linux/mm/memory_hotplug.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/mm/memory_hotplug.c
   4 *
   5 *  Copyright (C)
   6 */
   7
   8#include <linux/stddef.h>
   9#include <linux/mm.h>
  10#include <linux/sched/signal.h>
  11#include <linux/swap.h>
  12#include <linux/interrupt.h>
  13#include <linux/pagemap.h>
  14#include <linux/compiler.h>
  15#include <linux/export.h>
  16#include <linux/pagevec.h>
  17#include <linux/writeback.h>
  18#include <linux/slab.h>
  19#include <linux/sysctl.h>
  20#include <linux/cpu.h>
  21#include <linux/memory.h>
  22#include <linux/memremap.h>
  23#include <linux/memory_hotplug.h>
  24#include <linux/highmem.h>
  25#include <linux/vmalloc.h>
  26#include <linux/ioport.h>
  27#include <linux/delay.h>
  28#include <linux/migrate.h>
  29#include <linux/page-isolation.h>
  30#include <linux/pfn.h>
  31#include <linux/suspend.h>
  32#include <linux/mm_inline.h>
  33#include <linux/firmware-map.h>
  34#include <linux/stop_machine.h>
  35#include <linux/hugetlb.h>
  36#include <linux/memblock.h>
  37#include <linux/compaction.h>
  38#include <linux/rmap.h>
  39
  40#include <asm/tlbflush.h>
  41
  42#include "internal.h"
  43#include "shuffle.h"
  44
  45/*
  46 * online_page_callback contains pointer to current page onlining function.
  47 * Initially it is generic_online_page(). If it is required it could be
  48 * changed by calling set_online_page_callback() for callback registration
  49 * and restore_online_page_callback() for generic callback restore.
  50 */
  51
  52static void generic_online_page(struct page *page, unsigned int order);
  53
  54static online_page_callback_t online_page_callback = generic_online_page;
  55static DEFINE_MUTEX(online_page_callback_lock);
  56
  57DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
  58
  59void get_online_mems(void)
  60{
  61        percpu_down_read(&mem_hotplug_lock);
  62}
  63
  64void put_online_mems(void)
  65{
  66        percpu_up_read(&mem_hotplug_lock);
  67}
  68
  69bool movable_node_enabled = false;
  70
  71#ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
  72bool memhp_auto_online;
  73#else
  74bool memhp_auto_online = true;
  75#endif
  76EXPORT_SYMBOL_GPL(memhp_auto_online);
  77
  78static int __init setup_memhp_default_state(char *str)
  79{
  80        if (!strcmp(str, "online"))
  81                memhp_auto_online = true;
  82        else if (!strcmp(str, "offline"))
  83                memhp_auto_online = false;
  84
  85        return 1;
  86}
  87__setup("memhp_default_state=", setup_memhp_default_state);
  88
  89void mem_hotplug_begin(void)
  90{
  91        cpus_read_lock();
  92        percpu_down_write(&mem_hotplug_lock);
  93}
  94
  95void mem_hotplug_done(void)
  96{
  97        percpu_up_write(&mem_hotplug_lock);
  98        cpus_read_unlock();
  99}
 100
 101u64 max_mem_size = U64_MAX;
 102
 103/* add this memory to iomem resource */
 104static struct resource *register_memory_resource(u64 start, u64 size)
 105{
 106        struct resource *res;
 107        unsigned long flags =  IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 108        char *resource_name = "System RAM";
 109
 110        if (start + size > max_mem_size)
 111                return ERR_PTR(-E2BIG);
 112
 113        /*
 114         * Request ownership of the new memory range.  This might be
 115         * a child of an existing resource that was present but
 116         * not marked as busy.
 117         */
 118        res = __request_region(&iomem_resource, start, size,
 119                               resource_name, flags);
 120
 121        if (!res) {
 122                pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
 123                                start, start + size);
 124                return ERR_PTR(-EEXIST);
 125        }
 126        return res;
 127}
 128
 129static void release_memory_resource(struct resource *res)
 130{
 131        if (!res)
 132                return;
 133        release_resource(res);
 134        kfree(res);
 135}
 136
 137#ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
 138void get_page_bootmem(unsigned long info,  struct page *page,
 139                      unsigned long type)
 140{
 141        page->freelist = (void *)type;
 142        SetPagePrivate(page);
 143        set_page_private(page, info);
 144        page_ref_inc(page);
 145}
 146
 147void put_page_bootmem(struct page *page)
 148{
 149        unsigned long type;
 150
 151        type = (unsigned long) page->freelist;
 152        BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
 153               type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
 154
 155        if (page_ref_dec_return(page) == 1) {
 156                page->freelist = NULL;
 157                ClearPagePrivate(page);
 158                set_page_private(page, 0);
 159                INIT_LIST_HEAD(&page->lru);
 160                free_reserved_page(page);
 161        }
 162}
 163
 164#ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
 165#ifndef CONFIG_SPARSEMEM_VMEMMAP
 166static void register_page_bootmem_info_section(unsigned long start_pfn)
 167{
 168        unsigned long mapsize, section_nr, i;
 169        struct mem_section *ms;
 170        struct page *page, *memmap;
 171        struct mem_section_usage *usage;
 172
 173        section_nr = pfn_to_section_nr(start_pfn);
 174        ms = __nr_to_section(section_nr);
 175
 176        /* Get section's memmap address */
 177        memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 178
 179        /*
 180         * Get page for the memmap's phys address
 181         * XXX: need more consideration for sparse_vmemmap...
 182         */
 183        page = virt_to_page(memmap);
 184        mapsize = sizeof(struct page) * PAGES_PER_SECTION;
 185        mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
 186
 187        /* remember memmap's page */
 188        for (i = 0; i < mapsize; i++, page++)
 189                get_page_bootmem(section_nr, page, SECTION_INFO);
 190
 191        usage = ms->usage;
 192        page = virt_to_page(usage);
 193
 194        mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
 195
 196        for (i = 0; i < mapsize; i++, page++)
 197                get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 198
 199}
 200#else /* CONFIG_SPARSEMEM_VMEMMAP */
 201static void register_page_bootmem_info_section(unsigned long start_pfn)
 202{
 203        unsigned long mapsize, section_nr, i;
 204        struct mem_section *ms;
 205        struct page *page, *memmap;
 206        struct mem_section_usage *usage;
 207
 208        section_nr = pfn_to_section_nr(start_pfn);
 209        ms = __nr_to_section(section_nr);
 210
 211        memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
 212
 213        register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
 214
 215        usage = ms->usage;
 216        page = virt_to_page(usage);
 217
 218        mapsize = PAGE_ALIGN(mem_section_usage_size()) >> PAGE_SHIFT;
 219
 220        for (i = 0; i < mapsize; i++, page++)
 221                get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
 222}
 223#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
 224
 225void __init register_page_bootmem_info_node(struct pglist_data *pgdat)
 226{
 227        unsigned long i, pfn, end_pfn, nr_pages;
 228        int node = pgdat->node_id;
 229        struct page *page;
 230
 231        nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
 232        page = virt_to_page(pgdat);
 233
 234        for (i = 0; i < nr_pages; i++, page++)
 235                get_page_bootmem(node, page, NODE_INFO);
 236
 237        pfn = pgdat->node_start_pfn;
 238        end_pfn = pgdat_end_pfn(pgdat);
 239
 240        /* register section info */
 241        for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
 242                /*
 243                 * Some platforms can assign the same pfn to multiple nodes - on
 244                 * node0 as well as nodeN.  To avoid registering a pfn against
 245                 * multiple nodes we check that this pfn does not already
 246                 * reside in some other nodes.
