linux/mm/memory.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 */
   7
   8/*
   9 * demand-loading started 01.12.91 - seems it is high on the list of
  10 * things wanted, and it should be easy to implement. - Linus
  11 */
  12
  13/*
  14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  15 * pages started 02.12.91, seems to work. - Linus.
  16 *
  17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  18 * would have taken more than the 6M I have free, but it worked well as
  19 * far as I could see.
  20 *
  21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  22 */
  23
  24/*
  25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  26 * thought has to go into this. Oh, well..
  27 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  28 *              Found it. Everything seems to work now.
  29 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  30 */
  31
  32/*
  33 * 05.04.94  -  Multi-page memory management added for v1.1.
  34 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  35 *
  36 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  37 *              (Gerhard.Wichert@pdb.siemens.de)
  38 *
  39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  40 */
  41
  42#include <linux/kernel_stat.h>
  43#include <linux/mm.h>
  44#include <linux/sched/mm.h>
  45#include <linux/sched/coredump.h>
  46#include <linux/sched/numa_balancing.h>
  47#include <linux/sched/task.h>
  48#include <linux/hugetlb.h>
  49#include <linux/mman.h>
  50#include <linux/swap.h>
  51#include <linux/highmem.h>
  52#include <linux/pagemap.h>
  53#include <linux/memremap.h>
  54#include <linux/ksm.h>
  55#include <linux/rmap.h>
  56#include <linux/export.h>
  57#include <linux/delayacct.h>
  58#include <linux/init.h>
  59#include <linux/pfn_t.h>
  60#include <linux/writeback.h>
  61#include <linux/memcontrol.h>
  62#include <linux/mmu_notifier.h>
  63#include <linux/swapops.h>
  64#include <linux/elf.h>
  65#include <linux/gfp.h>
  66#include <linux/migrate.h>
  67#include <linux/string.h>
  68#include <linux/dma-debug.h>
  69#include <linux/debugfs.h>
  70#include <linux/userfaultfd_k.h>
  71#include <linux/dax.h>
  72#include <linux/oom.h>
  73#include <linux/numa.h>
  74
  75#include <asm/io.h>
  76#include <asm/mmu_context.h>
  77#include <asm/pgalloc.h>
  78#include <linux/uaccess.h>
  79#include <asm/tlb.h>
  80#include <asm/tlbflush.h>
  81#include <asm/pgtable.h>
  82
  83#include "internal.h"
  84
  85#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
  86#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  87#endif
  88
  89#ifndef CONFIG_NEED_MULTIPLE_NODES
  90/* use the per-pgdat data instead for discontigmem - mbligh */
  91unsigned long max_mapnr;
  92EXPORT_SYMBOL(max_mapnr);
  93
  94struct page *mem_map;
  95EXPORT_SYMBOL(mem_map);
  96#endif
  97
  98/*
  99 * A number of key systems in x86 including ioremap() rely on the assumption
 100 * that high_memory defines the upper bound on direct map memory, then end
 101 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 103 * and ZONE_HIGHMEM.
 104 */
 105void *high_memory;
 106EXPORT_SYMBOL(high_memory);
 107
 108/*
 109 * Randomize the address space (stacks, mmaps, brk, etc.).
 110 *
 111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 112 *   as ancient (libc5 based) binaries can segfault. )
 113 */
 114int randomize_va_space __read_mostly =
 115#ifdef CONFIG_COMPAT_BRK
 116                                        1;
 117#else
 118                                        2;
 119#endif
 120
 121static int __init disable_randmaps(char *s)
 122{
 123        randomize_va_space = 0;
 124        return 1;
 125}
 126__setup("norandmaps", disable_randmaps);
 127
 128unsigned long zero_pfn __read_mostly;
 129EXPORT_SYMBOL(zero_pfn);
 130
 131unsigned long highest_memmap_pfn __read_mostly;
 132
 133/*
 134 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 135 */
 136static int __init init_zero_pfn(void)
 137{
 138        zero_pfn = page_to_pfn(ZERO_PAGE(0));
 139        return 0;
 140}
 141core_initcall(init_zero_pfn);
 142
 143
 144#if defined(SPLIT_RSS_COUNTING)
 145
 146void sync_mm_rss(struct mm_struct *mm)
 147{
 148        int i;
 149
 150        for (i = 0; i < NR_MM_COUNTERS; i++) {
 151                if (current->rss_stat.count[i]) {
 152                        add_mm_counter(mm, i, current->rss_stat.count[i]);
 153                        current->rss_stat.count[i] = 0;
 154                }
 155        }
 156        current->rss_stat.events = 0;
 157}
 158
 159static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 160{
 161        struct task_struct *task = current;
 162
 163        if (likely(task->mm == mm))
 164                task->rss_stat.count[member] += val;
 165        else
 166                add_mm_counter(mm, member, val);
 167}
 168#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 169#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 170
 171/* sync counter once per 64 page faults */
 172#define TASK_RSS_EVENTS_THRESH  (64)
 173static void check_sync_rss_stat(struct task_struct *task)
 174{
 175        if (unlikely(task != current))
 176                return;
 177        if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 178                sync_mm_rss(task->mm);
 179}
 180#else /* SPLIT_RSS_COUNTING */
 181
 182#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 183#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 184
 185static void check_sync_rss_stat(struct task_struct *task)
 186{
 187}
 188
 189#endif /* SPLIT_RSS_COUNTING */
 190
 191/*
 192 * Note: this doesn't free the actual pages themselves. That
 193 * has been handled earlier when unmapping all the memory regions.
 194 */
 195static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 196                           unsigned long addr)
 197{
 198        pgtable_t token = pmd_pgtable(*pmd);
 199        pmd_clear(pmd);
 200        pte_free_tlb(tlb, token, addr);
 201        mm_dec_nr_ptes(tlb->mm);
 202}
 203
 204static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 205                                unsigned long addr, unsigned long end,
 206                                unsigned long floor, unsigned long ceiling)
 207{
 208        pmd_t *pmd;
 209        unsigned long next;
 210        unsigned long start;
 211
 212        start = addr;
 213        pmd = pmd_offset(pud, addr);
 214        do {
 215                next = pmd_addr_end(addr, end);
 216                if (pmd_none_or_clear_bad(pmd))
 217                        continue;
 218                free_pte_range(tlb, pmd, addr);
 219        } while (pmd++, addr = next, addr != end);
 220
 221        start &= PUD_MASK;
 222        if (start < floor)
 223                return;
 224        if (ceiling) {
 225                ceiling &= PUD_MASK;
 226                if (!ceiling)
 227                        return;
 228        }
 229        if (end - 1 > ceiling - 1)
 230                return;
 231
 232        pmd = pmd_offset(pud, start);
 233        pud_clear(pud);
 234        pmd_free_tlb(tlb, pmd, start);
 235        mm_dec_nr_pmds(tlb->mm);
 236}
 237
 238static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 239                                unsigned long addr, unsigned long end,
 240                                unsigned long floor, unsigned long ceiling)
 241{
 242        pud_t *pud;
 243        unsigned long next;
 244        unsigned long start;
 245
 246        start = addr;
 247        pud = pud_offset(p4d, addr);
 248        do {
 249                next = pud_addr_end(addr, end);
 250                if (pud_none_or_clear_bad(pud))
 251                        continue;
 252                free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 253        } while (pud++, addr = next, addr != end);
 254
 255        start &= P4D_MASK;
 256        if (start < floor)
 257                return;
 258        if (ceiling) {
 259                ceiling &= P4D_MASK;
 260                if (!ceiling)
 261                        return;
 262        }
 263        if (end - 1 > ceiling - 1)
 264                return;
 265
 266        pud = pud_offset(p4d, start);
 267        p4d_clear(p4d);
 268        pud_free_tlb(tlb, pud, start);
 269        mm_dec_nr_puds(tlb->mm);
 270}
 271
 272static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
 273                                unsigned long addr, unsigned long end,
 274                                unsigned long floor, unsigned long ceiling)
 275{
 276        p4d_t *p4d;
 277        unsigned long next;
 278        unsigned long start;
 279
 280        start = addr;
 281        p4d = p4d_offset(pgd, addr);
 282        do {
 283                next = p4d_addr_end(addr, end);
 284                if (p4d_none_or_clear_bad(p4d))
 285                        continue;
 286                free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 287        } while (p4d++, addr = next, addr != end);
 288
 289        start &= PGDIR_MASK;
 290        if (start < floor)
 291                return;
 292        if (ceiling) {
 293                ceiling &= PGDIR_MASK;
 294                if (!ceiling)
 295                        return;
 296        }
 297        if (end - 1 > ceiling - 1)
 298                return;
 299
 300        p4d = p4d_offset(pgd, start);
 301        pgd_clear(pgd);
 302        p4d_free_tlb(tlb, p4d, start);
 303}
 304
 305/*
 306 * This function frees user-level page tables of a process.
 307 */
 308void free_pgd_range(struct mmu_gather *tlb,
 309                        unsigned long addr, unsigned long end,
 310                        unsigned long floor, unsigned long ceiling)
 311{
 312        pgd_t *pgd;
 313        unsigned long next;
 314
 315        /*
 316         * The next few lines have given us lots of grief...
 317         *
 318         * Why are we testing PMD* at this top level?  Because often
 319         * there will be no work to do at all, and we'd prefer not to
 320         * go all the way down to the bottom just to discover that.
 321         *
 322         * Why all these "- 1"s?  Because 0 represents both the bottom
 323         * of the address space and the top of it (using -1 for the
 324         * top wouldn't help much: the masks would do the wrong thing).
 325         * The rule is that addr 0 and floor 0 refer to the bottom of
 326         * the address space, but end 0 and ceiling 0 refer to the top
 327         * Comparisons need to use "end - 1" and "ceiling - 1" (though
 328         * that end 0 case should be mythical).
 329         *
 330         * Wherever addr is brought up or ceiling brought down, we must
 331         * be careful to reject "the opposite 0" before it confuses the
 332         * subsequent tests.  But what about where end is brought down
 333         * by PMD_SIZE below? no, end can't go down to 0 there.
 334         *
 335         * Whereas we round start (addr) and ceiling down, by different
 336         * masks at different levels, in order to test whether a table
 337         * now has no other vmas using it, so can be freed, we don't
 338         * bother to round floor or end up - the tests don't need that.
 339         */
 340
 341        addr &= PMD_MASK;
 342        if (addr < floor) {
 343                addr += PMD_SIZE;
 344                if (!addr)
 345                        return;
 346        }
 347        if (ceiling) {
 348                ceiling &= PMD_MASK;
 349                if (!ceiling)
 350                        return;
 351        }
 352        if (end - 1 > ceiling - 1)
 353                end -= PMD_SIZE;
 354        if (addr > end - 1)
 355                return;
 356        /*
 357         * We add page table cache pages with PAGE_SIZE,
 358         * (see pte_free_tlb()), flush the tlb if we need
 359         */
 360        tlb_change_page_size(tlb, PAGE_SIZE);
 361        pgd = pgd_offset(tlb->mm, addr);
 362        do {
 363                next = pgd_addr_end(addr, end);
 364                if (pgd_none_or_clear_bad(pgd))
 365                        continue;
 366                free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
 367        } while (pgd++, addr = next, addr != end);
 368}
 369
 370void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 371                unsigned long floor, unsigned long ceiling)
 372{
 373        while (vma) {
 374                struct vm_area_struct *next = vma->vm_next;
 375                unsigned long addr = vma->vm_start;
 376
 377                /*
 378                 * Hide vma from rmap and truncate_pagecache before freeing
 379                 * pgtables
 380                 */
 381                unlink_anon_vmas(vma);
 382                unlink_file_vma(vma);
 383
 384                if (is_vm_hugetlb_page(vma)) {
 385                        hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 386                                floor, next ? next->vm_start : ceiling);
 387                } else {
 388                        /*
 389                         * Optimization: gather nearby vmas into one call down
 390                         */
 391                        while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 392                               && !is_vm_hugetlb_page(next)) {
 393                                vma = next;
 394                                next = vma->vm_next;
 395                                unlink_anon_vmas(vma);
 396                                unlink_file_vma(vma);
 397                        }
 398                        free_pgd_range(tlb, addr, vma->vm_end,
 399                                floor, next ? next->vm_start : ceiling);
 400                }
 401                vma = next;
 402        }
 403}
 404
 405int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
 406{
 407        spinlock_t *ptl;
 408        pgtable_t new = pte_alloc_one(mm);
 409        if (!new)
 410                return -ENOMEM;
 411
 412        /*
 413         * Ensure all pte setup (eg. pte page lock and page clearing) are
 414         * visible before the pte is made visible to other CPUs by being
 415         * put into page tables.
 416         *
 417         * The other side of the story is the pointer chasing in the page
 418         * table walking code (when walking the page table without locking;
 419         * ie. most of the time). Fortunately, these data accesses consist
 420         * of a chain of data-dependent loads, meaning most CPUs (alpha
 421         * being the notable exception) will already guarantee loads are
 422         * seen in-order. See the alpha page table accessors for the
 423         * smp_read_barrier_depends() barriers in page table walking code.
 424         */
 425        smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 426
 427        ptl = pmd_lock(mm, pmd);
 428        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 429                mm_inc_nr_ptes(mm);
 430                pmd_populate(mm, pmd, new);
 431                new = NULL;
 432        }
 433        spin_unlock(ptl);
 434        if (new)
 435                pte_free(mm, new);
 436        return 0;
 437}
 438
 439int __pte_alloc_kernel(pmd_t *pmd)
 440{
 441        pte_t *new = pte_alloc_one_kernel(&init_mm);
 442        if (!new)
 443                return -ENOMEM;
 444
 445        smp_wmb(); /* See comment in __pte_alloc */
 446
 447        spin_lock(&init_mm.page_table_lock);
 448        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 449                pmd_populate_kernel(&init_mm, pmd, new);
 450                new = NULL;
 451        }
 452        spin_unlock(&init_mm.page_table_lock);
 453        if (new)
 454                pte_free_kernel(&init_mm, new);
 455        return 0;
 456}
 457
 458static inline void init_rss_vec(int *rss)
 459{
 460        memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 461}
 462
 463static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 464{
 465        int i;
 466
 467        if (current->mm == mm)
 468                sync_mm_rss(mm);
 469        for (i = 0; i < NR_MM_COUNTERS; i++)
 470                if (rss[i])
 471                        add_mm_counter(mm, i, rss[i]);
 472}
 473
 474/*
 475 * This function is called to print an error when a bad pte
 476 * is found. For example, we might have a PFN-mapped pte in
 477 * a region that doesn't allow it.
 478 *
 479 * The calling function must still handle the error.
 480 */
 481static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 482                          pte_t pte, struct page *page)
 483{
 484        pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 485        p4d_t *p4d = p4d_offset(pgd, addr);
 486        pud_t *pud = pud_offset(p4d, addr);
 487        pmd_t *pmd = pmd_offset(pud, addr);
 488        struct address_space *mapping;
 489        pgoff_t index;
 490        static unsigned long resume;
 491        static unsigned long nr_shown;
 492        static unsigned long nr_unshown;
 493
 494        /*
 495         * Allow a burst of 60 reports, then keep quiet for that minute;
 496         * or allow a steady drip of one report per second.
 497         */
 498        if (nr_shown == 60) {
 499                if (time_before(jiffies, resume)) {
 500                        nr_unshown++;
 501                        return;
 502                }
 503                if (nr_unshown) {
 504                        pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 505                                 nr_unshown);
 506                        nr_unshown = 0;
 507                }
 508                nr_shown = 0;
 509        }
 510        if (nr_shown++ == 0)
 511                resume = jiffies + 60 * HZ;
 512
 513        mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 514        index = linear_page_index(vma, addr);
 515
 516        pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 517                 current->comm,
 518                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 519        if (page)
 520                dump_page(page, "bad pte");
 521        pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 522                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 523        pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
 524                 vma->vm_file,
 525                 vma->vm_ops ? vma->vm_ops->fault : NULL,
 526                 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 527                 mapping ? mapping->a_ops->readpage : NULL);
 528        dump_stack();
 529        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 530}
 531
 532/*
 533 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 534 *
 535 * "Special" mappings do not wish to be associated with a "struct page" (either
 536 * it doesn't exist, or it exists but they don't want to touch it). In this
 537 * case, NULL is returned here. "Normal" mappings do have a struct page.
 538 *
 539 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 540 * pte bit, in which case this function is trivial. Secondly, an architecture
 541 * may not have a spare pte bit, which requires a more complicated scheme,
 542 * described below.
 543 *
 544 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 545 * special mapping (even if there are underlying and valid "struct pages").
 546 * COWed pages of a VM_PFNMAP are always normal.
 547 *
 548 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 549 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 550 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 551 * mapping will always honor the rule
 552 *
 553 *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 554 *
 555 * And for normal mappings this is false.
 556 *
 557 * This restricts such mappings to be a linear translation from virtual address
 558 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 559 * as the vma is not a COW mapping; in that case, we know that all ptes are
 560 * special (because none can have been COWed).
 561 *
 562 *
 563 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 564 *
 565 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 566 * page" backing, however the difference is that _all_ pages with a struct
 567 * page (that is, those where pfn_valid is true) are refcounted and considered
 568 * normal pages by the VM. The disadvantage is that pages are refcounted
 569 * (which can be slower and simply not an option for some PFNMAP users). The
 570 * advantage is that we don't have to follow the strict linearity rule of
 571 * PFNMAP mappings in order to support COWable mappings.
 572 *
 573 */
 574struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 575                            pte_t pte)
 576{
 577        unsigned long pfn = pte_pfn(pte);
 578
 579        if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
 580                if (likely(!pte_special(pte)))
 581                        goto check_pfn;
 582                if (vma->vm_ops && vma->vm_ops->find_special_page)
 583                        return vma->vm_ops->find_special_page(vma, addr);
 584                if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 585                        return NULL;
 586                if (is_zero_pfn(pfn))
 587                        return NULL;
 588                if (pte_devmap(pte))
 589                        return NULL;
 590
 591                print_bad_pte(vma, addr, pte, NULL);
 592                return NULL;
 593        }
 594
 595        /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
 596
 597        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 598                if (vma->vm_flags & VM_MIXEDMAP) {
 599                        if (!pfn_valid(pfn))
 600                                return NULL;
 601                        goto out;
 602                } else {
 603                        unsigned long off;
 604                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 605                        if (pfn == vma->vm_pgoff + off)
 606                                return NULL;
 607                        if (!is_cow_mapping(vma->vm_flags))
 608                                return NULL;
 609                }
 610        }
 611
 612        if (is_zero_pfn(pfn))
 613                return NULL;
 614
 615check_pfn:
 616        if (unlikely(pfn > highest_memmap_pfn)) {
 617                print_bad_pte(vma, addr, pte, NULL);
 618                return NULL;
 619        }
 620
 621        /*
 622         * NOTE! We still have PageReserved() pages in the page tables.
