        css_put(&memcg->css);
2372        current->memcg_nr_pages_over_high = 0;
2373}
2374
2375static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2376                      unsigned int nr_pages)
2377{
2378        unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2379        int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2380        struct mem_cgroup *mem_over_limit;
2381        struct page_counter *counter;
2382        unsigned long nr_reclaimed;
2383        bool may_swap = true;
2384        bool drained = false;
2385        enum oom_status oom_status;
2386
2387        if (mem_cgroup_is_root(memcg))
2388                return 0;
2389retry:
2390        if (consume_stock(memcg, nr_pages))
2391                return 0;
2392
2393        if (!do_memsw_account() ||
2394            page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2395                if (page_counter_try_charge(&memcg->memory, batch, &counter))
2396                        goto done_restock;
2397                if (do_memsw_account())
2398                        page_counter_uncharge(&memcg->memsw, batch);
2399                mem_over_limit = mem_cgroup_from_counter(counter, memory);
2400        } else {
2401                mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2402                may_swap = false;
2403        }
2404
2405        if (batch > nr_pages) {
2406                batch = nr_pages;
2407                goto retry;
2408        }
2409
2410        /*
2411         * Unlike in global OOM situations, memcg is not in a physical
2412         * memory shortage.  Allow dying and OOM-killed tasks to
2413         * bypass the last charges so that they can exit quickly and
2414         * free their memory.
2415         */
2416        if (unlikely(should_force_charge()))
2417                goto force;
2418
2419        /*
2420         * Prevent unbounded recursion when reclaim operations need to
2421         * allocate memory. This might exceed the limits temporarily,
2422         * but we prefer facilitating memory reclaim and getting back
2423         * under the limit over triggering OOM kills in these cases.
2424         */
2425        if (unlikely(current->flags & PF_MEMALLOC))
2426                goto force;
2427
2428        if (unlikely(task_in_memcg_oom(current)))
2429                goto nomem;
2430
2431        if (!gfpflags_allow_blocking(gfp_mask))
2432                goto nomem;
2433
2434        memcg_memory_event(mem_over_limit, MEMCG_MAX);
2435
2436        nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2437                                                    gfp_mask, may_swap);
2438
2439        if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2440                goto retry;
2441
2442        if (!drained) {
2443                drain_all_stock(mem_over_limit);
2444                drained = true;
2445                goto retry;
2446        }
2447
2448        if (gfp_mask & __GFP_NORETRY)
2449                goto nomem;
2450        /*
2451         * Even though the limit is exceeded at this point, reclaim
2452         * may have been able to free some pages.  Retry the charge
2453         * before killing the task.
2454         *
2455         * Only for regular pages, though: huge pages are rather
2456         * unlikely to succeed so close to the limit, and we fall back
2457         * to regular pages anyway in case of failure.
2458         */
2459        if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2460                goto retry;
2461        /*
2462         * At task move, charge accounts can be doubly counted. So, it's
2463         * better to wait until the end of task_move if something is going on.
2464         */
2465        if (mem_cgroup_wait_acct_move(mem_over_limit))
2466                goto retry;
2467
2468        if (nr_retries--)
2469                goto retry;
2470
2471        if (gfp_mask & __GFP_RETRY_MAYFAIL)
2472                goto nomem;
2473
2474        if (gfp_mask & __GFP_NOFAIL)
2475                goto force;
2476
2477        if (fatal_signal_pending(current))
2478                goto force;
2479
2480        /*
2481         * keep retrying as long as the memcg oom killer is able to make
2482         * a forward progress or bypass the charge if the oom killer
2483         * couldn't make any progress.
2484         */
2485        oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2486                       get_order(nr_pages * PAGE_SIZE));
2487        switch (oom_status) {
2488        case OOM_SUCCESS:
2489                nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2490                goto retry;
2491        case OOM_FAILED:
2492                goto force;
2493        default:
2494                goto nomem;
2495        }
2496nomem:
2497        if (!(gfp_mask & __GFP_NOFAIL))
2498                return -ENOMEM;
2499force:
2500        /*
2501         * The allocation either can't fail or will lead to more memory
2502         * being freed very soon.  Allow memory usage go over the limit
2503         * temporarily by force charging it.
2504         */
2505        page_counter_charge(&memcg->memory, nr_pages);
2506        if (do_memsw_account())
2507                page_counter_charge(&memcg->memsw, nr_pages);
2508        css_get_many(&memcg->css, nr_pages);
2509
2510        return 0;
2511
2512done_restock:
2513        css_get_many(&memcg->css, batch);
2514        if (batch > nr_pages)
2515                refill_stock(memcg, batch - nr_pages);
2516
2517        /*
2518         * If the hierarchy is above the normal consumption range, schedule
2519         * reclaim on returning to userland.  We can perform reclaim here
2520         * if __GFP_RECLAIM but let's always punt for simplicity and so that
2521         * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2522         * not recorded as it most likely matches current's and won't
2523         * change in the meantime.  As high limit is checked again before
2524         * reclaim, the cost of mismatch is negligible.
2525         */
2526        do {
2527                if (page_counter_read(&memcg->memory) > memcg->high) {
2528                        /* Don't bother a random interrupted task */
2529                        if (in_interrupt()) {
2530                                schedule_work(&memcg->high_work);
2531                                break;
2532                        }
2533                        current->memcg_nr_pages_over_high += batch;
2534                        set_notify_resume(current);
2535                        break;
2536                }
2537        } while ((memcg = parent_mem_cgroup(memcg)));
2538
2539        return 0;
2540}
2541
2542static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2543{
2544        if (mem_cgroup_is_root(memcg))
2545                return;
2546
2547        page_counter_uncharge(&memcg->memory, nr_pages);
2548        if (do_memsw_account())
2549                page_counter_uncharge(&memcg->memsw, nr_pages);
2550
2551        css_put_many(&memcg->css, nr_pages);
2552}
2553
2554static void lock_page_lru(struct page *page, int *isolated)
2555{
2556        pg_data_t *pgdat = page_pgdat(page);
2557
2558        spin_lock_irq(&pgdat->lru_lock);
2559        if (PageLRU(page)) {
2560                struct lruvec *lruvec;
2561
2562                lruvec = mem_cgroup_page_lruvec(page, pgdat);
2563                ClearPageLRU(page);
2564                del_page_from_lru_list(page, lruvec, page_lru(page));
2565                *isolated = 1;
2566        } else
2567                *isolated = 0;
2568}
2569
2570static void unlock_page_lru(struct page *page, int isolated)
2571{
2572        pg_data_t *pgdat = page_pgdat(page);
2573
2574        if (isolated) {
2575                struct lruvec *lruvec;
2576
2577                lruvec = mem_cgroup_page_lruvec(page, pgdat);
2578                VM_BUG_ON_PAGE(PageLRU(page), page);
2579                SetPageLRU(page);
2580                add_page_to_lru_list(page, lruvec, page_lru(page));
2581        }
2582        spin_unlock_irq(&pgdat->lru_lock);
2583}
2584
2585static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2586                          bool lrucare)
2587{
2588        int isolated;
2589
2590        VM_BUG_ON_PAGE(page->mem_cgroup, page);
2591
2592        /*
2593         * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2594         * may already be on some other mem_cgroup's LRU.  Take care of it.
2595         */
2596        if (lrucare)
2597                lock_page_lru(page, &isolated);
2598
2599        /*
2600         * Nobody should be changing or seriously looking at
2601         * page->mem_cgroup at this point:
2602         *
2603         * - the page is uncharged
2604         *
2605         * - the page is off-LRU
2606         *
2607         * - an anonymous fault has exclusive page access, except for
2608         *   a locked page table
2609         *
2610         * - a page cache insertion, a swapin fault, or a migration
2611         *   have the page locked
2612         */
2613        page->mem_cgroup = memcg;
2614
2615        if (lrucare)
2616                unlock_page_lru(page, isolated);
2617}
2618
2619#ifdef CONFIG_MEMCG_KMEM
2620static int memcg_alloc_cache_id(void)
2621{
2622        int id, size;
2623        int err;
2624
2625        id = ida_simple_get(&memcg_cache_ida,
2626                            0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2627        if (id < 0)
2628                return id;
2629
2630        if (id < memcg_nr_cache_ids)
2631                return id;
2632
2633        /*
2634         * There's no space for the new id in memcg_caches arrays,
2635         * so we have to grow them.
2636         */
2637        down_write(&memcg_cache_ids_sem);
2638
2639        size = 2 * (id + 1);
2640        if (size < MEMCG_CACHES_MIN_SIZE)
2641                size = MEMCG_CACHES_MIN_SIZE;
2642        else if (size > MEMCG_CACHES_MAX_SIZE)
2643                size = MEMCG_CACHES_MAX_SIZE;
2644
2645        err = memcg_update_all_caches(size);
2646        if (!err)
2647                err = memcg_update_all_list_lrus(size);
2648        if (!err)
2649                memcg_nr_cache_ids = size;
2650
2651        up_write(&memcg_cache_ids_sem);
2652
2653        if (err) {
2654                ida_simple_remove(&memcg_cache_ida, id);
2655                return err;
2656        }
2657        return id;
2658}
2659
2660static void memcg_free_cache_id(int id)
2661{
2662        ida_simple_remove(&memcg_cache_ida, id);
2663}
2664
2665struct memcg_kmem_cache_create_work {
2666        struct mem_cgroup *memcg;
2667        struct kmem_cache *cachep;
2668        struct work_struct work;
2669};
2670
2671static void memcg_kmem_cache_create_func(struct work_struct *w)
2672{
2673        struct memcg_kmem_cache_create_work *cw =
2674                container_of(w, struct memcg_kmem_cache_create_work, work);
2675        struct mem_cgroup *memcg = cw->memcg;
2676        struct kmem_cache *cachep = cw->cachep;
2677
2678        memcg_create_kmem_cache(memcg, cachep);
2679
2680        css_put(&memcg->css);
2681        kfree(cw);
2682}
2683
2684/*
2685 * Enqueue the creation of a per-memcg kmem_cache.
2686 */
2687static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2688                                               struct kmem_cache *cachep)
2689{
2690        struct memcg_kmem_cache_create_work *cw;
2691
2692        if (!css_tryget_online(&memcg->css))
2693                return;
2694
2695        cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2696        if (!cw)
2697                return;
2698
2699        cw->memcg = memcg;
2700        cw->cachep = cachep;
2701        INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2702
2703        queue_work(memcg_kmem_cache_wq, &cw->work);
2704}
2705
2706static inline bool memcg_kmem_bypass(void)
2707{
2708        if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2709                return true;
2710        return false;
2711}
2712
2713/**
2714 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2715 * @cachep: the original global kmem cache
2716 *
2717 * Return the kmem_cache we're supposed to use for a slab allocation.
2718 * We try to use the current memcg's version of the cache.
2719 *
2720 * If the cache does not exist yet, if we are the first user of it, we
2721 * create it asynchronously in a workqueue and let the current allocation
2722 * go through with the original cache.
2723 *
2724 * This function takes a reference to the cache it returns to assure it
2725 * won't get destroyed while we are working with it. Once the caller is
2726 * done with it, memcg_kmem_put_cache() must be called to release the
2727 * reference.
2728 */
2729struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2730{
2731        struct mem_cgroup *memcg;
2732        struct kmem_cache *memcg_cachep;
2733        struct memcg_cache_array *arr;
2734        int kmemcg_id;
2735
2736        VM_BUG_ON(!is_root_cache(cachep));
2737
2738        if (memcg_kmem_bypass())
2739                return cachep;
2740
2741        rcu_read_lock();
2742
2743        if (unlikely(current->active_memcg))
2744                memcg = current->active_memcg;
2745        else
2746                memcg = mem_cgroup_from_task(current);
2747
2748        if (!memcg || memcg == root_mem_cgroup)
2749                goto out_unlock;
2750
2751        kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2752        if (kmemcg_id < 0)
2753                goto out_unlock;
2754
2755        arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2756
2757        /*
2758         * Make sure we will access the up-to-date value. The code updating
2759         * memcg_caches issues a write barrier to match the data dependency
2760         * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2761         */
2762        memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2763
2764        /*
2765         * If we are in a safe context (can wait, and not in interrupt
2766         * context), we could be be predictable and return right away.
2767         * This would guarantee that the allocation being performed
2768         * already belongs in the new cache.
2769         *
2770         * However, there are some clashes that can arrive from locking.
2771         * For instance, because we acquire the slab_mutex while doing
2772         * memcg_create_kmem_cache, this means no further allocation
2773         * could happen with the slab_mutex held. So it's better to
2774         * defer everything.
2775         *
2776         * If the memcg is dying or memcg_cache is about to be released,
2777         * don't bother creating new kmem_caches. Because memcg_cachep
2778         * is ZEROed as the fist step of kmem offlining, we don't need
2779         * percpu_ref_tryget_live() here. css_tryget_online() check in
2780         * memcg_schedule_kmem_cache_create() will prevent us from
2781         * creation of a new kmem_cache.
2782         */
2783        if (unlikely(!memcg_cachep))
2784                memcg_schedule_kmem_cache_create(memcg, cachep);
2785        else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2786                cachep = memcg_cachep;
2787out_unlock:
2788        rcu_read_unlock();
2789        return cachep;
2790}
2791
2792/**
2793 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2794 * @cachep: the cache returned by memcg_kmem_get_cache
2795 */
2796void memcg_kmem_put_cache(struct kmem_cache *cachep)
2797{
2798        if (!is_root_cache(cachep))
2799                percpu_ref_put(&cachep->memcg_params.refcnt);
2800}
2801
2802/**
2803 * __memcg_kmem_charge_memcg: charge a kmem page
2804 * @page: page to charge
2805 * @gfp: reclaim mode
2806 * @order: allocation order
2807 * @memcg: memory cgroup to charge
2808 *
2809 * Returns 0 on success, an error code on failure.
2810 */
2811int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2812                            struct mem_cgroup *memcg)
2813{
2814        unsigned int nr_pages = 1 << order;
2815        struct page_counter *counter;
2816        int ret;
2817
2818        ret = try_charge(memcg, gfp, nr_pages);
2819        if (ret)
2820                return ret;
2821
2822        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2823            !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2824                cancel_charge(memcg, nr_pages);
2825                return -ENOMEM;
2826        }
2827        return 0;
2828}
2829
2830/**
2831 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2832 * @page: page to charge
2833 * @gfp: reclaim mode
2834 * @order: allocation order
2835 *
2836 * Returns 0 on success, an error code on failure.
2837 */
2838int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2839{
2840        struct mem_cgroup *memcg;
2841        int ret = 0;
2842
2843        if (memcg_kmem_bypass())
2844                return 0;
2845
2846        memcg = get_mem_cgroup_from_current();
2847        if (!mem_cgroup_is_root(memcg)) {
2848                ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2849                if (!ret) {
2850                        page->mem_cgroup = memcg;
2851                        __SetPageKmemcg(page);
2852                }
2853        }
2854        css_put(&memcg->css);
2855        return ret;
2856}
2857
2858/**
2859 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2860 * @memcg: memcg to uncharge
2861 * @nr_pages: number of pages to uncharge
2862 */
2863void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2864                                 unsigned int nr_pages)
2865{
2866        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2867                page_counter_uncharge(&memcg->kmem, nr_pages);
2868
2869        page_counter_uncharge(&memcg->memory, nr_pages);
2870        if (do_memsw_account())
2871                page_counter_uncharge(&memcg->memsw, nr_pages);
2872}
2873/**
2874 * __memcg_kmem_uncharge: uncharge a kmem page
2875 * @page: page to uncharge
2876 * @order: allocation order
2877 */
2878void __memcg_kmem_uncharge(struct page *page, int order)
2879{
2880        struct mem_cgroup *memcg = page->mem_cgroup;
2881        unsigned int nr_pages = 1 << order;
2882
2883        if (!memcg)
2884                return;
2885
2886        VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2887        __memcg_kmem_uncharge_memcg(memcg, nr_pages);
2888        page->mem_cgroup = NULL;
2889
2890        /* slab pages do not have PageKmemcg flag set */
2891        if (PageKmemcg(page))
2892                __ClearPageKmemcg(page);
2893
2894        css_put_many(&memcg->css, nr_pages);
2895}
2896#endif /* CONFIG_MEMCG_KMEM */
2897
2898#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2899
2900/*
2901 * Because tail pages are not marked as "used", set it. We're under
2902 * pgdat->lru_lock and migration entries setup in all page mappings.
2903 */
2904void mem_cgroup_split_huge_fixup(struct page *head)
2905{
2906        int i;
2907
2908        if (mem_cgroup_disabled())
2909                return;
2910
2911        for (i = 1; i < HPAGE_PMD_NR; i++)
2912                head[i].mem_cgroup = head->mem_cgroup;
2913
2914        __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2915}
2916#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2917
2918#ifdef CONFIG_MEMCG_SWAP
2919/**
2920 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2921 * @entry: swap entry to be moved
2922 * @from:  mem_cgroup which the entry is moved from
2923 * @to:  mem_cgroup which the entry is moved to
2924 *
2925 * It succeeds only when the swap_cgroup's record for this entry is the same
2926 * as the mem_cgroup's id of @from.
2927 *
2928 * Returns 0 on success, -EINVAL on failure.
2929 *
2930 * The caller must have charged to @to, IOW, called page_counter_charge() about
2931 * both res and memsw, and called css_get().