 247                 */
 248                if (pfn_valid(pfn) && (early_pfn_to_nid(pfn) == node))
 249                        register_page_bootmem_info_section(pfn);
 250        }
 251}
 252#endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
 253
 254static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
 255                const char *reason)
 256{
 257        /*
 258         * Disallow all operations smaller than a sub-section and only
 259         * allow operations smaller than a section for
 260         * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
 261         * enforces a larger memory_block_size_bytes() granularity for
 262         * memory that will be marked online, so this check should only
 263         * fire for direct arch_{add,remove}_memory() users outside of
 264         * add_memory_resource().
 265         */
 266        unsigned long min_align;
 267
 268        if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
 269                min_align = PAGES_PER_SUBSECTION;
 270        else
 271                min_align = PAGES_PER_SECTION;
 272        if (!IS_ALIGNED(pfn, min_align)
 273                        || !IS_ALIGNED(nr_pages, min_align)) {
 274                WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
 275                                reason, pfn, pfn + nr_pages - 1);
 276                return -EINVAL;
 277        }
 278        return 0;
 279}
 280
 281/*
 282 * Reasonably generic function for adding memory.  It is
 283 * expected that archs that support memory hotplug will
 284 * call this function after deciding the zone to which to
 285 * add the new pages.
 286 */
 287int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
 288                struct mhp_restrictions *restrictions)
 289{
 290        int err;
 291        unsigned long nr, start_sec, end_sec;
 292        struct vmem_altmap *altmap = restrictions->altmap;
 293
 294        if (altmap) {
 295                /*
 296                 * Validate altmap is within bounds of the total request
 297                 */
 298                if (altmap->base_pfn != pfn
 299                                || vmem_altmap_offset(altmap) > nr_pages) {
 300                        pr_warn_once("memory add fail, invalid altmap\n");
 301                        return -EINVAL;
 302                }
 303                altmap->alloc = 0;
 304        }
 305
 306        err = check_pfn_span(pfn, nr_pages, "add");
 307        if (err)
 308                return err;
 309
 310        start_sec = pfn_to_section_nr(pfn);
 311        end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
 312        for (nr = start_sec; nr <= end_sec; nr++) {
 313                unsigned long pfns;
 314
 315                pfns = min(nr_pages, PAGES_PER_SECTION
 316                                - (pfn & ~PAGE_SECTION_MASK));
 317                err = sparse_add_section(nid, pfn, pfns, altmap);
 318                if (err)
 319                        break;
 320                pfn += pfns;
 321                nr_pages -= pfns;
 322                cond_resched();
 323        }
 324        vmemmap_populate_print_last();
 325        return err;
 326}
 327
 328/* find the smallest valid pfn in the range [start_pfn, end_pfn) */
 329static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
 330                                     unsigned long start_pfn,
 331                                     unsigned long end_pfn)
 332{
 333        for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
 334                if (unlikely(!pfn_valid(start_pfn)))
 335                        continue;
 336
 337                if (unlikely(pfn_to_nid(start_pfn) != nid))
 338                        continue;
 339
 340                if (zone && zone != page_zone(pfn_to_page(start_pfn)))
 341                        continue;
 342
 343                return start_pfn;
 344        }
 345
 346        return 0;
 347}
 348
 349/* find the biggest valid pfn in the range [start_pfn, end_pfn). */
 350static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
 351                                    unsigned long start_pfn,
 352                                    unsigned long end_pfn)
 353{
 354        unsigned long pfn;
 355
 356        /* pfn is the end pfn of a memory section. */
 357        pfn = end_pfn - 1;
 358        for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
 359                if (unlikely(!pfn_valid(pfn)))
 360                        continue;
 361
 362                if (unlikely(pfn_to_nid(pfn) != nid))
 363                        continue;
 364
 365                if (zone && zone != page_zone(pfn_to_page(pfn)))
 366                        continue;
 367
 368                return pfn;
 369        }
 370
 371        return 0;
 372}
 373
 374static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
 375                             unsigned long end_pfn)
 376{
 377        unsigned long zone_start_pfn = zone->zone_start_pfn;
 378        unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
 379        unsigned long zone_end_pfn = z;
 380        unsigned long pfn;
 381        int nid = zone_to_nid(zone);
 382
 383        zone_span_writelock(zone);
 384        if (zone_start_pfn == start_pfn) {
 385                /*
 386                 * If the section is smallest section in the zone, it need
 387                 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
 388                 * In this case, we find second smallest valid mem_section
 389                 * for shrinking zone.
 390                 */
 391                pfn = find_smallest_section_pfn(nid, zone, end_pfn,
 392                                                zone_end_pfn);
 393                if (pfn) {
 394                        zone->zone_start_pfn = pfn;
 395                        zone->spanned_pages = zone_end_pfn - pfn;
 396                }
 397        } else if (zone_end_pfn == end_pfn) {
 398                /*
 399                 * If the section is biggest section in the zone, it need
 400                 * shrink zone->spanned_pages.
 401                 * In this case, we find second biggest valid mem_section for
 402                 * shrinking zone.
 403                 */
 404                pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
 405                                               start_pfn);
 406                if (pfn)
 407                        zone->spanned_pages = pfn - zone_start_pfn + 1;
 408        }
 409
 410        /*
 411         * The section is not biggest or smallest mem_section in the zone, it
 412         * only creates a hole in the zone. So in this case, we need not
 413         * change the zone. But perhaps, the zone has only hole data. Thus
 414         * it check the zone has only hole or not.
 415         */
 416        pfn = zone_start_pfn;
 417        for (; pfn < zone_end_pfn; pfn += PAGES_PER_SUBSECTION) {
 418                if (unlikely(!pfn_valid(pfn)))
 419                        continue;
 420
 421                if (page_zone(pfn_to_page(pfn)) != zone)
 422                        continue;
 423
 424                /* Skip range to be removed */
 425                if (pfn >= start_pfn && pfn < end_pfn)
 426                        continue;
 427
 428                /* If we find valid section, we have nothing to do */
 429                zone_span_writeunlock(zone);
 430                return;
 431        }
 432
 433        /* The zone has no valid section */
 434        zone->zone_start_pfn = 0;
 435        zone->spanned_pages = 0;
 436        zone_span_writeunlock(zone);
 437}
 438
 439static void shrink_pgdat_span(struct pglist_data *pgdat,
 440                              unsigned long start_pfn, unsigned long end_pfn)
 441{
 442        unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
 443        unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
 444        unsigned long pgdat_end_pfn = p;
 445        unsigned long pfn;
 446        int nid = pgdat->node_id;
 447
 448        if (pgdat_start_pfn == start_pfn) {
 449                /*
 450                 * If the section is smallest section in the pgdat, it need
 451                 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
 452                 * In this case, we find second smallest valid mem_section
 453                 * for shrinking zone.
 454                 */
 455                pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
 456                                                pgdat_end_pfn);
 457                if (pfn) {
 458                        pgdat->node_start_pfn = pfn;
 459                        pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
 460                }
 461        } else if (pgdat_end_pfn == end_pfn) {
 462                /*
 463                 * If the section is biggest section in the pgdat, it need
 464                 * shrink pgdat->node_spanned_pages.
 465                 * In this case, we find second biggest valid mem_section for
 466                 * shrinking zone.
