linux/mm/migrate.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
  24#include <linux/pagevec.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/topology.h>
  28#include <linux/cpu.h>
  29#include <linux/cpuset.h>
  30#include <linux/writeback.h>
  31#include <linux/mempolicy.h>
  32#include <linux/vmalloc.h>
  33#include <linux/security.h>
  34#include <linux/backing-dev.h>
  35#include <linux/compaction.h>
  36#include <linux/syscalls.h>
  37#include <linux/compat.h>
  38#include <linux/hugetlb.h>
  39#include <linux/hugetlb_cgroup.h>
  40#include <linux/gfp.h>
  41#include <linux/pfn_t.h>
  42#include <linux/memremap.h>
  43#include <linux/userfaultfd_k.h>
  44#include <linux/balloon_compaction.h>
  45#include <linux/mmu_notifier.h>
  46#include <linux/page_idle.h>
  47#include <linux/page_owner.h>
  48#include <linux/sched/mm.h>
  49#include <linux/ptrace.h>
  50
  51#include <asm/tlbflush.h>
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/migrate.h>
  55
  56#include "internal.h"
  57
  58/*
  59 * migrate_prep() needs to be called before we start compiling a list of pages
  60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  61 * undesirable, use migrate_prep_local()
  62 */
  63int migrate_prep(void)
  64{
  65        /*
  66         * Clear the LRU lists so pages can be isolated.
  67         * Note that pages may be moved off the LRU after we have
  68         * drained them. Those pages will fail to migrate like other
  69         * pages that may be busy.
  70         */
  71        lru_add_drain_all();
  72
  73        return 0;
  74}
  75
  76/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  77int migrate_prep_local(void)
  78{
  79        lru_add_drain();
  80
  81        return 0;
  82}
  83
  84int isolate_movable_page(struct page *page, isolate_mode_t mode)
  85{
  86        struct address_space *mapping;
  87
  88        /*
  89         * Avoid burning cycles with pages that are yet under __free_pages(),
  90         * or just got freed under us.
  91         *
  92         * In case we 'win' a race for a movable page being freed under us and
  93         * raise its refcount preventing __free_pages() from doing its job
  94         * the put_page() at the end of this block will take care of
  95         * release this page, thus avoiding a nasty leakage.
  96         */
  97        if (unlikely(!get_page_unless_zero(page)))
  98                goto out;
  99
 100        /*
 101         * Check PageMovable before holding a PG_lock because page's owner
 102         * assumes anybody doesn't touch PG_lock of newly allocated page
 103         * so unconditionally grabbing the lock ruins page's owner side.
 104         */
 105        if (unlikely(!__PageMovable(page)))
 106                goto out_putpage;
 107        /*
 108         * As movable pages are not isolated from LRU lists, concurrent
 109         * compaction threads can race against page migration functions
 110         * as well as race against the releasing a page.
 111         *
 112         * In order to avoid having an already isolated movable page
 113         * being (wrongly) re-isolated while it is under migration,
 114         * or to avoid attempting to isolate pages being released,
 115         * lets be sure we have the page lock
 116         * before proceeding with the movable page isolation steps.
 117         */
 118        if (unlikely(!trylock_page(page)))
 119                goto out_putpage;
 120
 121        if (!PageMovable(page) || PageIsolated(page))
 122                goto out_no_isolated;
 123
 124        mapping = page_mapping(page);
 125        VM_BUG_ON_PAGE(!mapping, page);
 126
 127        if (!mapping->a_ops->isolate_page(page, mode))
 128                goto out_no_isolated;
 129
 130        /* Driver shouldn't use PG_isolated bit of page->flags */
 131        WARN_ON_ONCE(PageIsolated(page));
 132        __SetPageIsolated(page);
 133        unlock_page(page);
 134
 135        return 0;
 136
 137out_no_isolated:
 138        unlock_page(page);
 139out_putpage:
 140        put_page(page);
 141out:
 142        return -EBUSY;
 143}
 144
 145/* It should be called on page which is PG_movable */
 146void putback_movable_page(struct page *page)
 147{
 148        struct address_space *mapping;
 149
 150        VM_BUG_ON_PAGE(!PageLocked(page), page);
 151        VM_BUG_ON_PAGE(!PageMovable(page), page);
 152        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 153
 154        mapping = page_mapping(page);
 155        mapping->a_ops->putback_page(page);
 156        __ClearPageIsolated(page);
 157}
 158
 159/*
 160 * Put previously isolated pages back onto the appropriate lists
 161 * from where they were once taken off for compaction/migration.
 162 *
 163 * This function shall be used whenever the isolated pageset has been
 164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 165 * and isolate_huge_page().
 166 */
 167void putback_movable_pages(struct list_head *l)
 168{
 169        struct page *page;
 170        struct page *page2;
 171
 172        list_for_each_entry_safe(page, page2, l, lru) {
 173                if (unlikely(PageHuge(page))) {
 174                        putback_active_hugepage(page);
 175                        continue;
 176                }
 177                list_del(&page->lru);
 178                /*
 179                 * We isolated non-lru movable page so here we can use
 180                 * __PageMovable because LRU page's mapping cannot have
 181                 * PAGE_MAPPING_MOVABLE.