2932 */
2933static int mem_cgroup_move_swap_account(swp_entry_t entry,
2934                                struct mem_cgroup *from, struct mem_cgroup *to)
2935{
2936        unsigned short old_id, new_id;
2937
2938        old_id = mem_cgroup_id(from);
2939        new_id = mem_cgroup_id(to);
2940
2941        if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2942                mod_memcg_state(from, MEMCG_SWAP, -1);
2943                mod_memcg_state(to, MEMCG_SWAP, 1);
2944                return 0;
2945        }
2946        return -EINVAL;
2947}
2948#else
2949static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2950                                struct mem_cgroup *from, struct mem_cgroup *to)
2951{
2952        return -EINVAL;
2953}
2954#endif
2955
2956static DEFINE_MUTEX(memcg_max_mutex);
2957
2958static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2959                                 unsigned long max, bool memsw)
2960{
2961        bool enlarge = false;
2962        bool drained = false;
2963        int ret;
2964        bool limits_invariant;
2965        struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2966
2967        do {
2968                if (signal_pending(current)) {
2969                        ret = -EINTR;
2970                        break;
2971                }
2972
2973                mutex_lock(&memcg_max_mutex);
2974                /*
2975                 * Make sure that the new limit (memsw or memory limit) doesn't
2976                 * break our basic invariant rule memory.max <= memsw.max.
2977                 */
2978                limits_invariant = memsw ? max >= memcg->memory.max :
2979                                           max <= memcg->memsw.max;
2980                if (!limits_invariant) {
2981                        mutex_unlock(&memcg_max_mutex);
2982                        ret = -EINVAL;
2983                        break;
2984                }
2985                if (max > counter->max)
2986                        enlarge = true;
2987                ret = page_counter_set_max(counter, max);
2988                mutex_unlock(&memcg_max_mutex);
2989
2990                if (!ret)
2991                        break;
2992
2993                if (!drained) {
2994                        drain_all_stock(memcg);
2995                        drained = true;
2996                        continue;
2997                }
2998
2999                if (!try_to_free_mem_cgroup_pages(memcg, 1,
3000                                        GFP_KERNEL, !memsw)) {
3001                        ret = -EBUSY;
3002                        break;
3003                }
3004        } while (true);
3005
3006        if (!ret && enlarge)
3007                memcg_oom_recover(memcg);
3008
3009        return ret;
3010}
3011
3012unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3013                                            gfp_t gfp_mask,
3014                                            unsigned long *total_scanned)
3015{
3016        unsigned long nr_reclaimed = 0;
3017        struct mem_cgroup_per_node *mz, *next_mz = NULL;
3018        unsigned long reclaimed;
3019        int loop = 0;
3020        struct mem_cgroup_tree_per_node *mctz;
3021        unsigned long excess;
3022        unsigned long nr_scanned;
3023
3024        if (order > 0)
3025                return 0;
3026
3027        mctz = soft_limit_tree_node(pgdat->node_id);
3028
3029        /*
3030         * Do not even bother to check the largest node if the root
3031         * is empty. Do it lockless to prevent lock bouncing. Races
3032         * are acceptable as soft limit is best effort anyway.
3033         */
3034        if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3035                return 0;
3036
3037        /*
3038         * This loop can run a while, specially if mem_cgroup's continuously
3039         * keep exceeding their soft limit and putting the system under
3040         * pressure
3041         */
3042        do {
3043                if (next_mz)
3044                        mz = next_mz;
3045                else
3046                        mz = mem_cgroup_largest_soft_limit_node(mctz);
3047                if (!mz)
3048                        break;
3049
3050                nr_scanned = 0;
3051                reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3052                                                    gfp_mask, &nr_scanned);
3053                nr_reclaimed += reclaimed;
3054                *total_scanned += nr_scanned;
3055                spin_lock_irq(&mctz->lock);
3056                __mem_cgroup_remove_exceeded(mz, mctz);
3057
3058                /*
3059                 * If we failed to reclaim anything from this memory cgroup
3060                 * it is time to move on to the next cgroup
3061                 */
3062                next_mz = NULL;
3063                if (!reclaimed)
3064                        next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3065
3066                excess = soft_limit_excess(mz->memcg);
3067                /*
3068                 * One school of thought says that we should not add
3069                 * back the node to the tree if reclaim returns 0.
3070                 * But our reclaim could return 0, simply because due
3071                 * to priority we are exposing a smaller subset of
3072                 * memory to reclaim from. Consider this as a longer
3073                 * term TODO.
3074                 */
3075                /* If excess == 0, no tree ops */
3076                __mem_cgroup_insert_exceeded(mz, mctz, excess);
3077                spin_unlock_irq(&mctz->lock);
3078                css_put(&mz->memcg->css);
3079                loop++;
3080                /*
3081                 * Could not reclaim anything and there are no more
3082                 * mem cgroups to try or we seem to be looping without
3083                 * reclaiming anything.
3084                 */
3085                if (!nr_reclaimed &&
3086                        (next_mz == NULL ||
3087                        loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3088                        break;
3089        } while (!nr_reclaimed);
3090        if (next_mz)
3091                css_put(&next_mz->memcg->css);
3092        return nr_reclaimed;
3093}
3094
3095/*
3096 * Test whether @memcg has children, dead or alive.  Note that this
3097 * function doesn't care whether @memcg has use_hierarchy enabled and
3098 * returns %true if there are child csses according to the cgroup
3099 * hierarchy.  Testing use_hierarchy is the caller's responsiblity.
3100 */
3101static inline bool memcg_has_children(struct mem_cgroup *memcg)
3102{
3103        bool ret;
3104
3105        rcu_read_lock();
3106        ret = css_next_child(NULL, &memcg->css);
3107        rcu_read_unlock();
3108        return ret;
3109}
3110
3111/*
3112 * Reclaims as many pages from the given memcg as possible.
3113 *
3114 * Caller is responsible for holding css reference for memcg.
3115 */
3116static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3117{
3118        int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3119
3120        /* we call try-to-free pages for make this cgroup empty */
3121        lru_add_drain_all();
3122
3123        drain_all_stock(memcg);
3124
3125        /* try to free all pages in this cgroup */
3126        while (nr_retries && page_counter_read(&memcg->memory)) {
3127                int progress;
3128
3129                if (signal_pending(current))
3130                        return -EINTR;
3131
3132                progress = try_to_free_mem_cgroup_pages(memcg, 1,
3133                                                        GFP_KERNEL, true);
3134                if (!progress) {
3135                        nr_retries--;
3136                        /* maybe some writeback is necessary */
3137                        congestion_wait(BLK_RW_ASYNC, HZ/10);
3138                }
3139
3140        }
3141
3142        return 0;
3143}
3144
3145static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3146                                            char *buf, size_t nbytes,
3147                                            loff_t off)
3148{
3149        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3150
3151        if (mem_cgroup_is_root(memcg))
3152                return -EINVAL;
3153        return mem_cgroup_force_empty(memcg) ?: nbytes;
3154}
3155
3156static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3157                                     struct cftype *cft)
3158{
3159        return mem_cgroup_from_css(css)->use_hierarchy;
3160}
3161
3162static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3163                                      struct cftype *cft, u64 val)
3164{
3165        int retval = 0;
3166        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3167        struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3168
3169        if (memcg->use_hierarchy == val)
3170                return 0;
3171
3172        /*
3173         * If parent's use_hierarchy is set, we can't make any modifications
3174         * in the child subtrees. If it is unset, then the change can
3175         * occur, provided the current cgroup has no children.
3176         *
3177         * For the root cgroup, parent_mem is NULL, we allow value to be
3178         * set if there are no children.
3179         */
3180        if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3181                                (val == 1 || val == 0)) {
3182                if (!memcg_has_children(memcg))
3183                        memcg->use_hierarchy = val;
3184                else
3185                        retval = -EBUSY;
3186        } else
3187                retval = -EINVAL;
3188
3189        return retval;
3190}
3191
3192static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3193{
3194        unsigned long val;
3195
3196        if (mem_cgroup_is_root(memcg)) {
3197                val = memcg_page_state(memcg, MEMCG_CACHE) +
3198                        memcg_page_state(memcg, MEMCG_RSS);
3199                if (swap)
3200                        val += memcg_page_state(memcg, MEMCG_SWAP);
3201        } else {
3202                if (!swap)
3203                        val = page_counter_read(&memcg->memory);
3204                else
3205                        val = page_counter_read(&memcg->memsw);
3206        }
3207        return val;
3208}
3209
3210enum {
3211        RES_USAGE,
3212        RES_LIMIT,
3213        RES_MAX_USAGE,
3214        RES_FAILCNT,
3215        RES_SOFT_LIMIT,
3216};
3217
3218static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3219                               struct cftype *cft)
3220{
3221        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3222        struct page_counter *counter;
3223
3224        switch (MEMFILE_TYPE(cft->private)) {
3225        case _MEM:
3226                counter = &memcg->memory;
3227                break;
3228        case _MEMSWAP:
3229                counter = &memcg->memsw;
3230                break;
3231        case _KMEM:
3232                counter = &memcg->kmem;
3233                break;
3234        case _TCP:
3235                counter = &memcg->tcpmem;
3236                break;
3237        default:
3238                BUG();
3239        }
3240
3241        switch (MEMFILE_ATTR(cft->private)) {
3242        case RES_USAGE:
3243                if (counter == &memcg->memory)
3244                        return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3245                if (counter == &memcg->memsw)
3246                        return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3247                return (u64)page_counter_read(counter) * PAGE_SIZE;
3248        case RES_LIMIT:
3249                return (u64)counter->max * PAGE_SIZE;
3250        case RES_MAX_USAGE:
3251                return (u64)counter->watermark * PAGE_SIZE;
3252        case RES_FAILCNT:
3253                return counter->failcnt;
3254        case RES_SOFT_LIMIT:
3255                return (u64)memcg->soft_limit * PAGE_SIZE;
3256        default:
3257                BUG();
3258        }
3259}
3260
3261static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
3262{
3263        unsigned long stat[MEMCG_NR_STAT];
3264        struct mem_cgroup *mi;
3265        int node, cpu, i;
3266        int min_idx, max_idx;
3267
3268        if (slab_only) {
3269                min_idx = NR_SLAB_RECLAIMABLE;
3270                max_idx = NR_SLAB_UNRECLAIMABLE;
3271        } else {
3272                min_idx = 0;
3273                max_idx = MEMCG_NR_STAT;
3274        }
3275
3276        for (i = min_idx; i < max_idx; i++)
3277                stat[i] = 0;
3278
3279        for_each_online_cpu(cpu)
3280                for (i = min_idx; i < max_idx; i++)
3281                        stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3282
3283        for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3284                for (i = min_idx; i < max_idx; i++)
3285                        atomic_long_add(stat[i], &mi->vmstats[i]);
3286
3287        if (!slab_only)
3288                max_idx = NR_VM_NODE_STAT_ITEMS;
3289
3290        for_each_node(node) {
3291                struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3292                struct mem_cgroup_per_node *pi;
3293
3294                for (i = min_idx; i < max_idx; i++)
3295                        stat[i] = 0;
3296
3297                for_each_online_cpu(cpu)
3298                        for (i = min_idx; i < max_idx; i++)
3299                                stat[i] += per_cpu(
3300                                        pn->lruvec_stat_cpu->count[i], cpu);
3301
3302                for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3303                        for (i = min_idx; i < max_idx; i++)
3304                                atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3305        }
3306}
3307
3308static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3309{
3310        unsigned long events[NR_VM_EVENT_ITEMS];
3311        struct mem_cgroup *mi;
3312        int cpu, i;
3313
3314        for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3315                events[i] = 0;
3316
3317        for_each_online_cpu(cpu)
3318                for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3319                        events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3320                                             cpu);
3321
3322        for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3323                for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3324                        atomic_long_add(events[i], &mi->vmevents[i]);
3325}
3326
3327#ifdef CONFIG_MEMCG_KMEM
3328static int memcg_online_kmem(struct mem_cgroup *memcg)
3329{
3330        int memcg_id;
3331
3332        if (cgroup_memory_nokmem)
3333                return 0;
3334
3335        BUG_ON(memcg->kmemcg_id >= 0);
3336        BUG_ON(memcg->kmem_state);
3337
3338        memcg_id = memcg_alloc_cache_id();
3339        if (memcg_id < 0)
3340                return memcg_id;
3341
3342        static_branch_inc(&memcg_kmem_enabled_key);
3343        /*
3344         * A memory cgroup is considered kmem-online as soon as it gets
3345         * kmemcg_id. Setting the id after enabling static branching will
3346         * guarantee no one starts accounting before all call sites are
3347         * patched.
3348         */
3349        memcg->kmemcg_id = memcg_id;
3350        memcg->kmem_state = KMEM_ONLINE;
3351        INIT_LIST_HEAD(&memcg->kmem_caches);
3352
3353        return 0;
3354}
3355
3356static void memcg_offline_kmem(struct mem_cgroup *memcg)
3357{
3358        struct cgroup_subsys_state *css;
3359        struct mem_cgroup *parent, *child;
3360        int kmemcg_id;
3361
3362        if (memcg->kmem_state != KMEM_ONLINE)
3363                return;
3364        /*
3365         * Clear the online state before clearing memcg_caches array
3366         * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3367         * guarantees that no cache will be created for this cgroup
3368         * after we are done (see memcg_create_kmem_cache()).
3369         */
3370        memcg->kmem_state = KMEM_ALLOCATED;
3371
3372        parent = parent_mem_cgroup(memcg);
3373        if (!parent)
3374                parent = root_mem_cgroup;
3375
3376        /*
3377         * Deactivate and reparent kmem_caches. Then flush percpu
3378         * slab statistics to have precise values at the parent and
3379         * all ancestor levels. It's required to keep slab stats
3380         * accurate after the reparenting of kmem_caches.
3381         */
3382        memcg_deactivate_kmem_caches(memcg, parent);
3383        memcg_flush_percpu_vmstats(memcg, true);
3384
3385        kmemcg_id = memcg->kmemcg_id;
3386        BUG_ON(kmemcg_id < 0);
3387
3388        /*
3389         * Change kmemcg_id of this cgroup and all its descendants to the
3390         * parent's id, and then move all entries from this cgroup's list_lrus
3391         * to ones of the parent. After we have finished, all list_lrus
3392         * corresponding to this cgroup are guaranteed to remain empty. The
3393         * ordering is imposed by list_lru_node->lock taken by
3394         * memcg_drain_all_list_lrus().
3395         */
3396        rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3397        css_for_each_descendant_pre(css, &memcg->css) {
3398                child = mem_cgroup_from_css(css);
3399                BUG_ON(child->kmemcg_id != kmemcg_id);
3400                child->kmemcg_id = parent->kmemcg_id;
3401                if (!memcg->use_hierarchy)
3402                        break;
3403        }
3404        rcu_read_unlock();
3405
3406        memcg_drain_all_list_lrus(kmemcg_id, parent);
3407
3408        memcg_free_cache_id(kmemcg_id);
3409}
3410
3411static void memcg_free_kmem(struct mem_cgroup *memcg)
3412{
3413        /* css_alloc() failed, offlining didn't happen */
3414        if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3415                memcg_offline_kmem(memcg);
3416
3417        if (memcg->kmem_state == KMEM_ALLOCATED) {
3418                WARN_ON(!list_empty(&memcg->kmem_caches));
3419                static_branch_dec(&memcg_kmem_enabled_key);
3420        }
3421}
3422#else
3423static int memcg_online_kmem(struct mem_cgroup *memcg)
3424{
3425        return 0;
3426}
3427static void memcg_offline_kmem(struct mem_cgroup *memcg)
3428{
3429}
3430static void memcg_free_kmem(struct mem_cgroup *memcg)
3431{
3432}
3433#endif /* CONFIG_MEMCG_KMEM */
3434
3435static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3436                                 unsigned long max)
3437{
3438        int ret;
3439
3440        mutex_lock(&memcg_max_mutex);
3441        ret = page_counter_set_max(&memcg->kmem, max);
3442        mutex_unlock(&memcg_max_mutex);
3443        return ret;
3444}
3445
3446static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3447{
3448        int ret;
3449
3450        mutex_lock(&memcg_max_mutex);
3451
3452        ret = page_counter_set_max(&memcg->tcpmem, max);
3453        if (ret)
3454                goto out;
3455
3456        if (!memcg->tcpmem_active) {
3457                /*
3458                 * The active flag needs to be written after the static_key
3459                 * update. This is what guarantees that the socket activation
3460                 * function is the last one to run. See mem_cgroup_sk_alloc()
3461                 * for details, and note that we don't mark any socket as
3462                 * belonging to this memcg until that flag is up.
3463                 *
3464                 * We need to do this, because static_keys will span multiple
3465                 * sites, but we can't control their order. If we mark a socket
3466                 * as accounted, but the accounting functions are not patched in
3467                 * yet, we'll lose accounting.
3468                 *
3469                 * We never race with the readers in mem_cgroup_sk_alloc(),
3470                 * because when this value change, the code to process it is not
3471                 * patched in yet.
3472                 */
3473                static_branch_inc(&memcg_sockets_enabled_key);
3474                memcg->tcpmem_active = true;
3475        }
3476out:
3477        mutex_unlock(&memcg_max_mutex);
3478        return ret;
3479}
3480
3481/*
3482 * The user of this function is...
3483 * RES_LIMIT.