 623         * eg. VDSO mappings can cause them to exist.
 624         */
 625out:
 626        return pfn_to_page(pfn);
 627}
 628
 629#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 630struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 631                                pmd_t pmd)
 632{
 633        unsigned long pfn = pmd_pfn(pmd);
 634
 635        /*
 636         * There is no pmd_special() but there may be special pmds, e.g.
 637         * in a direct-access (dax) mapping, so let's just replicate the
 638         * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
 639         */
 640        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 641                if (vma->vm_flags & VM_MIXEDMAP) {
 642                        if (!pfn_valid(pfn))
 643                                return NULL;
 644                        goto out;
 645                } else {
 646                        unsigned long off;
 647                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 648                        if (pfn == vma->vm_pgoff + off)
 649                                return NULL;
 650                        if (!is_cow_mapping(vma->vm_flags))
 651                                return NULL;
 652                }
 653        }
 654
 655        if (pmd_devmap(pmd))
 656                return NULL;
 657        if (is_zero_pfn(pfn))
 658                return NULL;
 659        if (unlikely(pfn > highest_memmap_pfn))
 660                return NULL;
 661
 662        /*
 663         * NOTE! We still have PageReserved() pages in the page tables.
 664         * eg. VDSO mappings can cause them to exist.
 665         */
 666out:
 667        return pfn_to_page(pfn);
 668}
 669#endif
 670
 671/*
 672 * copy one vm_area from one task to the other. Assumes the page tables
 673 * already present in the new task to be cleared in the whole range
 674 * covered by this vma.
 675 */
 676
 677static inline unsigned long
 678copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 679                pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 680                unsigned long addr, int *rss)
 681{
 682        unsigned long vm_flags = vma->vm_flags;
 683        pte_t pte = *src_pte;
 684        struct page *page;
 685
 686        /* pte contains position in swap or file, so copy. */
 687        if (unlikely(!pte_present(pte))) {
 688                swp_entry_t entry = pte_to_swp_entry(pte);
 689
 690                if (likely(!non_swap_entry(entry))) {
 691                        if (swap_duplicate(entry) < 0)
 692                                return entry.val;
 693
 694                        /* make sure dst_mm is on swapoff's mmlist. */
 695                        if (unlikely(list_empty(&dst_mm->mmlist))) {
 696                                spin_lock(&mmlist_lock);
 697                                if (list_empty(&dst_mm->mmlist))
 698                                        list_add(&dst_mm->mmlist,
 699                                                        &src_mm->mmlist);
 700                                spin_unlock(&mmlist_lock);
 701                        }
 702                        rss[MM_SWAPENTS]++;
 703                } else if (is_migration_entry(entry)) {
 704                        page = migration_entry_to_page(entry);
 705
 706                        rss[mm_counter(page)]++;
 707
 708                        if (is_write_migration_entry(entry) &&
 709                                        is_cow_mapping(vm_flags)) {
 710                                /*
 711                                 * COW mappings require pages in both
 712                                 * parent and child to be set to read.
 713                                 */
 714                                make_migration_entry_read(&entry);
 715                                pte = swp_entry_to_pte(entry);
 716                                if (pte_swp_soft_dirty(*src_pte))
 717                                        pte = pte_swp_mksoft_dirty(pte);
 718                                set_pte_at(src_mm, addr, src_pte, pte);
 719                        }
 720                } else if (is_device_private_entry(entry)) {
 721                        page = device_private_entry_to_page(entry);
 722
 723                        /*
 724                         * Update rss count even for unaddressable pages, as
 725                         * they should treated just like normal pages in this
 726                         * respect.
 727                         *
 728                         * We will likely want to have some new rss counters
 729                         * for unaddressable pages, at some point. But for now
 730                         * keep things as they are.
 731                         */
 732                        get_page(page);
 733                        rss[mm_counter(page)]++;
 734                        page_dup_rmap(page, false);
 735
 736                        /*
 737                         * We do not preserve soft-dirty information, because so
 738                         * far, checkpoint/restore is the only feature that
 739                         * requires that. And checkpoint/restore does not work
 740                         * when a device driver is involved (you cannot easily
 741                         * save and restore device driver state).
 742                         */
 743                        if (is_write_device_private_entry(entry) &&
 744                            is_cow_mapping(vm_flags)) {
 745                                make_device_private_entry_read(&entry);
 746                                pte = swp_entry_to_pte(entry);
 747                                set_pte_at(src_mm, addr, src_pte, pte);
 748                        }
 749                }
 750                goto out_set_pte;
 751        }
 752
 753        /*
 754         * If it's a COW mapping, write protect it both
 755         * in the parent and the child
 756         */
 757        if (is_cow_mapping(vm_flags) && pte_write(pte)) {
 758                ptep_set_wrprotect(src_mm, addr, src_pte);
 759                pte = pte_wrprotect(pte);
 760        }
 761
 762        /*
 763         * If it's a shared mapping, mark it clean in
 764         * the child
 765         */
 766        if (vm_flags & VM_SHARED)
 767                pte = pte_mkclean(pte);
 768        pte = pte_mkold(pte);
 769
 770        page = vm_normal_page(vma, addr, pte);
 771        if (page) {
 772                get_page(page);
 773                page_dup_rmap(page, false);
 774                rss[mm_counter(page)]++;
 775        } else if (pte_devmap(pte)) {
 776                page = pte_page(pte);
 777        }
 778
 779out_set_pte:
 780        set_pte_at(dst_mm, addr, dst_pte, pte);
 781        return 0;
 782}
 783
 784static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 785                   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
 786                   unsigned long addr, unsigned long end)
 787{
 788        pte_t *orig_src_pte, *orig_dst_pte;
 789        pte_t *src_pte, *dst_pte;
 790        spinlock_t *src_ptl, *dst_ptl;
 791        int progress = 0;
 792        int rss[NR_MM_COUNTERS];
 793        swp_entry_t entry = (swp_entry_t){0};
 794
 795again:
 796        init_rss_vec(rss);
 797
 798        dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
 799        if (!dst_pte)
 800                return -ENOMEM;
 801        src_pte = pte_offset_map(src_pmd, addr);
 802        src_ptl = pte_lockptr(src_mm, src_pmd);
 803        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 804        orig_src_pte = src_pte;
 805        orig_dst_pte = dst_pte;
 806        arch_enter_lazy_mmu_mode();
 807
 808        do {
 809                /*
 810                 * We are holding two locks at this point - either of them
 811                 * could generate latencies in another task on another CPU.
 812                 */
 813                if (progress >= 32) {
 814                        progress = 0;
 815                        if (need_resched() ||
 816                            spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
 817                                break;
 818                }
 819                if (pte_none(*src_pte)) {
 820                        progress++;
 821                        continue;
 822                }
 823                entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
 824                                                        vma, addr, rss);
 825                if (entry.val)
 826                        break;
 827                progress += 8;
 828        } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
 829
 830        arch_leave_lazy_mmu_mode();
 831        spin_unlock(src_ptl);
 832        pte_unmap(orig_src_pte);
 833        add_mm_rss_vec(dst_mm, rss);
 834        pte_unmap_unlock(orig_dst_pte, dst_ptl);
 835        cond_resched();
 836
 837        if (entry.val) {
 838                if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
 839                        return -ENOMEM;
 840                progress = 0;
 841        }
 842        if (addr != end)
 843                goto again;
 844        return 0;
 845}
 846
 847static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 848                pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
 849                unsigned long addr, unsigned long end)
 850{
 851        pmd_t *src_pmd, *dst_pmd;
 852        unsigned long next;
 853
 854        dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
 855        if (!dst_pmd)
 856                return -ENOMEM;
 857        src_pmd = pmd_offset(src_pud, addr);
 858        do {
 859                next = pmd_addr_end(addr, end);
 860                if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
 861                        || pmd_devmap(*src_pmd)) {
 862                        int err;
 863                        VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
 864                        err = copy_huge_pmd(dst_mm, src_mm,
 865                                            dst_pmd, src_pmd, addr, vma);
 866                        if (err == -ENOMEM)
 867                                return -ENOMEM;
 868                        if (!err)
 869                                continue;
 870                        /* fall through */
 871                }
 872                if (pmd_none_or_clear_bad(src_pmd))
 873                        continue;
 874                if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
 875                                                vma, addr, next))
 876                        return -ENOMEM;
 877        } while (dst_pmd++, src_pmd++, addr = next, addr != end);
 878        return 0;
 879}
 880
 881static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 882                p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
 883                unsigned long addr, unsigned long end)
 884{
 885        pud_t *src_pud, *dst_pud;
 886        unsigned long next;
 887
 888        dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
 889        if (!dst_pud)
 890                return -ENOMEM;
 891        src_pud = pud_offset(src_p4d, addr);
 892        do {
 893                next = pud_addr_end(addr, end);
 894                if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
 895                        int err;
 896
 897                        VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
 898                        err = copy_huge_pud(dst_mm, src_mm,
 899                                            dst_pud, src_pud, addr, vma);
 900                        if (err == -ENOMEM)
 901                                return -ENOMEM;
 902                        if (!err)
 903                                continue;
 904                        /* fall through */
 905                }
 906                if (pud_none_or_clear_bad(src_pud))
 907                        continue;
 908                if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
 909                                                vma, addr, next))
 910                        return -ENOMEM;
 911        } while (dst_pud++, src_pud++, addr = next, addr != end);
 912        return 0;
 913}
 914
 915static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 916                pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
 917                unsigned long addr, unsigned long end)
 918{
 919        p4d_t *src_p4d, *dst_p4d;
 920        unsigned long next;
 921
 922        dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
 923        if (!dst_p4d)
 924                return -ENOMEM;
 925        src_p4d = p4d_offset(src_pgd, addr);
 926        do {
 927                next = p4d_addr_end(addr, end);
 928                if (p4d_none_or_clear_bad(src_p4d))
 929                        continue;
 930                if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
 931                                                vma, addr, next))
 932                        return -ENOMEM;
 933        } while (dst_p4d++, src_p4d++, addr = next, addr != end);
 934        return 0;
 935}
 936
 937int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 938                struct vm_area_struct *vma)
 939{
 940        pgd_t *src_pgd, *dst_pgd;
 941        unsigned long next;
 942        unsigned long addr = vma->vm_start;
 943        unsigned long end = vma->vm_end;
 944        struct mmu_notifier_range range;
 945        bool is_cow;
 946        int ret;
 947
 948        /*
 949         * Don't copy ptes where a page fault will fill them correctly.
 950         * Fork becomes much lighter when there are big shared or private
 951         * readonly mappings. The tradeoff is that copy_page_range is more
 952         * efficient than faulting.
 953         */
 954        if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
 955                        !vma->anon_vma)
 956                return 0;
 957
 958        if (is_vm_hugetlb_page(vma))
 959                return copy_hugetlb_page_range(dst_mm, src_mm, vma);
 960
 961        if (unlikely(vma->vm_flags & VM_PFNMAP)) {
 962                /*
 963                 * We do not free on error cases below as remove_vma
 964                 * gets called on error from higher level routine
 965                 */
 966                ret = track_pfn_copy(vma);
 967                if (ret)
 968                        return ret;
 969        }
 970
 971        /*
 972         * We need to invalidate the secondary MMU mappings only when
 973         * there could be a permission downgrade on the ptes of the
 974         * parent mm. And a permission downgrade will only happen if
 975         * is_cow_mapping() returns true.
 976         */
 977        is_cow = is_cow_mapping(vma->vm_flags);
 978
 979        if (is_cow) {
 980                mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
 981                                        0, vma, src_mm, addr, end);
 982                mmu_notifier_invalidate_range_start(&range);
 983        }
 984
 985        ret = 0;
 986        dst_pgd = pgd_offset(dst_mm, addr);
 987        src_pgd = pgd_offset(src_mm, addr);
 988        do {
 989                next = pgd_addr_end(addr, end);
 990                if (pgd_none_or_clear_bad(src_pgd))
 991                        continue;
 992                if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
 993                                            vma, addr, next))) {
 994                        ret = -ENOMEM;
 995                        break;
 996                }
 997        } while (dst_pgd++, src_pgd++, addr = next, addr != end);
 998
 999        if (is_cow)
1000                mmu_notifier_invalidate_range_end(&range);
1001        return ret;
1002}
1003
1004static unsigned long zap_pte_range(struct mmu_gather *tlb,
1005                                struct vm_area_struct *vma, pmd_t *pmd,
1006                                unsigned long addr, unsigned long end,
1007                                struct zap_details *details)
1008{
1009        struct mm_struct *mm = tlb->mm;
1010        int force_flush = 0;
1011        int rss[NR_MM_COUNTERS];
1012        spinlock_t *ptl;
1013        pte_t *start_pte;
1014        pte_t *pte;
1015        swp_entry_t entry;
1016
1017        tlb_change_page_size(tlb, PAGE_SIZE);
1018again:
1019        init_rss_vec(rss);
1020        start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1021        pte = start_pte;
1022        flush_tlb_batched_pending(mm);
1023        arch_enter_lazy_mmu_mode();
1024        do {
1025                pte_t ptent = *pte;
1026                if (pte_none(ptent))
1027                        continue;
1028
1029                if (pte_present(ptent)) {
1030                        struct page *page;
1031
1032                        page = vm_normal_page(vma, addr, ptent);
1033                        if (unlikely(details) && page) {
1034                                /*
1035                                 * unmap_shared_mapping_pages() wants to
1036                                 * invalidate cache without truncating:
1037                                 * unmap shared but keep private pages.
1038                                 */
1039                                if (details->check_mapping &&
1040                                    details->check_mapping != page_rmapping(page))
1041                                        continue;
1042                        }
1043                        ptent = ptep_get_and_clear_full(mm, addr, pte,
1044                                                        tlb->fullmm);
1045                        tlb_remove_tlb_entry(tlb, pte, addr);
1046                        if (unlikely(!page))
1047                                continue;
1048
1049                        if (!PageAnon(page)) {
1050                                if (pte_dirty(ptent)) {
1051                                        force_flush = 1;
1052                                        set_page_dirty(page);
1053                                }
1054                                if (pte_young(ptent) &&
1055                                    likely(!(vma->vm_flags & VM_SEQ_READ)))
1056                                        mark_page_accessed(page);
1057                        }
1058                        rss[mm_counter(page)]--;
1059                        page_remove_rmap(page, false);
1060                        if (unlikely(page_mapcount(page) < 0))
1061                                print_bad_pte(vma, addr, ptent, page);
1062                        if (unlikely(__tlb_remove_page(tlb, page))) {
1063                                force_flush = 1;
1064                                addr += PAGE_SIZE;
1065                                break;
1066                        }
1067                        continue;
1068                }
1069
1070                entry = pte_to_swp_entry(ptent);
1071                if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1072                        struct page *page = device_private_entry_to_page(entry);
1073
1074                        if (unlikely(details && details->check_mapping)) {
1075                                /*
1076                                 * unmap_shared_mapping_pages() wants to
1077                                 * invalidate cache without truncating:
1078                                 * unmap shared but keep private pages.
1079                                 */
1080                                if (details->check_mapping !=
1081                                    page_rmapping(page))
1082                                        continue;
1083                        }
1084
1085                        pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1086                        rss[mm_counter(page)]--;
1087                        page_remove_rmap(page, false);
1088                        put_page(page);
1089                        continue;
1090                }
1091
1092                /* If details->check_mapping, we leave swap entries. */
1093                if (unlikely(details))
1094                        continue;
1095
1096                entry = pte_to_swp_entry(ptent);
1097                if (!non_swap_entry(entry))
1098                        rss[MM_SWAPENTS]--;
1099                else if (is_migration_entry(entry)) {
1100                        struct page *page;
1101
1102                        page = migration_entry_to_page(entry);
1103                        rss[mm_counter(page)]--;
1104                }
1105                if (unlikely(!free_swap_and_cache(entry)))
1106                        print_bad_pte(vma, addr, ptent, NULL);
1107                pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1108        } while (pte++, addr += PAGE_SIZE, addr != end);
1109
1110        add_mm_rss_vec(mm, rss);
1111        arch_leave_lazy_mmu_mode();
1112
1113        /* Do the actual TLB flush before dropping ptl */
1114        if (force_flush)
1115                tlb_flush_mmu_tlbonly(tlb);
1116        pte_unmap_unlock(start_pte, ptl);
1117
1118        /*
1119         * If we forced a TLB flush (either due to running out of
1120         * batch buffers or because we needed to flush dirty TLB
1121         * entries before releasing the ptl), free the batched
1122         * memory too. Restart if we didn't do everything.
1123         */
1124        if (force_flush) {
1125                force_flush = 0;
1126                tlb_flush_mmu(tlb);
1127                if (addr != end)
1128                        goto again;
1129        }
1130
1131        return addr;
1132}
1133
1134static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1135                                struct vm_area_struct *vma, pud_t *pud,
1136                                unsigned long addr, unsigned long end,
1137                                struct zap_details *details)
1138{
1139        pmd_t *pmd;
1140        unsigned long next;
1141
1142        pmd = pmd_offset(pud, addr);
1143        do {
1144                next = pmd_addr_end(addr, end);
1145                if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1146                        if (next - addr != HPAGE_PMD_SIZE)
1147                                __split_huge_pmd(vma, pmd, addr, false, NULL);
1148                        else if (zap_huge_pmd(tlb, vma, pmd, addr))
1149                                goto next;
1150                        /* fall through */
1151                }
1152                /*
1153                 * Here there can be other concurrent MADV_DONTNEED or
1154                 * trans huge page faults running, and if the pmd is
1155                 * none or trans huge it can change under us. This is
1156                 * because MADV_DONTNEED holds the mmap_sem in read
1157                 * mode.