 467                 */
 468                pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
 469                                               start_pfn);
 470                if (pfn)
 471                        pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
 472        }
 473
 474        /*
 475         * If the section is not biggest or smallest mem_section in the pgdat,
 476         * it only creates a hole in the pgdat. So in this case, we need not
 477         * change the pgdat.
 478         * But perhaps, the pgdat has only hole data. Thus it check the pgdat
 479         * has only hole or not.
 480         */
 481        pfn = pgdat_start_pfn;
 482        for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SUBSECTION) {
 483                if (unlikely(!pfn_valid(pfn)))
 484                        continue;
 485
 486                if (pfn_to_nid(pfn) != nid)
 487                        continue;
 488
 489                /* Skip range to be removed */
 490                if (pfn >= start_pfn && pfn < end_pfn)
 491                        continue;
 492
 493                /* If we find valid section, we have nothing to do */
 494                return;
 495        }
 496
 497        /* The pgdat has no valid section */
 498        pgdat->node_start_pfn = 0;
 499        pgdat->node_spanned_pages = 0;
 500}
 501
 502static void __remove_zone(struct zone *zone, unsigned long start_pfn,
 503                unsigned long nr_pages)
 504{
 505        struct pglist_data *pgdat = zone->zone_pgdat;
 506        unsigned long flags;
 507
 508        pgdat_resize_lock(zone->zone_pgdat, &flags);
 509        shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
 510        shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
 511        pgdat_resize_unlock(zone->zone_pgdat, &flags);
 512}
 513
 514static void __remove_section(struct zone *zone, unsigned long pfn,
 515                unsigned long nr_pages, unsigned long map_offset,
 516                struct vmem_altmap *altmap)
 517{
 518        struct mem_section *ms = __nr_to_section(pfn_to_section_nr(pfn));
 519
 520        if (WARN_ON_ONCE(!valid_section(ms)))
 521                return;
 522
 523        __remove_zone(zone, pfn, nr_pages);
 524        sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
 525}
 526
 527/**
 528 * __remove_pages() - remove sections of pages from a zone
 529 * @zone: zone from which pages need to be removed
 530 * @pfn: starting pageframe (must be aligned to start of a section)
 531 * @nr_pages: number of pages to remove (must be multiple of section size)
 532 * @altmap: alternative device page map or %NULL if default memmap is used
 533 *
 534 * Generic helper function to remove section mappings and sysfs entries
 535 * for the section of the memory we are removing. Caller needs to make
 536 * sure that pages are marked reserved and zones are adjust properly by
 537 * calling offline_pages().
 538 */
 539void __remove_pages(struct zone *zone, unsigned long pfn,
 540                    unsigned long nr_pages, struct vmem_altmap *altmap)
 541{
 542        unsigned long map_offset = 0;
 543        unsigned long nr, start_sec, end_sec;
 544
 545        map_offset = vmem_altmap_offset(altmap);
 546
 547        clear_zone_contiguous(zone);
 548
 549        if (check_pfn_span(pfn, nr_pages, "remove"))
 550                return;
 551
 552        start_sec = pfn_to_section_nr(pfn);
 553        end_sec = pfn_to_section_nr(pfn + nr_pages - 1);
 554        for (nr = start_sec; nr <= end_sec; nr++) {
 555                unsigned long pfns;
 556
 557                cond_resched();
 558                pfns = min(nr_pages, PAGES_PER_SECTION
 559                                - (pfn & ~PAGE_SECTION_MASK));
 560                __remove_section(zone, pfn, pfns, map_offset, altmap);
 561                pfn += pfns;
 562                nr_pages -= pfns;
 563                map_offset = 0;
 564        }
 565
 566        set_zone_contiguous(zone);
 567}
 568
 569int set_online_page_callback(online_page_callback_t callback)
 570{
 571        int rc = -EINVAL;
 572
 573        get_online_mems();
 574        mutex_lock(&online_page_callback_lock);
 575
 576        if (online_page_callback == generic_online_page) {
 577                online_page_callback = callback;
 578                rc = 0;
 579        }
 580
 581        mutex_unlock(&online_page_callback_lock);
 582        put_online_mems();
 583
 584        return rc;
 585}
 586EXPORT_SYMBOL_GPL(set_online_page_callback);
 587
 588int restore_online_page_callback(online_page_callback_t callback)
 589{
 590        int rc = -EINVAL;
 591
 592        get_online_mems();
 593        mutex_lock(&online_page_callback_lock);
 594
 595        if (online_page_callback == callback) {
 596                online_page_callback = generic_online_page;
 597                rc = 0;
 598        }
 599
 600        mutex_unlock(&online_page_callback_lock);
 601        put_online_mems();
 602
 603        return rc;
 604}
 605EXPORT_SYMBOL_GPL(restore_online_page_callback);
 606
 607void __online_page_set_limits(struct page *page)
 608{
 609}
 610EXPORT_SYMBOL_GPL(__online_page_set_limits);
 611
 612void __online_page_increment_counters(struct page *page)
 613{
 614        adjust_managed_page_count(page, 1);
 615}
 616EXPORT_SYMBOL_GPL(__online_page_increment_counters);
 617
 618void __online_page_free(struct page *page)
 619{
 620        __free_reserved_page(page);
 621}
 622EXPORT_SYMBOL_GPL(__online_page_free);
 623
 624static void generic_online_page(struct page *page, unsigned int order)
 625{
 626        kernel_map_pages(page, 1 << order, 1);
 627        __free_pages_core(page, order);
 628        totalram_pages_add(1UL << order);
 629#ifdef CONFIG_HIGHMEM
 630        if (PageHighMem(page))
 631                totalhigh_pages_add(1UL << order);
 632#endif
 633}
 634
 635static int online_pages_blocks(unsigned long start, unsigned long nr_pages)
 636{
 637        unsigned long end = start + nr_pages;
 638        int order, onlined_pages = 0;
 639
 640        while (start < end) {
 641                order = min(MAX_ORDER - 1,
 642                        get_order(PFN_PHYS(end) - PFN_PHYS(start)));
 643                (*online_page_callback)(pfn_to_page(start), order);
 644
 645                onlined_pages += (1UL << order);
 646                start += (1UL << order);
 647        }
 648        return onlined_pages;
 649}
 650
 651static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
 652                        void *arg)
 653{
 654        unsigned long onlined_pages = *(unsigned long *)arg;
 655
 656        if (PageReserved(pfn_to_page(start_pfn)))
 657                onlined_pages += online_pages_blocks(start_pfn, nr_pages);
 658
 659        online_mem_sections(start_pfn, start_pfn + nr_pages);
 660
 661        *(unsigned long *)arg = onlined_pages;
 662        return 0;
 663}
 664
 665/* check which state of node_states will be changed when online memory */
 666static void node_states_check_changes_online(unsigned long nr_pages,
 667        struct zone *zone, struct memory_notify *arg)
 668{
 669        int nid = zone_to_nid(zone);
 670
 671        arg->status_change_nid = NUMA_NO_NODE;
 672        arg->status_change_nid_normal = NUMA_NO_NODE;
 673        arg->status_change_nid_high = NUMA_NO_NODE;
 674
 675        if (!node_state(nid, N_MEMORY))
 676                arg->status_change_nid = nid;
 677        if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
 678                arg->status_change_nid_normal = nid;
 679#ifdef CONFIG_HIGHMEM
 680        if (zone_idx(zone) <= ZONE_HIGHMEM && !node_state(nid, N_HIGH_MEMORY))
 681                arg->status_change_nid_high = nid;
 682#endif
 683}
 684
 685static void node_states_set_node(int node, struct memory_notify *arg)
 686{
 687        if (arg->status_change_nid_normal >= 0)
 688                node_set_state(node, N_NORMAL_MEMORY);
 689
 690        if (arg->status_change_nid_high >= 0)
 691                node_set_state(node, N_HIGH_MEMORY);
 692
 693        if (arg->status_change_nid >= 0)
 694                node_set_state(node, N_MEMORY);
 695}
 696
 697static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
 698                unsigned long nr_pages)
 699{
 700        unsigned long old_end_pfn = zone_end_pfn(zone);
 701
 702        if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
 703                zone->zone_start_pfn = start_pfn;
 704
 705        zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
 706}
 707