3484 */
3485static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3486                                char *buf, size_t nbytes, loff_t off)
3487{
3488        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3489        unsigned long nr_pages;
3490        int ret;
3491
3492        buf = strstrip(buf);
3493        ret = page_counter_memparse(buf, "-1", &nr_pages);
3494        if (ret)
3495                return ret;
3496
3497        switch (MEMFILE_ATTR(of_cft(of)->private)) {
3498        case RES_LIMIT:
3499                if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3500                        ret = -EINVAL;
3501                        break;
3502                }
3503                switch (MEMFILE_TYPE(of_cft(of)->private)) {
3504                case _MEM:
3505                        ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3506                        break;
3507                case _MEMSWAP:
3508                        ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3509                        break;
3510                case _KMEM:
3511                        ret = memcg_update_kmem_max(memcg, nr_pages);
3512                        break;
3513                case _TCP:
3514                        ret = memcg_update_tcp_max(memcg, nr_pages);
3515                        break;
3516                }
3517                break;
3518        case RES_SOFT_LIMIT:
3519                memcg->soft_limit = nr_pages;
3520                ret = 0;
3521                break;
3522        }
3523        return ret ?: nbytes;
3524}
3525
3526static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3527                                size_t nbytes, loff_t off)
3528{
3529        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3530        struct page_counter *counter;
3531
3532        switch (MEMFILE_TYPE(of_cft(of)->private)) {
3533        case _MEM:
3534                counter = &memcg->memory;
3535                break;
3536        case _MEMSWAP:
3537                counter = &memcg->memsw;
3538                break;
3539        case _KMEM:
3540                counter = &memcg->kmem;
3541                break;
3542        case _TCP:
3543                counter = &memcg->tcpmem;
3544                break;
3545        default:
3546                BUG();
3547        }
3548
3549        switch (MEMFILE_ATTR(of_cft(of)->private)) {
3550        case RES_MAX_USAGE:
3551                page_counter_reset_watermark(counter);
3552                break;
3553        case RES_FAILCNT:
3554                counter->failcnt = 0;
3555                break;
3556        default:
3557                BUG();
3558        }
3559
3560        return nbytes;
3561}
3562
3563static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3564                                        struct cftype *cft)
3565{
3566        return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3567}
3568
3569#ifdef CONFIG_MMU
3570static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3571                                        struct cftype *cft, u64 val)
3572{
3573        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3574
3575        if (val & ~MOVE_MASK)
3576                return -EINVAL;
3577
3578        /*
3579         * No kind of locking is needed in here, because ->can_attach() will
3580         * check this value once in the beginning of the process, and then carry
3581         * on with stale data. This means that changes to this value will only
3582         * affect task migrations starting after the change.
3583         */
3584        memcg->move_charge_at_immigrate = val;
3585        return 0;
3586}
3587#else
3588static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3589                                        struct cftype *cft, u64 val)
3590{
3591        return -ENOSYS;
3592}
3593#endif
3594
3595#ifdef CONFIG_NUMA
3596
3597#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3598#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3599#define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
3600
3601static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3602                                           int nid, unsigned int lru_mask)
3603{
3604        struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3605        unsigned long nr = 0;
3606        enum lru_list lru;
3607
3608        VM_BUG_ON((unsigned)nid >= nr_node_ids);
3609
3610        for_each_lru(lru) {
3611                if (!(BIT(lru) & lru_mask))
3612                        continue;
3613                nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3614        }
3615        return nr;
3616}
3617
3618static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3619                                             unsigned int lru_mask)
3620{
3621        unsigned long nr = 0;
3622        enum lru_list lru;
3623
3624        for_each_lru(lru) {
3625                if (!(BIT(lru) & lru_mask))
3626                        continue;
3627                nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3628        }
3629        return nr;
3630}
3631
3632static int memcg_numa_stat_show(struct seq_file *m, void *v)
3633{
3634        struct numa_stat {
3635                const char *name;
3636                unsigned int lru_mask;
3637        };
3638
3639        static const struct numa_stat stats[] = {
3640                { "total", LRU_ALL },
3641                { "file", LRU_ALL_FILE },
3642                { "anon", LRU_ALL_ANON },
3643                { "unevictable", BIT(LRU_UNEVICTABLE) },
3644        };
3645        const struct numa_stat *stat;
3646        int nid;
3647        unsigned long nr;
3648        struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3649
3650        for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3651                nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3652                seq_printf(m, "%s=%lu", stat->name, nr);
3653                for_each_node_state(nid, N_MEMORY) {
3654                        nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3655                                                          stat->lru_mask);
3656                        seq_printf(m, " N%d=%lu", nid, nr);
3657                }
3658                seq_putc(m, '\n');
3659        }
3660
3661        for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3662                struct mem_cgroup *iter;
3663
3664                nr = 0;
3665                for_each_mem_cgroup_tree(iter, memcg)
3666                        nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3667                seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3668                for_each_node_state(nid, N_MEMORY) {
3669                        nr = 0;
3670                        for_each_mem_cgroup_tree(iter, memcg)
3671                                nr += mem_cgroup_node_nr_lru_pages(
3672                                        iter, nid, stat->lru_mask);
3673                        seq_printf(m, " N%d=%lu", nid, nr);
3674                }
3675                seq_putc(m, '\n');
3676        }
3677
3678        return 0;
3679}
3680#endif /* CONFIG_NUMA */
3681
3682static const unsigned int memcg1_stats[] = {
3683        MEMCG_CACHE,
3684        MEMCG_RSS,
3685        MEMCG_RSS_HUGE,
3686        NR_SHMEM,
3687        NR_FILE_MAPPED,
3688        NR_FILE_DIRTY,
3689        NR_WRITEBACK,
3690        MEMCG_SWAP,
3691};
3692
3693static const char *const memcg1_stat_names[] = {
3694        "cache",
3695        "rss",
3696        "rss_huge",
3697        "shmem",
3698        "mapped_file",
3699        "dirty",
3700        "writeback",
3701        "swap",
3702};
3703
3704/* Universal VM events cgroup1 shows, original sort order */
3705static const unsigned int memcg1_events[] = {
3706        PGPGIN,
3707        PGPGOUT,
3708        PGFAULT,
3709        PGMAJFAULT,
3710};
3711
3712static const char *const memcg1_event_names[] = {
3713        "pgpgin",
3714        "pgpgout",
3715        "pgfault",
3716        "pgmajfault",
3717};
3718
3719static int memcg_stat_show(struct seq_file *m, void *v)
3720{
3721        struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3722        unsigned long memory, memsw;
3723        struct mem_cgroup *mi;
3724        unsigned int i;
3725
3726        BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3727        BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3728
3729        for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3730                if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3731                        continue;
3732                seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3733                           memcg_page_state_local(memcg, memcg1_stats[i]) *
3734                           PAGE_SIZE);
3735        }
3736
3737        for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3738                seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3739                           memcg_events_local(memcg, memcg1_events[i]));
3740
3741        for (i = 0; i < NR_LRU_LISTS; i++)
3742                seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3743                           memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3744                           PAGE_SIZE);
3745
3746        /* Hierarchical information */
3747        memory = memsw = PAGE_COUNTER_MAX;
3748        for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3749                memory = min(memory, mi->memory.max);
3750                memsw = min(memsw, mi->memsw.max);
3751        }
3752        seq_printf(m, "hierarchical_memory_limit %llu\n",
3753                   (u64)memory * PAGE_SIZE);
3754        if (do_memsw_account())
3755                seq_printf(m, "hierarchical_memsw_limit %llu\n",
3756                           (u64)memsw * PAGE_SIZE);
3757
3758        for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3759                if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3760                        continue;
3761                seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3762                           (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3763                           PAGE_SIZE);
3764        }
3765
3766        for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3767                seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3768                           (u64)memcg_events(memcg, memcg1_events[i]));
3769
3770        for (i = 0; i < NR_LRU_LISTS; i++)
3771                seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3772                           (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3773                           PAGE_SIZE);
3774
3775#ifdef CONFIG_DEBUG_VM
3776        {
3777                pg_data_t *pgdat;
3778                struct mem_cgroup_per_node *mz;
3779                struct zone_reclaim_stat *rstat;
3780                unsigned long recent_rotated[2] = {0, 0};
3781                unsigned long recent_scanned[2] = {0, 0};
3782
3783                for_each_online_pgdat(pgdat) {
3784                        mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3785                        rstat = &mz->lruvec.reclaim_stat;
3786
3787                        recent_rotated[0] += rstat->recent_rotated[0];
3788                        recent_rotated[1] += rstat->recent_rotated[1];
3789                        recent_scanned[0] += rstat->recent_scanned[0];
3790                        recent_scanned[1] += rstat->recent_scanned[1];
3791                }
3792                seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3793                seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3794                seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3795                seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3796        }
3797#endif
3798
3799        return 0;
3800}
3801
3802static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3803                                      struct cftype *cft)
3804{
3805        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3806
3807        return mem_cgroup_swappiness(memcg);
3808}
3809
3810static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3811                                       struct cftype *cft, u64 val)
3812{
3813        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3814
3815        if (val > 100)
3816                return -EINVAL;
3817
3818        if (css->parent)
3819                memcg->swappiness = val;
3820        else
3821                vm_swappiness = val;
3822
3823        return 0;
3824}
3825
3826static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3827{
3828        struct mem_cgroup_threshold_ary *t;
3829        unsigned long usage;
3830        int i;
3831
3832        rcu_read_lock();
3833        if (!swap)
3834                t = rcu_dereference(memcg->thresholds.primary);
3835        else
3836                t = rcu_dereference(memcg->memsw_thresholds.primary);
3837
3838        if (!t)
3839                goto unlock;
3840
3841        usage = mem_cgroup_usage(memcg, swap);
3842
3843        /*
3844         * current_threshold points to threshold just below or equal to usage.
3845         * If it's not true, a threshold was crossed after last
3846         * call of __mem_cgroup_threshold().
3847         */
3848        i = t->current_threshold;
3849
3850        /*
3851         * Iterate backward over array of thresholds starting from
3852         * current_threshold and check if a threshold is crossed.
3853         * If none of thresholds below usage is crossed, we read
3854         * only one element of the array here.
3855         */
3856        for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3857                eventfd_signal(t->entries[i].eventfd, 1);
3858
3859        /* i = current_threshold + 1 */
3860        i++;
3861
3862        /*
3863         * Iterate forward over array of thresholds starting from
3864         * current_threshold+1 and check if a threshold is crossed.
3865         * If none of thresholds above usage is crossed, we read
3866         * only one element of the array here.
3867         */
3868        for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3869                eventfd_signal(t->entries[i].eventfd, 1);
3870
3871        /* Update current_threshold */
3872        t->current_threshold = i - 1;
3873unlock:
3874        rcu_read_unlock();
3875}
3876
3877static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3878{
3879        while (memcg) {
3880                __mem_cgroup_threshold(memcg, false);
3881                if (do_memsw_account())
3882                        __mem_cgroup_threshold(memcg, true);
3883
3884                memcg = parent_mem_cgroup(memcg);
3885        }
3886}
3887
3888static int compare_thresholds(const void *a, const void *b)
3889{
3890        const struct mem_cgroup_threshold *_a = a;
3891        const struct mem_cgroup_threshold *_b = b;
3892
3893        if (_a->threshold > _b->threshold)
3894                return 1;
3895
3896        if (_a->threshold < _b->threshold)
3897                return -1;
3898
3899        return 0;
3900}
3901
3902static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3903{
3904        struct mem_cgroup_eventfd_list *ev;
3905
3906        spin_lock(&memcg_oom_lock);
3907
3908        list_for_each_entry(ev, &memcg->oom_notify, list)
3909                eventfd_signal(ev->eventfd, 1);
3910
3911        spin_unlock(&memcg_oom_lock);
3912        return 0;
3913}
3914
3915static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3916{
3917        struct mem_cgroup *iter;
3918
3919        for_each_mem_cgroup_tree(iter, memcg)
3920                mem_cgroup_oom_notify_cb(iter);
3921}
3922
3923static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3924        struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3925{
3926        struct mem_cgroup_thresholds *thresholds;
3927        struct mem_cgroup_threshold_ary *new;
3928        unsigned long threshold;
3929        unsigned long usage;
3930        int i, size, ret;
3931
3932        ret = page_counter_memparse(args, "-1", &threshold);
3933        if (ret)
3934                return ret;
3935
3936        mutex_lock(&memcg->thresholds_lock);
3937
3938        if (type == _MEM) {
3939                thresholds = &memcg->thresholds;
3940                usage = mem_cgroup_usage(memcg, false);
3941        } else if (type == _MEMSWAP) {
3942                thresholds = &memcg->memsw_thresholds;
3943                usage = mem_cgroup_usage(memcg, true);
3944        } else
3945                BUG();
3946
3947        /* Check if a threshold crossed before adding a new one */
3948        if (thresholds->primary)
3949                __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3950
3951        size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3952
3953        /* Allocate memory for new array of thresholds */
3954        new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3955        if (!new) {
3956                ret = -ENOMEM;
3957                goto unlock;
3958        }
3959        new->size = size;
3960
3961        /* Copy thresholds (if any) to new array */
3962        if (thresholds->primary) {
3963                memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3964                                sizeof(struct mem_cgroup_threshold));
3965        }
3966
3967        /* Add new threshold */
3968        new->entries[size - 1].eventfd = eventfd;
3969        new->entries[size - 1].threshold = threshold;
3970
3971        /* Sort thresholds. Registering of new threshold isn't time-critical */
3972        sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3973                        compare_thresholds, NULL);
3974
3975        /* Find current threshold */
3976        new->current_threshold = -1;
3977        for (i = 0; i < size; i++) {
3978                if (new->entries[i].threshold <= usage) {
3979                        /*
3980                         * new->current_threshold will not be used until
3981                         * rcu_assign_pointer(), so it's safe to increment
3982                         * it here.
3983                         */
3984                        ++new->current_threshold;
3985                } else
3986                        break;
3987        }
3988
3989        /* Free old spare buffer and save old primary buffer as spare */
3990        kfree(thresholds->spare);
3991        thresholds->spare = thresholds->primary;
3992
3993        rcu_assign_pointer(thresholds->primary, new);
3994
3995        /* To be sure that nobody uses thresholds */
3996        synchronize_rcu();
3997
3998unlock:
3999        mutex_unlock(&memcg->thresholds_lock);
4000
4001        return ret;
4002}
4003
4004static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4005        struct eventfd_ctx *eventfd, const char *args)
4006{
4007        return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4008}
4009
4010static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4011        struct eventfd_ctx *eventfd, const char *args)
4012{
4013        return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4014}
4015
4016static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4017        struct eventfd_ctx *eventfd, enum res_type type)
4018{
4019        struct mem_cgroup_thresholds *thresholds;
4020        struct mem_cgroup_threshold_ary *new;
4021        unsigned long usage;
4022        int i, j, size;
4023
4024        mutex_lock(&memcg->thresholds_lock);
4025
4026        if (type == _MEM) {
4027                thresholds = &memcg->thresholds;
4028                usage = mem_cgroup_usage(memcg, false);
4029        } else if (type == _MEMSWAP) {
4030                thresholds = &memcg->memsw_thresholds;
4031                usage = mem_cgroup_usage(memcg, true);
4032        } else
4033                BUG();
4034
4035        if (!thresholds->primary)
4036                goto unlock;
4037
4038        /* Check if a threshold crossed before removing */
4039        __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4040
4041        /* Calculate new number of threshold */
4042        size = 0;
4043        for (i = 0; i < thresholds->primary->size; i++) {
4044                if (thresholds->primary->entries[i].eventfd != eventfd)
4045                        size++;
4046        }
4047
4048        new = thresholds->spare;
4049
4050        /* Set thresholds array to NULL if we don't have thresholds */
4051        if (!size) {
4052                kfree(new);
4053                new = NULL;
4054                goto swap_buffers;
4055        }
4056
4057        new->size = size;
4058
4059        /* Copy thresholds and find current threshold */
4060        new->current_threshold = -1;
4061        for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4062                if (thresholds->primary->entries[i].eventfd == eventfd)
4063                        continue;
4064
4065                new->entries[j] = thresholds->primary->entries[i];
4066                if (new->entries[j].threshold <= usage) {
4067                        /*
4068                         * new->current_threshold will not be used
4069                         * until rcu_assign_pointer(), so it's safe to increment
4070                         * it here.