1158                 */
1159                if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1160                        goto next;
1161                next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1162next:
1163                cond_resched();
1164        } while (pmd++, addr = next, addr != end);
1165
1166        return addr;
1167}
1168
1169static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1170                                struct vm_area_struct *vma, p4d_t *p4d,
1171                                unsigned long addr, unsigned long end,
1172                                struct zap_details *details)
1173{
1174        pud_t *pud;
1175        unsigned long next;
1176
1177        pud = pud_offset(p4d, addr);
1178        do {
1179                next = pud_addr_end(addr, end);
1180                if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1181                        if (next - addr != HPAGE_PUD_SIZE) {
1182                                VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1183                                split_huge_pud(vma, pud, addr);
1184                        } else if (zap_huge_pud(tlb, vma, pud, addr))
1185                                goto next;
1186                        /* fall through */
1187                }
1188                if (pud_none_or_clear_bad(pud))
1189                        continue;
1190                next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1191next:
1192                cond_resched();
1193        } while (pud++, addr = next, addr != end);
1194
1195        return addr;
1196}
1197
1198static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1199                                struct vm_area_struct *vma, pgd_t *pgd,
1200                                unsigned long addr, unsigned long end,
1201                                struct zap_details *details)
1202{
1203        p4d_t *p4d;
1204        unsigned long next;
1205
1206        p4d = p4d_offset(pgd, addr);
1207        do {
1208                next = p4d_addr_end(addr, end);
1209                if (p4d_none_or_clear_bad(p4d))
1210                        continue;
1211                next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1212        } while (p4d++, addr = next, addr != end);
1213
1214        return addr;
1215}
1216
1217void unmap_page_range(struct mmu_gather *tlb,
1218                             struct vm_area_struct *vma,
1219                             unsigned long addr, unsigned long end,
1220                             struct zap_details *details)
1221{
1222        pgd_t *pgd;
1223        unsigned long next;
1224
1225        BUG_ON(addr >= end);
1226        tlb_start_vma(tlb, vma);
1227        pgd = pgd_offset(vma->vm_mm, addr);
1228        do {
1229                next = pgd_addr_end(addr, end);
1230                if (pgd_none_or_clear_bad(pgd))
1231                        continue;
1232                next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1233        } while (pgd++, addr = next, addr != end);
1234        tlb_end_vma(tlb, vma);
1235}
1236
1237
1238static void unmap_single_vma(struct mmu_gather *tlb,
1239                struct vm_area_struct *vma, unsigned long start_addr,
1240                unsigned long end_addr,
1241                struct zap_details *details)
1242{
1243        unsigned long start = max(vma->vm_start, start_addr);
1244        unsigned long end;
1245
1246        if (start >= vma->vm_end)
1247                return;
1248        end = min(vma->vm_end, end_addr);
1249        if (end <= vma->vm_start)
1250                return;
1251
1252        if (vma->vm_file)
1253                uprobe_munmap(vma, start, end);
1254
1255        if (unlikely(vma->vm_flags & VM_PFNMAP))
1256                untrack_pfn(vma, 0, 0);
1257
1258        if (start != end) {
1259                if (unlikely(is_vm_hugetlb_page(vma))) {
1260                        /*
1261                         * It is undesirable to test vma->vm_file as it
1262                         * should be non-null for valid hugetlb area.
1263                         * However, vm_file will be NULL in the error
1264                         * cleanup path of mmap_region. When
1265                         * hugetlbfs ->mmap method fails,
1266                         * mmap_region() nullifies vma->vm_file
1267                         * before calling this function to clean up.
1268                         * Since no pte has actually been setup, it is
1269                         * safe to do nothing in this case.
1270                         */
1271                        if (vma->vm_file) {
1272                                i_mmap_lock_write(vma->vm_file->f_mapping);
1273                                __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1274                                i_mmap_unlock_write(vma->vm_file->f_mapping);
1275                        }
1276                } else
1277                        unmap_page_range(tlb, vma, start, end, details);
1278        }
1279}
1280
1281/**
1282 * unmap_vmas - unmap a range of memory covered by a list of vma's
1283 * @tlb: address of the caller's struct mmu_gather
1284 * @vma: the starting vma
1285 * @start_addr: virtual address at which to start unmapping
1286 * @end_addr: virtual address at which to end unmapping
1287 *
1288 * Unmap all pages in the vma list.
1289 *
1290 * Only addresses between `start' and `end' will be unmapped.
1291 *
1292 * The VMA list must be sorted in ascending virtual address order.
1293 *
1294 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1295 * range after unmap_vmas() returns.  So the only responsibility here is to
1296 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1297 * drops the lock and schedules.
1298 */
1299void unmap_vmas(struct mmu_gather *tlb,
1300                struct vm_area_struct *vma, unsigned long start_addr,
1301                unsigned long end_addr)
1302{
1303        struct mmu_notifier_range range;
1304
1305        mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1306                                start_addr, end_addr);
1307        mmu_notifier_invalidate_range_start(&range);
1308        for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1309                unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1310        mmu_notifier_invalidate_range_end(&range);
1311}
1312
1313/**
1314 * zap_page_range - remove user pages in a given range
1315 * @vma: vm_area_struct holding the applicable pages
1316 * @start: starting address of pages to zap
1317 * @size: number of bytes to zap
1318 *
1319 * Caller must protect the VMA list
1320 */
1321void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1322                unsigned long size)
1323{
1324        struct mmu_notifier_range range;
1325        struct mmu_gather tlb;
1326
1327        lru_add_drain();
1328        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1329                                start, start + size);
1330        tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1331        update_hiwater_rss(vma->vm_mm);
1332        mmu_notifier_invalidate_range_start(&range);
1333        for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1334                unmap_single_vma(&tlb, vma, start, range.end, NULL);
1335        mmu_notifier_invalidate_range_end(&range);
1336        tlb_finish_mmu(&tlb, start, range.end);
1337}
1338
1339/**
1340 * zap_page_range_single - remove user pages in a given range
1341 * @vma: vm_area_struct holding the applicable pages
1342 * @address: starting address of pages to zap
1343 * @size: number of bytes to zap
1344 * @details: details of shared cache invalidation
1345 *
1346 * The range must fit into one VMA.
1347 */
1348static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1349                unsigned long size, struct zap_details *details)
1350{
1351        struct mmu_notifier_range range;
1352        struct mmu_gather tlb;
1353
1354        lru_add_drain();
1355        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1356                                address, address + size);
1357        tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1358        update_hiwater_rss(vma->vm_mm);
1359        mmu_notifier_invalidate_range_start(&range);
1360        unmap_single_vma(&tlb, vma, address, range.end, details);
1361        mmu_notifier_invalidate_range_end(&range);
1362        tlb_finish_mmu(&tlb, address, range.end);
1363}
1364
1365/**
1366 * zap_vma_ptes - remove ptes mapping the vma
1367 * @vma: vm_area_struct holding ptes to be zapped
1368 * @address: starting address of pages to zap
1369 * @size: number of bytes to zap
1370 *
1371 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1372 *
1373 * The entire address range must be fully contained within the vma.
1374 *
1375 */
1376void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1377                unsigned long size)
1378{
1379        if (address < vma->vm_start || address + size > vma->vm_end ||
1380                        !(vma->vm_flags & VM_PFNMAP))
1381                return;
1382
1383        zap_page_range_single(vma, address, size, NULL);
1384}
1385EXPORT_SYMBOL_GPL(zap_vma_ptes);
1386
1387pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1388                        spinlock_t **ptl)
1389{
1390        pgd_t *pgd;
1391        p4d_t *p4d;
1392        pud_t *pud;
1393        pmd_t *pmd;
1394
1395        pgd = pgd_offset(mm, addr);
1396        p4d = p4d_alloc(mm, pgd, addr);
1397        if (!p4d)
1398                return NULL;
1399        pud = pud_alloc(mm, p4d, addr);
1400        if (!pud)
1401                return NULL;
1402        pmd = pmd_alloc(mm, pud, addr);
1403        if (!pmd)
1404                return NULL;
1405
1406        VM_BUG_ON(pmd_trans_huge(*pmd));
1407        return pte_alloc_map_lock(mm, pmd, addr, ptl);
1408}
1409
1410/*
1411 * This is the old fallback for page remapping.
1412 *
1413 * For historical reasons, it only allows reserved pages. Only
1414 * old drivers should use this, and they needed to mark their
1415 * pages reserved for the old functions anyway.
1416 */
1417static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1418                        struct page *page, pgprot_t prot)
1419{
1420        struct mm_struct *mm = vma->vm_mm;
1421        int retval;
1422        pte_t *pte;
1423        spinlock_t *ptl;
1424
1425        retval = -EINVAL;
1426        if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1427                goto out;
1428        retval = -ENOMEM;
1429        flush_dcache_page(page);
1430        pte = get_locked_pte(mm, addr, &ptl);
1431        if (!pte)
1432                goto out;
1433        retval = -EBUSY;
1434        if (!pte_none(*pte))
1435                goto out_unlock;
1436
1437        /* Ok, finally just insert the thing.. */
1438        get_page(page);
1439        inc_mm_counter_fast(mm, mm_counter_file(page));
1440        page_add_file_rmap(page, false);
1441        set_pte_at(mm, addr, pte, mk_pte(page, prot));
1442
1443        retval = 0;
1444out_unlock:
1445        pte_unmap_unlock(pte, ptl);
1446out:
1447        return retval;
1448}
1449
1450/**
1451 * vm_insert_page - insert single page into user vma
1452 * @vma: user vma to map to
1453 * @addr: target user address of this page
1454 * @page: source kernel page
1455 *
1456 * This allows drivers to insert individual pages they've allocated
1457 * into a user vma.
1458 *
1459 * The page has to be a nice clean _individual_ kernel allocation.
1460 * If you allocate a compound page, you need to have marked it as
1461 * such (__GFP_COMP), or manually just split the page up yourself
1462 * (see split_page()).
1463 *
1464 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1465 * took an arbitrary page protection parameter. This doesn't allow
1466 * that. Your vma protection will have to be set up correctly, which
1467 * means that if you want a shared writable mapping, you'd better
1468 * ask for a shared writable mapping!
1469 *
1470 * The page does not need to be reserved.
1471 *
1472 * Usually this function is called from f_op->mmap() handler
1473 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1474 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1475 * function from other places, for example from page-fault handler.
1476 *
1477 * Return: %0 on success, negative error code otherwise.
1478 */
1479int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1480                        struct page *page)
1481{
1482        if (addr < vma->vm_start || addr >= vma->vm_end)
1483                return -EFAULT;
1484        if (!page_count(page))
1485                return -EINVAL;
1486        if (!(vma->vm_flags & VM_MIXEDMAP)) {
1487                BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1488                BUG_ON(vma->vm_flags & VM_PFNMAP);
1489                vma->vm_flags |= VM_MIXEDMAP;
1490        }
1491        return insert_page(vma, addr, page, vma->vm_page_prot);
1492}
1493EXPORT_SYMBOL(vm_insert_page);
1494
1495/*
1496 * __vm_map_pages - maps range of kernel pages into user vma
1497 * @vma: user vma to map to
1498 * @pages: pointer to array of source kernel pages
1499 * @num: number of pages in page array
1500 * @offset: user's requested vm_pgoff
1501 *
1502 * This allows drivers to map range of kernel pages into a user vma.
1503 *
1504 * Return: 0 on success and error code otherwise.
1505 */
1506static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1507                                unsigned long num, unsigned long offset)
1508{
1509        unsigned long count = vma_pages(vma);
1510        unsigned long uaddr = vma->vm_start;
1511        int ret, i;
1512
1513        /* Fail if the user requested offset is beyond the end of the object */
1514        if (offset >= num)
1515                return -ENXIO;
1516
1517        /* Fail if the user requested size exceeds available object size */
1518        if (count > num - offset)
1519                return -ENXIO;
1520
1521        for (i = 0; i < count; i++) {
1522                ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1523                if (ret < 0)
1524                        return ret;
1525                uaddr += PAGE_SIZE;
1526        }
1527
1528        return 0;
1529}
1530
1531/**
1532 * vm_map_pages - maps range of kernel pages starts with non zero offset
1533 * @vma: user vma to map to
1534 * @pages: pointer to array of source kernel pages
1535 * @num: number of pages in page array
1536 *
1537 * Maps an object consisting of @num pages, catering for the user's
1538 * requested vm_pgoff
1539 *
1540 * If we fail to insert any page into the vma, the function will return
1541 * immediately leaving any previously inserted pages present.  Callers
1542 * from the mmap handler may immediately return the error as their caller
1543 * will destroy the vma, removing any successfully inserted pages. Other
1544 * callers should make their own arrangements for calling unmap_region().
1545 *
1546 * Context: Process context. Called by mmap handlers.
1547 * Return: 0 on success and error code otherwise.
1548 */
1549int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1550                                unsigned long num)
1551{
1552        return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1553}
1554EXPORT_SYMBOL(vm_map_pages);
1555
1556/**
1557 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1558 * @vma: user vma to map to
1559 * @pages: pointer to array of source kernel pages
1560 * @num: number of pages in page array
1561 *
1562 * Similar to vm_map_pages(), except that it explicitly sets the offset
1563 * to 0. This function is intended for the drivers that did not consider
1564 * vm_pgoff.
1565 *
1566 * Context: Process context. Called by mmap handlers.
1567 * Return: 0 on success and error code otherwise.
1568 */
1569int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1570                                unsigned long num)
1571{
1572        return __vm_map_pages(vma, pages, num, 0);
1573}
1574EXPORT_SYMBOL(vm_map_pages_zero);
1575
1576static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1577                        pfn_t pfn, pgprot_t prot, bool mkwrite)
1578{
1579        struct mm_struct *mm = vma->vm_mm;
1580        pte_t *pte, entry;
1581        spinlock_t *ptl;
1582
1583        pte = get_locked_pte(mm, addr, &ptl);
1584        if (!pte)
1585                return VM_FAULT_OOM;
1586        if (!pte_none(*pte)) {
1587                if (mkwrite) {
1588                        /*
1589                         * For read faults on private mappings the PFN passed
1590                         * in may not match the PFN we have mapped if the
1591                         * mapped PFN is a writeable COW page.  In the mkwrite
1592                         * case we are creating a writable PTE for a shared
1593                         * mapping and we expect the PFNs to match. If they
1594                         * don't match, we are likely racing with block
1595                         * allocation and mapping invalidation so just skip the
1596                         * update.
1597                         */
1598                        if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1599                                WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1600                                goto out_unlock;
1601                        }
1602                        entry = pte_mkyoung(*pte);
1603                        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1604                        if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1605                                update_mmu_cache(vma, addr, pte);
1606                }
1607                goto out_unlock;
1608        }
1609
1610        /* Ok, finally just insert the thing.. */
1611        if (pfn_t_devmap(pfn))
1612                entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1613        else
1614                entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1615
1616        if (mkwrite) {
1617                entry = pte_mkyoung(entry);
1618                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1619        }
1620
1621        set_pte_at(mm, addr, pte, entry);
1622        update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1623
1624out_unlock:
1625        pte_unmap_unlock(pte, ptl);
1626        return VM_FAULT_NOPAGE;
1627}
1628
1629/**
1630 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1631 * @vma: user vma to map to
1632 * @addr: target user address of this page
1633 * @pfn: source kernel pfn
1634 * @pgprot: pgprot flags for the inserted page
1635 *
1636 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1637 * to override pgprot on a per-page basis.
1638 *
1639 * This only makes sense for IO mappings, and it makes no sense for
1640 * COW mappings.  In general, using multiple vmas is preferable;
1641 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1642 * impractical.
1643 *
1644 * Context: Process context.  May allocate using %GFP_KERNEL.
1645 * Return: vm_fault_t value.
1646 */
1647vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1648                        unsigned long pfn, pgprot_t pgprot)
1649{
1650        /*
1651         * Technically, architectures with pte_special can avoid all these
1652         * restrictions (same for remap_pfn_range).  However we would like
1653         * consistency in testing and feature parity among all, so we should
1654         * try to keep these invariants in place for everybody.
1655         */
1656        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1657        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1658                                                (VM_PFNMAP|VM_MIXEDMAP));
1659        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1660        BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1661
1662        if (addr < vma->vm_start || addr >= vma->vm_end)
1663                return VM_FAULT_SIGBUS;
1664
1665        if (!pfn_modify_allowed(pfn, pgprot))
1666                return VM_FAULT_SIGBUS;
1667
1668        track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1669
1670        return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1671                        false);
1672}
1673EXPORT_SYMBOL(vmf_insert_pfn_prot);
1674
1675/**
1676 * vmf_insert_pfn - insert single pfn into user vma
1677 * @vma: user vma to map to
1678 * @addr: target user address of this page
1679 * @pfn: source kernel pfn
1680 *
1681 * Similar to vm_insert_page, this allows drivers to insert individual pages
1682 * they've allocated into a user vma. Same comments apply.
1683 *
1684 * This function should only be called from a vm_ops->fault handler, and
1685 * in that case the handler should return the result of this function.
1686 *
1687 * vma cannot be a COW mapping.
1688 *
1689 * As this is called only for pages that do not currently exist, we
1690 * do not need to flush old virtual caches or the TLB.
1691 *
1692 * Context: Process context.  May allocate using %GFP_KERNEL.
1693 * Return: vm_fault_t value.
1694 */
1695vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1696                        unsigned long pfn)
1697{
1698        return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1699}
1700EXPORT_SYMBOL(vmf_insert_pfn);
1701
1702static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1703{
1704        /* these checks mirror the abort conditions in vm_normal_page */
1705        if (vma->vm_flags & VM_MIXEDMAP)
1706                return true;
1707        if (pfn_t_devmap(pfn))
1708                return true;
1709        if (pfn_t_special(pfn))
1710                return true;
1711        if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1712                return true;
1713        return false;
1714}
1715
1716static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1717                unsigned long addr, pfn_t pfn, bool mkwrite)
1718{
1719        pgprot_t pgprot = vma->vm_page_prot;
1720        int err;
1721
1722        BUG_ON(!vm_mixed_ok(vma, pfn));
1723
1724        if (addr < vma->vm_start || addr >= vma->vm_end)
1725                return VM_FAULT_SIGBUS;
1726
1727        track_pfn_insert(vma, &pgprot, pfn);
1728
1729        if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1730                return VM_FAULT_SIGBUS;
1731
1732        /*
1733         * If we don't have pte special, then we have to use the pfn_valid()
1734         * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1735         * refcount the page if pfn_valid is true (hence insert_page rather
1736         * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1737         * without pte special, it would there be refcounted as a normal page.