 708static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
 709                                     unsigned long nr_pages)
 710{
 711        unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
 712
 713        if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
 714                pgdat->node_start_pfn = start_pfn;
 715
 716        pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
 717}
 718
 719void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
 720                unsigned long nr_pages, struct vmem_altmap *altmap)
 721{
 722        struct pglist_data *pgdat = zone->zone_pgdat;
 723        int nid = pgdat->node_id;
 724        unsigned long flags;
 725
 726        clear_zone_contiguous(zone);
 727
 728        /* TODO Huh pgdat is irqsave while zone is not. It used to be like that before */
 729        pgdat_resize_lock(pgdat, &flags);
 730        zone_span_writelock(zone);
 731        if (zone_is_empty(zone))
 732                init_currently_empty_zone(zone, start_pfn, nr_pages);
 733        resize_zone_range(zone, start_pfn, nr_pages);
 734        zone_span_writeunlock(zone);
 735        resize_pgdat_range(pgdat, start_pfn, nr_pages);
 736        pgdat_resize_unlock(pgdat, &flags);
 737
 738        /*
 739         * TODO now we have a visible range of pages which are not associated
 740         * with their zone properly. Not nice but set_pfnblock_flags_mask
 741         * expects the zone spans the pfn range. All the pages in the range
 742         * are reserved so nobody should be touching them so we should be safe
 743         */
 744        memmap_init_zone(nr_pages, nid, zone_idx(zone), start_pfn,
 745                        MEMMAP_HOTPLUG, altmap);
 746
 747        set_zone_contiguous(zone);
 748}
 749
 750/*
 751 * Returns a default kernel memory zone for the given pfn range.
 752 * If no kernel zone covers this pfn range it will automatically go
 753 * to the ZONE_NORMAL.
 754 */
 755static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
 756                unsigned long nr_pages)
 757{
 758        struct pglist_data *pgdat = NODE_DATA(nid);
 759        int zid;
 760
 761        for (zid = 0; zid <= ZONE_NORMAL; zid++) {
 762                struct zone *zone = &pgdat->node_zones[zid];
 763
 764                if (zone_intersects(zone, start_pfn, nr_pages))
 765                        return zone;
 766        }
 767
 768        return &pgdat->node_zones[ZONE_NORMAL];
 769}
 770
 771static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
 772                unsigned long nr_pages)
 773{
 774        struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
 775                        nr_pages);
 776        struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 777        bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
 778        bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
 779
 780        /*
 781         * We inherit the existing zone in a simple case where zones do not
 782         * overlap in the given range
 783         */
 784        if (in_kernel ^ in_movable)
 785                return (in_kernel) ? kernel_zone : movable_zone;
 786
 787        /*
 788         * If the range doesn't belong to any zone or two zones overlap in the
 789         * given range then we use movable zone only if movable_node is
 790         * enabled because we always online to a kernel zone by default.
 791         */
 792        return movable_node_enabled ? movable_zone : kernel_zone;
 793}
 794
 795struct zone * zone_for_pfn_range(int online_type, int nid, unsigned start_pfn,
 796                unsigned long nr_pages)
 797{
 798        if (online_type == MMOP_ONLINE_KERNEL)
 799                return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
 800
 801        if (online_type == MMOP_ONLINE_MOVABLE)
 802                return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
 803
 804        return default_zone_for_pfn(nid, start_pfn, nr_pages);
 805}
 806
 807/*
 808 * Associates the given pfn range with the given node and the zone appropriate
 809 * for the given online type.
 810 */
 811static struct zone * __meminit move_pfn_range(int online_type, int nid,
 812                unsigned long start_pfn, unsigned long nr_pages)
 813{
 814        struct zone *zone;
 815
 816        zone = zone_for_pfn_range(online_type, nid, start_pfn, nr_pages);
 817        move_pfn_range_to_zone(zone, start_pfn, nr_pages, NULL);
 818        return zone;
 819}
 820
 821int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
 822{
 823        unsigned long flags;
 824        unsigned long onlined_pages = 0;
 825        struct zone *zone;
 826        int need_zonelists_rebuild = 0;
 827        int nid;
 828        int ret;
 829        struct memory_notify arg;
 830        struct memory_block *mem;
 831
 832        mem_hotplug_begin();
 833
 834        /*
 835         * We can't use pfn_to_nid() because nid might be stored in struct page
 836         * which is not yet initialized. Instead, we find nid from memory block.
 837         */
 838        mem = find_memory_block(__pfn_to_section(pfn));
 839        nid = mem->nid;
 840        put_device(&mem->dev);
 841
 842        /* associate pfn range with the zone */
 843        zone = move_pfn_range(online_type, nid, pfn, nr_pages);
 844
 845        arg.start_pfn = pfn;
 846        arg.nr_pages = nr_pages;
 847        node_states_check_changes_online(nr_pages, zone, &arg);
 848
 849        ret = memory_notify(MEM_GOING_ONLINE, &arg);
 850        ret = notifier_to_errno(ret);
 851        if (ret)
 852                goto failed_addition;
 853
 854        /*
 855         * If this zone is not populated, then it is not in zonelist.
 856         * This means the page allocator ignores this zone.
 857         * So, zonelist must be updated after online.
 858         */
 859        if (!populated_zone(zone)) {
 860                need_zonelists_rebuild = 1;
 861                setup_zone_pageset(zone);
 862        }
 863
 864        ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
 865                online_pages_range);
 866        if (ret) {
 867                if (need_zonelists_rebuild)
 868                        zone_pcp_reset(zone);
 869                goto failed_addition;
 870        }
 871
 872        zone->present_pages += onlined_pages;
 873
 874        pgdat_resize_lock(zone->zone_pgdat, &flags);
 875        zone->zone_pgdat->node_present_pages += onlined_pages;
 876        pgdat_resize_unlock(zone->zone_pgdat, &flags);
 877
 878        shuffle_zone(zone);
 879
 880        if (onlined_pages) {
 881                node_states_set_node(nid, &arg);
 882                if (need_zonelists_rebuild)
 883                        build_all_zonelists(NULL);
 884                else
 885                        zone_pcp_update(zone);
 886        }
 887
 888        init_per_zone_wmark_min();
 889
 890        if (onlined_pages) {
 891                kswapd_run(nid);
 892                kcompactd_run(nid);
 893        }
 894
 895        vm_total_pages = nr_free_pagecache_pages();
 896
 897        writeback_set_ratelimit();
 898
 899        if (onlined_pages)
 900                memory_notify(MEM_ONLINE, &arg);
 901        mem_hotplug_done();
 902        return 0;
 903
 904failed_addition:
 905        pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
 906                 (unsigned long long) pfn << PAGE_SHIFT,
 907                 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
 908        memory_notify(MEM_CANCEL_ONLINE, &arg);
 909        mem_hotplug_done();
 910        return ret;
 911}
 912#endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
 913
 914static void reset_node_present_pages(pg_data_t *pgdat)
 915{
 916        struct zone *z;
 917
 918        for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
 919                z->present_pages = 0;
 920
 921        pgdat->node_present_pages = 0;
 922}
 923
 924/* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
 925static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
 926{
 927        struct pglist_data *pgdat;
 928        unsigned long start_pfn = PFN_DOWN(start);
 929
 930        pgdat = NODE_DATA(nid);
 931        if (!pgdat) {
 932                pgdat = arch_alloc_nodedata(nid);
 933                if (!pgdat)
 934                        return NULL;
 935
 936                arch_refresh_nodedata(nid, pgdat);
 937        } else {
 938                /*
 939                 * Reset the nr_zones, order and classzone_idx before reuse.