4071                         */
4072                        ++new->current_threshold;
4073                }
4074                j++;
4075        }
4076
4077swap_buffers:
4078        /* Swap primary and spare array */
4079        thresholds->spare = thresholds->primary;
4080
4081        rcu_assign_pointer(thresholds->primary, new);
4082
4083        /* To be sure that nobody uses thresholds */
4084        synchronize_rcu();
4085
4086        /* If all events are unregistered, free the spare array */
4087        if (!new) {
4088                kfree(thresholds->spare);
4089                thresholds->spare = NULL;
4090        }
4091unlock:
4092        mutex_unlock(&memcg->thresholds_lock);
4093}
4094
4095static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4096        struct eventfd_ctx *eventfd)
4097{
4098        return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4099}
4100
4101static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4102        struct eventfd_ctx *eventfd)
4103{
4104        return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4105}
4106
4107static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4108        struct eventfd_ctx *eventfd, const char *args)
4109{
4110        struct mem_cgroup_eventfd_list *event;
4111
4112        event = kmalloc(sizeof(*event), GFP_KERNEL);
4113        if (!event)
4114                return -ENOMEM;
4115
4116        spin_lock(&memcg_oom_lock);
4117
4118        event->eventfd = eventfd;
4119        list_add(&event->list, &memcg->oom_notify);
4120
4121        /* already in OOM ? */
4122        if (memcg->under_oom)
4123                eventfd_signal(eventfd, 1);
4124        spin_unlock(&memcg_oom_lock);
4125
4126        return 0;
4127}
4128
4129static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4130        struct eventfd_ctx *eventfd)
4131{
4132        struct mem_cgroup_eventfd_list *ev, *tmp;
4133
4134        spin_lock(&memcg_oom_lock);
4135
4136        list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4137                if (ev->eventfd == eventfd) {
4138                        list_del(&ev->list);
4139                        kfree(ev);
4140                }
4141        }
4142
4143        spin_unlock(&memcg_oom_lock);
4144}
4145
4146static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4147{
4148        struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4149
4150        seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4151        seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4152        seq_printf(sf, "oom_kill %lu\n",
4153                   atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4154        return 0;
4155}
4156
4157static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4158        struct cftype *cft, u64 val)
4159{
4160        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4161
4162        /* cannot set to root cgroup and only 0 and 1 are allowed */
4163        if (!css->parent || !((val == 0) || (val == 1)))
4164                return -EINVAL;
4165
4166        memcg->oom_kill_disable = val;
4167        if (!val)
4168                memcg_oom_recover(memcg);
4169
4170        return 0;
4171}
4172
4173#ifdef CONFIG_CGROUP_WRITEBACK
4174
4175static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4176{
4177        return wb_domain_init(&memcg->cgwb_domain, gfp);
4178}
4179
4180static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4181{
4182        wb_domain_exit(&memcg->cgwb_domain);
4183}
4184
4185static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4186{
4187        wb_domain_size_changed(&memcg->cgwb_domain);
4188}
4189
4190struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4191{
4192        struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4193
4194        if (!memcg->css.parent)
4195                return NULL;
4196
4197        return &memcg->cgwb_domain;
4198}
4199
4200/*
4201 * idx can be of type enum memcg_stat_item or node_stat_item.
4202 * Keep in sync with memcg_exact_page().
4203 */
4204static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4205{
4206        long x = atomic_long_read(&memcg->vmstats[idx]);
4207        int cpu;
4208
4209        for_each_online_cpu(cpu)
4210                x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4211        if (x < 0)
4212                x = 0;
4213        return x;
4214}
4215
4216/**
4217 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4218 * @wb: bdi_writeback in question
4219 * @pfilepages: out parameter for number of file pages
4220 * @pheadroom: out parameter for number of allocatable pages according to memcg
4221 * @pdirty: out parameter for number of dirty pages
4222 * @pwriteback: out parameter for number of pages under writeback
4223 *
4224 * Determine the numbers of file, headroom, dirty, and writeback pages in
4225 * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
4226 * is a bit more involved.
4227 *
4228 * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
4229 * headroom is calculated as the lowest headroom of itself and the
4230 * ancestors.  Note that this doesn't consider the actual amount of
4231 * available memory in the system.  The caller should further cap
4232 * *@pheadroom accordingly.
4233 */
4234void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4235                         unsigned long *pheadroom, unsigned long *pdirty,
4236                         unsigned long *pwriteback)
4237{
4238        struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4239        struct mem_cgroup *parent;
4240
4241        *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4242
4243        /* this should eventually include NR_UNSTABLE_NFS */
4244        *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4245        *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4246                        memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4247        *pheadroom = PAGE_COUNTER_MAX;
4248
4249        while ((parent = parent_mem_cgroup(memcg))) {
4250                unsigned long ceiling = min(memcg->memory.max, memcg->high);
4251                unsigned long used = page_counter_read(&memcg->memory);
4252
4253                *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4254                memcg = parent;
4255        }
4256}
4257
4258#else   /* CONFIG_CGROUP_WRITEBACK */
4259
4260static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4261{
4262        return 0;
4263}
4264
4265static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4266{
4267}
4268
4269static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4270{
4271}
4272
4273#endif  /* CONFIG_CGROUP_WRITEBACK */
4274
4275/*
4276 * DO NOT USE IN NEW FILES.
4277 *
4278 * "cgroup.event_control" implementation.
4279 *
4280 * This is way over-engineered.  It tries to support fully configurable
4281 * events for each user.  Such level of flexibility is completely
4282 * unnecessary especially in the light of the planned unified hierarchy.
4283 *
4284 * Please deprecate this and replace with something simpler if at all
4285 * possible.
4286 */
4287
4288/*
4289 * Unregister event and free resources.
4290 *
4291 * Gets called from workqueue.
4292 */
4293static void memcg_event_remove(struct work_struct *work)
4294{
4295        struct mem_cgroup_event *event =
4296                container_of(work, struct mem_cgroup_event, remove);
4297        struct mem_cgroup *memcg = event->memcg;
4298
4299        remove_wait_queue(event->wqh, &event->wait);
4300
4301        event->unregister_event(memcg, event->eventfd);
4302
4303        /* Notify userspace the event is going away. */
4304        eventfd_signal(event->eventfd, 1);
4305
4306        eventfd_ctx_put(event->eventfd);
4307        kfree(event);
4308        css_put(&memcg->css);
4309}
4310
4311/*
4312 * Gets called on EPOLLHUP on eventfd when user closes it.
4313 *
4314 * Called with wqh->lock held and interrupts disabled.
4315 */
4316static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4317                            int sync, void *key)
4318{
4319        struct mem_cgroup_event *event =
4320                container_of(wait, struct mem_cgroup_event, wait);
4321        struct mem_cgroup *memcg = event->memcg;
4322        __poll_t flags = key_to_poll(key);
4323
4324        if (flags & EPOLLHUP) {
4325                /*
4326                 * If the event has been detached at cgroup removal, we
4327                 * can simply return knowing the other side will cleanup
4328                 * for us.
4329                 *
4330                 * We can't race against event freeing since the other
4331                 * side will require wqh->lock via remove_wait_queue(),
4332                 * which we hold.
4333                 */
4334                spin_lock(&memcg->event_list_lock);
4335                if (!list_empty(&event->list)) {
4336                        list_del_init(&event->list);
4337                        /*
4338                         * We are in atomic context, but cgroup_event_remove()
4339                         * may sleep, so we have to call it in workqueue.
4340                         */
4341                        schedule_work(&event->remove);
4342                }
4343                spin_unlock(&memcg->event_list_lock);
4344        }
4345
4346        return 0;
4347}
4348
4349static void memcg_event_ptable_queue_proc(struct file *file,
4350                wait_queue_head_t *wqh, poll_table *pt)
4351{
4352        struct mem_cgroup_event *event =
4353                container_of(pt, struct mem_cgroup_event, pt);
4354
4355        event->wqh = wqh;
4356        add_wait_queue(wqh, &event->wait);
4357}
4358
4359/*
4360 * DO NOT USE IN NEW FILES.
4361 *
4362 * Parse input and register new cgroup event handler.
4363 *
4364 * Input must be in format '<event_fd> <control_fd> <args>'.
4365 * Interpretation of args is defined by control file implementation.
4366 */
4367static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4368                                         char *buf, size_t nbytes, loff_t off)
4369{
4370        struct cgroup_subsys_state *css = of_css(of);
4371        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4372        struct mem_cgroup_event *event;
4373        struct cgroup_subsys_state *cfile_css;
4374        unsigned int efd, cfd;
4375        struct fd efile;
4376        struct fd cfile;
4377        const char *name;
4378        char *endp;
4379        int ret;
4380
4381        buf = strstrip(buf);
4382
4383        efd = simple_strtoul(buf, &endp, 10);
4384        if (*endp != ' ')
4385                return -EINVAL;
4386        buf = endp + 1;
4387
4388        cfd = simple_strtoul(buf, &endp, 10);
4389        if ((*endp != ' ') && (*endp != '\0'))
4390                return -EINVAL;
4391        buf = endp + 1;
4392
4393        event = kzalloc(sizeof(*event), GFP_KERNEL);
4394        if (!event)
4395                return -ENOMEM;
4396
4397        event->memcg = memcg;
4398        INIT_LIST_HEAD(&event->list);
4399        init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4400        init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4401        INIT_WORK(&event->remove, memcg_event_remove);
4402
4403        efile = fdget(efd);
4404        if (!efile.file) {
4405                ret = -EBADF;
4406                goto out_kfree;
4407        }
4408
4409        event->eventfd = eventfd_ctx_fileget(efile.file);
4410        if (IS_ERR(event->eventfd)) {
4411                ret = PTR_ERR(event->eventfd);
4412                goto out_put_efile;
4413        }
4414
4415        cfile = fdget(cfd);
4416        if (!cfile.file) {
4417                ret = -EBADF;
4418                goto out_put_eventfd;
4419        }
4420
4421        /* the process need read permission on control file */
4422        /* AV: shouldn't we check that it's been opened for read instead? */
4423        ret = inode_permission(file_inode(cfile.file), MAY_READ);
4424        if (ret < 0)
4425                goto out_put_cfile;
4426
4427        /*
4428         * Determine the event callbacks and set them in @event.  This used
4429         * to be done via struct cftype but cgroup core no longer knows
4430         * about these events.  The following is crude but the whole thing
4431         * is for compatibility anyway.
4432         *
4433         * DO NOT ADD NEW FILES.
4434         */
4435        name = cfile.file->f_path.dentry->d_name.name;
4436
4437        if (!strcmp(name, "memory.usage_in_bytes")) {
4438                event->register_event = mem_cgroup_usage_register_event;
4439                event->unregister_event = mem_cgroup_usage_unregister_event;
4440        } else if (!strcmp(name, "memory.oom_control")) {
4441                event->register_event = mem_cgroup_oom_register_event;
4442                event->unregister_event = mem_cgroup_oom_unregister_event;
4443        } else if (!strcmp(name, "memory.pressure_level")) {
4444                event->register_event = vmpressure_register_event;
4445                event->unregister_event = vmpressure_unregister_event;
4446        } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4447                event->register_event = memsw_cgroup_usage_register_event;
4448                event->unregister_event = memsw_cgroup_usage_unregister_event;
4449        } else {
4450                ret = -EINVAL;
4451                goto out_put_cfile;
4452        }
4453
4454        /*
4455         * Verify @cfile should belong to @css.  Also, remaining events are
4456         * automatically removed on cgroup destruction but the removal is
4457         * asynchronous, so take an extra ref on @css.
4458         */
4459        cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4460                                               &memory_cgrp_subsys);
4461        ret = -EINVAL;
4462        if (IS_ERR(cfile_css))
4463                goto out_put_cfile;
4464        if (cfile_css != css) {
4465                css_put(cfile_css);
4466                goto out_put_cfile;
4467        }
4468
4469        ret = event->register_event(memcg, event->eventfd, buf);
4470        if (ret)
4471                goto out_put_css;
4472
4473        vfs_poll(efile.file, &event->pt);
4474
4475        spin_lock(&memcg->event_list_lock);
4476        list_add(&event->list, &memcg->event_list);
4477        spin_unlock(&memcg->event_list_lock);
4478
4479        fdput(cfile);
4480        fdput(efile);
4481
4482        return nbytes;
4483
4484out_put_css:
4485        css_put(css);
4486out_put_cfile:
4487        fdput(cfile);
4488out_put_eventfd:
4489        eventfd_ctx_put(event->eventfd);
4490out_put_efile:
4491        fdput(efile);
4492out_kfree:
4493        kfree(event);
4494
4495        return ret;
4496}
4497
4498static struct cftype mem_cgroup_legacy_files[] = {
4499        {
4500                .name = "usage_in_bytes",
4501                .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4502                .read_u64 = mem_cgroup_read_u64,
4503        },
4504        {
4505                .name = "max_usage_in_bytes",
4506                .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4507                .write = mem_cgroup_reset,
4508                .read_u64 = mem_cgroup_read_u64,
4509        },
4510        {
4511                .name = "limit_in_bytes",
4512                .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4513                .write = mem_cgroup_write,
4514                .read_u64 = mem_cgroup_read_u64,
4515        },
4516        {
4517                .name = "soft_limit_in_bytes",
4518                .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4519                .write = mem_cgroup_write,
4520                .read_u64 = mem_cgroup_read_u64,
4521        },
4522        {
4523                .name = "failcnt",
4524                .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4525                .write = mem_cgroup_reset,
4526                .read_u64 = mem_cgroup_read_u64,
4527        },
4528        {
4529                .name = "stat",
4530                .seq_show = memcg_stat_show,
4531        },
4532        {
4533                .name = "force_empty",
4534                .write = mem_cgroup_force_empty_write,
4535        },
4536        {
4537                .name = "use_hierarchy",
4538                .write_u64 = mem_cgroup_hierarchy_write,
4539                .read_u64 = mem_cgroup_hierarchy_read,
4540        },
4541        {
4542                .name = "cgroup.event_control",         /* XXX: for compat */
4543                .write = memcg_write_event_control,
4544                .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4545        },
4546        {
4547                .name = "swappiness",
4548                .read_u64 = mem_cgroup_swappiness_read,
4549                .write_u64 = mem_cgroup_swappiness_write,
4550        },
4551        {
4552                .name = "move_charge_at_immigrate",
4553                .read_u64 = mem_cgroup_move_charge_read,
4554                .write_u64 = mem_cgroup_move_charge_write,
4555        },
4556        {
4557                .name = "oom_control",
4558                .seq_show = mem_cgroup_oom_control_read,
4559                .write_u64 = mem_cgroup_oom_control_write,
4560                .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4561        },
4562        {
4563                .name = "pressure_level",
4564        },
4565#ifdef CONFIG_NUMA
4566        {
4567                .name = "numa_stat",
4568                .seq_show = memcg_numa_stat_show,
4569        },
4570#endif
4571        {
4572                .name = "kmem.limit_in_bytes",
4573                .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4574                .write = mem_cgroup_write,
4575                .read_u64 = mem_cgroup_read_u64,
4576        },
4577        {
4578                .name = "kmem.usage_in_bytes",
4579                .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4580                .read_u64 = mem_cgroup_read_u64,
4581        },
4582        {
4583                .name = "kmem.failcnt",
4584                .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4585                .write = mem_cgroup_reset,
4586                .read_u64 = mem_cgroup_read_u64,
4587        },
4588        {
4589                .name = "kmem.max_usage_in_bytes",
4590                .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4591                .write = mem_cgroup_reset,
4592                .read_u64 = mem_cgroup_read_u64,
4593        },
4594#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4595        {
4596                .name = "kmem.slabinfo",
4597                .seq_start = memcg_slab_start,
4598                .seq_next = memcg_slab_next,
4599                .seq_stop = memcg_slab_stop,
4600                .seq_show = memcg_slab_show,
4601        },
4602#endif
4603        {
4604                .name = "kmem.tcp.limit_in_bytes",
4605                .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4606                .write = mem_cgroup_write,
4607                .read_u64 = mem_cgroup_read_u64,
4608        },
4609        {
4610                .name = "kmem.tcp.usage_in_bytes",
4611                .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4612                .read_u64 = mem_cgroup_read_u64,
4613        },
4614        {
4615                .name = "kmem.tcp.failcnt",
4616                .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4617                .write = mem_cgroup_reset,
4618                .read_u64 = mem_cgroup_read_u64,
4619        },
4620        {
4621                .name = "kmem.tcp.max_usage_in_bytes",
4622                .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4623                .write = mem_cgroup_reset,
4624                .read_u64 = mem_cgroup_read_u64,
4625        },
4626        { },    /* terminate */
4627};
4628
4629/*
4630 * Private memory cgroup IDR
4631 *
4632 * Swap-out records and page cache shadow entries need to store memcg
4633 * references in constrained space, so we maintain an ID space that is
4634 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4635 * memory-controlled cgroups to 64k.
4636 *
4637 * However, there usually are many references to the oflline CSS after
4638 * the cgroup has been destroyed, such as page cache or reclaimable
4639 * slab objects, that don't need to hang on to the ID. We want to keep
4640 * those dead CSS from occupying IDs, or we might quickly exhaust the
4641 * relatively small ID space and prevent the creation of new cgroups
4642 * even when there are much fewer than 64k cgroups - possibly none.
4643 *
4644 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4645 * be freed and recycled when it's no longer needed, which is usually
4646 * when the CSS is offlined.
4647 *
4648 * The only exception to that are records of swapped out tmpfs/shmem
4649 * pages that need to be attributed to live ancestors on swapin. But
4650 * those references are manageable from userspace.
4651 */
4652
4653static DEFINE_IDR(mem_cgroup_idr);
4654
4655static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4656{
4657        if (memcg->id.id > 0) {
4658                idr_remove(&mem_cgroup_idr, memcg->id.id);
4659                memcg->id.id = 0;
4660        }
4661}
4662
4663static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4664{
4665        refcount_add(n, &memcg->id.ref);
4666}
4667
4668static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4669{
4670        if (refcount_sub_and_test(n, &memcg->id.ref)) {
4671                mem_cgroup_id_remove(memcg);
4672
4673                /* Memcg ID pins CSS */
4674                css_put(&memcg->css);
4675        }
4676}
4677
4678static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4679{
4680        mem_cgroup_id_get_many(memcg, 1);
4681}
4682
4683static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4684{
4685        mem_cgroup_id_put_many(memcg, 1);
4686}
4687
4688/**
4689 * mem_cgroup_from_id - look up a memcg from a memcg id
4690 * @id: the memcg id to look up
4691 *
4692 * Caller must hold rcu_read_lock().