1738         */
1739        if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1740            !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1741                struct page *page;
1742
1743                /*
1744                 * At this point we are committed to insert_page()
1745                 * regardless of whether the caller specified flags that
1746                 * result in pfn_t_has_page() == false.
1747                 */
1748                page = pfn_to_page(pfn_t_to_pfn(pfn));
1749                err = insert_page(vma, addr, page, pgprot);
1750        } else {
1751                return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1752        }
1753
1754        if (err == -ENOMEM)
1755                return VM_FAULT_OOM;
1756        if (err < 0 && err != -EBUSY)
1757                return VM_FAULT_SIGBUS;
1758
1759        return VM_FAULT_NOPAGE;
1760}
1761
1762vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1763                pfn_t pfn)
1764{
1765        return __vm_insert_mixed(vma, addr, pfn, false);
1766}
1767EXPORT_SYMBOL(vmf_insert_mixed);
1768
1769/*
1770 *  If the insertion of PTE failed because someone else already added a
1771 *  different entry in the mean time, we treat that as success as we assume
1772 *  the same entry was actually inserted.
1773 */
1774vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1775                unsigned long addr, pfn_t pfn)
1776{
1777        return __vm_insert_mixed(vma, addr, pfn, true);
1778}
1779EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1780
1781/*
1782 * maps a range of physical memory into the requested pages. the old
1783 * mappings are removed. any references to nonexistent pages results
1784 * in null mappings (currently treated as "copy-on-access")
1785 */
1786static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1787                        unsigned long addr, unsigned long end,
1788                        unsigned long pfn, pgprot_t prot)
1789{
1790        pte_t *pte;
1791        spinlock_t *ptl;
1792        int err = 0;
1793
1794        pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1795        if (!pte)
1796                return -ENOMEM;
1797        arch_enter_lazy_mmu_mode();
1798        do {
1799                BUG_ON(!pte_none(*pte));
1800                if (!pfn_modify_allowed(pfn, prot)) {
1801                        err = -EACCES;
1802                        break;
1803                }
1804                set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1805                pfn++;
1806        } while (pte++, addr += PAGE_SIZE, addr != end);
1807        arch_leave_lazy_mmu_mode();
1808        pte_unmap_unlock(pte - 1, ptl);
1809        return err;
1810}
1811
1812static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1813                        unsigned long addr, unsigned long end,
1814                        unsigned long pfn, pgprot_t prot)
1815{
1816        pmd_t *pmd;
1817        unsigned long next;
1818        int err;
1819
1820        pfn -= addr >> PAGE_SHIFT;
1821        pmd = pmd_alloc(mm, pud, addr);
1822        if (!pmd)
1823                return -ENOMEM;
1824        VM_BUG_ON(pmd_trans_huge(*pmd));
1825        do {
1826                next = pmd_addr_end(addr, end);
1827                err = remap_pte_range(mm, pmd, addr, next,
1828                                pfn + (addr >> PAGE_SHIFT), prot);
1829                if (err)
1830                        return err;
1831        } while (pmd++, addr = next, addr != end);
1832        return 0;
1833}
1834
1835static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1836                        unsigned long addr, unsigned long end,
1837                        unsigned long pfn, pgprot_t prot)
1838{
1839        pud_t *pud;
1840        unsigned long next;
1841        int err;
1842
1843        pfn -= addr >> PAGE_SHIFT;
1844        pud = pud_alloc(mm, p4d, addr);
1845        if (!pud)
1846                return -ENOMEM;
1847        do {
1848                next = pud_addr_end(addr, end);
1849                err = remap_pmd_range(mm, pud, addr, next,
1850                                pfn + (addr >> PAGE_SHIFT), prot);
1851                if (err)
1852                        return err;
1853        } while (pud++, addr = next, addr != end);
1854        return 0;
1855}
1856
1857static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1858                        unsigned long addr, unsigned long end,
1859                        unsigned long pfn, pgprot_t prot)
1860{
1861        p4d_t *p4d;
1862        unsigned long next;
1863        int err;
1864
1865        pfn -= addr >> PAGE_SHIFT;
1866        p4d = p4d_alloc(mm, pgd, addr);
1867        if (!p4d)
1868                return -ENOMEM;
1869        do {
1870                next = p4d_addr_end(addr, end);
1871                err = remap_pud_range(mm, p4d, addr, next,
1872                                pfn + (addr >> PAGE_SHIFT), prot);
1873                if (err)
1874                        return err;
1875        } while (p4d++, addr = next, addr != end);
1876        return 0;
1877}
1878
1879/**
1880 * remap_pfn_range - remap kernel memory to userspace
1881 * @vma: user vma to map to
1882 * @addr: target user address to start at
1883 * @pfn: physical address of kernel memory
1884 * @size: size of map area
1885 * @prot: page protection flags for this mapping
1886 *
1887 * Note: this is only safe if the mm semaphore is held when called.
1888 *
1889 * Return: %0 on success, negative error code otherwise.
1890 */
1891int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1892                    unsigned long pfn, unsigned long size, pgprot_t prot)
1893{
1894        pgd_t *pgd;
1895        unsigned long next;
1896        unsigned long end = addr + PAGE_ALIGN(size);
1897        struct mm_struct *mm = vma->vm_mm;
1898        unsigned long remap_pfn = pfn;
1899        int err;
1900
1901        /*
1902         * Physically remapped pages are special. Tell the
1903         * rest of the world about it:
1904         *   VM_IO tells people not to look at these pages
1905         *      (accesses can have side effects).
1906         *   VM_PFNMAP tells the core MM that the base pages are just
1907         *      raw PFN mappings, and do not have a "struct page" associated
1908         *      with them.
1909         *   VM_DONTEXPAND
1910         *      Disable vma merging and expanding with mremap().
1911         *   VM_DONTDUMP
1912         *      Omit vma from core dump, even when VM_IO turned off.
1913         *
1914         * There's a horrible special case to handle copy-on-write
1915         * behaviour that some programs depend on. We mark the "original"
1916         * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1917         * See vm_normal_page() for details.
1918         */
1919        if (is_cow_mapping(vma->vm_flags)) {
1920                if (addr != vma->vm_start || end != vma->vm_end)
1921                        return -EINVAL;
1922                vma->vm_pgoff = pfn;
1923        }
1924
1925        err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1926        if (err)
1927                return -EINVAL;
1928
1929        vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1930
1931        BUG_ON(addr >= end);
1932        pfn -= addr >> PAGE_SHIFT;
1933        pgd = pgd_offset(mm, addr);
1934        flush_cache_range(vma, addr, end);
1935        do {
1936                next = pgd_addr_end(addr, end);
1937                err = remap_p4d_range(mm, pgd, addr, next,
1938                                pfn + (addr >> PAGE_SHIFT), prot);
1939                if (err)
1940                        break;
1941        } while (pgd++, addr = next, addr != end);
1942
1943        if (err)
1944                untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1945
1946        return err;
1947}
1948EXPORT_SYMBOL(remap_pfn_range);
1949
1950/**
1951 * vm_iomap_memory - remap memory to userspace
1952 * @vma: user vma to map to
1953 * @start: start of area
1954 * @len: size of area
1955 *
1956 * This is a simplified io_remap_pfn_range() for common driver use. The
1957 * driver just needs to give us the physical memory range to be mapped,
1958 * we'll figure out the rest from the vma information.
1959 *
1960 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1961 * whatever write-combining details or similar.
1962 *
1963 * Return: %0 on success, negative error code otherwise.
1964 */
1965int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1966{
1967        unsigned long vm_len, pfn, pages;
1968
1969        /* Check that the physical memory area passed in looks valid */
1970        if (start + len < start)
1971                return -EINVAL;
1972        /*
1973         * You *really* shouldn't map things that aren't page-aligned,
1974         * but we've historically allowed it because IO memory might
1975         * just have smaller alignment.
1976         */
1977        len += start & ~PAGE_MASK;
1978        pfn = start >> PAGE_SHIFT;
1979        pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1980        if (pfn + pages < pfn)
1981                return -EINVAL;
1982
1983        /* We start the mapping 'vm_pgoff' pages into the area */
1984        if (vma->vm_pgoff > pages)
1985                return -EINVAL;
1986        pfn += vma->vm_pgoff;
1987        pages -= vma->vm_pgoff;
1988
1989        /* Can we fit all of the mapping? */
1990        vm_len = vma->vm_end - vma->vm_start;
1991        if (vm_len >> PAGE_SHIFT > pages)
1992                return -EINVAL;
1993
1994        /* Ok, let it rip */
1995        return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1996}
1997EXPORT_SYMBOL(vm_iomap_memory);
1998
1999static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2000                                     unsigned long addr, unsigned long end,
2001                                     pte_fn_t fn, void *data)
2002{
2003        pte_t *pte;
2004        int err;
2005        spinlock_t *uninitialized_var(ptl);
2006
2007        pte = (mm == &init_mm) ?
2008                pte_alloc_kernel(pmd, addr) :
2009                pte_alloc_map_lock(mm, pmd, addr, &ptl);
2010        if (!pte)
2011                return -ENOMEM;
2012
2013        BUG_ON(pmd_huge(*pmd));
2014
2015        arch_enter_lazy_mmu_mode();
2016
2017        do {
2018                err = fn(pte++, addr, data);
2019                if (err)
2020                        break;
2021        } while (addr += PAGE_SIZE, addr != end);
2022
2023        arch_leave_lazy_mmu_mode();
2024
2025        if (mm != &init_mm)
2026                pte_unmap_unlock(pte-1, ptl);
2027        return err;
2028}
2029
2030static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2031                                     unsigned long addr, unsigned long end,
2032                                     pte_fn_t fn, void *data)
2033{
2034        pmd_t *pmd;
2035        unsigned long next;
2036        int err;
2037
2038        BUG_ON(pud_huge(*pud));
2039
2040        pmd = pmd_alloc(mm, pud, addr);
2041        if (!pmd)
2042                return -ENOMEM;
2043        do {
2044                next = pmd_addr_end(addr, end);
2045                err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2046                if (err)
2047                        break;
2048        } while (pmd++, addr = next, addr != end);
2049        return err;
2050}
2051
2052static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2053                                     unsigned long addr, unsigned long end,
2054                                     pte_fn_t fn, void *data)
2055{
2056        pud_t *pud;
2057        unsigned long next;
2058        int err;
2059
2060        pud = pud_alloc(mm, p4d, addr);
2061        if (!pud)
2062                return -ENOMEM;
2063        do {
2064                next = pud_addr_end(addr, end);
2065                err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2066                if (err)
2067                        break;
2068        } while (pud++, addr = next, addr != end);
2069        return err;
2070}
2071
2072static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2073                                     unsigned long addr, unsigned long end,
2074                                     pte_fn_t fn, void *data)
2075{
2076        p4d_t *p4d;
2077        unsigned long next;
2078        int err;
2079
2080        p4d = p4d_alloc(mm, pgd, addr);
2081        if (!p4d)
2082                return -ENOMEM;
2083        do {
2084                next = p4d_addr_end(addr, end);
2085                err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2086                if (err)
2087                        break;
2088        } while (p4d++, addr = next, addr != end);
2089        return err;
2090}
2091
2092/*
2093 * Scan a region of virtual memory, filling in page tables as necessary
2094 * and calling a provided function on each leaf page table.
2095 */
2096int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2097                        unsigned long size, pte_fn_t fn, void *data)
2098{
2099        pgd_t *pgd;
2100        unsigned long next;
2101        unsigned long end = addr + size;
2102        int err;
2103
2104        if (WARN_ON(addr >= end))
2105                return -EINVAL;
2106
2107        pgd = pgd_offset(mm, addr);
2108        do {
2109                next = pgd_addr_end(addr, end);
2110                err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2111                if (err)
2112                        break;
2113        } while (pgd++, addr = next, addr != end);
2114
2115        return err;
2116}
2117EXPORT_SYMBOL_GPL(apply_to_page_range);
2118
2119/*
2120 * handle_pte_fault chooses page fault handler according to an entry which was
2121 * read non-atomically.  Before making any commitment, on those architectures
2122 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2123 * parts, do_swap_page must check under lock before unmapping the pte and
2124 * proceeding (but do_wp_page is only called after already making such a check;
2125 * and do_anonymous_page can safely check later on).
2126 */
2127static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2128                                pte_t *page_table, pte_t orig_pte)
2129{
2130        int same = 1;
2131#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2132        if (sizeof(pte_t) > sizeof(unsigned long)) {
2133                spinlock_t *ptl = pte_lockptr(mm, pmd);
2134                spin_lock(ptl);
2135                same = pte_same(*page_table, orig_pte);
2136                spin_unlock(ptl);
2137        }
2138#endif
2139        pte_unmap(page_table);
2140        return same;
2141}
2142
2143static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2144{
2145        debug_dma_assert_idle(src);
2146
2147        /*
2148         * If the source page was a PFN mapping, we don't have
2149         * a "struct page" for it. We do a best-effort copy by
2150         * just copying from the original user address. If that
2151         * fails, we just zero-fill it. Live with it.
2152         */
2153        if (unlikely(!src)) {
2154                void *kaddr = kmap_atomic(dst);
2155                void __user *uaddr = (void __user *)(va & PAGE_MASK);
2156
2157                /*
2158                 * This really shouldn't fail, because the page is there
2159                 * in the page tables. But it might just be unreadable,
2160                 * in which case we just give up and fill the result with
2161                 * zeroes.
2162                 */
2163                if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2164                        clear_page(kaddr);
2165                kunmap_atomic(kaddr);
2166                flush_dcache_page(dst);
2167        } else
2168                copy_user_highpage(dst, src, va, vma);
2169}
2170
2171static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2172{
2173        struct file *vm_file = vma->vm_file;
2174
2175        if (vm_file)
2176                return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2177
2178        /*
2179         * Special mappings (e.g. VDSO) do not have any file so fake
2180         * a default GFP_KERNEL for them.
2181         */
2182        return GFP_KERNEL;
2183}
2184
2185/*
2186 * Notify the address space that the page is about to become writable so that
2187 * it can prohibit this or wait for the page to get into an appropriate state.
2188 *
2189 * We do this without the lock held, so that it can sleep if it needs to.
2190 */
2191static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2192{
2193        vm_fault_t ret;
2194        struct page *page = vmf->page;
2195        unsigned int old_flags = vmf->flags;
2196
2197        vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2198
2199        ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2200        /* Restore original flags so that caller is not surprised */
2201        vmf->flags = old_flags;
2202        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2203                return ret;
2204        if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2205                lock_page(page);
2206                if (!page->mapping) {
2207                        unlock_page(page);
2208                        return 0; /* retry */
2209                }
2210                ret |= VM_FAULT_LOCKED;
2211        } else
2212                VM_BUG_ON_PAGE(!PageLocked(page), page);
2213        return ret;
2214}
2215
2216/*
2217 * Handle dirtying of a page in shared file mapping on a write fault.
2218 *
2219 * The function expects the page to be locked and unlocks it.
2220 */
2221static void fault_dirty_shared_page(struct vm_area_struct *vma,
2222                                    struct page *page)
2223{
2224        struct address_space *mapping;
2225        bool dirtied;
2226        bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2227
2228        dirtied = set_page_dirty(page);
2229        VM_BUG_ON_PAGE(PageAnon(page), page);
2230        /*
2231         * Take a local copy of the address_space - page.mapping may be zeroed
2232         * by truncate after unlock_page().   The address_space itself remains
2233         * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2234         * release semantics to prevent the compiler from undoing this copying.
2235         */
2236        mapping = page_rmapping(page);
2237        unlock_page(page);
2238
2239        if ((dirtied || page_mkwrite) && mapping) {
2240                /*
2241                 * Some device drivers do not set page.mapping
2242                 * but still dirty their pages
2243                 */
2244                balance_dirty_pages_ratelimited(mapping);
2245        }
2246
2247        if (!page_mkwrite)
2248                file_update_time(vma->vm_file);
2249}
2250
2251/*
2252 * Handle write page faults for pages that can be reused in the current vma
2253 *
2254 * This can happen either due to the mapping being with the VM_SHARED flag,
2255 * or due to us being the last reference standing to the page. In either
2256 * case, all we need to do here is to mark the page as writable and update
2257 * any related book-keeping.
2258 */
2259static inline void wp_page_reuse(struct vm_fault *vmf)
2260        __releases(vmf->ptl)
2261{
2262        struct vm_area_struct *vma = vmf->vma;
2263        struct page *page = vmf->page;
2264        pte_t entry;
2265        /*
2266         * Clear the pages cpupid information as the existing
2267         * information potentially belongs to a now completely
2268         * unrelated process.
2269         */
2270        if (page)
2271                page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2272
2273        flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2274        entry = pte_mkyoung(vmf->orig_pte);
2275        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2276        if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2277                update_mmu_cache(vma, vmf->address, vmf->pte);
2278        pte_unmap_unlock(vmf->pte, vmf->ptl);
2279}
2280
2281/*
2282 * Handle the case of a page which we actually need to copy to a new page.
2283 *
2284 * Called with mmap_sem locked and the old page referenced, but
2285 * without the ptl held.
2286 *
2287 * High level logic flow:
2288 *
2289 * - Allocate a page, copy the content of the old page to the new one.
2290 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2291 * - Take the PTL. If the pte changed, bail out and release the allocated page
2292 * - If the pte is still the way we remember it, update the page table and all
2293 *   relevant references. This includes dropping the reference the page-table
2294 *   held to the old page, as well as updating the rmap.
2295 * - In any case, unlock the PTL and drop the reference we took to the old page.
2296 */
2297static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2298{
2299        struct vm_area_struct *vma = vmf->vma;
2300        struct mm_struct *mm = vma->vm_mm;
2301        struct page *old_page = vmf->page;
2302        struct page *new_page = NULL;
2303        pte_t entry;
2304        int page_copied = 0;
2305        struct mem_cgroup *memcg;
2306        struct mmu_notifier_range range;
2307
2308        if (unlikely(anon_vma_prepare(vma)))
2309                goto oom;
2310
2311        if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2312                new_page = alloc_zeroed_user_highpage_movable(vma,
2313                                                              vmf->address);
2314                if (!new_page)
2315                        goto oom;
2316        } else {
2317                new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2318                                vmf->address);
2319                if (!new_page)
2320                        goto oom;
2321                cow_user_page(new_page, old_page, vmf->address, vma);
2322        }
2323
2324        if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2325                goto oom_free_new;
2326
2327        __SetPageUptodate(new_page);
2328
2329        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2330                                vmf->address & PAGE_MASK,
2331                                (vmf->address & PAGE_MASK) + PAGE_SIZE);
2332        mmu_notifier_invalidate_range_start(&range);
2333
2334        /*
2335         * Re-check the pte - we dropped the lock
2336         */
2337        vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2338        if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2339                if (old_page) {
2340                        if (!PageAnon(old_page)) {
2341                                dec_mm_counter_fast(mm,
2342                                                mm_counter_file(old_page));
2343                                inc_mm_counter_fast(mm, MM_ANONPAGES);
2344                        }
2345                } else {
2346                        inc_mm_counter_fast(mm, MM_ANONPAGES);
2347                }
2348                flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2349                entry = mk_pte(new_page, vma->vm_page_prot);
2350                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2351                /*
2352                 * Clear the pte entry and flush it first, before updating the
2353                 * pte with the new entry. This will avoid a race condition
2354                 * seen in the presence of one thread doing SMC and another
2355                 * thread doing COW.