 940                 * Note that kswapd will init kswapd_classzone_idx properly
 941                 * when it starts in the near future.
 942                 */
 943                pgdat->nr_zones = 0;
 944                pgdat->kswapd_order = 0;
 945                pgdat->kswapd_classzone_idx = 0;
 946        }
 947
 948        /* we can use NODE_DATA(nid) from here */
 949
 950        pgdat->node_id = nid;
 951        pgdat->node_start_pfn = start_pfn;
 952
 953        /* init node's zones as empty zones, we don't have any present pages.*/
 954        free_area_init_core_hotplug(nid);
 955        pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
 956
 957        /*
 958         * The node we allocated has no zone fallback lists. For avoiding
 959         * to access not-initialized zonelist, build here.
 960         */
 961        build_all_zonelists(pgdat);
 962
 963        /*
 964         * When memory is hot-added, all the memory is in offline state. So
 965         * clear all zones' present_pages because they will be updated in
 966         * online_pages() and offline_pages().
 967         */
 968        reset_node_managed_pages(pgdat);
 969        reset_node_present_pages(pgdat);
 970
 971        return pgdat;
 972}
 973
 974static void rollback_node_hotadd(int nid)
 975{
 976        pg_data_t *pgdat = NODE_DATA(nid);
 977
 978        arch_refresh_nodedata(nid, NULL);
 979        free_percpu(pgdat->per_cpu_nodestats);
 980        arch_free_nodedata(pgdat);
 981}
 982
 983
 984/**
 985 * try_online_node - online a node if offlined
 986 * @nid: the node ID
 987 * @start: start addr of the node
 988 * @set_node_online: Whether we want to online the node
 989 * called by cpu_up() to online a node without onlined memory.
 990 *
 991 * Returns:
 992 * 1 -> a new node has been allocated
 993 * 0 -> the node is already online
 994 * -ENOMEM -> the node could not be allocated
 995 */
 996static int __try_online_node(int nid, u64 start, bool set_node_online)
 997{
 998        pg_data_t *pgdat;
 999        int ret = 1;
1000
1001        if (node_online(nid))
1002                return 0;
1003
1004        pgdat = hotadd_new_pgdat(nid, start);
1005        if (!pgdat) {
1006                pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1007                ret = -ENOMEM;
1008                goto out;
1009        }
1010
1011        if (set_node_online) {
1012                node_set_online(nid);
1013                ret = register_one_node(nid);
1014                BUG_ON(ret);
1015        }
1016out:
1017        return ret;
1018}
1019
1020/*
1021 * Users of this function always want to online/register the node
1022 */
1023int try_online_node(int nid)
1024{
1025        int ret;
1026
1027        mem_hotplug_begin();
1028        ret =  __try_online_node(nid, 0, true);
1029        mem_hotplug_done();
1030        return ret;
1031}
1032
1033static int check_hotplug_memory_range(u64 start, u64 size)
1034{
1035        /* memory range must be block size aligned */
1036        if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1037            !IS_ALIGNED(size, memory_block_size_bytes())) {
1038                pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1039                       memory_block_size_bytes(), start, size);
1040                return -EINVAL;
1041        }
1042
1043        return 0;
1044}
1045
1046static int online_memory_block(struct memory_block *mem, void *arg)
1047{
1048        return device_online(&mem->dev);
1049}
1050
1051/*
1052 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1053 * and online/offline operations (triggered e.g. by sysfs).
1054 *
1055 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1056 */
1057int __ref add_memory_resource(int nid, struct resource *res)
1058{
1059        struct mhp_restrictions restrictions = {};
1060        u64 start, size;
1061        bool new_node = false;
1062        int ret;
1063
1064        start = res->start;
1065        size = resource_size(res);
1066
1067        ret = check_hotplug_memory_range(start, size);
1068        if (ret)
1069                return ret;
1070
1071        mem_hotplug_begin();
1072
1073        /*
1074         * Add new range to memblock so that when hotadd_new_pgdat() is called
1075         * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1076         * this new range and calculate total pages correctly.  The range will
1077         * be removed at hot-remove time.
1078         */
1079        memblock_add_node(start, size, nid);
1080
1081        ret = __try_online_node(nid, start, false);
1082        if (ret < 0)
1083                goto error;
1084        new_node = ret;
1085
1086        /* call arch's memory hotadd */
1087        ret = arch_add_memory(nid, start, size, &restrictions);
1088        if (ret < 0)
1089                goto error;
1090
1091        /* create memory block devices after memory was added */
1092        ret = create_memory_block_devices(start, size);
1093        if (ret) {
1094                arch_remove_memory(nid, start, size, NULL);
1095                goto error;
1096        }
1097
1098        if (new_node) {
1099                /* If sysfs file of new node can't be created, cpu on the node
1100                 * can't be hot-added. There is no rollback way now.
1101                 * So, check by BUG_ON() to catch it reluctantly..
1102                 * We online node here. We can't roll back from here.
1103                 */
1104                node_set_online(nid);
1105                ret = __register_one_node(nid);
1106                BUG_ON(ret);
1107        }
1108
1109        /* link memory sections under this node.*/
1110        ret = link_mem_sections(nid, PFN_DOWN(start), PFN_UP(start + size - 1));
1111        BUG_ON(ret);
1112
1113        /* create new memmap entry */
1114        firmware_map_add_hotplug(start, start + size, "System RAM");
1115
1116        /* device_online() will take the lock when calling online_pages() */
1117        mem_hotplug_done();
1118
1119        /* online pages if requested */
1120        if (memhp_auto_online)
1121                walk_memory_blocks(start, size, NULL, online_memory_block);
1122
1123        return ret;
1124error:
1125        /* rollback pgdat allocation and others */
1126        if (new_node)
1127                rollback_node_hotadd(nid);
1128        memblock_remove(start, size);
1129        mem_hotplug_done();
1130        return ret;
1131}
1132
1133/* requires device_hotplug_lock, see add_memory_resource() */
1134int __ref __add_memory(int nid, u64 start, u64 size)
1135{
1136        struct resource *res;
1137        int ret;
1138
1139        res = register_memory_resource(start, size);
1140        if (IS_ERR(res))
1141                return PTR_ERR(res);
1142
1143        ret = add_memory_resource(nid, res);
1144        if (ret < 0)
1145                release_memory_resource(res);
1146        return ret;
1147}
1148
1149int add_memory(int nid, u64 start, u64 size)
1150{
1151        int rc;
1152
1153        lock_device_hotplug();
1154        rc = __add_memory(nid, start, size);
1155        unlock_device_hotplug();
1156
1157        return rc;
1158}
1159EXPORT_SYMBOL_GPL(add_memory);
1160
1161#ifdef CONFIG_MEMORY_HOTREMOVE
1162/*
1163 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1164 * set and the size of the free page is given by page_order(). Using this,
1165 * the function determines if the pageblock contains only free pages.