4693 */
4694struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4695{
4696        WARN_ON_ONCE(!rcu_read_lock_held());
4697        return idr_find(&mem_cgroup_idr, id);
4698}
4699
4700static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4701{
4702        struct mem_cgroup_per_node *pn;
4703        int tmp = node;
4704        /*
4705         * This routine is called against possible nodes.
4706         * But it's BUG to call kmalloc() against offline node.
4707         *
4708         * TODO: this routine can waste much memory for nodes which will
4709         *       never be onlined. It's better to use memory hotplug callback
4710         *       function.
4711         */
4712        if (!node_state(node, N_NORMAL_MEMORY))
4713                tmp = -1;
4714        pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4715        if (!pn)
4716                return 1;
4717
4718        pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4719        if (!pn->lruvec_stat_local) {
4720                kfree(pn);
4721                return 1;
4722        }
4723
4724        pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4725        if (!pn->lruvec_stat_cpu) {
4726                free_percpu(pn->lruvec_stat_local);
4727                kfree(pn);
4728                return 1;
4729        }
4730
4731        lruvec_init(&pn->lruvec);
4732        pn->usage_in_excess = 0;
4733        pn->on_tree = false;
4734        pn->memcg = memcg;
4735
4736        memcg->nodeinfo[node] = pn;
4737        return 0;
4738}
4739
4740static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4741{
4742        struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4743
4744        if (!pn)
4745                return;
4746
4747        free_percpu(pn->lruvec_stat_cpu);
4748        free_percpu(pn->lruvec_stat_local);
4749        kfree(pn);
4750}
4751
4752static void __mem_cgroup_free(struct mem_cgroup *memcg)
4753{
4754        int node;
4755
4756        /*
4757         * Flush percpu vmstats and vmevents to guarantee the value correctness
4758         * on parent's and all ancestor levels.
4759         */
4760        memcg_flush_percpu_vmstats(memcg, false);
4761        memcg_flush_percpu_vmevents(memcg);
4762        for_each_node(node)
4763                free_mem_cgroup_per_node_info(memcg, node);
4764        free_percpu(memcg->vmstats_percpu);
4765        free_percpu(memcg->vmstats_local);
4766        kfree(memcg);
4767}
4768
4769static void mem_cgroup_free(struct mem_cgroup *memcg)
4770{
4771        memcg_wb_domain_exit(memcg);
4772        __mem_cgroup_free(memcg);
4773}
4774
4775static struct mem_cgroup *mem_cgroup_alloc(void)
4776{
4777        struct mem_cgroup *memcg;
4778        unsigned int size;
4779        int node;
4780
4781        size = sizeof(struct mem_cgroup);
4782        size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4783
4784        memcg = kzalloc(size, GFP_KERNEL);
4785        if (!memcg)
4786                return NULL;
4787
4788        memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4789                                 1, MEM_CGROUP_ID_MAX,
4790                                 GFP_KERNEL);
4791        if (memcg->id.id < 0)
4792                goto fail;
4793
4794        memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4795        if (!memcg->vmstats_local)
4796                goto fail;
4797
4798        memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4799        if (!memcg->vmstats_percpu)
4800                goto fail;
4801
4802        for_each_node(node)
4803                if (alloc_mem_cgroup_per_node_info(memcg, node))
4804                        goto fail;
4805
4806        if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4807                goto fail;
4808
4809        INIT_WORK(&memcg->high_work, high_work_func);
4810        memcg->last_scanned_node = MAX_NUMNODES;
4811        INIT_LIST_HEAD(&memcg->oom_notify);
4812        mutex_init(&memcg->thresholds_lock);
4813        spin_lock_init(&memcg->move_lock);
4814        vmpressure_init(&memcg->vmpressure);
4815        INIT_LIST_HEAD(&memcg->event_list);
4816        spin_lock_init(&memcg->event_list_lock);
4817        memcg->socket_pressure = jiffies;
4818#ifdef CONFIG_MEMCG_KMEM
4819        memcg->kmemcg_id = -1;
4820#endif
4821#ifdef CONFIG_CGROUP_WRITEBACK
4822        INIT_LIST_HEAD(&memcg->cgwb_list);
4823#endif
4824        idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4825        return memcg;
4826fail:
4827        mem_cgroup_id_remove(memcg);
4828        __mem_cgroup_free(memcg);
4829        return NULL;
4830}
4831
4832static struct cgroup_subsys_state * __ref
4833mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4834{
4835        struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4836        struct mem_cgroup *memcg;
4837        long error = -ENOMEM;
4838
4839        memcg = mem_cgroup_alloc();
4840        if (!memcg)
4841                return ERR_PTR(error);
4842
4843        memcg->high = PAGE_COUNTER_MAX;
4844        memcg->soft_limit = PAGE_COUNTER_MAX;
4845        if (parent) {
4846                memcg->swappiness = mem_cgroup_swappiness(parent);
4847                memcg->oom_kill_disable = parent->oom_kill_disable;
4848        }
4849        if (parent && parent->use_hierarchy) {
4850                memcg->use_hierarchy = true;
4851                page_counter_init(&memcg->memory, &parent->memory);
4852                page_counter_init(&memcg->swap, &parent->swap);
4853                page_counter_init(&memcg->memsw, &parent->memsw);
4854                page_counter_init(&memcg->kmem, &parent->kmem);
4855                page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4856        } else {
4857                page_counter_init(&memcg->memory, NULL);
4858                page_counter_init(&memcg->swap, NULL);
4859                page_counter_init(&memcg->memsw, NULL);
4860                page_counter_init(&memcg->kmem, NULL);
4861                page_counter_init(&memcg->tcpmem, NULL);
4862                /*
4863                 * Deeper hierachy with use_hierarchy == false doesn't make
4864                 * much sense so let cgroup subsystem know about this
4865                 * unfortunate state in our controller.
4866                 */
4867                if (parent != root_mem_cgroup)
4868                        memory_cgrp_subsys.broken_hierarchy = true;
4869        }
4870
4871        /* The following stuff does not apply to the root */
4872        if (!parent) {
4873#ifdef CONFIG_MEMCG_KMEM
4874                INIT_LIST_HEAD(&memcg->kmem_caches);
4875#endif
4876                root_mem_cgroup = memcg;
4877                return &memcg->css;
4878        }
4879
4880        error = memcg_online_kmem(memcg);
4881        if (error)
4882                goto fail;
4883
4884        if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4885                static_branch_inc(&memcg_sockets_enabled_key);
4886
4887        return &memcg->css;
4888fail:
4889        mem_cgroup_id_remove(memcg);
4890        mem_cgroup_free(memcg);
4891        return ERR_PTR(-ENOMEM);
4892}
4893
4894static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4895{
4896        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4897
4898        /*
4899         * A memcg must be visible for memcg_expand_shrinker_maps()
4900         * by the time the maps are allocated. So, we allocate maps
4901         * here, when for_each_mem_cgroup() can't skip it.
4902         */
4903        if (memcg_alloc_shrinker_maps(memcg)) {
4904                mem_cgroup_id_remove(memcg);
4905                return -ENOMEM;
4906        }
4907
4908        /* Online state pins memcg ID, memcg ID pins CSS */
4909        refcount_set(&memcg->id.ref, 1);
4910        css_get(css);
4911        return 0;
4912}
4913
4914static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4915{
4916        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4917        struct mem_cgroup_event *event, *tmp;
4918
4919        /*
4920         * Unregister events and notify userspace.
4921         * Notify userspace about cgroup removing only after rmdir of cgroup
4922         * directory to avoid race between userspace and kernelspace.
4923         */
4924        spin_lock(&memcg->event_list_lock);
4925        list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4926                list_del_init(&event->list);
4927                schedule_work(&event->remove);
4928        }
4929        spin_unlock(&memcg->event_list_lock);
4930
4931        page_counter_set_min(&memcg->memory, 0);
4932        page_counter_set_low(&memcg->memory, 0);
4933
4934        memcg_offline_kmem(memcg);
4935        wb_memcg_offline(memcg);
4936
4937        drain_all_stock(memcg);
4938
4939        mem_cgroup_id_put(memcg);
4940}
4941
4942static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4943{
4944        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4945
4946        invalidate_reclaim_iterators(memcg);
4947}
4948
4949static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4950{
4951        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4952
4953        if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4954                static_branch_dec(&memcg_sockets_enabled_key);
4955
4956        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4957                static_branch_dec(&memcg_sockets_enabled_key);
4958
4959        vmpressure_cleanup(&memcg->vmpressure);
4960        cancel_work_sync(&memcg->high_work);
4961        mem_cgroup_remove_from_trees(memcg);
4962        memcg_free_shrinker_maps(memcg);
4963        memcg_free_kmem(memcg);
4964        mem_cgroup_free(memcg);
4965}
4966
4967/**
4968 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4969 * @css: the target css
4970 *
4971 * Reset the states of the mem_cgroup associated with @css.  This is
4972 * invoked when the userland requests disabling on the default hierarchy
4973 * but the memcg is pinned through dependency.  The memcg should stop
4974 * applying policies and should revert to the vanilla state as it may be
4975 * made visible again.
4976 *
4977 * The current implementation only resets the essential configurations.
4978 * This needs to be expanded to cover all the visible parts.
4979 */
4980static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4981{
4982        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4983
4984        page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4985        page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4986        page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4987        page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4988        page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4989        page_counter_set_min(&memcg->memory, 0);
4990        page_counter_set_low(&memcg->memory, 0);
4991        memcg->high = PAGE_COUNTER_MAX;
4992        memcg->soft_limit = PAGE_COUNTER_MAX;
4993        memcg_wb_domain_size_changed(memcg);
4994}
4995
4996#ifdef CONFIG_MMU
4997/* Handlers for move charge at task migration. */
4998static int mem_cgroup_do_precharge(unsigned long count)
4999{
5000        int ret;
5001
5002        /* Try a single bulk charge without reclaim first, kswapd may wake */
5003        ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5004        if (!ret) {
5005                mc.precharge += count;
5006                return ret;
5007        }
5008
5009        /* Try charges one by one with reclaim, but do not retry */
5010        while (count--) {
5011                ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5012                if (ret)
5013                        return ret;
5014                mc.precharge++;
5015                cond_resched();
5016        }
5017        return 0;
5018}
5019
5020union mc_target {
5021        struct page     *page;
5022        swp_entry_t     ent;
5023};
5024
5025enum mc_target_type {
5026        MC_TARGET_NONE = 0,
5027        MC_TARGET_PAGE,
5028        MC_TARGET_SWAP,
5029        MC_TARGET_DEVICE,
5030};
5031
5032static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5033                                                unsigned long addr, pte_t ptent)
5034{
5035        struct page *page = vm_normal_page(vma, addr, ptent);
5036
5037        if (!page || !page_mapped(page))
5038                return NULL;
5039        if (PageAnon(page)) {
5040                if (!(mc.flags & MOVE_ANON))
5041                        return NULL;
5042        } else {
5043                if (!(mc.flags & MOVE_FILE))
5044                        return NULL;
5045        }
5046        if (!get_page_unless_zero(page))
5047                return NULL;
5048
5049        return page;
5050}
5051
5052#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5053static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5054                        pte_t ptent, swp_entry_t *entry)
5055{
5056        struct page *page = NULL;
5057        swp_entry_t ent = pte_to_swp_entry(ptent);
5058
5059        if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5060                return NULL;
5061
5062        /*
5063         * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5064         * a device and because they are not accessible by CPU they are store
5065         * as special swap entry in the CPU page table.
5066         */
5067        if (is_device_private_entry(ent)) {
5068                page = device_private_entry_to_page(ent);
5069                /*
5070                 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5071                 * a refcount of 1 when free (unlike normal page)
5072                 */
5073                if (!page_ref_add_unless(page, 1, 1))
5074                        return NULL;
5075                return page;
5076        }
5077
5078        /*
5079         * Because lookup_swap_cache() updates some statistics counter,
5080         * we call find_get_page() with swapper_space directly.
5081         */
5082        page = find_get_page(swap_address_space(ent), swp_offset(ent));
5083        if (do_memsw_account())
5084                entry->val = ent.val;
5085
5086        return page;
5087}
5088#else
5089static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5090                        pte_t ptent, swp_entry_t *entry)
5091{
5092        return NULL;
5093}
5094#endif
5095
5096static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5097                        unsigned long addr, pte_t ptent, swp_entry_t *entry)
5098{
5099        struct page *page = NULL;
5100        struct address_space *mapping;
5101        pgoff_t pgoff;
5102
5103        if (!vma->vm_file) /* anonymous vma */
5104                return NULL;
5105        if (!(mc.flags & MOVE_FILE))
5106                return NULL;
5107
5108        mapping = vma->vm_file->f_mapping;
5109        pgoff = linear_page_index(vma, addr);
5110
5111        /* page is moved even if it's not RSS of this task(page-faulted). */
5112#ifdef CONFIG_SWAP
5113        /* shmem/tmpfs may report page out on swap: account for that too. */
5114        if (shmem_mapping(mapping)) {
5115                page = find_get_entry(mapping, pgoff);
5116                if (xa_is_value(page)) {
5117                        swp_entry_t swp = radix_to_swp_entry(page);
5118                        if (do_memsw_account())
5119                                *entry = swp;
5120                        page = find_get_page(swap_address_space(swp),
5121                                             swp_offset(swp));
5122                }
5123        } else
5124                page = find_get_page(mapping, pgoff);
5125#else
5126        page = find_get_page(mapping, pgoff);
5127#endif
5128        return page;
5129}
5130
5131/**
5132 * mem_cgroup_move_account - move account of the page
5133 * @page: the page
5134 * @compound: charge the page as compound or small page
5135 * @from: mem_cgroup which the page is moved from.
5136 * @to: mem_cgroup which the page is moved to. @from != @to.
5137 *
5138 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5139 *
5140 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5141 * from old cgroup.
5142 */
5143static int mem_cgroup_move_account(struct page *page,
5144                                   bool compound,
5145                                   struct mem_cgroup *from,
5146                                   struct mem_cgroup *to)
5147{
5148        unsigned long flags;
5149        unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5150        int ret;
5151        bool anon;
5152
5153        VM_BUG_ON(from == to);
5154        VM_BUG_ON_PAGE(PageLRU(page), page);
5155        VM_BUG_ON(compound && !PageTransHuge(page));
5156
5157        /*
5158         * Prevent mem_cgroup_migrate() from looking at
5159         * page->mem_cgroup of its source page while we change it.
5160         */
5161        ret = -EBUSY;
5162        if (!trylock_page(page))
5163                goto out;
5164
5165        ret = -EINVAL;
5166        if (page->mem_cgroup != from)
5167                goto out_unlock;
5168
5169        anon = PageAnon(page);
5170
5171        spin_lock_irqsave(&from->move_lock, flags);
5172
5173        if (!anon && page_mapped(page)) {
5174                __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
5175                __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
5176        }
5177
5178        /*
5179         * move_lock grabbed above and caller set from->moving_account, so
5180         * mod_memcg_page_state will serialize updates to PageDirty.
5181         * So mapping should be stable for dirty pages.
5182         */
5183        if (!anon && PageDirty(page)) {
5184                struct address_space *mapping = page_mapping(page);
5185
5186                if (mapping_cap_account_dirty(mapping)) {
5187                        __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
5188                        __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
5189                }
5190        }
5191
5192        if (PageWriteback(page)) {
5193                __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
5194                __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
5195        }
5196
5197        /*
5198         * It is safe to change page->mem_cgroup here because the page
5199         * is referenced, charged, and isolated - we can't race with
5200         * uncharging, charging, migration, or LRU putback.
5201         */
5202
5203        /* caller should have done css_get */
5204        page->mem_cgroup = to;
5205        spin_unlock_irqrestore(&from->move_lock, flags);
5206
5207        ret = 0;
5208
5209        local_irq_disable();
5210        mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5211        memcg_check_events(to, page);
5212        mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5213        memcg_check_events(from, page);
5214        local_irq_enable();
5215out_unlock:
5216        unlock_page(page);
5217out:
5218        return ret;
5219}
5220
5221/**
5222 * get_mctgt_type - get target type of moving charge
5223 * @vma: the vma the pte to be checked belongs
5224 * @addr: the address corresponding to the pte to be checked
5225 * @ptent: the pte to be checked
5226 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5227 *
5228 * Returns
5229 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
5230 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5231 *     move charge. if @target is not NULL, the page is stored in target->page
5232 *     with extra refcnt got(Callers should handle it).
5233 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5234 *     target for charge migration. if @target is not NULL, the entry is stored
5235 *     in target->ent.
5236 *   3(MC_TARGET_DEVICE): like MC_TARGET_PAGE  but page is MEMORY_DEVICE_PRIVATE
5237 *     (so ZONE_DEVICE page and thus not on the lru).
5238 *     For now we such page is charge like a regular page would be as for all
5239 *     intent and purposes it is just special memory taking the place of a
5240 *     regular page.
5241 *
5242 *     See Documentations/vm/hmm.txt and include/linux/hmm.h
5243 *
5244 * Called with pte lock held.