2356                 */
2357                ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2358                page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2359                mem_cgroup_commit_charge(new_page, memcg, false, false);
2360                lru_cache_add_active_or_unevictable(new_page, vma);
2361                /*
2362                 * We call the notify macro here because, when using secondary
2363                 * mmu page tables (such as kvm shadow page tables), we want the
2364                 * new page to be mapped directly into the secondary page table.
2365                 */
2366                set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2367                update_mmu_cache(vma, vmf->address, vmf->pte);
2368                if (old_page) {
2369                        /*
2370                         * Only after switching the pte to the new page may
2371                         * we remove the mapcount here. Otherwise another
2372                         * process may come and find the rmap count decremented
2373                         * before the pte is switched to the new page, and
2374                         * "reuse" the old page writing into it while our pte
2375                         * here still points into it and can be read by other
2376                         * threads.
2377                         *
2378                         * The critical issue is to order this
2379                         * page_remove_rmap with the ptp_clear_flush above.
2380                         * Those stores are ordered by (if nothing else,)
2381                         * the barrier present in the atomic_add_negative
2382                         * in page_remove_rmap.
2383                         *
2384                         * Then the TLB flush in ptep_clear_flush ensures that
2385                         * no process can access the old page before the
2386                         * decremented mapcount is visible. And the old page
2387                         * cannot be reused until after the decremented
2388                         * mapcount is visible. So transitively, TLBs to
2389                         * old page will be flushed before it can be reused.
2390                         */
2391                        page_remove_rmap(old_page, false);
2392                }
2393
2394                /* Free the old page.. */
2395                new_page = old_page;
2396                page_copied = 1;
2397        } else {
2398                mem_cgroup_cancel_charge(new_page, memcg, false);
2399        }
2400
2401        if (new_page)
2402                put_page(new_page);
2403
2404        pte_unmap_unlock(vmf->pte, vmf->ptl);
2405        /*
2406         * No need to double call mmu_notifier->invalidate_range() callback as
2407         * the above ptep_clear_flush_notify() did already call it.
2408         */
2409        mmu_notifier_invalidate_range_only_end(&range);
2410        if (old_page) {
2411                /*
2412                 * Don't let another task, with possibly unlocked vma,
2413                 * keep the mlocked page.
2414                 */
2415                if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2416                        lock_page(old_page);    /* LRU manipulation */
2417                        if (PageMlocked(old_page))
2418                                munlock_vma_page(old_page);
2419                        unlock_page(old_page);
2420                }
2421                put_page(old_page);
2422        }
2423        return page_copied ? VM_FAULT_WRITE : 0;
2424oom_free_new:
2425        put_page(new_page);
2426oom:
2427        if (old_page)
2428                put_page(old_page);
2429        return VM_FAULT_OOM;
2430}
2431
2432/**
2433 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2434 *                        writeable once the page is prepared
2435 *
2436 * @vmf: structure describing the fault
2437 *
2438 * This function handles all that is needed to finish a write page fault in a
2439 * shared mapping due to PTE being read-only once the mapped page is prepared.
2440 * It handles locking of PTE and modifying it.
2441 *
2442 * The function expects the page to be locked or other protection against
2443 * concurrent faults / writeback (such as DAX radix tree locks).
2444 *
2445 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2446 * we acquired PTE lock.
2447 */
2448vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2449{
2450        WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2451        vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2452                                       &vmf->ptl);
2453        /*
2454         * We might have raced with another page fault while we released the
2455         * pte_offset_map_lock.
2456         */
2457        if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2458                pte_unmap_unlock(vmf->pte, vmf->ptl);
2459                return VM_FAULT_NOPAGE;
2460        }
2461        wp_page_reuse(vmf);
2462        return 0;
2463}
2464
2465/*
2466 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2467 * mapping
2468 */
2469static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2470{
2471        struct vm_area_struct *vma = vmf->vma;
2472
2473        if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2474                vm_fault_t ret;
2475
2476                pte_unmap_unlock(vmf->pte, vmf->ptl);
2477                vmf->flags |= FAULT_FLAG_MKWRITE;
2478                ret = vma->vm_ops->pfn_mkwrite(vmf);
2479                if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2480                        return ret;
2481                return finish_mkwrite_fault(vmf);
2482        }
2483        wp_page_reuse(vmf);
2484        return VM_FAULT_WRITE;
2485}
2486
2487static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2488        __releases(vmf->ptl)
2489{
2490        struct vm_area_struct *vma = vmf->vma;
2491
2492        get_page(vmf->page);
2493
2494        if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2495                vm_fault_t tmp;
2496
2497                pte_unmap_unlock(vmf->pte, vmf->ptl);
2498                tmp = do_page_mkwrite(vmf);
2499                if (unlikely(!tmp || (tmp &
2500                                      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2501                        put_page(vmf->page);
2502                        return tmp;
2503                }
2504                tmp = finish_mkwrite_fault(vmf);
2505                if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2506                        unlock_page(vmf->page);
2507                        put_page(vmf->page);
2508                        return tmp;
2509                }
2510        } else {
2511                wp_page_reuse(vmf);
2512                lock_page(vmf->page);
2513        }
2514        fault_dirty_shared_page(vma, vmf->page);
2515        put_page(vmf->page);
2516
2517        return VM_FAULT_WRITE;
2518}
2519
2520/*
2521 * This routine handles present pages, when users try to write
2522 * to a shared page. It is done by copying the page to a new address
2523 * and decrementing the shared-page counter for the old page.
2524 *
2525 * Note that this routine assumes that the protection checks have been
2526 * done by the caller (the low-level page fault routine in most cases).
2527 * Thus we can safely just mark it writable once we've done any necessary
2528 * COW.
2529 *
2530 * We also mark the page dirty at this point even though the page will
2531 * change only once the write actually happens. This avoids a few races,
2532 * and potentially makes it more efficient.
2533 *
2534 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2535 * but allow concurrent faults), with pte both mapped and locked.
2536 * We return with mmap_sem still held, but pte unmapped and unlocked.
2537 */
2538static vm_fault_t do_wp_page(struct vm_fault *vmf)
2539        __releases(vmf->ptl)
2540{
2541        struct vm_area_struct *vma = vmf->vma;
2542
2543        vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2544        if (!vmf->page) {
2545                /*
2546                 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2547                 * VM_PFNMAP VMA.
2548                 *
2549                 * We should not cow pages in a shared writeable mapping.
2550                 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2551                 */
2552                if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2553                                     (VM_WRITE|VM_SHARED))
2554                        return wp_pfn_shared(vmf);
2555
2556                pte_unmap_unlock(vmf->pte, vmf->ptl);
2557                return wp_page_copy(vmf);
2558        }
2559
2560        /*
2561         * Take out anonymous pages first, anonymous shared vmas are
2562         * not dirty accountable.
2563         */
2564        if (PageAnon(vmf->page)) {
2565                int total_map_swapcount;
2566                if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2567                                           page_count(vmf->page) != 1))
2568                        goto copy;
2569                if (!trylock_page(vmf->page)) {
2570                        get_page(vmf->page);
2571                        pte_unmap_unlock(vmf->pte, vmf->ptl);
2572                        lock_page(vmf->page);
2573                        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2574                                        vmf->address, &vmf->ptl);
2575                        if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2576                                unlock_page(vmf->page);
2577                                pte_unmap_unlock(vmf->pte, vmf->ptl);
2578                                put_page(vmf->page);
2579                                return 0;
2580                        }
2581                        put_page(vmf->page);
2582                }
2583                if (PageKsm(vmf->page)) {
2584                        bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2585                                                     vmf->address);
2586                        unlock_page(vmf->page);
2587                        if (!reused)
2588                                goto copy;
2589                        wp_page_reuse(vmf);
2590                        return VM_FAULT_WRITE;
2591                }
2592                if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2593                        if (total_map_swapcount == 1) {
2594                                /*
2595                                 * The page is all ours. Move it to
2596                                 * our anon_vma so the rmap code will
2597                                 * not search our parent or siblings.
2598                                 * Protected against the rmap code by
2599                                 * the page lock.
2600                                 */
2601                                page_move_anon_rmap(vmf->page, vma);
2602                        }
2603                        unlock_page(vmf->page);
2604                        wp_page_reuse(vmf);
2605                        return VM_FAULT_WRITE;
2606                }
2607                unlock_page(vmf->page);
2608        } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2609                                        (VM_WRITE|VM_SHARED))) {
2610                return wp_page_shared(vmf);
2611        }
2612copy:
2613        /*
2614         * Ok, we need to copy. Oh, well..
2615         */
2616        get_page(vmf->page);
2617
2618        pte_unmap_unlock(vmf->pte, vmf->ptl);
2619        return wp_page_copy(vmf);
2620}
2621
2622static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2623                unsigned long start_addr, unsigned long end_addr,
2624                struct zap_details *details)
2625{
2626        zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2627}
2628
2629static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2630                                            struct zap_details *details)
2631{
2632        struct vm_area_struct *vma;
2633        pgoff_t vba, vea, zba, zea;
2634
2635        vma_interval_tree_foreach(vma, root,
2636                        details->first_index, details->last_index) {
2637
2638                vba = vma->vm_pgoff;
2639                vea = vba + vma_pages(vma) - 1;
2640                zba = details->first_index;
2641                if (zba < vba)
2642                        zba = vba;
2643                zea = details->last_index;
2644                if (zea > vea)
2645                        zea = vea;
2646
2647                unmap_mapping_range_vma(vma,
2648                        ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2649                        ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2650                                details);
2651        }
2652}
2653
2654/**
2655 * unmap_mapping_pages() - Unmap pages from processes.
2656 * @mapping: The address space containing pages to be unmapped.
2657 * @start: Index of first page to be unmapped.
2658 * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2659 * @even_cows: Whether to unmap even private COWed pages.
2660 *
2661 * Unmap the pages in this address space from any userspace process which
2662 * has them mmaped.  Generally, you want to remove COWed pages as well when
2663 * a file is being truncated, but not when invalidating pages from the page
2664 * cache.
2665 */
2666void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2667                pgoff_t nr, bool even_cows)
2668{
2669        struct zap_details details = { };
2670
2671        details.check_mapping = even_cows ? NULL : mapping;
2672        details.first_index = start;
2673        details.last_index = start + nr - 1;
2674        if (details.last_index < details.first_index)
2675                details.last_index = ULONG_MAX;
2676
2677        i_mmap_lock_write(mapping);
2678        if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2679                unmap_mapping_range_tree(&mapping->i_mmap, &details);
2680        i_mmap_unlock_write(mapping);
2681}
2682
2683/**
2684 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2685 * address_space corresponding to the specified byte range in the underlying
2686 * file.
2687 *
2688 * @mapping: the address space containing mmaps to be unmapped.
2689 * @holebegin: byte in first page to unmap, relative to the start of
2690 * the underlying file.  This will be rounded down to a PAGE_SIZE
2691 * boundary.  Note that this is different from truncate_pagecache(), which
2692 * must keep the partial page.  In contrast, we must get rid of
2693 * partial pages.
2694 * @holelen: size of prospective hole in bytes.  This will be rounded
2695 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2696 * end of the file.
2697 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2698 * but 0 when invalidating pagecache, don't throw away private data.
2699 */
2700void unmap_mapping_range(struct address_space *mapping,
2701                loff_t const holebegin, loff_t const holelen, int even_cows)
2702{
2703        pgoff_t hba = holebegin >> PAGE_SHIFT;
2704        pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2705
2706        /* Check for overflow. */
2707        if (sizeof(holelen) > sizeof(hlen)) {
2708                long long holeend =
2709                        (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2710                if (holeend & ~(long long)ULONG_MAX)
2711                        hlen = ULONG_MAX - hba + 1;
2712        }
2713
2714        unmap_mapping_pages(mapping, hba, hlen, even_cows);
2715}
2716EXPORT_SYMBOL(unmap_mapping_range);
2717
2718/*
2719 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2720 * but allow concurrent faults), and pte mapped but not yet locked.
2721 * We return with pte unmapped and unlocked.
2722 *
2723 * We return with the mmap_sem locked or unlocked in the same cases
2724 * as does filemap_fault().
2725 */
2726vm_fault_t do_swap_page(struct vm_fault *vmf)
2727{
2728        struct vm_area_struct *vma = vmf->vma;
2729        struct page *page = NULL, *swapcache;
2730        struct mem_cgroup *memcg;
2731        swp_entry_t entry;
2732        pte_t pte;
2733        int locked;
2734        int exclusive = 0;
2735        vm_fault_t ret = 0;
2736
2737        if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2738                goto out;
2739
2740        entry = pte_to_swp_entry(vmf->orig_pte);
2741        if (unlikely(non_swap_entry(entry))) {
2742                if (is_migration_entry(entry)) {
2743                        migration_entry_wait(vma->vm_mm, vmf->pmd,
2744                                             vmf->address);
2745                } else if (is_device_private_entry(entry)) {
2746                        vmf->page = device_private_entry_to_page(entry);
2747                        ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2748                } else if (is_hwpoison_entry(entry)) {
2749                        ret = VM_FAULT_HWPOISON;
2750                } else {
2751                        print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2752                        ret = VM_FAULT_SIGBUS;
2753                }
2754                goto out;
2755        }
2756
2757
2758        delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2759        page = lookup_swap_cache(entry, vma, vmf->address);
2760        swapcache = page;
2761
2762        if (!page) {
2763                struct swap_info_struct *si = swp_swap_info(entry);
2764
2765                if (si->flags & SWP_SYNCHRONOUS_IO &&
2766                                __swap_count(entry) == 1) {
2767                        /* skip swapcache */
2768                        page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2769                                                        vmf->address);
2770                        if (page) {
2771                                __SetPageLocked(page);
2772                                __SetPageSwapBacked(page);
2773                                set_page_private(page, entry.val);
2774                                lru_cache_add_anon(page);
2775                                swap_readpage(page, true);
2776                        }
2777                } else {
2778                        page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2779                                                vmf);
2780                        swapcache = page;
2781                }
2782
2783                if (!page) {
2784                        /*
2785                         * Back out if somebody else faulted in this pte
2786                         * while we released the pte lock.
2787                         */
2788                        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2789                                        vmf->address, &vmf->ptl);
2790                        if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2791                                ret = VM_FAULT_OOM;
2792                        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2793                        goto unlock;
2794                }
2795
2796                /* Had to read the page from swap area: Major fault */
2797                ret = VM_FAULT_MAJOR;
2798                count_vm_event(PGMAJFAULT);
2799                count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2800        } else if (PageHWPoison(page)) {
2801                /*
2802                 * hwpoisoned dirty swapcache pages are kept for killing
2803                 * owner processes (which may be unknown at hwpoison time)
2804                 */
2805                ret = VM_FAULT_HWPOISON;
2806                delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2807                goto out_release;
2808        }
2809
2810        locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2811
2812        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2813        if (!locked) {
2814                ret |= VM_FAULT_RETRY;
2815                goto out_release;
2816        }
2817
2818        /*
2819         * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2820         * release the swapcache from under us.  The page pin, and pte_same
2821         * test below, are not enough to exclude that.  Even if it is still
2822         * swapcache, we need to check that the page's swap has not changed.
2823         */
2824        if (unlikely((!PageSwapCache(page) ||
2825                        page_private(page) != entry.val)) && swapcache)
2826                goto out_page;
2827
2828        page = ksm_might_need_to_copy(page, vma, vmf->address);
2829        if (unlikely(!page)) {
2830                ret = VM_FAULT_OOM;
2831                page = swapcache;
2832                goto out_page;
2833        }
2834
2835        if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2836                                        &memcg, false)) {
2837                ret = VM_FAULT_OOM;
2838                goto out_page;
2839        }
2840
2841        /*
2842         * Back out if somebody else already faulted in this pte.
2843         */
2844        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2845                        &vmf->ptl);
2846        if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2847                goto out_nomap;
2848
2849        if (unlikely(!PageUptodate(page))) {
2850                ret = VM_FAULT_SIGBUS;
2851                goto out_nomap;
2852        }
2853
2854        /*
2855         * The page isn't present yet, go ahead with the fault.
2856         *
2857         * Be careful about the sequence of operations here.
2858         * To get its accounting right, reuse_swap_page() must be called
2859         * while the page is counted on swap but not yet in mapcount i.e.
2860         * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2861         * must be called after the swap_free(), or it will never succeed.
2862         */
2863
2864        inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2865        dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2866        pte = mk_pte(page, vma->vm_page_prot);
2867        if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2868                pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2869                vmf->flags &= ~FAULT_FLAG_WRITE;
2870                ret |= VM_FAULT_WRITE;
2871                exclusive = RMAP_EXCLUSIVE;
2872        }
2873        flush_icache_page(vma, page);
2874        if (pte_swp_soft_dirty(vmf->orig_pte))
2875                pte = pte_mksoft_dirty(pte);
2876        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2877        arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2878        vmf->orig_pte = pte;
2879
2880        /* ksm created a completely new copy */
2881        if (unlikely(page != swapcache && swapcache)) {
2882                page_add_new_anon_rmap(page, vma, vmf->address, false);
2883                mem_cgroup_commit_charge(page, memcg, false, false);
2884                lru_cache_add_active_or_unevictable(page, vma);
2885        } else {
2886                do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2887                mem_cgroup_commit_charge(page, memcg, true, false);
2888                activate_page(page);
2889        }
2890
2891        swap_free(entry);
2892        if (mem_cgroup_swap_full(page) ||
2893            (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2894                try_to_free_swap(page);
2895        unlock_page(page);
2896        if (page != swapcache && swapcache) {
2897                /*
2898                 * Hold the lock to avoid the swap entry to be reused
2899                 * until we take the PT lock for the pte_same() check
2900                 * (to avoid false positives from pte_same). For
2901                 * further safety release the lock after the swap_free
2902                 * so that the swap count won't change under a
2903                 * parallel locked swapcache.