1166 * Due to buddy contraints, a free page at least the size of a pageblock will
1167 * be located at the start of the pageblock
1168 */
1169static inline int pageblock_free(struct page *page)
1170{
1171        return PageBuddy(page) && page_order(page) >= pageblock_order;
1172}
1173
1174/* Return the pfn of the start of the next active pageblock after a given pfn */
1175static unsigned long next_active_pageblock(unsigned long pfn)
1176{
1177        struct page *page = pfn_to_page(pfn);
1178
1179        /* Ensure the starting page is pageblock-aligned */
1180        BUG_ON(pfn & (pageblock_nr_pages - 1));
1181
1182        /* If the entire pageblock is free, move to the end of free page */
1183        if (pageblock_free(page)) {
1184                int order;
1185                /* be careful. we don't have locks, page_order can be changed.*/
1186                order = page_order(page);
1187                if ((order < MAX_ORDER) && (order >= pageblock_order))
1188                        return pfn + (1 << order);
1189        }
1190
1191        return pfn + pageblock_nr_pages;
1192}
1193
1194static bool is_pageblock_removable_nolock(unsigned long pfn)
1195{
1196        struct page *page = pfn_to_page(pfn);
1197        struct zone *zone;
1198
1199        /*
1200         * We have to be careful here because we are iterating over memory
1201         * sections which are not zone aware so we might end up outside of
1202         * the zone but still within the section.
1203         * We have to take care about the node as well. If the node is offline
1204         * its NODE_DATA will be NULL - see page_zone.
1205         */
1206        if (!node_online(page_to_nid(page)))
1207                return false;
1208
1209        zone = page_zone(page);
1210        pfn = page_to_pfn(page);
1211        if (!zone_spans_pfn(zone, pfn))
1212                return false;
1213
1214        return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, SKIP_HWPOISON);
1215}
1216
1217/* Checks if this range of memory is likely to be hot-removable. */
1218bool is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1219{
1220        unsigned long end_pfn, pfn;
1221
1222        end_pfn = min(start_pfn + nr_pages,
1223                        zone_end_pfn(page_zone(pfn_to_page(start_pfn))));
1224
1225        /* Check the starting page of each pageblock within the range */
1226        for (pfn = start_pfn; pfn < end_pfn; pfn = next_active_pageblock(pfn)) {
1227                if (!is_pageblock_removable_nolock(pfn))
1228                        return false;
1229                cond_resched();
1230        }
1231
1232        /* All pageblocks in the memory block are likely to be hot-removable */
1233        return true;
1234}
1235
1236/*
1237 * Confirm all pages in a range [start, end) belong to the same zone.
1238 * When true, return its valid [start, end).
1239 */
1240int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn,
1241                         unsigned long *valid_start, unsigned long *valid_end)
1242{
1243        unsigned long pfn, sec_end_pfn;
1244        unsigned long start, end;
1245        struct zone *zone = NULL;
1246        struct page *page;
1247        int i;
1248        for (pfn = start_pfn, sec_end_pfn = SECTION_ALIGN_UP(start_pfn + 1);
1249             pfn < end_pfn;
1250             pfn = sec_end_pfn, sec_end_pfn += PAGES_PER_SECTION) {
1251                /* Make sure the memory section is present first */
1252                if (!present_section_nr(pfn_to_section_nr(pfn)))
1253                        continue;
1254                for (; pfn < sec_end_pfn && pfn < end_pfn;
1255                     pfn += MAX_ORDER_NR_PAGES) {
1256                        i = 0;
1257                        /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1258                        while ((i < MAX_ORDER_NR_PAGES) &&
1259                                !pfn_valid_within(pfn + i))
1260                                i++;
1261                        if (i == MAX_ORDER_NR_PAGES || pfn + i >= end_pfn)
1262                                continue;
1263                        /* Check if we got outside of the zone */
1264                        if (zone && !zone_spans_pfn(zone, pfn + i))
1265                                return 0;
1266                        page = pfn_to_page(pfn + i);
1267                        if (zone && page_zone(page) != zone)
1268                                return 0;
1269                        if (!zone)
1270                                start = pfn + i;
1271                        zone = page_zone(page);
1272                        end = pfn + MAX_ORDER_NR_PAGES;
1273                }
1274        }
1275
1276        if (zone) {
1277                *valid_start = start;
1278                *valid_end = min(end, end_pfn);
1279                return 1;
1280        } else {
1281                return 0;
1282        }
1283}
1284
1285/*
1286 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1287 * non-lru movable pages and hugepages). We scan pfn because it's much
1288 * easier than scanning over linked list. This function returns the pfn
1289 * of the first found movable page if it's found, otherwise 0.
1290 */
1291static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1292{
1293        unsigned long pfn;
1294
1295        for (pfn = start; pfn < end; pfn++) {
1296                struct page *page, *head;
1297                unsigned long skip;
1298
1299                if (!pfn_valid(pfn))
1300                        continue;
1301                page = pfn_to_page(pfn);
1302                if (PageLRU(page))
1303                        return pfn;
1304                if (__PageMovable(page))
1305                        return pfn;
1306
1307                if (!PageHuge(page))
1308                        continue;
1309                head = compound_head(page);
1310                if (page_huge_active(head))
1311                        return pfn;
1312                skip = (1 << compound_order(head)) - (page - head);
1313                pfn += skip - 1;
1314        }
1315        return 0;
1316}
1317
1318static struct page *new_node_page(struct page *page, unsigned long private)
1319{
1320        int nid = page_to_nid(page);
1321        nodemask_t nmask = node_states[N_MEMORY];
1322
1323        /*
1324         * try to allocate from a different node but reuse this node if there
1325         * are no other online nodes to be used (e.g. we are offlining a part
1326         * of the only existing node)
1327         */
1328        node_clear(nid, nmask);
1329        if (nodes_empty(nmask))
1330                node_set(nid, nmask);
1331
1332        return new_page_nodemask(page, nid, &nmask);
1333}
1334
1335static int
1336do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1337{
1338        unsigned long pfn;
1339        struct page *page;
1340        int ret = 0;
1341        LIST_HEAD(source);
1342
1343        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1344                if (!pfn_valid(pfn))
1345                        continue;
1346                page = pfn_to_page(pfn);
1347
1348                if (PageHuge(page)) {
1349                        struct page *head = compound_head(page);
1350                        pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1351                        isolate_huge_page(head, &source);
1352                        continue;
1353                } else if (PageTransHuge(page))
1354                        pfn = page_to_pfn(compound_head(page))
1355                                + hpage_nr_pages(page) - 1;
1356
1357                /*
1358                 * HWPoison pages have elevated reference counts so the migration would
1359                 * fail on them. It also doesn't make any sense to migrate them in the
1360                 * first place. Still try to unmap such a page in case it is still mapped
1361                 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1362                 * the unmap as the catch all safety net).