5245 */
5246
5247static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5248                unsigned long addr, pte_t ptent, union mc_target *target)
5249{
5250        struct page *page = NULL;
5251        enum mc_target_type ret = MC_TARGET_NONE;
5252        swp_entry_t ent = { .val = 0 };
5253
5254        if (pte_present(ptent))
5255                page = mc_handle_present_pte(vma, addr, ptent);
5256        else if (is_swap_pte(ptent))
5257                page = mc_handle_swap_pte(vma, ptent, &ent);
5258        else if (pte_none(ptent))
5259                page = mc_handle_file_pte(vma, addr, ptent, &ent);
5260
5261        if (!page && !ent.val)
5262                return ret;
5263        if (page) {
5264                /*
5265                 * Do only loose check w/o serialization.
5266                 * mem_cgroup_move_account() checks the page is valid or
5267                 * not under LRU exclusion.
5268                 */
5269                if (page->mem_cgroup == mc.from) {
5270                        ret = MC_TARGET_PAGE;
5271                        if (is_device_private_page(page))
5272                                ret = MC_TARGET_DEVICE;
5273                        if (target)
5274                                target->page = page;
5275                }
5276                if (!ret || !target)
5277                        put_page(page);
5278        }
5279        /*
5280         * There is a swap entry and a page doesn't exist or isn't charged.
5281         * But we cannot move a tail-page in a THP.
5282         */
5283        if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5284            mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5285                ret = MC_TARGET_SWAP;
5286                if (target)
5287                        target->ent = ent;
5288        }
5289        return ret;
5290}
5291
5292#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5293/*
5294 * We don't consider PMD mapped swapping or file mapped pages because THP does
5295 * not support them for now.
5296 * Caller should make sure that pmd_trans_huge(pmd) is true.
5297 */
5298static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5299                unsigned long addr, pmd_t pmd, union mc_target *target)
5300{
5301        struct page *page = NULL;
5302        enum mc_target_type ret = MC_TARGET_NONE;
5303
5304        if (unlikely(is_swap_pmd(pmd))) {
5305                VM_BUG_ON(thp_migration_supported() &&
5306                                  !is_pmd_migration_entry(pmd));
5307                return ret;
5308        }
5309        page = pmd_page(pmd);
5310        VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5311        if (!(mc.flags & MOVE_ANON))
5312                return ret;
5313        if (page->mem_cgroup == mc.from) {
5314                ret = MC_TARGET_PAGE;
5315                if (target) {
5316                        get_page(page);
5317                        target->page = page;
5318                }
5319        }
5320        return ret;
5321}
5322#else
5323static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5324                unsigned long addr, pmd_t pmd, union mc_target *target)
5325{
5326        return MC_TARGET_NONE;
5327}
5328#endif
5329
5330static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5331                                        unsigned long addr, unsigned long end,
5332                                        struct mm_walk *walk)
5333{
5334        struct vm_area_struct *vma = walk->vma;
5335        pte_t *pte;
5336        spinlock_t *ptl;
5337
5338        ptl = pmd_trans_huge_lock(pmd, vma);
5339        if (ptl) {
5340                /*
5341                 * Note their can not be MC_TARGET_DEVICE for now as we do not
5342                 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5343                 * this might change.
5344                 */
5345                if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5346                        mc.precharge += HPAGE_PMD_NR;
5347                spin_unlock(ptl);
5348                return 0;
5349        }
5350
5351        if (pmd_trans_unstable(pmd))
5352                return 0;
5353        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5354        for (; addr != end; pte++, addr += PAGE_SIZE)
5355                if (get_mctgt_type(vma, addr, *pte, NULL))
5356                        mc.precharge++; /* increment precharge temporarily */
5357        pte_unmap_unlock(pte - 1, ptl);
5358        cond_resched();
5359
5360        return 0;
5361}
5362
5363static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5364{
5365        unsigned long precharge;
5366
5367        struct mm_walk mem_cgroup_count_precharge_walk = {
5368                .pmd_entry = mem_cgroup_count_precharge_pte_range,
5369                .mm = mm,
5370        };
5371        down_read(&mm->mmap_sem);
5372        walk_page_range(0, mm->highest_vm_end,
5373                        &mem_cgroup_count_precharge_walk);
5374        up_read(&mm->mmap_sem);
5375
5376        precharge = mc.precharge;
5377        mc.precharge = 0;
5378
5379        return precharge;
5380}
5381
5382static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5383{
5384        unsigned long precharge = mem_cgroup_count_precharge(mm);
5385
5386        VM_BUG_ON(mc.moving_task);
5387        mc.moving_task = current;
5388        return mem_cgroup_do_precharge(precharge);
5389}
5390
5391/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5392static void __mem_cgroup_clear_mc(void)
5393{
5394        struct mem_cgroup *from = mc.from;
5395        struct mem_cgroup *to = mc.to;
5396
5397        /* we must uncharge all the leftover precharges from mc.to */
5398        if (mc.precharge) {
5399                cancel_charge(mc.to, mc.precharge);
5400                mc.precharge = 0;
5401        }
5402        /*
5403         * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5404         * we must uncharge here.
5405         */
5406        if (mc.moved_charge) {
5407                cancel_charge(mc.from, mc.moved_charge);
5408                mc.moved_charge = 0;
5409        }
5410        /* we must fixup refcnts and charges */
5411        if (mc.moved_swap) {
5412                /* uncharge swap account from the old cgroup */
5413                if (!mem_cgroup_is_root(mc.from))
5414                        page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5415
5416                mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5417
5418                /*
5419                 * we charged both to->memory and to->memsw, so we
5420                 * should uncharge to->memory.
5421                 */
5422                if (!mem_cgroup_is_root(mc.to))
5423                        page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5424
5425                mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5426                css_put_many(&mc.to->css, mc.moved_swap);
5427
5428                mc.moved_swap = 0;
5429        }
5430        memcg_oom_recover(from);
5431        memcg_oom_recover(to);
5432        wake_up_all(&mc.waitq);
5433}
5434
5435static void mem_cgroup_clear_mc(void)
5436{
5437        struct mm_struct *mm = mc.mm;
5438
5439        /*
5440         * we must clear moving_task before waking up waiters at the end of
5441         * task migration.
5442         */
5443        mc.moving_task = NULL;
5444        __mem_cgroup_clear_mc();
5445        spin_lock(&mc.lock);
5446        mc.from = NULL;
5447        mc.to = NULL;
5448        mc.mm = NULL;
5449        spin_unlock(&mc.lock);
5450
5451        mmput(mm);
5452}
5453
5454static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5455{
5456        struct cgroup_subsys_state *css;
5457        struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5458        struct mem_cgroup *from;
5459        struct task_struct *leader, *p;
5460        struct mm_struct *mm;
5461        unsigned long move_flags;
5462        int ret = 0;
5463
5464        /* charge immigration isn't supported on the default hierarchy */
5465        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5466                return 0;
5467
5468        /*
5469         * Multi-process migrations only happen on the default hierarchy
5470         * where charge immigration is not used.  Perform charge
5471         * immigration if @tset contains a leader and whine if there are
5472         * multiple.
5473         */
5474        p = NULL;
5475        cgroup_taskset_for_each_leader(leader, css, tset) {
5476                WARN_ON_ONCE(p);
5477                p = leader;
5478                memcg = mem_cgroup_from_css(css);
5479        }
5480        if (!p)
5481                return 0;
5482
5483        /*
5484         * We are now commited to this value whatever it is. Changes in this
5485         * tunable will only affect upcoming migrations, not the current one.
5486         * So we need to save it, and keep it going.
5487         */
5488        move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5489        if (!move_flags)
5490                return 0;
5491
5492        from = mem_cgroup_from_task(p);
5493
5494        VM_BUG_ON(from == memcg);
5495
5496        mm = get_task_mm(p);
5497        if (!mm)
5498                return 0;
5499        /* We move charges only when we move a owner of the mm */
5500        if (mm->owner == p) {
5501                VM_BUG_ON(mc.from);
5502                VM_BUG_ON(mc.to);
5503                VM_BUG_ON(mc.precharge);
5504                VM_BUG_ON(mc.moved_charge);
5505                VM_BUG_ON(mc.moved_swap);
5506
5507                spin_lock(&mc.lock);
5508                mc.mm = mm;
5509                mc.from = from;
5510                mc.to = memcg;
5511                mc.flags = move_flags;
5512                spin_unlock(&mc.lock);
5513                /* We set mc.moving_task later */
5514
5515                ret = mem_cgroup_precharge_mc(mm);
5516                if (ret)
5517                        mem_cgroup_clear_mc();
5518        } else {
5519                mmput(mm);
5520        }
5521        return ret;
5522}
5523
5524static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5525{
5526        if (mc.to)
5527                mem_cgroup_clear_mc();
5528}
5529
5530static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5531                                unsigned long addr, unsigned long end,
5532                                struct mm_walk *walk)
5533{
5534        int ret = 0;
5535        struct vm_area_struct *vma = walk->vma;
5536        pte_t *pte;
5537        spinlock_t *ptl;
5538        enum mc_target_type target_type;
5539        union mc_target target;
5540        struct page *page;
5541
5542        ptl = pmd_trans_huge_lock(pmd, vma);
5543        if (ptl) {
5544                if (mc.precharge < HPAGE_PMD_NR) {
5545                        spin_unlock(ptl);
5546                        return 0;
5547                }
5548                target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5549                if (target_type == MC_TARGET_PAGE) {
5550                        page = target.page;
5551                        if (!isolate_lru_page(page)) {
5552                                if (!mem_cgroup_move_account(page, true,
5553                                                             mc.from, mc.to)) {
5554                                        mc.precharge -= HPAGE_PMD_NR;
5555                                        mc.moved_charge += HPAGE_PMD_NR;
5556                                }
5557                                putback_lru_page(page);
5558                        }
5559                        put_page(page);
5560                } else if (target_type == MC_TARGET_DEVICE) {
5561                        page = target.page;
5562                        if (!mem_cgroup_move_account(page, true,
5563                                                     mc.from, mc.to)) {
5564                                mc.precharge -= HPAGE_PMD_NR;
5565                                mc.moved_charge += HPAGE_PMD_NR;
5566                        }
5567                        put_page(page);
5568                }
5569                spin_unlock(ptl);
5570                return 0;
5571        }
5572
5573        if (pmd_trans_unstable(pmd))
5574                return 0;
5575retry:
5576        pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5577        for (; addr != end; addr += PAGE_SIZE) {
5578                pte_t ptent = *(pte++);
5579                bool device = false;
5580                swp_entry_t ent;
5581
5582                if (!mc.precharge)
5583                        break;
5584
5585                switch (get_mctgt_type(vma, addr, ptent, &target)) {
5586                case MC_TARGET_DEVICE:
5587                        device = true;
5588                        /* fall through */
5589                case MC_TARGET_PAGE:
5590                        page = target.page;
5591                        /*
5592                         * We can have a part of the split pmd here. Moving it
5593                         * can be done but it would be too convoluted so simply
5594                         * ignore such a partial THP and keep it in original
5595                         * memcg. There should be somebody mapping the head.
5596                         */
5597                        if (PageTransCompound(page))
5598                                goto put;
5599                        if (!device && isolate_lru_page(page))
5600                                goto put;
5601                        if (!mem_cgroup_move_account(page, false,
5602                                                mc.from, mc.to)) {
5603                                mc.precharge--;
5604                                /* we uncharge from mc.from later. */
5605                                mc.moved_charge++;
5606                        }
5607                        if (!device)
5608                                putback_lru_page(page);
5609put:                    /* get_mctgt_type() gets the page */
5610                        put_page(page);
5611                        break;
5612                case MC_TARGET_SWAP:
5613                        ent = target.ent;
5614                        if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5615                                mc.precharge--;
5616                                /* we fixup refcnts and charges later. */
5617                                mc.moved_swap++;
5618                        }
5619                        break;
5620                default:
5621                        break;
5622                }
5623        }
5624        pte_unmap_unlock(pte - 1, ptl);
5625        cond_resched();
5626
5627        if (addr != end) {
5628                /*
5629                 * We have consumed all precharges we got in can_attach().
5630                 * We try charge one by one, but don't do any additional
5631                 * charges to mc.to if we have failed in charge once in attach()
5632                 * phase.
5633                 */
5634                ret = mem_cgroup_do_precharge(1);
5635                if (!ret)
5636                        goto retry;
5637        }
5638
5639        return ret;
5640}
5641
5642static void mem_cgroup_move_charge(void)
5643{
5644        struct mm_walk mem_cgroup_move_charge_walk = {
5645                .pmd_entry = mem_cgroup_move_charge_pte_range,
5646                .mm = mc.mm,
5647        };
5648
5649        lru_add_drain_all();
5650        /*
5651         * Signal lock_page_memcg() to take the memcg's move_lock
5652         * while we're moving its pages to another memcg. Then wait
5653         * for already started RCU-only updates to finish.
5654         */
5655        atomic_inc(&mc.from->moving_account);
5656        synchronize_rcu();
5657retry:
5658        if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5659                /*
5660                 * Someone who are holding the mmap_sem might be waiting in
5661                 * waitq. So we cancel all extra charges, wake up all waiters,
5662                 * and retry. Because we cancel precharges, we might not be able
5663                 * to move enough charges, but moving charge is a best-effort
5664                 * feature anyway, so it wouldn't be a big problem.
5665                 */
5666                __mem_cgroup_clear_mc();
5667                cond_resched();
5668                goto retry;
5669        }
5670        /*
5671         * When we have consumed all precharges and failed in doing
5672         * additional charge, the page walk just aborts.
5673         */
5674        walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5675
5676        up_read(&mc.mm->mmap_sem);
5677        atomic_dec(&mc.from->moving_account);
5678}
5679
5680static void mem_cgroup_move_task(void)
5681{
5682        if (mc.to) {
5683                mem_cgroup_move_charge();
5684                mem_cgroup_clear_mc();
5685        }
5686}
5687#else   /* !CONFIG_MMU */
5688static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5689{
5690        return 0;
5691}
5692static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5693{
5694}
5695static void mem_cgroup_move_task(void)
5696{
5697}
5698#endif
5699
5700/*
5701 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5702 * to verify whether we're attached to the default hierarchy on each mount
5703 * attempt.
5704 */
5705static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5706{
5707        /*
5708         * use_hierarchy is forced on the default hierarchy.  cgroup core
5709         * guarantees that @root doesn't have any children, so turning it
5710         * on for the root memcg is enough.