2904                 */
2905                unlock_page(swapcache);
2906                put_page(swapcache);
2907        }
2908
2909        if (vmf->flags & FAULT_FLAG_WRITE) {
2910                ret |= do_wp_page(vmf);
2911                if (ret & VM_FAULT_ERROR)
2912                        ret &= VM_FAULT_ERROR;
2913                goto out;
2914        }
2915
2916        /* No need to invalidate - it was non-present before */
2917        update_mmu_cache(vma, vmf->address, vmf->pte);
2918unlock:
2919        pte_unmap_unlock(vmf->pte, vmf->ptl);
2920out:
2921        return ret;
2922out_nomap:
2923        mem_cgroup_cancel_charge(page, memcg, false);
2924        pte_unmap_unlock(vmf->pte, vmf->ptl);
2925out_page:
2926        unlock_page(page);
2927out_release:
2928        put_page(page);
2929        if (page != swapcache && swapcache) {
2930                unlock_page(swapcache);
2931                put_page(swapcache);
2932        }
2933        return ret;
2934}
2935
2936/*
2937 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2938 * but allow concurrent faults), and pte mapped but not yet locked.
2939 * We return with mmap_sem still held, but pte unmapped and unlocked.
2940 */
2941static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
2942{
2943        struct vm_area_struct *vma = vmf->vma;
2944        struct mem_cgroup *memcg;
2945        struct page *page;
2946        vm_fault_t ret = 0;
2947        pte_t entry;
2948
2949        /* File mapping without ->vm_ops ? */
2950        if (vma->vm_flags & VM_SHARED)
2951                return VM_FAULT_SIGBUS;
2952
2953        /*
2954         * Use pte_alloc() instead of pte_alloc_map().  We can't run
2955         * pte_offset_map() on pmds where a huge pmd might be created
2956         * from a different thread.
2957         *
2958         * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2959         * parallel threads are excluded by other means.
2960         *
2961         * Here we only have down_read(mmap_sem).
2962         */
2963        if (pte_alloc(vma->vm_mm, vmf->pmd))
2964                return VM_FAULT_OOM;
2965
2966        /* See the comment in pte_alloc_one_map() */
2967        if (unlikely(pmd_trans_unstable(vmf->pmd)))
2968                return 0;
2969
2970        /* Use the zero-page for reads */
2971        if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2972                        !mm_forbids_zeropage(vma->vm_mm)) {
2973                entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2974                                                vma->vm_page_prot));
2975                vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2976                                vmf->address, &vmf->ptl);
2977                if (!pte_none(*vmf->pte))
2978                        goto unlock;
2979                ret = check_stable_address_space(vma->vm_mm);
2980                if (ret)
2981                        goto unlock;
2982                /* Deliver the page fault to userland, check inside PT lock */
2983                if (userfaultfd_missing(vma)) {
2984                        pte_unmap_unlock(vmf->pte, vmf->ptl);
2985                        return handle_userfault(vmf, VM_UFFD_MISSING);
2986                }
2987                goto setpte;
2988        }
2989
2990        /* Allocate our own private page. */
2991        if (unlikely(anon_vma_prepare(vma)))
2992                goto oom;
2993        page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2994        if (!page)
2995                goto oom;
2996
2997        if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
2998                                        false))
2999                goto oom_free_page;
3000
3001        /*
3002         * The memory barrier inside __SetPageUptodate makes sure that
3003         * preceeding stores to the page contents become visible before
3004         * the set_pte_at() write.
3005         */
3006        __SetPageUptodate(page);
3007
3008        entry = mk_pte(page, vma->vm_page_prot);
3009        if (vma->vm_flags & VM_WRITE)
3010                entry = pte_mkwrite(pte_mkdirty(entry));
3011
3012        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3013                        &vmf->ptl);
3014        if (!pte_none(*vmf->pte))
3015                goto release;
3016
3017        ret = check_stable_address_space(vma->vm_mm);
3018        if (ret)
3019                goto release;
3020
3021        /* Deliver the page fault to userland, check inside PT lock */
3022        if (userfaultfd_missing(vma)) {
3023                pte_unmap_unlock(vmf->pte, vmf->ptl);
3024                mem_cgroup_cancel_charge(page, memcg, false);
3025                put_page(page);
3026                return handle_userfault(vmf, VM_UFFD_MISSING);
3027        }
3028
3029        inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3030        page_add_new_anon_rmap(page, vma, vmf->address, false);
3031        mem_cgroup_commit_charge(page, memcg, false, false);
3032        lru_cache_add_active_or_unevictable(page, vma);
3033setpte:
3034        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3035
3036        /* No need to invalidate - it was non-present before */
3037        update_mmu_cache(vma, vmf->address, vmf->pte);
3038unlock:
3039        pte_unmap_unlock(vmf->pte, vmf->ptl);
3040        return ret;
3041release:
3042        mem_cgroup_cancel_charge(page, memcg, false);
3043        put_page(page);
3044        goto unlock;
3045oom_free_page:
3046        put_page(page);
3047oom:
3048        return VM_FAULT_OOM;
3049}
3050
3051/*
3052 * The mmap_sem must have been held on entry, and may have been
3053 * released depending on flags and vma->vm_ops->fault() return value.
3054 * See filemap_fault() and __lock_page_retry().
3055 */
3056static vm_fault_t __do_fault(struct vm_fault *vmf)
3057{
3058        struct vm_area_struct *vma = vmf->vma;
3059        vm_fault_t ret;
3060
3061        /*
3062         * Preallocate pte before we take page_lock because this might lead to
3063         * deadlocks for memcg reclaim which waits for pages under writeback:
3064         *                              lock_page(A)
3065         *                              SetPageWriteback(A)
3066         *                              unlock_page(A)
3067         * lock_page(B)
3068         *                              lock_page(B)
3069         * pte_alloc_pne
3070         *   shrink_page_list
3071         *     wait_on_page_writeback(A)
3072         *                              SetPageWriteback(B)
3073         *                              unlock_page(B)
3074         *                              # flush A, B to clear the writeback
3075         */
3076        if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3077                vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3078                if (!vmf->prealloc_pte)
3079                        return VM_FAULT_OOM;
3080                smp_wmb(); /* See comment in __pte_alloc() */
3081        }
3082
3083        ret = vma->vm_ops->fault(vmf);
3084        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3085                            VM_FAULT_DONE_COW)))
3086                return ret;
3087
3088        if (unlikely(PageHWPoison(vmf->page))) {
3089                if (ret & VM_FAULT_LOCKED)
3090                        unlock_page(vmf->page);
3091                put_page(vmf->page);
3092                vmf->page = NULL;
3093                return VM_FAULT_HWPOISON;
3094        }
3095
3096        if (unlikely(!(ret & VM_FAULT_LOCKED)))
3097                lock_page(vmf->page);
3098        else
3099                VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3100
3101        return ret;
3102}
3103
3104/*
3105 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3106 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3107 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3108 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3109 */
3110static int pmd_devmap_trans_unstable(pmd_t *pmd)
3111{
3112        return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3113}
3114
3115static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3116{
3117        struct vm_area_struct *vma = vmf->vma;
3118
3119        if (!pmd_none(*vmf->pmd))
3120                goto map_pte;
3121        if (vmf->prealloc_pte) {
3122                vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3123                if (unlikely(!pmd_none(*vmf->pmd))) {
3124                        spin_unlock(vmf->ptl);
3125                        goto map_pte;
3126                }
3127
3128                mm_inc_nr_ptes(vma->vm_mm);
3129                pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3130                spin_unlock(vmf->ptl);
3131                vmf->prealloc_pte = NULL;
3132        } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3133                return VM_FAULT_OOM;
3134        }
3135map_pte:
3136        /*
3137         * If a huge pmd materialized under us just retry later.  Use
3138         * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3139         * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3140         * under us and then back to pmd_none, as a result of MADV_DONTNEED
3141         * running immediately after a huge pmd fault in a different thread of
3142         * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3143         * All we have to ensure is that it is a regular pmd that we can walk
3144         * with pte_offset_map() and we can do that through an atomic read in
3145         * C, which is what pmd_trans_unstable() provides.
3146         */
3147        if (pmd_devmap_trans_unstable(vmf->pmd))
3148                return VM_FAULT_NOPAGE;
3149
3150        /*
3151         * At this point we know that our vmf->pmd points to a page of ptes
3152         * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3153         * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3154         * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3155         * be valid and we will re-check to make sure the vmf->pte isn't
3156         * pte_none() under vmf->ptl protection when we return to
3157         * alloc_set_pte().
3158         */
3159        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3160                        &vmf->ptl);
3161        return 0;
3162}
3163
3164#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3165static void deposit_prealloc_pte(struct vm_fault *vmf)
3166{
3167        struct vm_area_struct *vma = vmf->vma;
3168
3169        pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3170        /*
3171         * We are going to consume the prealloc table,
3172         * count that as nr_ptes.
3173         */
3174        mm_inc_nr_ptes(vma->vm_mm);
3175        vmf->prealloc_pte = NULL;
3176}
3177
3178static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3179{
3180        struct vm_area_struct *vma = vmf->vma;
3181        bool write = vmf->flags & FAULT_FLAG_WRITE;
3182        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3183        pmd_t entry;
3184        int i;
3185        vm_fault_t ret;
3186
3187        if (!transhuge_vma_suitable(vma, haddr))
3188                return VM_FAULT_FALLBACK;
3189
3190        ret = VM_FAULT_FALLBACK;
3191        page = compound_head(page);
3192
3193        /*
3194         * Archs like ppc64 need additonal space to store information
3195         * related to pte entry. Use the preallocated table for that.
3196         */
3197        if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3198                vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3199                if (!vmf->prealloc_pte)
3200                        return VM_FAULT_OOM;
3201                smp_wmb(); /* See comment in __pte_alloc() */
3202        }
3203
3204        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3205        if (unlikely(!pmd_none(*vmf->pmd)))
3206                goto out;
3207
3208        for (i = 0; i < HPAGE_PMD_NR; i++)
3209                flush_icache_page(vma, page + i);
3210
3211        entry = mk_huge_pmd(page, vma->vm_page_prot);
3212        if (write)
3213                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3214
3215        add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3216        page_add_file_rmap(page, true);
3217        /*
3218         * deposit and withdraw with pmd lock held
3219         */
3220        if (arch_needs_pgtable_deposit())
3221                deposit_prealloc_pte(vmf);
3222
3223        set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3224
3225        update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3226
3227        /* fault is handled */
3228        ret = 0;
3229        count_vm_event(THP_FILE_MAPPED);
3230out:
3231        spin_unlock(vmf->ptl);
3232        return ret;
3233}
3234#else
3235static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3236{
3237        BUILD_BUG();
3238        return 0;
3239}
3240#endif
3241
3242/**
3243 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3244 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3245 *
3246 * @vmf: fault environment
3247 * @memcg: memcg to charge page (only for private mappings)
3248 * @page: page to map
3249 *
3250 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3251 * return.
3252 *
3253 * Target users are page handler itself and implementations of
3254 * vm_ops->map_pages.
3255 *
3256 * Return: %0 on success, %VM_FAULT_ code in case of error.
3257 */
3258vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3259                struct page *page)
3260{
3261        struct vm_area_struct *vma = vmf->vma;
3262        bool write = vmf->flags & FAULT_FLAG_WRITE;
3263        pte_t entry;
3264        vm_fault_t ret;
3265
3266        if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3267                        IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3268                /* THP on COW? */
3269                VM_BUG_ON_PAGE(memcg, page);
3270
3271                ret = do_set_pmd(vmf, page);
3272                if (ret != VM_FAULT_FALLBACK)
3273                        return ret;
3274        }
3275
3276        if (!vmf->pte) {
3277                ret = pte_alloc_one_map(vmf);
3278                if (ret)
3279                        return ret;
3280        }
3281
3282        /* Re-check under ptl */
3283        if (unlikely(!pte_none(*vmf->pte)))
3284                return VM_FAULT_NOPAGE;
3285
3286        flush_icache_page(vma, page);
3287        entry = mk_pte(page, vma->vm_page_prot);
3288        if (write)
3289                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3290        /* copy-on-write page */
3291        if (write && !(vma->vm_flags & VM_SHARED)) {
3292                inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3293                page_add_new_anon_rmap(page, vma, vmf->address, false);
3294                mem_cgroup_commit_charge(page, memcg, false, false);
3295                lru_cache_add_active_or_unevictable(page, vma);
3296        } else {
3297                inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3298                page_add_file_rmap(page, false);
3299        }
3300        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3301
3302        /* no need to invalidate: a not-present page won't be cached */
3303        update_mmu_cache(vma, vmf->address, vmf->pte);
3304
3305        return 0;
3306}
3307
3308
3309/**
3310 * finish_fault - finish page fault once we have prepared the page to fault
3311 *
3312 * @vmf: structure describing the fault
3313 *
3314 * This function handles all that is needed to finish a page fault once the
3315 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3316 * given page, adds reverse page mapping, handles memcg charges and LRU
3317 * addition.
3318 *
3319 * The function expects the page to be locked and on success it consumes a
3320 * reference of a page being mapped (for the PTE which maps it).
3321 *
3322 * Return: %0 on success, %VM_FAULT_ code in case of error.
3323 */
3324vm_fault_t finish_fault(struct vm_fault *vmf)
3325{
3326        struct page *page;
3327        vm_fault_t ret = 0;
3328
3329        /* Did we COW the page? */
3330        if ((vmf->flags & FAULT_FLAG_WRITE) &&
3331            !(vmf->vma->vm_flags & VM_SHARED))
3332                page = vmf->cow_page;
3333        else
3334                page = vmf->page;
3335
3336        /*
3337         * check even for read faults because we might have lost our CoWed
3338         * page
3339         */
3340        if (!(vmf->vma->vm_flags & VM_SHARED))
3341                ret = check_stable_address_space(vmf->vma->vm_mm);
3342        if (!ret)
3343                ret = alloc_set_pte(vmf, vmf->memcg, page);
3344        if (vmf->pte)
3345                pte_unmap_unlock(vmf->pte, vmf->ptl);
3346        return ret;
3347}
3348
3349static unsigned long fault_around_bytes __read_mostly =
3350        rounddown_pow_of_two(65536);
3351
3352#ifdef CONFIG_DEBUG_FS
3353static int fault_around_bytes_get(void *data, u64 *val)
3354{
3355        *val = fault_around_bytes;
3356        return 0;
3357}
3358
3359/*
3360 * fault_around_bytes must be rounded down to the nearest page order as it's
3361 * what do_fault_around() expects to see.
3362 */
3363static int fault_around_bytes_set(void *data, u64 val)
3364{
3365        if (val / PAGE_SIZE > PTRS_PER_PTE)
3366                return -EINVAL;
3367        if (val > PAGE_SIZE)
3368                fault_around_bytes = rounddown_pow_of_two(val);
3369        else
3370                fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3371        return 0;
3372}
3373DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3374                fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3375
3376static int __init fault_around_debugfs(void)
3377{
3378        debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3379                                   &fault_around_bytes_fops);
3380        return 0;
3381}
3382late_initcall(fault_around_debugfs);
3383#endif
3384
3385/*
3386 * do_fault_around() tries to map few pages around the fault address. The hope
3387 * is that the pages will be needed soon and this will lower the number of
3388 * faults to handle.
3389 *
3390 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3391 * not ready to be mapped: not up-to-date, locked, etc.
3392 *
3393 * This function is called with the page table lock taken. In the split ptlock
3394 * case the page table lock only protects only those entries which belong to
3395 * the page table corresponding to the fault address.
3396 *
3397 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3398 * only once.
3399 *
3400 * fault_around_bytes defines how many bytes we'll try to map.
3401 * do_fault_around() expects it to be set to a power of two less than or equal
3402 * to PTRS_PER_PTE.
3403 *
3404 * The virtual address of the area that we map is naturally aligned to
3405 * fault_around_bytes rounded down to the machine page size
3406 * (and therefore to page order).  This way it's easier to guarantee
3407 * that we don't cross page table boundaries.
3408 */
3409static vm_fault_t do_fault_around(struct vm_fault *vmf)
3410{
3411        unsigned long address = vmf->address, nr_pages, mask;
3412        pgoff_t start_pgoff = vmf->pgoff;
3413        pgoff_t end_pgoff;
3414        int off;
3415        vm_fault_t ret = 0;
3416
3417        nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3418        mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3419
3420        vmf->address = max(address & mask, vmf->vma->vm_start);
3421        off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3422        start_pgoff -= off;
3423
3424        /*
3425         *  end_pgoff is either the end of the page table, the end of
3426         *  the vma or nr_pages from start_pgoff, depending what is nearest.
3427         */
3428        end_pgoff = start_pgoff -
3429                ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3430                PTRS_PER_PTE - 1;
3431        end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3432                        start_pgoff + nr_pages - 1);
3433
3434        if (pmd_none(*vmf->pmd)) {
3435                vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3436                if (!vmf->prealloc_pte)
3437                        goto out;
3438                smp_wmb(); /* See comment in __pte_alloc() */
3439        }
3440
3441        vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3442
3443        /* Huge page is mapped? Page fault is solved */
3444        if (pmd_trans_huge(*vmf->pmd)) {
3445                ret = VM_FAULT_NOPAGE;
3446                goto out;
3447        }
3448
3449        /* ->map_pages() haven't done anything useful. Cold page cache? */
3450        if (!vmf->pte)
3451                goto out;
3452
3453        /* check if the page fault is solved */
3454        vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3455        if (!pte_none(*vmf->pte))
3456                ret = VM_FAULT_NOPAGE;
3457        pte_unmap_unlock(vmf->pte, vmf->ptl);
3458out:
3459        vmf->address = address;
3460        vmf->pte = NULL;
3461        return ret;
3462}
3463
3464static vm_fault_t do_read_fault(struct vm_fault *vmf)
3465{
3466        struct vm_area_struct *vma = vmf->vma;
3467        vm_fault_t ret = 0;
3468
3469        /*
3470         * Let's call ->map_pages() first and use ->fault() as fallback
3471         * if page by the offset is not ready to be mapped (cold cache or
3472         * something).