1363                 */
1364                if (PageHWPoison(page)) {
1365                        if (WARN_ON(PageLRU(page)))
1366                                isolate_lru_page(page);
1367                        if (page_mapped(page))
1368                                try_to_unmap(page, TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS);
1369                        continue;
1370                }
1371
1372                if (!get_page_unless_zero(page))
1373                        continue;
1374                /*
1375                 * We can skip free pages. And we can deal with pages on
1376                 * LRU and non-lru movable pages.
1377                 */
1378                if (PageLRU(page))
1379                        ret = isolate_lru_page(page);
1380                else
1381                        ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1382                if (!ret) { /* Success */
1383                        list_add_tail(&page->lru, &source);
1384                        if (!__PageMovable(page))
1385                                inc_node_page_state(page, NR_ISOLATED_ANON +
1386                                                    page_is_file_cache(page));
1387
1388                } else {
1389                        pr_warn("failed to isolate pfn %lx\n", pfn);
1390                        dump_page(page, "isolation failed");
1391                }
1392                put_page(page);
1393        }
1394        if (!list_empty(&source)) {
1395                /* Allocate a new page from the nearest neighbor node */
1396                ret = migrate_pages(&source, new_node_page, NULL, 0,
1397                                        MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1398                if (ret) {
1399                        list_for_each_entry(page, &source, lru) {
1400                                pr_warn("migrating pfn %lx failed ret:%d ",
1401                                       page_to_pfn(page), ret);
1402                                dump_page(page, "migration failure");
1403                        }
1404                        putback_movable_pages(&source);
1405                }
1406        }
1407
1408        return ret;
1409}
1410
1411/*
1412 * remove from free_area[] and mark all as Reserved.
1413 */
1414static int
1415offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1416                        void *data)
1417{
1418        unsigned long *offlined_pages = (unsigned long *)data;
1419
1420        *offlined_pages += __offline_isolated_pages(start, start + nr_pages);
1421        return 0;
1422}
1423
1424/*
1425 * Check all pages in range, recoreded as memory resource, are isolated.
1426 */
1427static int
1428check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1429                        void *data)
1430{
1431        return test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1432}
1433
1434static int __init cmdline_parse_movable_node(char *p)
1435{
1436#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1437        movable_node_enabled = true;
1438#else
1439        pr_warn("movable_node parameter depends on CONFIG_HAVE_MEMBLOCK_NODE_MAP to work properly\n");
1440#endif
1441        return 0;
1442}
1443early_param("movable_node", cmdline_parse_movable_node);
1444
1445/* check which state of node_states will be changed when offline memory */
1446static void node_states_check_changes_offline(unsigned long nr_pages,
1447                struct zone *zone, struct memory_notify *arg)
1448{
1449        struct pglist_data *pgdat = zone->zone_pgdat;
1450        unsigned long present_pages = 0;
1451        enum zone_type zt;
1452
1453        arg->status_change_nid = NUMA_NO_NODE;
1454        arg->status_change_nid_normal = NUMA_NO_NODE;
1455        arg->status_change_nid_high = NUMA_NO_NODE;
1456
1457        /*
1458         * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1459         * If the memory to be offline is within the range
1460         * [0..ZONE_NORMAL], and it is the last present memory there,
1461         * the zones in that range will become empty after the offlining,
1462         * thus we can determine that we need to clear the node from
1463         * node_states[N_NORMAL_MEMORY].
1464         */
1465        for (zt = 0; zt <= ZONE_NORMAL; zt++)
1466                present_pages += pgdat->node_zones[zt].present_pages;
1467        if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1468                arg->status_change_nid_normal = zone_to_nid(zone);
1469
1470#ifdef CONFIG_HIGHMEM
1471        /*
1472         * node_states[N_HIGH_MEMORY] contains nodes which
1473         * have normal memory or high memory.
1474         * Here we add the present_pages belonging to ZONE_HIGHMEM.
1475         * If the zone is within the range of [0..ZONE_HIGHMEM), and
1476         * we determine that the zones in that range become empty,
1477         * we need to clear the node for N_HIGH_MEMORY.
1478         */
1479        present_pages += pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1480        if (zone_idx(zone) <= ZONE_HIGHMEM && nr_pages >= present_pages)
1481                arg->status_change_nid_high = zone_to_nid(zone);
1482#endif
1483
1484        /*
1485         * We have accounted the pages from [0..ZONE_NORMAL), and
1486         * in case of CONFIG_HIGHMEM the pages from ZONE_HIGHMEM
1487         * as well.
1488         * Here we count the possible pages from ZONE_MOVABLE.
1489         * If after having accounted all the pages, we see that the nr_pages
1490         * to be offlined is over or equal to the accounted pages,
1491         * we know that the node will become empty, and so, we can clear
1492         * it for N_MEMORY as well.
1493         */
1494        present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1495
1496        if (nr_pages >= present_pages)
1497                arg->status_change_nid = zone_to_nid(zone);
1498}
1499
1500static void node_states_clear_node(int node, struct memory_notify *arg)
1501{
1502        if (arg->status_change_nid_normal >= 0)
1503                node_clear_state(node, N_NORMAL_MEMORY);
1504
1505        if (arg->status_change_nid_high >= 0)
1506                node_clear_state(node, N_HIGH_MEMORY);
1507
1508        if (arg->status_change_nid >= 0)
1509                node_clear_state(node, N_MEMORY);
1510}
1511
1512static int __ref __offline_pages(unsigned long start_pfn,
1513                  unsigned long end_pfn)
1514{
1515        unsigned long pfn, nr_pages;
1516        unsigned long offlined_pages = 0;
1517        int ret, node, nr_isolate_pageblock;
1518        unsigned long flags;
1519        unsigned long valid_start, valid_end;
1520        struct zone *zone;
1521        struct memory_notify arg;
1522        char *reason;
1523
1524        mem_hotplug_begin();
1525
1526        /* This makes hotplug much easier...and readable.
1527           we assume this for now. .*/
1528        if (!test_pages_in_a_zone(start_pfn, end_pfn, &valid_start,
1529                                  &valid_end)) {
1530                ret = -EINVAL;
1531                reason = "multizone range";
1532                goto failed_removal;
1533        }
1534
1535        zone = page_zone(pfn_to_page(valid_start));
1536        node = zone_to_nid(zone);
1537        nr_pages = end_pfn - start_pfn;
1538
1539        /* set above range as isolated */
1540        ret = start_isolate_page_range(start_pfn, end_pfn,
1541                                       MIGRATE_MOVABLE,
1542                                       SKIP_HWPOISON | REPORT_FAILURE);
1543        if (ret < 0) {
1544                reason = "failure to isolate range";
1545                goto failed_removal;
1546        }
1547        nr_isolate_pageblock = ret;
1548
1549        arg.start_pfn = start_pfn;
1550        arg.nr_pages = nr_pages;
1551        node_states_check_changes_offline(nr_pages, zone, &arg);
1552
1553        ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1554        ret = notifier_to_errno(ret);
1555        if (ret) {
1556                reason = "notifier failure";
1557                goto failed_removal_isolated;
1558        }
1559
1560        do {
1561                for (pfn = start_pfn; pfn;) {
1562                        if (signal_pending(current)) {
1563                                ret = -EINTR;
1564                                reason = "signal backoff";
1565                                goto failed_removal_isolated;
1566                        }
1567
1568                        cond_resched();
1569                        lru_add_drain_all();
1570
1571                        pfn = scan_movable_pages(pfn, end_pfn);
1572                        if (pfn) {
1573                                /*
1574                                 * TODO: fatal migration failures should bail
1575                                 * out
1576                                 */
1577                                do_migrate_range(pfn, end_pfn);
1578                        }
1579                }
1580
1581                /*
1582                 * Dissolve free hugepages in the memory block before doing
1583                 * offlining actually in order to make hugetlbfs's object
1584                 * counting consistent.