5711         */
5712        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5713                root_mem_cgroup->use_hierarchy = true;
5714        else
5715                root_mem_cgroup->use_hierarchy = false;
5716}
5717
5718static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5719{
5720        if (value == PAGE_COUNTER_MAX)
5721                seq_puts(m, "max\n");
5722        else
5723                seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5724
5725        return 0;
5726}
5727
5728static u64 memory_current_read(struct cgroup_subsys_state *css,
5729                               struct cftype *cft)
5730{
5731        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5732
5733        return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5734}
5735
5736static int memory_min_show(struct seq_file *m, void *v)
5737{
5738        return seq_puts_memcg_tunable(m,
5739                READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5740}
5741
5742static ssize_t memory_min_write(struct kernfs_open_file *of,
5743                                char *buf, size_t nbytes, loff_t off)
5744{
5745        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5746        unsigned long min;
5747        int err;
5748
5749        buf = strstrip(buf);
5750        err = page_counter_memparse(buf, "max", &min);
5751        if (err)
5752                return err;
5753
5754        page_counter_set_min(&memcg->memory, min);
5755
5756        return nbytes;
5757}
5758
5759static int memory_low_show(struct seq_file *m, void *v)
5760{
5761        return seq_puts_memcg_tunable(m,
5762                READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5763}
5764
5765static ssize_t memory_low_write(struct kernfs_open_file *of,
5766                                char *buf, size_t nbytes, loff_t off)
5767{
5768        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5769        unsigned long low;
5770        int err;
5771
5772        buf = strstrip(buf);
5773        err = page_counter_memparse(buf, "max", &low);
5774        if (err)
5775                return err;
5776
5777        page_counter_set_low(&memcg->memory, low);
5778
5779        return nbytes;
5780}
5781
5782static int memory_high_show(struct seq_file *m, void *v)
5783{
5784        return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5785}
5786
5787static ssize_t memory_high_write(struct kernfs_open_file *of,
5788                                 char *buf, size_t nbytes, loff_t off)
5789{
5790        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5791        unsigned long nr_pages;
5792        unsigned long high;
5793        int err;
5794
5795        buf = strstrip(buf);
5796        err = page_counter_memparse(buf, "max", &high);
5797        if (err)
5798                return err;
5799
5800        memcg->high = high;
5801
5802        nr_pages = page_counter_read(&memcg->memory);
5803        if (nr_pages > high)
5804                try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5805                                             GFP_KERNEL, true);
5806
5807        memcg_wb_domain_size_changed(memcg);
5808        return nbytes;
5809}
5810
5811static int memory_max_show(struct seq_file *m, void *v)
5812{
5813        return seq_puts_memcg_tunable(m,
5814                READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5815}
5816
5817static ssize_t memory_max_write(struct kernfs_open_file *of,
5818                                char *buf, size_t nbytes, loff_t off)
5819{
5820        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5821        unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5822        bool drained = false;
5823        unsigned long max;
5824        int err;
5825
5826        buf = strstrip(buf);
5827        err = page_counter_memparse(buf, "max", &max);
5828        if (err)
5829                return err;
5830
5831        xchg(&memcg->memory.max, max);
5832
5833        for (;;) {
5834                unsigned long nr_pages = page_counter_read(&memcg->memory);
5835
5836                if (nr_pages <= max)
5837                        break;
5838
5839                if (signal_pending(current)) {
5840                        err = -EINTR;
5841                        break;
5842                }
5843
5844                if (!drained) {
5845                        drain_all_stock(memcg);
5846                        drained = true;
5847                        continue;
5848                }
5849
5850                if (nr_reclaims) {
5851                        if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5852                                                          GFP_KERNEL, true))
5853                                nr_reclaims--;
5854                        continue;
5855                }
5856
5857                memcg_memory_event(memcg, MEMCG_OOM);
5858                if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5859                        break;
5860        }
5861
5862        memcg_wb_domain_size_changed(memcg);
5863        return nbytes;
5864}
5865
5866static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
5867{
5868        seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
5869        seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
5870        seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
5871        seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
5872        seq_printf(m, "oom_kill %lu\n",
5873                   atomic_long_read(&events[MEMCG_OOM_KILL]));
5874}
5875
5876static int memory_events_show(struct seq_file *m, void *v)
5877{
5878        struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5879
5880        __memory_events_show(m, memcg->memory_events);
5881        return 0;
5882}
5883
5884static int memory_events_local_show(struct seq_file *m, void *v)
5885{
5886        struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5887
5888        __memory_events_show(m, memcg->memory_events_local);
5889        return 0;
5890}
5891
5892static int memory_stat_show(struct seq_file *m, void *v)
5893{
5894        struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5895        char *buf;
5896
5897        buf = memory_stat_format(memcg);
5898        if (!buf)
5899                return -ENOMEM;
5900        seq_puts(m, buf);
5901        kfree(buf);
5902        return 0;
5903}
5904
5905static int memory_oom_group_show(struct seq_file *m, void *v)
5906{
5907        struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5908
5909        seq_printf(m, "%d\n", memcg->oom_group);
5910
5911        return 0;
5912}
5913
5914static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5915                                      char *buf, size_t nbytes, loff_t off)
5916{
5917        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5918        int ret, oom_group;
5919
5920        buf = strstrip(buf);
5921        if (!buf)
5922                return -EINVAL;
5923
5924        ret = kstrtoint(buf, 0, &oom_group);
5925        if (ret)
5926                return ret;
5927
5928        if (oom_group != 0 && oom_group != 1)
5929                return -EINVAL;
5930
5931        memcg->oom_group = oom_group;
5932
5933        return nbytes;
5934}
5935
5936static struct cftype memory_files[] = {
5937        {
5938                .name = "current",
5939                .flags = CFTYPE_NOT_ON_ROOT,
5940                .read_u64 = memory_current_read,
5941        },
5942        {
5943                .name = "min",
5944                .flags = CFTYPE_NOT_ON_ROOT,
5945                .seq_show = memory_min_show,
5946                .write = memory_min_write,
5947        },
5948        {
5949                .name = "low",
5950                .flags = CFTYPE_NOT_ON_ROOT,
5951                .seq_show = memory_low_show,
5952                .write = memory_low_write,
5953        },
5954        {
5955                .name = "high",
5956                .flags = CFTYPE_NOT_ON_ROOT,
5957                .seq_show = memory_high_show,
5958                .write = memory_high_write,
5959        },
5960        {
5961                .name = "max",
5962                .flags = CFTYPE_NOT_ON_ROOT,
5963                .seq_show = memory_max_show,
5964                .write = memory_max_write,
5965        },
5966        {
5967                .name = "events",
5968                .flags = CFTYPE_NOT_ON_ROOT,
5969                .file_offset = offsetof(struct mem_cgroup, events_file),
5970                .seq_show = memory_events_show,
5971        },
5972        {
5973                .name = "events.local",
5974                .flags = CFTYPE_NOT_ON_ROOT,
5975                .file_offset = offsetof(struct mem_cgroup, events_local_file),
5976                .seq_show = memory_events_local_show,
5977        },
5978        {
5979                .name = "stat",
5980                .flags = CFTYPE_NOT_ON_ROOT,
5981                .seq_show = memory_stat_show,
5982        },
5983        {
5984                .name = "oom.group",
5985                .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5986                .seq_show = memory_oom_group_show,
5987                .write = memory_oom_group_write,
5988        },
5989        { }     /* terminate */
5990};
5991
5992struct cgroup_subsys memory_cgrp_subsys = {
5993        .css_alloc = mem_cgroup_css_alloc,
5994        .css_online = mem_cgroup_css_online,
5995        .css_offline = mem_cgroup_css_offline,
5996        .css_released = mem_cgroup_css_released,
5997        .css_free = mem_cgroup_css_free,
5998        .css_reset = mem_cgroup_css_reset,
5999        .can_attach = mem_cgroup_can_attach,
6000        .cancel_attach = mem_cgroup_cancel_attach,
6001        .post_attach = mem_cgroup_move_task,
6002        .bind = mem_cgroup_bind,
6003        .dfl_cftypes = memory_files,
6004        .legacy_cftypes = mem_cgroup_legacy_files,
6005        .early_init = 0,
6006};
6007
6008/**
6009 * mem_cgroup_protected - check if memory consumption is in the normal range
6010 * @root: the top ancestor of the sub-tree being checked
6011 * @memcg: the memory cgroup to check
6012 *
6013 * WARNING: This function is not stateless! It can only be used as part
6014 *          of a top-down tree iteration, not for isolated queries.
6015 *
6016 * Returns one of the following:
6017 *   MEMCG_PROT_NONE: cgroup memory is not protected
6018 *   MEMCG_PROT_LOW: cgroup memory is protected as long there is
6019 *     an unprotected supply of reclaimable memory from other cgroups.
6020 *   MEMCG_PROT_MIN: cgroup memory is protected
6021 *
6022 * @root is exclusive; it is never protected when looked at directly
6023 *
6024 * To provide a proper hierarchical behavior, effective memory.min/low values
6025 * are used. Below is the description of how effective memory.low is calculated.
6026 * Effective memory.min values is calculated in the same way.
6027 *
6028 * Effective memory.low is always equal or less than the original memory.low.
6029 * If there is no memory.low overcommittment (which is always true for
6030 * top-level memory cgroups), these two values are equal.
6031 * Otherwise, it's a part of parent's effective memory.low,
6032 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6033 * memory.low usages, where memory.low usage is the size of actually
6034 * protected memory.
6035 *
6036 *                                             low_usage
6037 * elow = min( memory.low, parent->elow * ------------------ ),
6038 *                                        siblings_low_usage
6039 *
6040 *             | memory.current, if memory.current < memory.low
6041 * low_usage = |
6042 *             | 0, otherwise.
6043 *
6044 *
6045 * Such definition of the effective memory.low provides the expected
6046 * hierarchical behavior: parent's memory.low value is limiting
6047 * children, unprotected memory is reclaimed first and cgroups,
6048 * which are not using their guarantee do not affect actual memory
6049 * distribution.
6050 *
6051 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6052 *
6053 *     A      A/memory.low = 2G, A/memory.current = 6G
6054 *    //\\
6055 *   BC  DE   B/memory.low = 3G  B/memory.current = 2G
6056 *            C/memory.low = 1G  C/memory.current = 2G
6057 *            D/memory.low = 0   D/memory.current = 2G
6058 *            E/memory.low = 10G E/memory.current = 0
6059 *
6060 * and the memory pressure is applied, the following memory distribution
6061 * is expected (approximately):
6062 *
6063 *     A/memory.current = 2G
6064 *
6065 *     B/memory.current = 1.3G
6066 *     C/memory.current = 0.6G
6067 *     D/memory.current = 0
6068 *     E/memory.current = 0
6069 *
6070 * These calculations require constant tracking of the actual low usages
6071 * (see propagate_protected_usage()), as well as recursive calculation of
6072 * effective memory.low values. But as we do call mem_cgroup_protected()
6073 * path for each memory cgroup top-down from the reclaim,
6074 * it's possible to optimize this part, and save calculated elow
6075 * for next usage. This part is intentionally racy, but it's ok,
6076 * as memory.low is a best-effort mechanism.
6077 */
6078enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6079                                                struct mem_cgroup *memcg)
6080{
6081        struct mem_cgroup *parent;
6082        unsigned long emin, parent_emin;
6083        unsigned long elow, parent_elow;
6084        unsigned long usage;
6085
6086        if (mem_cgroup_disabled())
6087                return MEMCG_PROT_NONE;
6088
6089        if (!root)
6090                root = root_mem_cgroup;
6091        if (memcg == root)
6092                return MEMCG_PROT_NONE;
6093
6094        usage = page_counter_read(&memcg->memory);
6095        if (!usage)
6096                return MEMCG_PROT_NONE;
6097
6098        emin = memcg->memory.min;
6099        elow = memcg->memory.low;
6100
6101        parent = parent_mem_cgroup(memcg);
6102        /* No parent means a non-hierarchical mode on v1 memcg */
6103        if (!parent)
6104                return MEMCG_PROT_NONE;
6105
6106        if (parent == root)
6107                goto exit;
6108
6109        parent_emin = READ_ONCE(parent->memory.emin);
6110        emin = min(emin, parent_emin);
6111        if (emin && parent_emin) {
6112                unsigned long min_usage, siblings_min_usage;
6113
6114                min_usage = min(usage, memcg->memory.min);
6115                siblings_min_usage = atomic_long_read(
6116                        &parent->memory.children_min_usage);
6117
6118                if (min_usage && siblings_min_usage)
6119                        emin = min(emin, parent_emin * min_usage /
6120                                   siblings_min_usage);
6121        }
6122
6123        parent_elow = READ_ONCE(parent->memory.elow);
6124        elow = min(elow, parent_elow);
6125        if (elow && parent_elow) {
6126                unsigned long low_usage, siblings_low_usage;
6127
6128                low_usage = min(usage, memcg->memory.low);
6129                siblings_low_usage = atomic_long_read(
6130                        &parent->memory.children_low_usage);
6131
6132                if (low_usage && siblings_low_usage)
6133                        elow = min(elow, parent_elow * low_usage /
6134                                   siblings_low_usage);
6135        }
6136
6137exit:
6138        memcg->memory.emin = emin;
6139        memcg->memory.elow = elow;
6140
6141        if (usage <= emin)
6142                return MEMCG_PROT_MIN;
6143        else if (usage <= elow)
6144                return MEMCG_PROT_LOW;
6145        else
6146                return MEMCG_PROT_NONE;
6147}
6148
6149/**
6150 * mem_cgroup_try_charge - try charging a page
6151 * @page: page to charge
6152 * @mm: mm context of the victim
6153 * @gfp_mask: reclaim mode
6154 * @memcgp: charged memcg return
6155 * @compound: charge the page as compound or small page
6156 *
6157 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6158 * pages according to @gfp_mask if necessary.
6159 *
6160 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6161 * Otherwise, an error code is returned.
6162 *
6163 * After page->mapping has been set up, the caller must finalize the
6164 * charge with mem_cgroup_commit_charge().  Or abort the transaction
6165 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6166 */
6167int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6168                          gfp_t gfp_mask, struct mem_cgroup **memcgp,
6169                          bool compound)
6170{
6171        struct mem_cgroup *memcg = NULL;
6172        unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6173        int ret = 0;
6174
6175        if (mem_cgroup_disabled())
6176                goto out;
6177
6178        if (PageSwapCache(page)) {
6179                /*
6180                 * Every swap fault against a single page tries to charge the
6181                 * page, bail as early as possible.  shmem_unuse() encounters
6182                 * already charged pages, too.  The USED bit is protected by
6183                 * the page lock, which serializes swap cache removal, which
6184                 * in turn serializes uncharging.
6185                 */
6186                VM_BUG_ON_PAGE(!PageLocked(page), page);
6187                if (compound_head(page)->mem_cgroup)
6188                        goto out;
6189
6190                if (do_swap_account) {
6191                        swp_entry_t ent = { .val = page_private(page), };
6192                        unsigned short id = lookup_swap_cgroup_id(ent);
6193
6194                        rcu_read_lock();
6195                        memcg = mem_cgroup_from_id(id);
6196                        if (memcg && !css_tryget_online(&memcg->css))
6197                                memcg = NULL;
6198                        rcu_read_unlock();
6199                }
6200        }
6201
6202        if (!memcg)
6203                memcg = get_mem_cgroup_from_mm(mm);
6204
6205        ret = try_charge(memcg, gfp_mask, nr_pages);
6206
6207        css_put(&memcg->css);
6208out:
6209        *memcgp = memcg;
6210        return ret;
6211}
6212
6213int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6214                          gfp_t gfp_mask, struct mem_cgroup **memcgp,
6215                          bool compound)
6216{
6217        struct mem_cgroup *memcg;
6218        int ret;
6219
6220        ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6221        memcg = *memcgp;
6222        mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6223        return ret;
6224}
6225
6226/**
6227 * mem_cgroup_commit_charge - commit a page charge
6228 * @page: page to charge
6229 * @memcg: memcg to charge the page to
6230 * @lrucare: page might be on LRU already
6231 * @compound: charge the page as compound or small page
6232 *
6233 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6234 * after page->mapping has been set up.  This must happen atomically
6235 * as part of the page instantiation, i.e. under the page table lock
6236 * for anonymous pages, under the page lock for page and swap cache.
6237 *
6238 * In addition, the page must not be on the LRU during the commit, to
6239 * prevent racing with task migration.  If it might be, use @lrucare.
6240 *
6241 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6242 */
6243void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6244                              bool lrucare, bool compound)
6245{
6246        unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6247
6248        VM_BUG_ON_PAGE(!page->mapping, page);
6249        VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6250
6251        if (mem_cgroup_disabled())
6252                return;
6253        /*
6254         * Swap faults will attempt to charge the same page multiple
6255         * times.  But reuse_swap_page() might have removed the page
6256         * from swapcache already, so we can't check PageSwapCache().
6257         */
6258        if (!memcg)
6259                return;
6260
6261        commit_charge(page, memcg, lrucare);
6262
6263        local_irq_disable();
6264        mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6265        memcg_check_events(memcg, page);
6266        local_irq_enable();
6267
6268        if (do_memsw_account() && PageSwapCache(page)) {
6269                swp_entry_t entry = { .val = page_private(page) };
6270                /*
6271                 * The swap entry might not get freed for a long time,
6272                 * let's not wait for it.  The page already received a
6273                 * memory+swap charge, drop the swap entry duplicate.
6274                 */
6275                mem_cgroup_uncharge_swap(entry, nr_pages);
6276        }
6277}
6278
6279/**
6280 * mem_cgroup_cancel_charge - cancel a page charge
6281 * @page: page to charge
6282 * @memcg: memcg to charge the page to
6283 * @compound: charge the page as compound or small page
6284 *
6285 * Cancel a charge transaction started by mem_cgroup_try_charge().
6286 */
6287void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6288                bool compound)
6289{
6290        unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6291
6292        if (mem_cgroup_disabled())
6293                return;
6294        /*
6295         * Swap faults will attempt to charge the same page multiple
6296         * times.  But reuse_swap_page() might have removed the page
6297         * from swapcache already, so we can't check PageSwapCache().
6298         */
6299        if (!memcg)
6300                return;
6301
6302        cancel_charge(memcg, nr_pages);
6303}
6304
6305struct uncharge_gather {
6306        struct mem_cgroup *memcg;
6307        unsigned long pgpgout;
6308        unsigned long nr_anon;
6309        unsigned long nr_file;
6310        unsigned long nr_kmem;
6311        unsigned long nr_huge;
6312        unsigned long nr_shmem;
6313        struct page *dummy_page;
6314};
6315
6316static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6317{
6318        memset(ug, 0, sizeof(*ug));
6319}
6320
6321static void uncharge_batch(const struct uncharge_gather *ug)
6322{
6323        unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6324        unsigned long flags;
6325
6326        if (!mem_cgroup_is_root(ug->memcg)) {
6327                page_counter_uncharge(&ug->memcg->memory, nr_pages);
6328                if (do_memsw_account())
6329                        page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6330                if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6331                        page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6332                memcg_oom_recover(ug->memcg);
6333        }
6334
6335        local_irq_save(flags);
6336        __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6337        __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6338        __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6339        __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6340        __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6341        __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6342        memcg_check_events(ug->memcg, ug->dummy_page);
6343        local_irq_restore(flags);
6344
6345        if (!mem_cgroup_is_root(ug->memcg))
6346                css_put_many(&ug->memcg->css, nr_pages);
6347}
6348
6349static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6350{
6351        VM_BUG_ON_PAGE(PageLRU(page), page);
6352        VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6353                        !PageHWPoison(page) , page);
6354
6355        if (!page->mem_cgroup)
6356                return;
6357
6358        /*
6359         * Nobody should be changing or seriously looking at
6360         * page->mem_cgroup at this point, we have fully
6361         * exclusive access to the page.
6362         */
6363
6364        if (ug->memcg != page->mem_cgroup) {
6365                if (ug->memcg) {
6366                        uncharge_batch(ug);
6367                        uncharge_gather_clear(ug);
6368                }
6369                ug->memcg = page->mem_cgroup;
6370        }
6371
6372        if (!PageKmemcg(page)) {
6373                unsigned int nr_pages = 1;
6374
6375                if (PageTransHuge(page)) {
6376                        nr_pages <<= compound_order(page);
6377                        ug->nr_huge += nr_pages;
6378                }
6379                if (PageAnon(page))
6380                        ug->nr_anon += nr_pages;
6381                else {
6382                        ug->nr_file += nr_pages;
6383                        if (PageSwapBacked(page))
6384                                ug->nr_shmem += nr_pages;
6385                }
6386                ug->pgpgout++;
6387        } else {
6388                ug->nr_kmem += 1 << compound_order(page);
6389                __ClearPageKmemcg(page);
6390        }
6391
6392        ug->dummy_page = page;
6393        page->mem_cgroup = NULL;
6394}
6395
6396static void uncharge_list(struct list_head *page_list)
6397{
6398        struct uncharge_gather ug;
6399        struct list_head *next;
6400
6401        uncharge_gather_clear(&ug);
6402
6403        /*
6404         * Note that the list can be a single page->lru; hence the
6405         * do-while loop instead of a simple list_for_each_entry().