3473         */
3474        if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3475                ret = do_fault_around(vmf);
3476                if (ret)
3477                        return ret;
3478        }
3479
3480        ret = __do_fault(vmf);
3481        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3482                return ret;
3483
3484        ret |= finish_fault(vmf);
3485        unlock_page(vmf->page);
3486        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3487                put_page(vmf->page);
3488        return ret;
3489}
3490
3491static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3492{
3493        struct vm_area_struct *vma = vmf->vma;
3494        vm_fault_t ret;
3495
3496        if (unlikely(anon_vma_prepare(vma)))
3497                return VM_FAULT_OOM;
3498
3499        vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3500        if (!vmf->cow_page)
3501                return VM_FAULT_OOM;
3502
3503        if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3504                                &vmf->memcg, false)) {
3505                put_page(vmf->cow_page);
3506                return VM_FAULT_OOM;
3507        }
3508
3509        ret = __do_fault(vmf);
3510        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3511                goto uncharge_out;
3512        if (ret & VM_FAULT_DONE_COW)
3513                return ret;
3514
3515        copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3516        __SetPageUptodate(vmf->cow_page);
3517
3518        ret |= finish_fault(vmf);
3519        unlock_page(vmf->page);
3520        put_page(vmf->page);
3521        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3522                goto uncharge_out;
3523        return ret;
3524uncharge_out:
3525        mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3526        put_page(vmf->cow_page);
3527        return ret;
3528}
3529
3530static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3531{
3532        struct vm_area_struct *vma = vmf->vma;
3533        vm_fault_t ret, tmp;
3534
3535        ret = __do_fault(vmf);
3536        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3537                return ret;
3538
3539        /*
3540         * Check if the backing address space wants to know that the page is
3541         * about to become writable
3542         */
3543        if (vma->vm_ops->page_mkwrite) {
3544                unlock_page(vmf->page);
3545                tmp = do_page_mkwrite(vmf);
3546                if (unlikely(!tmp ||
3547                                (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3548                        put_page(vmf->page);
3549                        return tmp;
3550                }
3551        }
3552
3553        ret |= finish_fault(vmf);
3554        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3555                                        VM_FAULT_RETRY))) {
3556                unlock_page(vmf->page);
3557                put_page(vmf->page);
3558                return ret;
3559        }
3560
3561        fault_dirty_shared_page(vma, vmf->page);
3562        return ret;
3563}
3564
3565/*
3566 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3567 * but allow concurrent faults).
3568 * The mmap_sem may have been released depending on flags and our
3569 * return value.  See filemap_fault() and __lock_page_or_retry().
3570 * If mmap_sem is released, vma may become invalid (for example
3571 * by other thread calling munmap()).
3572 */
3573static vm_fault_t do_fault(struct vm_fault *vmf)
3574{
3575        struct vm_area_struct *vma = vmf->vma;
3576        struct mm_struct *vm_mm = vma->vm_mm;
3577        vm_fault_t ret;
3578
3579        /*
3580         * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3581         */
3582        if (!vma->vm_ops->fault) {
3583                /*
3584                 * If we find a migration pmd entry or a none pmd entry, which
3585                 * should never happen, return SIGBUS
3586                 */
3587                if (unlikely(!pmd_present(*vmf->pmd)))
3588                        ret = VM_FAULT_SIGBUS;
3589                else {
3590                        vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3591                                                       vmf->pmd,
3592                                                       vmf->address,
3593                                                       &vmf->ptl);
3594                        /*
3595                         * Make sure this is not a temporary clearing of pte
3596                         * by holding ptl and checking again. A R/M/W update
3597                         * of pte involves: take ptl, clearing the pte so that
3598                         * we don't have concurrent modification by hardware
3599                         * followed by an update.
3600                         */
3601                        if (unlikely(pte_none(*vmf->pte)))
3602                                ret = VM_FAULT_SIGBUS;
3603                        else
3604                                ret = VM_FAULT_NOPAGE;
3605
3606                        pte_unmap_unlock(vmf->pte, vmf->ptl);
3607                }
3608        } else if (!(vmf->flags & FAULT_FLAG_WRITE))
3609                ret = do_read_fault(vmf);
3610        else if (!(vma->vm_flags & VM_SHARED))
3611                ret = do_cow_fault(vmf);
3612        else
3613                ret = do_shared_fault(vmf);
3614
3615        /* preallocated pagetable is unused: free it */
3616        if (vmf->prealloc_pte) {
3617                pte_free(vm_mm, vmf->prealloc_pte);
3618                vmf->prealloc_pte = NULL;
3619        }
3620        return ret;
3621}
3622
3623static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3624                                unsigned long addr, int page_nid,
3625                                int *flags)
3626{
3627        get_page(page);
3628
3629        count_vm_numa_event(NUMA_HINT_FAULTS);
3630        if (page_nid == numa_node_id()) {
3631                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3632                *flags |= TNF_FAULT_LOCAL;
3633        }
3634
3635        return mpol_misplaced(page, vma, addr);
3636}
3637
3638static vm_fault_t do_numa_page(struct vm_fault *vmf)
3639{
3640        struct vm_area_struct *vma = vmf->vma;
3641        struct page *page = NULL;
3642        int page_nid = NUMA_NO_NODE;
3643        int last_cpupid;
3644        int target_nid;
3645        bool migrated = false;
3646        pte_t pte, old_pte;
3647        bool was_writable = pte_savedwrite(vmf->orig_pte);
3648        int flags = 0;
3649
3650        /*
3651         * The "pte" at this point cannot be used safely without
3652         * validation through pte_unmap_same(). It's of NUMA type but
3653         * the pfn may be screwed if the read is non atomic.
3654         */
3655        vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3656        spin_lock(vmf->ptl);
3657        if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3658                pte_unmap_unlock(vmf->pte, vmf->ptl);
3659                goto out;
3660        }
3661
3662        /*
3663         * Make it present again, Depending on how arch implementes non
3664         * accessible ptes, some can allow access by kernel mode.
3665         */
3666        old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3667        pte = pte_modify(old_pte, vma->vm_page_prot);
3668        pte = pte_mkyoung(pte);
3669        if (was_writable)
3670                pte = pte_mkwrite(pte);
3671        ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3672        update_mmu_cache(vma, vmf->address, vmf->pte);
3673
3674        page = vm_normal_page(vma, vmf->address, pte);
3675        if (!page) {
3676                pte_unmap_unlock(vmf->pte, vmf->ptl);
3677                return 0;
3678        }
3679
3680        /* TODO: handle PTE-mapped THP */
3681        if (PageCompound(page)) {
3682                pte_unmap_unlock(vmf->pte, vmf->ptl);
3683                return 0;
3684        }
3685
3686        /*
3687         * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3688         * much anyway since they can be in shared cache state. This misses
3689         * the case where a mapping is writable but the process never writes
3690         * to it but pte_write gets cleared during protection updates and
3691         * pte_dirty has unpredictable behaviour between PTE scan updates,
3692         * background writeback, dirty balancing and application behaviour.
3693         */
3694        if (!pte_write(pte))
3695                flags |= TNF_NO_GROUP;
3696
3697        /*
3698         * Flag if the page is shared between multiple address spaces. This
3699         * is later used when determining whether to group tasks together
3700         */
3701        if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3702                flags |= TNF_SHARED;
3703
3704        last_cpupid = page_cpupid_last(page);
3705        page_nid = page_to_nid(page);
3706        target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3707                        &flags);
3708        pte_unmap_unlock(vmf->pte, vmf->ptl);
3709        if (target_nid == NUMA_NO_NODE) {
3710                put_page(page);
3711                goto out;
3712        }
3713
3714        /* Migrate to the requested node */
3715        migrated = migrate_misplaced_page(page, vma, target_nid);
3716        if (migrated) {
3717                page_nid = target_nid;
3718                flags |= TNF_MIGRATED;
3719        } else
3720                flags |= TNF_MIGRATE_FAIL;
3721
3722out:
3723        if (page_nid != NUMA_NO_NODE)
3724                task_numa_fault(last_cpupid, page_nid, 1, flags);
3725        return 0;
3726}
3727
3728static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3729{
3730        if (vma_is_anonymous(vmf->vma))
3731                return do_huge_pmd_anonymous_page(vmf);
3732        if (vmf->vma->vm_ops->huge_fault)
3733                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3734        return VM_FAULT_FALLBACK;
3735}
3736
3737/* `inline' is required to avoid gcc 4.1.2 build error */
3738static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3739{
3740        if (vma_is_anonymous(vmf->vma))
3741                return do_huge_pmd_wp_page(vmf, orig_pmd);
3742        if (vmf->vma->vm_ops->huge_fault)
3743                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3744
3745        /* COW handled on pte level: split pmd */
3746        VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3747        __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3748
3749        return VM_FAULT_FALLBACK;
3750}
3751
3752static inline bool vma_is_accessible(struct vm_area_struct *vma)
3753{
3754        return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3755}
3756
3757static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3758{
3759#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3760        /* No support for anonymous transparent PUD pages yet */
3761        if (vma_is_anonymous(vmf->vma))
3762                return VM_FAULT_FALLBACK;
3763        if (vmf->vma->vm_ops->huge_fault)
3764                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3765#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3766        return VM_FAULT_FALLBACK;
3767}
3768
3769static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3770{
3771#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3772        /* No support for anonymous transparent PUD pages yet */
3773        if (vma_is_anonymous(vmf->vma))
3774                return VM_FAULT_FALLBACK;
3775        if (vmf->vma->vm_ops->huge_fault)
3776                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3777#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3778        return VM_FAULT_FALLBACK;
3779}
3780
3781/*
3782 * These routines also need to handle stuff like marking pages dirty
3783 * and/or accessed for architectures that don't do it in hardware (most
3784 * RISC architectures).  The early dirtying is also good on the i386.
3785 *
3786 * There is also a hook called "update_mmu_cache()" that architectures
3787 * with external mmu caches can use to update those (ie the Sparc or
3788 * PowerPC hashed page tables that act as extended TLBs).
3789 *
3790 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3791 * concurrent faults).
3792 *
3793 * The mmap_sem may have been released depending on flags and our return value.
3794 * See filemap_fault() and __lock_page_or_retry().
3795 */
3796static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3797{
3798        pte_t entry;
3799
3800        if (unlikely(pmd_none(*vmf->pmd))) {
3801                /*
3802                 * Leave __pte_alloc() until later: because vm_ops->fault may
3803                 * want to allocate huge page, and if we expose page table
3804                 * for an instant, it will be difficult to retract from
3805                 * concurrent faults and from rmap lookups.
3806                 */
3807                vmf->pte = NULL;
3808        } else {
3809                /* See comment in pte_alloc_one_map() */
3810                if (pmd_devmap_trans_unstable(vmf->pmd))
3811                        return 0;
3812                /*
3813                 * A regular pmd is established and it can't morph into a huge
3814                 * pmd from under us anymore at this point because we hold the
3815                 * mmap_sem read mode and khugepaged takes it in write mode.
3816                 * So now it's safe to run pte_offset_map().
3817                 */
3818                vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3819                vmf->orig_pte = *vmf->pte;
3820
3821                /*
3822                 * some architectures can have larger ptes than wordsize,
3823                 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3824                 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3825                 * accesses.  The code below just needs a consistent view
3826                 * for the ifs and we later double check anyway with the
3827                 * ptl lock held. So here a barrier will do.
3828                 */
3829                barrier();
3830                if (pte_none(vmf->orig_pte)) {
3831                        pte_unmap(vmf->pte);
3832                        vmf->pte = NULL;
3833                }
3834        }
3835
3836        if (!vmf->pte) {
3837                if (vma_is_anonymous(vmf->vma))
3838                        return do_anonymous_page(vmf);
3839                else
3840                        return do_fault(vmf);
3841        }
3842
3843        if (!pte_present(vmf->orig_pte))
3844                return do_swap_page(vmf);
3845
3846        if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3847                return do_numa_page(vmf);
3848
3849        vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3850        spin_lock(vmf->ptl);
3851        entry = vmf->orig_pte;
3852        if (unlikely(!pte_same(*vmf->pte, entry)))
3853                goto unlock;
3854        if (vmf->flags & FAULT_FLAG_WRITE) {
3855                if (!pte_write(entry))
3856                        return do_wp_page(vmf);
3857                entry = pte_mkdirty(entry);
3858        }
3859        entry = pte_mkyoung(entry);
3860        if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3861                                vmf->flags & FAULT_FLAG_WRITE)) {
3862                update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3863        } else {
3864                /*
3865                 * This is needed only for protection faults but the arch code
3866                 * is not yet telling us if this is a protection fault or not.
3867                 * This still avoids useless tlb flushes for .text page faults
3868                 * with threads.
3869                 */
3870                if (vmf->flags & FAULT_FLAG_WRITE)
3871                        flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3872        }
3873unlock:
3874        pte_unmap_unlock(vmf->pte, vmf->ptl);
3875        return 0;
3876}
3877
3878/*
3879 * By the time we get here, we already hold the mm semaphore
3880 *
3881 * The mmap_sem may have been released depending on flags and our
3882 * return value.  See filemap_fault() and __lock_page_or_retry().
3883 */
3884static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3885                unsigned long address, unsigned int flags)
3886{
3887        struct vm_fault vmf = {
3888                .vma = vma,
3889                .address = address & PAGE_MASK,
3890                .flags = flags,
3891                .pgoff = linear_page_index(vma, address),
3892                .gfp_mask = __get_fault_gfp_mask(vma),
3893        };
3894        unsigned int dirty = flags & FAULT_FLAG_WRITE;
3895        struct mm_struct *mm = vma->vm_mm;
3896        pgd_t *pgd;
3897        p4d_t *p4d;
3898        vm_fault_t ret;
3899
3900        pgd = pgd_offset(mm, address);
3901        p4d = p4d_alloc(mm, pgd, address);
3902        if (!p4d)
3903                return VM_FAULT_OOM;
3904
3905        vmf.pud = pud_alloc(mm, p4d, address);
3906        if (!vmf.pud)
3907                return VM_FAULT_OOM;
3908        if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
3909                ret = create_huge_pud(&vmf);
3910                if (!(ret & VM_FAULT_FALLBACK))
3911                        return ret;
3912        } else {
3913                pud_t orig_pud = *vmf.pud;
3914
3915                barrier();
3916                if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3917
3918                        /* NUMA case for anonymous PUDs would go here */
3919
3920                        if (dirty && !pud_write(orig_pud)) {
3921                                ret = wp_huge_pud(&vmf, orig_pud);
3922                                if (!(ret & VM_FAULT_FALLBACK))
3923                                        return ret;
3924                        } else {
3925                                huge_pud_set_accessed(&vmf, orig_pud);
3926                                return 0;
3927                        }
3928                }
3929        }
3930
3931        vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3932        if (!vmf.pmd)
3933                return VM_FAULT_OOM;
3934        if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
3935                ret = create_huge_pmd(&vmf);
3936                if (!(ret & VM_FAULT_FALLBACK))
3937                        return ret;
3938        } else {
3939                pmd_t orig_pmd = *vmf.pmd;
3940
3941                barrier();
3942                if (unlikely(is_swap_pmd(orig_pmd))) {
3943                        VM_BUG_ON(thp_migration_supported() &&
3944                                          !is_pmd_migration_entry(orig_pmd));
3945                        if (is_pmd_migration_entry(orig_pmd))
3946                                pmd_migration_entry_wait(mm, vmf.pmd);
3947                        return 0;
3948                }
3949                if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3950                        if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3951                                return do_huge_pmd_numa_page(&vmf, orig_pmd);
3952
3953                        if (dirty && !pmd_write(orig_pmd)) {
3954                                ret = wp_huge_pmd(&vmf, orig_pmd);
3955                                if (!(ret & VM_FAULT_FALLBACK))
3956                                        return ret;
3957                        } else {
3958                                huge_pmd_set_accessed(&vmf, orig_pmd);
3959                                return 0;
3960                        }
3961                }
3962        }
3963
3964        return handle_pte_fault(&vmf);
3965}
3966
3967/*
3968 * By the time we get here, we already hold the mm semaphore
3969 *
3970 * The mmap_sem may have been released depending on flags and our
3971 * return value.  See filemap_fault() and __lock_page_or_retry().
3972 */
3973vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3974                unsigned int flags)
3975{
3976        vm_fault_t ret;
3977
3978        __set_current_state(TASK_RUNNING);
3979
3980        count_vm_event(PGFAULT);
3981        count_memcg_event_mm(vma->vm_mm, PGFAULT);
3982
3983        /* do counter updates before entering really critical section. */
3984        check_sync_rss_stat(current);
3985
3986        if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3987                                            flags & FAULT_FLAG_INSTRUCTION,
3988                                            flags & FAULT_FLAG_REMOTE))
3989                return VM_FAULT_SIGSEGV;
3990
3991        /*
3992         * Enable the memcg OOM handling for faults triggered in user
3993         * space.  Kernel faults are handled more gracefully.
3994         */
3995        if (flags & FAULT_FLAG_USER)
3996                mem_cgroup_enter_user_fault();
3997
3998        if (unlikely(is_vm_hugetlb_page(vma)))
3999                ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4000        else
4001                ret = __handle_mm_fault(vma, address, flags);
4002
4003        if (flags & FAULT_FLAG_USER) {
4004                mem_cgroup_exit_user_fault();
4005                /*
4006                 * The task may have entered a memcg OOM situation but
4007                 * if the allocation error was handled gracefully (no
4008                 * VM_FAULT_OOM), there is no need to kill anything.
4009                 * Just clean up the OOM state peacefully.
4010                 */
4011                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4012                        mem_cgroup_oom_synchronize(false);
4013        }
4014
4015        return ret;
4016}
4017EXPORT_SYMBOL_GPL(handle_mm_fault);
4018
4019#ifndef __PAGETABLE_P4D_FOLDED
4020/*
4021 * Allocate p4d page table.
4022 * We've already handled the fast-path in-line.
4023 */
4024int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4025{
4026        p4d_t *new = p4d_alloc_one(mm, address);
4027        if (!new)
4028                return -ENOMEM;
4029
4030        smp_wmb(); /* See comment in __pte_alloc */
4031
4032        spin_lock(&mm->page_table_lock);
4033        if (pgd_present(*pgd))          /* Another has populated it */
4034                p4d_free(mm, new);
4035        else
4036                pgd_populate(mm, pgd, new);
4037        spin_unlock(&mm->page_table_lock);
4038        return 0;
4039}
4040#endif /* __PAGETABLE_P4D_FOLDED */
4041
4042#ifndef __PAGETABLE_PUD_FOLDED
4043/*
4044 * Allocate page upper directory.