1585                 */
1586                ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1587                if (ret) {
1588                        reason = "failure to dissolve huge pages";
1589                        goto failed_removal_isolated;
1590                }
1591                /* check again */
1592                ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1593                                            NULL, check_pages_isolated_cb);
1594        } while (ret);
1595
1596        /* Ok, all of our target is isolated.
1597           We cannot do rollback at this point. */
1598        walk_system_ram_range(start_pfn, end_pfn - start_pfn,
1599                              &offlined_pages, offline_isolated_pages_cb);
1600        pr_info("Offlined Pages %ld\n", offlined_pages);
1601        /*
1602         * Onlining will reset pagetype flags and makes migrate type
1603         * MOVABLE, so just need to decrease the number of isolated
1604         * pageblocks zone counter here.
1605         */
1606        spin_lock_irqsave(&zone->lock, flags);
1607        zone->nr_isolate_pageblock -= nr_isolate_pageblock;
1608        spin_unlock_irqrestore(&zone->lock, flags);
1609
1610        /* removal success */
1611        adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1612        zone->present_pages -= offlined_pages;
1613
1614        pgdat_resize_lock(zone->zone_pgdat, &flags);
1615        zone->zone_pgdat->node_present_pages -= offlined_pages;
1616        pgdat_resize_unlock(zone->zone_pgdat, &flags);
1617
1618        init_per_zone_wmark_min();
1619
1620        if (!populated_zone(zone)) {
1621                zone_pcp_reset(zone);
1622                build_all_zonelists(NULL);
1623        } else
1624                zone_pcp_update(zone);
1625
1626        node_states_clear_node(node, &arg);
1627        if (arg.status_change_nid >= 0) {
1628                kswapd_stop(node);
1629                kcompactd_stop(node);
1630        }
1631
1632        vm_total_pages = nr_free_pagecache_pages();
1633        writeback_set_ratelimit();
1634
1635        memory_notify(MEM_OFFLINE, &arg);
1636        mem_hotplug_done();
1637        return 0;
1638
1639failed_removal_isolated:
1640        undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1641        memory_notify(MEM_CANCEL_OFFLINE, &arg);
1642failed_removal:
1643        pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1644                 (unsigned long long) start_pfn << PAGE_SHIFT,
1645                 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1646                 reason);
1647        /* pushback to free area */
1648        mem_hotplug_done();
1649        return ret;
1650}
1651
1652int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1653{
1654        return __offline_pages(start_pfn, start_pfn + nr_pages);
1655}
1656
1657static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1658{
1659        int ret = !is_memblock_offlined(mem);
1660
1661        if (unlikely(ret)) {
1662                phys_addr_t beginpa, endpa;
1663
1664                beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1665                endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1666                pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1667                        &beginpa, &endpa);
1668
1669                return -EBUSY;
1670        }
1671        return 0;
1672}
1673
1674static int check_cpu_on_node(pg_data_t *pgdat)
1675{
1676        int cpu;
1677
1678        for_each_present_cpu(cpu) {
1679                if (cpu_to_node(cpu) == pgdat->node_id)
1680                        /*
1681                         * the cpu on this node isn't removed, and we can't
1682                         * offline this node.
1683                         */
1684                        return -EBUSY;
1685        }
1686
1687        return 0;
1688}
1689
1690/**
1691 * try_offline_node
1692 * @nid: the node ID
1693 *
1694 * Offline a node if all memory sections and cpus of the node are removed.
1695 *
1696 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1697 * and online/offline operations before this call.
1698 */
1699void try_offline_node(int nid)
1700{
1701        pg_data_t *pgdat = NODE_DATA(nid);
1702        unsigned long start_pfn = pgdat->node_start_pfn;
1703        unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1704        unsigned long pfn;
1705
1706        for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1707                unsigned long section_nr = pfn_to_section_nr(pfn);
1708
1709                if (!present_section_nr(section_nr))
1710                        continue;
1711
1712                if (pfn_to_nid(pfn) != nid)
1713                        continue;
1714
1715                /*
1716                 * some memory sections of this node are not removed, and we
1717                 * can't offline node now.
1718                 */
1719                return;
1720        }
1721
1722        if (check_cpu_on_node(pgdat))
1723                return;
1724
1725        /*
1726         * all memory/cpu of this node are removed, we can offline this
1727         * node now.
1728         */
1729        node_set_offline(nid);
1730        unregister_one_node(nid);
1731}
1732EXPORT_SYMBOL(try_offline_node);
1733
1734static void __release_memory_resource(resource_size_t start,
1735                                      resource_size_t size)
1736{
1737        int ret;
1738
1739        /*
1740         * When removing memory in the same granularity as it was added,
1741         * this function never fails. It might only fail if resources
1742         * have to be adjusted or split. We'll ignore the error, as
1743         * removing of memory cannot fail.
1744         */
1745        ret = release_mem_region_adjustable(&iomem_resource, start, size);
1746        if (ret) {
1747                resource_size_t endres = start + size - 1;
1748
1749                pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
1750                        &start, &endres, ret);
1751        }
1752}
1753
1754static int __ref try_remove_memory(int nid, u64 start, u64 size)
1755{
1756        int rc = 0;
1757
1758        BUG_ON(check_hotplug_memory_range(start, size));
1759
1760        mem_hotplug_begin();
1761
1762        /*
1763         * All memory blocks must be offlined before removing memory.  Check
1764         * whether all memory blocks in question are offline and return error
1765         * if this is not the case.
1766         */
1767        rc = walk_memory_blocks(start, size, NULL, check_memblock_offlined_cb);
1768        if (rc)
1769                goto done;
1770
1771        /* remove memmap entry */
1772        firmware_map_remove(start, start + size, "System RAM");
1773        memblock_free(start, size);
1774        memblock_remove(start, size);
1775
1776        /* remove memory block devices before removing memory */
1777        remove_memory_block_devices(start, size);
1778
1779        arch_remove_memory(nid, start, size, NULL);
1780        __release_memory_resource(start, size);
1781
1782        try_offline_node(nid);
1783
1784done:
1785        mem_hotplug_done();
1786        return rc;
1787}
1788
1789/**
1790 * remove_memory
1791 * @nid: the node ID
1792 * @start: physical address of the region to remove
1793 * @size: size of the region to remove
1794 *
1795 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1796 * and online/offline operations before this call, as required by
1797 * try_offline_node().
1798 */
1799void __remove_memory(int nid, u64 start, u64 size)
1800{
1801
1802        /*
1803         * trigger BUG() is some memory is not offlined prior to calling this
1804         * function
1805         */
1806        if (try_remove_memory(nid, start, size))
1807                BUG();
1808}
1809
1810/*
1811 * Remove memory if every memory block is offline, otherwise return -EBUSY is
1812 * some memory is not offline
1813 */
1814int remove_memory(int nid, u64 start, u64 size)
1815{
1816        int rc;
1817
1818        lock_device_hotplug();
1819        rc  = try_remove_memory(nid, start, size);
1820        unlock_device_hotplug();
1821
1822        return rc;
1823}
1824EXPORT_SYMBOL_GPL(remove_memory);
1825#endif /* CONFIG_MEMORY_HOTREMOVE */
1826