6406         */
6407        next = page_list->next;
6408        do {
6409                struct page *page;
6410
6411                page = list_entry(next, struct page, lru);
6412                next = page->lru.next;
6413
6414                uncharge_page(page, &ug);
6415        } while (next != page_list);
6416
6417        if (ug.memcg)
6418                uncharge_batch(&ug);
6419}
6420
6421/**
6422 * mem_cgroup_uncharge - uncharge a page
6423 * @page: page to uncharge
6424 *
6425 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6426 * mem_cgroup_commit_charge().
6427 */
6428void mem_cgroup_uncharge(struct page *page)
6429{
6430        struct uncharge_gather ug;
6431
6432        if (mem_cgroup_disabled())
6433                return;
6434
6435        /* Don't touch page->lru of any random page, pre-check: */
6436        if (!page->mem_cgroup)
6437                return;
6438
6439        uncharge_gather_clear(&ug);
6440        uncharge_page(page, &ug);
6441        uncharge_batch(&ug);
6442}
6443
6444/**
6445 * mem_cgroup_uncharge_list - uncharge a list of page
6446 * @page_list: list of pages to uncharge
6447 *
6448 * Uncharge a list of pages previously charged with
6449 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6450 */
6451void mem_cgroup_uncharge_list(struct list_head *page_list)
6452{
6453        if (mem_cgroup_disabled())
6454                return;
6455
6456        if (!list_empty(page_list))
6457                uncharge_list(page_list);
6458}
6459
6460/**
6461 * mem_cgroup_migrate - charge a page's replacement
6462 * @oldpage: currently circulating page
6463 * @newpage: replacement page
6464 *
6465 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6466 * be uncharged upon free.
6467 *
6468 * Both pages must be locked, @newpage->mapping must be set up.
6469 */
6470void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6471{
6472        struct mem_cgroup *memcg;
6473        unsigned int nr_pages;
6474        bool compound;
6475        unsigned long flags;
6476
6477        VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6478        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6479        VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6480        VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6481                       newpage);
6482
6483        if (mem_cgroup_disabled())
6484                return;
6485
6486        /* Page cache replacement: new page already charged? */
6487        if (newpage->mem_cgroup)
6488                return;
6489
6490        /* Swapcache readahead pages can get replaced before being charged */
6491        memcg = oldpage->mem_cgroup;
6492        if (!memcg)
6493                return;
6494
6495        /* Force-charge the new page. The old one will be freed soon */
6496        compound = PageTransHuge(newpage);
6497        nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6498
6499        page_counter_charge(&memcg->memory, nr_pages);
6500        if (do_memsw_account())
6501                page_counter_charge(&memcg->memsw, nr_pages);
6502        css_get_many(&memcg->css, nr_pages);
6503
6504        commit_charge(newpage, memcg, false);
6505
6506        local_irq_save(flags);
6507        mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6508        memcg_check_events(memcg, newpage);
6509        local_irq_restore(flags);
6510}
6511
6512DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6513EXPORT_SYMBOL(memcg_sockets_enabled_key);
6514
6515void mem_cgroup_sk_alloc(struct sock *sk)
6516{
6517        struct mem_cgroup *memcg;
6518
6519        if (!mem_cgroup_sockets_enabled)
6520                return;
6521
6522        /*
6523         * Socket cloning can throw us here with sk_memcg already
6524         * filled. It won't however, necessarily happen from
6525         * process context. So the test for root memcg given
6526         * the current task's memcg won't help us in this case.
6527         *
6528         * Respecting the original socket's memcg is a better
6529         * decision in this case.
6530         */
6531        if (sk->sk_memcg) {
6532                css_get(&sk->sk_memcg->css);
6533                return;
6534        }
6535
6536        rcu_read_lock();
6537        memcg = mem_cgroup_from_task(current);
6538        if (memcg == root_mem_cgroup)
6539                goto out;
6540        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6541                goto out;
6542        if (css_tryget_online(&memcg->css))
6543                sk->sk_memcg = memcg;
6544out:
6545        rcu_read_unlock();
6546}
6547
6548void mem_cgroup_sk_free(struct sock *sk)
6549{
6550        if (sk->sk_memcg)
6551                css_put(&sk->sk_memcg->css);
6552}
6553
6554/**
6555 * mem_cgroup_charge_skmem - charge socket memory
6556 * @memcg: memcg to charge
6557 * @nr_pages: number of pages to charge
6558 *
6559 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6560 * @memcg's configured limit, %false if the charge had to be forced.
6561 */
6562bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6563{
6564        gfp_t gfp_mask = GFP_KERNEL;
6565
6566        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6567                struct page_counter *fail;
6568
6569                if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6570                        memcg->tcpmem_pressure = 0;
6571                        return true;
6572                }
6573                page_counter_charge(&memcg->tcpmem, nr_pages);
6574                memcg->tcpmem_pressure = 1;
6575                return false;
6576        }
6577
6578        /* Don't block in the packet receive path */
6579        if (in_softirq())
6580                gfp_mask = GFP_NOWAIT;
6581
6582        mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6583
6584        if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6585                return true;
6586
6587        try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6588        return false;
6589}
6590
6591/**
6592 * mem_cgroup_uncharge_skmem - uncharge socket memory
6593 * @memcg: memcg to uncharge
6594 * @nr_pages: number of pages to uncharge
6595 */
6596void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6597{
6598        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6599                page_counter_uncharge(&memcg->tcpmem, nr_pages);
6600                return;
6601        }
6602
6603        mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6604
6605        refill_stock(memcg, nr_pages);
6606}
6607
6608static int __init cgroup_memory(char *s)
6609{
6610        char *token;
6611
6612        while ((token = strsep(&s, ",")) != NULL) {
6613                if (!*token)
6614                        continue;
6615                if (!strcmp(token, "nosocket"))
6616                        cgroup_memory_nosocket = true;
6617                if (!strcmp(token, "nokmem"))
6618                        cgroup_memory_nokmem = true;
6619        }
6620        return 0;
6621}
6622__setup("cgroup.memory=", cgroup_memory);
6623
6624/*
6625 * subsys_initcall() for memory controller.
6626 *
6627 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6628 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6629 * basically everything that doesn't depend on a specific mem_cgroup structure
6630 * should be initialized from here.
6631 */
6632static int __init mem_cgroup_init(void)
6633{
6634        int cpu, node;
6635
6636#ifdef CONFIG_MEMCG_KMEM
6637        /*
6638         * Kmem cache creation is mostly done with the slab_mutex held,
6639         * so use a workqueue with limited concurrency to avoid stalling
6640         * all worker threads in case lots of cgroups are created and
6641         * destroyed simultaneously.
6642         */
6643        memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6644        BUG_ON(!memcg_kmem_cache_wq);
6645#endif
6646
6647        cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6648                                  memcg_hotplug_cpu_dead);
6649
6650        for_each_possible_cpu(cpu)
6651                INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6652                          drain_local_stock);
6653
6654        for_each_node(node) {
6655                struct mem_cgroup_tree_per_node *rtpn;
6656
6657                rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6658                                    node_online(node) ? node : NUMA_NO_NODE);
6659
6660                rtpn->rb_root = RB_ROOT;
6661                rtpn->rb_rightmost = NULL;
6662                spin_lock_init(&rtpn->lock);
6663                soft_limit_tree.rb_tree_per_node[node] = rtpn;
6664        }
6665
6666        return 0;
6667}
6668subsys_initcall(mem_cgroup_init);
6669
6670#ifdef CONFIG_MEMCG_SWAP
6671static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6672{
6673        while (!refcount_inc_not_zero(&memcg->id.ref)) {
6674                /*
6675                 * The root cgroup cannot be destroyed, so it's refcount must
6676                 * always be >= 1.
6677                 */
6678                if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6679                        VM_BUG_ON(1);
6680                        break;
6681                }
6682                memcg = parent_mem_cgroup(memcg);
6683                if (!memcg)
6684                        memcg = root_mem_cgroup;
6685        }
6686        return memcg;
6687}
6688
6689/**
6690 * mem_cgroup_swapout - transfer a memsw charge to swap
6691 * @page: page whose memsw charge to transfer
6692 * @entry: swap entry to move the charge to
6693 *
6694 * Transfer the memsw charge of @page to @entry.
6695 */
6696void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6697{
6698        struct mem_cgroup *memcg, *swap_memcg;
6699        unsigned int nr_entries;
6700        unsigned short oldid;
6701
6702        VM_BUG_ON_PAGE(PageLRU(page), page);
6703        VM_BUG_ON_PAGE(page_count(page), page);
6704
6705        if (!do_memsw_account())
6706                return;
6707
6708        memcg = page->mem_cgroup;
6709
6710        /* Readahead page, never charged */
6711        if (!memcg)
6712                return;
6713
6714        /*
6715         * In case the memcg owning these pages has been offlined and doesn't
6716         * have an ID allocated to it anymore, charge the closest online
6717         * ancestor for the swap instead and transfer the memory+swap charge.
6718         */
6719        swap_memcg = mem_cgroup_id_get_online(memcg);
6720        nr_entries = hpage_nr_pages(page);
6721        /* Get references for the tail pages, too */
6722        if (nr_entries > 1)
6723                mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6724        oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6725                                   nr_entries);
6726        VM_BUG_ON_PAGE(oldid, page);
6727        mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6728
6729        page->mem_cgroup = NULL;
6730
6731        if (!mem_cgroup_is_root(memcg))
6732                page_counter_uncharge(&memcg->memory, nr_entries);
6733
6734        if (memcg != swap_memcg) {
6735                if (!mem_cgroup_is_root(swap_memcg))
6736                        page_counter_charge(&swap_memcg->memsw, nr_entries);
6737                page_counter_uncharge(&memcg->memsw, nr_entries);
6738        }
6739
6740        /*
6741         * Interrupts should be disabled here because the caller holds the
6742         * i_pages lock which is taken with interrupts-off. It is
6743         * important here to have the interrupts disabled because it is the
6744         * only synchronisation we have for updating the per-CPU variables.
6745         */
6746        VM_BUG_ON(!irqs_disabled());
6747        mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6748                                     -nr_entries);
6749        memcg_check_events(memcg, page);
6750
6751        if (!mem_cgroup_is_root(memcg))
6752                css_put_many(&memcg->css, nr_entries);
6753}
6754
6755/**
6756 * mem_cgroup_try_charge_swap - try charging swap space for a page
6757 * @page: page being added to swap
6758 * @entry: swap entry to charge
6759 *
6760 * Try to charge @page's memcg for the swap space at @entry.
6761 *
6762 * Returns 0 on success, -ENOMEM on failure.
6763 */
6764int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6765{
6766        unsigned int nr_pages = hpage_nr_pages(page);
6767        struct page_counter *counter;
6768        struct mem_cgroup *memcg;
6769        unsigned short oldid;
6770
6771        if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6772                return 0;
6773
6774        memcg = page->mem_cgroup;
6775
6776        /* Readahead page, never charged */
6777        if (!memcg)
6778                return 0;
6779
6780        if (!entry.val) {
6781                memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6782                return 0;
6783        }
6784
6785        memcg = mem_cgroup_id_get_online(memcg);
6786
6787        if (!mem_cgroup_is_root(memcg) &&
6788            !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6789                memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6790                memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6791                mem_cgroup_id_put(memcg);
6792                return -ENOMEM;
6793        }
6794
6795        /* Get references for the tail pages, too */
6796        if (nr_pages > 1)
6797                mem_cgroup_id_get_many(memcg, nr_pages - 1);
6798        oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6799        VM_BUG_ON_PAGE(oldid, page);
6800        mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6801
6802        return 0;
6803}
6804
6805/**
6806 * mem_cgroup_uncharge_swap - uncharge swap space
6807 * @entry: swap entry to uncharge
6808 * @nr_pages: the amount of swap space to uncharge
6809 */
6810void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6811{
6812        struct mem_cgroup *memcg;
6813        unsigned short id;
6814
6815        if (!do_swap_account)
6816                return;
6817
6818        id = swap_cgroup_record(entry, 0, nr_pages);
6819        rcu_read_lock();
6820        memcg = mem_cgroup_from_id(id);
6821        if (memcg) {
6822                if (!mem_cgroup_is_root(memcg)) {
6823                        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6824                                page_counter_uncharge(&memcg->swap, nr_pages);
6825                        else
6826                                page_counter_uncharge(&memcg->memsw, nr_pages);
6827                }
6828                mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6829                mem_cgroup_id_put_many(memcg, nr_pages);
6830        }
6831        rcu_read_unlock();
6832}
6833
6834long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6835{
6836        long nr_swap_pages = get_nr_swap_pages();
6837
6838        if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6839                return nr_swap_pages;
6840        for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6841                nr_swap_pages = min_t(long, nr_swap_pages,
6842                                      READ_ONCE(memcg->swap.max) -
6843                                      page_counter_read(&memcg->swap));
6844        return nr_swap_pages;
6845}
6846
6847bool mem_cgroup_swap_full(struct page *page)
6848{
6849        struct mem_cgroup *memcg;
6850
6851        VM_BUG_ON_PAGE(!PageLocked(page), page);
6852
6853        if (vm_swap_full())
6854                return true;
6855        if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6856                return false;
6857
6858        memcg = page->mem_cgroup;
6859        if (!memcg)
6860                return false;
6861
6862        for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6863                if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6864                        return true;
6865
6866        return false;
6867}
6868
6869/* for remember boot option*/
6870#ifdef CONFIG_MEMCG_SWAP_ENABLED
6871static int really_do_swap_account __initdata = 1;
6872#else
6873static int really_do_swap_account __initdata;
6874#endif
6875
6876static int __init enable_swap_account(char *s)
6877{
6878        if (!strcmp(s, "1"))
6879                really_do_swap_account = 1;
6880        else if (!strcmp(s, "0"))
6881                really_do_swap_account = 0;
6882        return 1;
6883}
6884__setup("swapaccount=", enable_swap_account);
6885
6886static u64 swap_current_read(struct cgroup_subsys_state *css,
6887                             struct cftype *cft)
6888{
6889        struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6890
6891        return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6892}
6893
6894static int swap_max_show(struct seq_file *m, void *v)
6895{
6896        return seq_puts_memcg_tunable(m,
6897                READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6898}
6899
6900static ssize_t swap_max_write(struct kernfs_open_file *of,
6901                              char *buf, size_t nbytes, loff_t off)
6902{
6903        struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6904        unsigned long max;
6905        int err;
6906
6907        buf = strstrip(buf);
6908        err = page_counter_memparse(buf, "max", &max);
6909        if (err)
6910                return err;
6911
6912        xchg(&memcg->swap.max, max);
6913
6914        return nbytes;
6915}
6916
6917static int swap_events_show(struct seq_file *m, void *v)
6918{
6919        struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6920
6921        seq_printf(m, "max %lu\n",
6922                   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6923        seq_printf(m, "fail %lu\n",
6924                   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6925
6926        return 0;
6927}
6928
6929static struct cftype swap_files[] = {
6930        {
6931                .name = "swap.current",
6932                .flags = CFTYPE_NOT_ON_ROOT,
6933                .read_u64 = swap_current_read,
6934        },
6935        {
6936                .name = "swap.max",
6937                .flags = CFTYPE_NOT_ON_ROOT,
6938                .seq_show = swap_max_show,
6939                .write = swap_max_write,
6940        },
6941        {
6942                .name = "swap.events",
6943                .flags = CFTYPE_NOT_ON_ROOT,
6944                .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6945                .seq_show = swap_events_show,
6946        },
6947        { }     /* terminate */
6948};
6949
6950static struct cftype memsw_cgroup_files[] = {
6951        {
6952                .name = "memsw.usage_in_bytes",
6953                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6954                .read_u64 = mem_cgroup_read_u64,
6955        },
6956        {
6957                .name = "memsw.max_usage_in_bytes",
6958                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6959                .write = mem_cgroup_reset,
6960                .read_u64 = mem_cgroup_read_u64,
6961        },
6962        {
6963                .name = "memsw.limit_in_bytes",
6964                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6965                .write = mem_cgroup_write,
6966                .read_u64 = mem_cgroup_read_u64,
6967        },
6968        {
6969                .name = "memsw.failcnt",
6970                .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6971                .write = mem_cgroup_reset,
6972                .read_u64 = mem_cgroup_read_u64,
6973        },
6974        { },    /* terminate */
6975};
6976
6977static int __init mem_cgroup_swap_init(void)
6978{
6979        if (!mem_cgroup_disabled() && really_do_swap_account) {
6980                do_swap_account = 1;
6981                WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6982                                               swap_files));
6983                WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6984                                                  memsw_cgroup_files));
6985        }
6986        return 0;
6987}
6988subsys_initcall(mem_cgroup_swap_init);
6989
6990#endif /* CONFIG_MEMCG_SWAP */
6991