4045 * We've already handled the fast-path in-line.
4046 */
4047int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4048{
4049        pud_t *new = pud_alloc_one(mm, address);
4050        if (!new)
4051                return -ENOMEM;
4052
4053        smp_wmb(); /* See comment in __pte_alloc */
4054
4055        spin_lock(&mm->page_table_lock);
4056#ifndef __ARCH_HAS_5LEVEL_HACK
4057        if (!p4d_present(*p4d)) {
4058                mm_inc_nr_puds(mm);
4059                p4d_populate(mm, p4d, new);
4060        } else  /* Another has populated it */
4061                pud_free(mm, new);
4062#else
4063        if (!pgd_present(*p4d)) {
4064                mm_inc_nr_puds(mm);
4065                pgd_populate(mm, p4d, new);
4066        } else  /* Another has populated it */
4067                pud_free(mm, new);
4068#endif /* __ARCH_HAS_5LEVEL_HACK */
4069        spin_unlock(&mm->page_table_lock);
4070        return 0;
4071}
4072#endif /* __PAGETABLE_PUD_FOLDED */
4073
4074#ifndef __PAGETABLE_PMD_FOLDED
4075/*
4076 * Allocate page middle directory.
4077 * We've already handled the fast-path in-line.
4078 */
4079int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4080{
4081        spinlock_t *ptl;
4082        pmd_t *new = pmd_alloc_one(mm, address);
4083        if (!new)
4084                return -ENOMEM;
4085
4086        smp_wmb(); /* See comment in __pte_alloc */
4087
4088        ptl = pud_lock(mm, pud);
4089#ifndef __ARCH_HAS_4LEVEL_HACK
4090        if (!pud_present(*pud)) {
4091                mm_inc_nr_pmds(mm);
4092                pud_populate(mm, pud, new);
4093        } else  /* Another has populated it */
4094                pmd_free(mm, new);
4095#else
4096        if (!pgd_present(*pud)) {
4097                mm_inc_nr_pmds(mm);
4098                pgd_populate(mm, pud, new);
4099        } else /* Another has populated it */
4100                pmd_free(mm, new);
4101#endif /* __ARCH_HAS_4LEVEL_HACK */
4102        spin_unlock(ptl);
4103        return 0;
4104}
4105#endif /* __PAGETABLE_PMD_FOLDED */
4106
4107static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4108                            struct mmu_notifier_range *range,
4109                            pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4110{
4111        pgd_t *pgd;
4112        p4d_t *p4d;
4113        pud_t *pud;
4114        pmd_t *pmd;
4115        pte_t *ptep;
4116
4117        pgd = pgd_offset(mm, address);
4118        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4119                goto out;
4120
4121        p4d = p4d_offset(pgd, address);
4122        if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4123                goto out;
4124
4125        pud = pud_offset(p4d, address);
4126        if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4127                goto out;
4128
4129        pmd = pmd_offset(pud, address);
4130        VM_BUG_ON(pmd_trans_huge(*pmd));
4131
4132        if (pmd_huge(*pmd)) {
4133                if (!pmdpp)
4134                        goto out;
4135
4136                if (range) {
4137                        mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4138                                                NULL, mm, address & PMD_MASK,
4139                                                (address & PMD_MASK) + PMD_SIZE);
4140                        mmu_notifier_invalidate_range_start(range);
4141                }
4142                *ptlp = pmd_lock(mm, pmd);
4143                if (pmd_huge(*pmd)) {
4144                        *pmdpp = pmd;
4145                        return 0;
4146                }
4147                spin_unlock(*ptlp);
4148                if (range)
4149                        mmu_notifier_invalidate_range_end(range);
4150        }
4151
4152        if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4153                goto out;
4154
4155        if (range) {
4156                mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4157                                        address & PAGE_MASK,
4158                                        (address & PAGE_MASK) + PAGE_SIZE);
4159                mmu_notifier_invalidate_range_start(range);
4160        }
4161        ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4162        if (!pte_present(*ptep))
4163                goto unlock;
4164        *ptepp = ptep;
4165        return 0;
4166unlock:
4167        pte_unmap_unlock(ptep, *ptlp);
4168        if (range)
4169                mmu_notifier_invalidate_range_end(range);
4170out:
4171        return -EINVAL;
4172}
4173
4174static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4175                             pte_t **ptepp, spinlock_t **ptlp)
4176{
4177        int res;
4178
4179        /* (void) is needed to make gcc happy */
4180        (void) __cond_lock(*ptlp,
4181                           !(res = __follow_pte_pmd(mm, address, NULL,
4182                                                    ptepp, NULL, ptlp)));
4183        return res;
4184}
4185
4186int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4187                   struct mmu_notifier_range *range,
4188                   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4189{
4190        int res;
4191
4192        /* (void) is needed to make gcc happy */
4193        (void) __cond_lock(*ptlp,
4194                           !(res = __follow_pte_pmd(mm, address, range,
4195                                                    ptepp, pmdpp, ptlp)));
4196        return res;
4197}
4198EXPORT_SYMBOL(follow_pte_pmd);
4199
4200/**
4201 * follow_pfn - look up PFN at a user virtual address
4202 * @vma: memory mapping
4203 * @address: user virtual address
4204 * @pfn: location to store found PFN
4205 *
4206 * Only IO mappings and raw PFN mappings are allowed.
4207 *
4208 * Return: zero and the pfn at @pfn on success, -ve otherwise.
4209 */
4210int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4211        unsigned long *pfn)
4212{
4213        int ret = -EINVAL;
4214        spinlock_t *ptl;
4215        pte_t *ptep;
4216
4217        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4218                return ret;
4219
4220        ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4221        if (ret)
4222                return ret;
4223        *pfn = pte_pfn(*ptep);
4224        pte_unmap_unlock(ptep, ptl);
4225        return 0;
4226}
4227EXPORT_SYMBOL(follow_pfn);
4228
4229#ifdef CONFIG_HAVE_IOREMAP_PROT
4230int follow_phys(struct vm_area_struct *vma,
4231                unsigned long address, unsigned int flags,
4232                unsigned long *prot, resource_size_t *phys)
4233{
4234        int ret = -EINVAL;
4235        pte_t *ptep, pte;
4236        spinlock_t *ptl;
4237
4238        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4239                goto out;
4240
4241        if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4242                goto out;
4243        pte = *ptep;
4244
4245        if ((flags & FOLL_WRITE) && !pte_write(pte))
4246                goto unlock;
4247
4248        *prot = pgprot_val(pte_pgprot(pte));
4249        *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4250
4251        ret = 0;
4252unlock:
4253        pte_unmap_unlock(ptep, ptl);
4254out:
4255        return ret;
4256}
4257
4258int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4259                        void *buf, int len, int write)
4260{
4261        resource_size_t phys_addr;
4262        unsigned long prot = 0;
4263        void __iomem *maddr;
4264        int offset = addr & (PAGE_SIZE-1);
4265
4266        if (follow_phys(vma, addr, write, &prot, &phys_addr))
4267                return -EINVAL;
4268
4269        maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4270        if (!maddr)
4271                return -ENOMEM;
4272
4273        if (write)
4274                memcpy_toio(maddr + offset, buf, len);
4275        else
4276                memcpy_fromio(buf, maddr + offset, len);
4277        iounmap(maddr);
4278
4279        return len;
4280}
4281EXPORT_SYMBOL_GPL(generic_access_phys);
4282#endif
4283
4284/*
4285 * Access another process' address space as given in mm.  If non-NULL, use the
4286 * given task for page fault accounting.
4287 */
4288int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4289                unsigned long addr, void *buf, int len, unsigned int gup_flags)
4290{
4291        struct vm_area_struct *vma;
4292        void *old_buf = buf;
4293        int write = gup_flags & FOLL_WRITE;
4294
4295        if (down_read_killable(&mm->mmap_sem))
4296                return 0;
4297
4298        /* ignore errors, just check how much was successfully transferred */
4299        while (len) {
4300                int bytes, ret, offset;
4301                void *maddr;
4302                struct page *page = NULL;
4303
4304                ret = get_user_pages_remote(tsk, mm, addr, 1,
4305                                gup_flags, &page, &vma, NULL);
4306                if (ret <= 0) {
4307#ifndef CONFIG_HAVE_IOREMAP_PROT
4308                        break;
4309#else
4310                        /*
4311                         * Check if this is a VM_IO | VM_PFNMAP VMA, which
4312                         * we can access using slightly different code.
4313                         */
4314                        vma = find_vma(mm, addr);
4315                        if (!vma || vma->vm_start > addr)
4316                                break;
4317                        if (vma->vm_ops && vma->vm_ops->access)
4318                                ret = vma->vm_ops->access(vma, addr, buf,
4319                                                          len, write);
4320                        if (ret <= 0)
4321                                break;
4322                        bytes = ret;
4323#endif
4324                } else {
4325                        bytes = len;
4326                        offset = addr & (PAGE_SIZE-1);
4327                        if (bytes > PAGE_SIZE-offset)
4328                                bytes = PAGE_SIZE-offset;
4329
4330                        maddr = kmap(page);
4331                        if (write) {
4332                                copy_to_user_page(vma, page, addr,
4333                                                  maddr + offset, buf, bytes);
4334                                set_page_dirty_lock(page);
4335                        } else {
4336                                copy_from_user_page(vma, page, addr,
4337                                                    buf, maddr + offset, bytes);
4338                        }
4339                        kunmap(page);
4340                        put_page(page);
4341                }
4342                len -= bytes;
4343                buf += bytes;
4344                addr += bytes;
4345        }
4346        up_read(&mm->mmap_sem);
4347
4348        return buf - old_buf;
4349}
4350
4351/**
4352 * access_remote_vm - access another process' address space
4353 * @mm:         the mm_struct of the target address space
4354 * @addr:       start address to access
4355 * @buf:        source or destination buffer
4356 * @len:        number of bytes to transfer
4357 * @gup_flags:  flags modifying lookup behaviour
4358 *
4359 * The caller must hold a reference on @mm.
4360 *
4361 * Return: number of bytes copied from source to destination.
4362 */
4363int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4364                void *buf, int len, unsigned int gup_flags)
4365{
4366        return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4367}
4368
4369/*
4370 * Access another process' address space.
4371 * Source/target buffer must be kernel space,
4372 * Do not walk the page table directly, use get_user_pages
4373 */
4374int access_process_vm(struct task_struct *tsk, unsigned long addr,
4375                void *buf, int len, unsigned int gup_flags)
4376{
4377        struct mm_struct *mm;
4378        int ret;
4379
4380        mm = get_task_mm(tsk);
4381        if (!mm)
4382                return 0;
4383
4384        ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4385
4386        mmput(mm);
4387
4388        return ret;
4389}
4390EXPORT_SYMBOL_GPL(access_process_vm);
4391
4392/*
4393 * Print the name of a VMA.
4394 */
4395void print_vma_addr(char *prefix, unsigned long ip)
4396{
4397        struct mm_struct *mm = current->mm;
4398        struct vm_area_struct *vma;
4399
4400        /*
4401         * we might be running from an atomic context so we cannot sleep
4402         */
4403        if (!down_read_trylock(&mm->mmap_sem))
4404                return;
4405
4406        vma = find_vma(mm, ip);
4407        if (vma && vma->vm_file) {
4408                struct file *f = vma->vm_file;
4409                char *buf = (char *)__get_free_page(GFP_NOWAIT);
4410                if (buf) {
4411                        char *p;
4412
4413                        p = file_path(f, buf, PAGE_SIZE);
4414                        if (IS_ERR(p))
4415                                p = "?";
4416                        printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4417                                        vma->vm_start,
4418                                        vma->vm_end - vma->vm_start);
4419                        free_page((unsigned long)buf);
4420                }
4421        }
4422        up_read(&mm->mmap_sem);
4423}
4424
4425#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4426void __might_fault(const char *file, int line)
4427{
4428        /*
4429         * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4430         * holding the mmap_sem, this is safe because kernel memory doesn't
4431         * get paged out, therefore we'll never actually fault, and the
4432         * below annotations will generate false positives.
4433         */
4434        if (uaccess_kernel())
4435                return;
4436        if (pagefault_disabled())
4437                return;
4438        __might_sleep(file, line, 0);
4439#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4440        if (current->mm)
4441                might_lock_read(&current->mm->mmap_sem);
4442#endif
4443}
4444EXPORT_SYMBOL(__might_fault);
4445#endif
4446
4447#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4448/*
4449 * Process all subpages of the specified huge page with the specified
4450 * operation.  The target subpage will be processed last to keep its
4451 * cache lines hot.
4452 */
4453static inline void process_huge_page(
4454        unsigned long addr_hint, unsigned int pages_per_huge_page,
4455        void (*process_subpage)(unsigned long addr, int idx, void *arg),
4456        void *arg)
4457{
4458        int i, n, base, l;
4459        unsigned long addr = addr_hint &
4460                ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4461
4462        /* Process target subpage last to keep its cache lines hot */
4463        might_sleep();
4464        n = (addr_hint - addr) / PAGE_SIZE;
4465        if (2 * n <= pages_per_huge_page) {
4466                /* If target subpage in first half of huge page */
4467                base = 0;
4468                l = n;
4469                /* Process subpages at the end of huge page */
4470                for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4471                        cond_resched();
4472                        process_subpage(addr + i * PAGE_SIZE, i, arg);
4473                }
4474        } else {
4475                /* If target subpage in second half of huge page */
4476                base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4477                l = pages_per_huge_page - n;
4478                /* Process subpages at the begin of huge page */
4479                for (i = 0; i < base; i++) {
4480                        cond_resched();
4481                        process_subpage(addr + i * PAGE_SIZE, i, arg);
4482                }
4483        }
4484        /*
4485         * Process remaining subpages in left-right-left-right pattern
4486         * towards the target subpage
4487         */
4488        for (i = 0; i < l; i++) {
4489                int left_idx = base + i;
4490                int right_idx = base + 2 * l - 1 - i;
4491
4492                cond_resched();
4493                process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4494                cond_resched();
4495                process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4496        }
4497}
4498
4499static void clear_gigantic_page(struct page *page,
4500                                unsigned long addr,
4501                                unsigned int pages_per_huge_page)
4502{
4503        int i;
4504        struct page *p = page;
4505
4506        might_sleep();
4507        for (i = 0; i < pages_per_huge_page;
4508             i++, p = mem_map_next(p, page, i)) {
4509                cond_resched();
4510                clear_user_highpage(p, addr + i * PAGE_SIZE);
4511        }
4512}
4513
4514static void clear_subpage(unsigned long addr, int idx, void *arg)
4515{
4516        struct page *page = arg;
4517
4518        clear_user_highpage(page + idx, addr);
4519}
4520
4521void clear_huge_page(struct page *page,
4522                     unsigned long addr_hint, unsigned int pages_per_huge_page)
4523{
4524        unsigned long addr = addr_hint &
4525                ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4526
4527        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4528                clear_gigantic_page(page, addr, pages_per_huge_page);
4529                return;
4530        }
4531
4532        process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4533}
4534
4535static void copy_user_gigantic_page(struct page *dst, struct page *src,
4536                                    unsigned long addr,
4537                                    struct vm_area_struct *vma,
4538                                    unsigned int pages_per_huge_page)
4539{
4540        int i;
4541        struct page *dst_base = dst;
4542        struct page *src_base = src;
4543
4544        for (i = 0; i < pages_per_huge_page; ) {
4545                cond_resched();
4546                copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4547
4548                i++;
4549                dst = mem_map_next(dst, dst_base, i);
4550                src = mem_map_next(src, src_base, i);
4551        }
4552}
4553
4554struct copy_subpage_arg {
4555        struct page *dst;
4556        struct page *src;
4557        struct vm_area_struct *vma;
4558};
4559
4560static void copy_subpage(unsigned long addr, int idx, void *arg)
4561{
4562        struct copy_subpage_arg *copy_arg = arg;
4563
4564        copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4565                           addr, copy_arg->vma);
4566}
4567
4568void copy_user_huge_page(struct page *dst, struct page *src,
4569                         unsigned long addr_hint, struct vm_area_struct *vma,
4570                         unsigned int pages_per_huge_page)
4571{
4572        unsigned long addr = addr_hint &
4573                ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4574        struct copy_subpage_arg arg = {
4575                .dst = dst,
4576                .src = src,
4577                .vma = vma,
4578        };
4579
4580        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4581                copy_user_gigantic_page(dst, src, addr, vma,
4582                                        pages_per_huge_page);
4583                return;
4584        }
4585
4586        process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4587}
4588
4589long copy_huge_page_from_user(struct page *dst_page,
4590                                const void __user *usr_src,
4591                                unsigned int pages_per_huge_page,
4592                                bool allow_pagefault)
4593{
4594        void *src = (void *)usr_src;
4595        void *page_kaddr;
4596        unsigned long i, rc = 0;
4597        unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4598
4599        for (i = 0; i < pages_per_huge_page; i++) {
4600                if (allow_pagefault)
4601                        page_kaddr = kmap(dst_page + i);
4602                else
4603                        page_kaddr = kmap_atomic(dst_page + i);
4604                rc = copy_from_user(page_kaddr,
4605                                (const void __user *)(src + i * PAGE_SIZE),
4606                                PAGE_SIZE);
4607                if (allow_pagefault)
4608                        kunmap(dst_page + i);
4609                else
4610                        kunmap_atomic(page_kaddr);
4611
4612                ret_val -= (PAGE_SIZE - rc);
4613                if (rc)
4614                        break;
4615
4616                cond_resched();
4617        }
4618        return ret_val;
4619}
4620#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4621
4622#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4623
4624static struct kmem_cache *page_ptl_cachep;
4625
4626void __init ptlock_cache_init(void)
4627{
4628        page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4629                        SLAB_PANIC, NULL);
4630}
4631
4632bool ptlock_alloc(struct page *page)
4633{
4634        spinlock_t *ptl;
4635
4636        ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4637        if (!ptl)
4638                return false;
4639        page->ptl = ptl;
4640        return true;
4641}
4642
4643void ptlock_free(struct page *page)
4644{
4645        kmem_cache_free(page_ptl_cachep, page->ptl);
4646}
4647#endif
4648