 182                 */
 183                if (unlikely(__PageMovable(page))) {
 184                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 185                        lock_page(page);
 186                        if (PageMovable(page))
 187                                putback_movable_page(page);
 188                        else
 189                                __ClearPageIsolated(page);
 190                        unlock_page(page);
 191                        put_page(page);
 192                } else {
 193                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 194                                        page_is_file_cache(page), -hpage_nr_pages(page));
 195                        putback_lru_page(page);
 196                }
 197        }
 198}
 199
 200/*
 201 * Restore a potential migration pte to a working pte entry
 202 */
 203static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
 204                                 unsigned long addr, void *old)
 205{
 206        struct page_vma_mapped_walk pvmw = {
 207                .page = old,
 208                .vma = vma,
 209                .address = addr,
 210                .flags = PVMW_SYNC | PVMW_MIGRATION,
 211        };
 212        struct page *new;
 213        pte_t pte;
 214        swp_entry_t entry;
 215
 216        VM_BUG_ON_PAGE(PageTail(page), page);
 217        while (page_vma_mapped_walk(&pvmw)) {
 218                if (PageKsm(page))
 219                        new = page;
 220                else
 221                        new = page - pvmw.page->index +
 222                                linear_page_index(vma, pvmw.address);
 223
 224#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 225                /* PMD-mapped THP migration entry */
 226                if (!pvmw.pte) {
 227                        VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
 228                        remove_migration_pmd(&pvmw, new);
 229                        continue;
 230                }
 231#endif
 232
 233                get_page(new);
 234                pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 235                if (pte_swp_soft_dirty(*pvmw.pte))
 236                        pte = pte_mksoft_dirty(pte);
 237
 238                /*
 239                 * Recheck VMA as permissions can change since migration started
 240                 */
 241                entry = pte_to_swp_entry(*pvmw.pte);
 242                if (is_write_migration_entry(entry))
 243                        pte = maybe_mkwrite(pte, vma);
 244
 245                if (unlikely(is_zone_device_page(new))) {
 246                        if (is_device_private_page(new)) {
 247                                entry = make_device_private_entry(new, pte_write(pte));
 248                                pte = swp_entry_to_pte(entry);
 249                        }
 250                }
 251
 252#ifdef CONFIG_HUGETLB_PAGE
 253                if (PageHuge(new)) {
 254                        pte = pte_mkhuge(pte);
 255                        pte = arch_make_huge_pte(pte, vma, new, 0);
 256                        set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 257                        if (PageAnon(new))
 258                                hugepage_add_anon_rmap(new, vma, pvmw.address);
 259                        else
 260                                page_dup_rmap(new, true);
 261                } else
 262#endif
 263                {
 264                        set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 265
 266                        if (PageAnon(new))
 267                                page_add_anon_rmap(new, vma, pvmw.address, false);
 268                        else
 269                                page_add_file_rmap(new, false);
 270                }
 271                if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 272                        mlock_vma_page(new);
 273
 274                if (PageTransHuge(page) && PageMlocked(page))
 275                        clear_page_mlock(page);
 276
 277                /* No need to invalidate - it was non-present before */
 278                update_mmu_cache(vma, pvmw.address, pvmw.pte);
 279        }
 280
 281        return true;
 282}
 283
 284/*
 285 * Get rid of all migration entries and replace them by
 286 * references to the indicated page.
 287 */
 288void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 289{
 290        struct rmap_walk_control rwc = {
 291                .rmap_one = remove_migration_pte,
 292                .arg = old,
 293        };
 294
 295        if (locked)
 296                rmap_walk_locked(new, &rwc);
 297        else
 298                rmap_walk(new, &rwc);
 299}
 300
 301/*
 302 * Something used the pte of a page under migration. We need to
 303 * get to the page and wait until migration is finished.
 304 * When we return from this function the fault will be retried.
 305 */
 306void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 307                                spinlock_t *ptl)
 308{
 309        pte_t pte;
 310        swp_entry_t entry;
 311        struct page *page;
 312
 313        spin_lock(ptl);
 314        pte = *ptep;
 315        if (!is_swap_pte(pte))
 316                goto out;
 317
 318        entry = pte_to_swp_entry(pte);
 319        if (!is_migration_entry(entry))
 320                goto out;
 321
 322        page = migration_entry_to_page(entry);
 323
 324        /*
 325         * Once page cache replacement of page migration started, page_count
 326         * is zero; but we must not call put_and_wait_on_page_locked() without
 327         * a ref. Use get_page_unless_zero(), and just fault again if it fails.
 328         */
 329        if (!get_page_unless_zero(page))
 330                goto out;
 331        pte_unmap_unlock(ptep, ptl);
 332        put_and_wait_on_page_locked(page);
 333        return;
 334out:
 335        pte_unmap_unlock(ptep, ptl);
 336}
 337
 338void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 339                                unsigned long address)
 340{
 341        spinlock_t *ptl = pte_lockptr(mm, pmd);
 342        pte_t *ptep = pte_offset_map(pmd, address);
 343        __migration_entry_wait(mm, ptep, ptl);
 344}
 345
 346void migration_entry_wait_huge(struct vm_area_struct *vma,
 347                struct mm_struct *mm, pte_t *pte)
 348{
 349        spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 350        __migration_entry_wait(mm, pte, ptl);
 351}
 352
 353#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 354void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 355{
 356        spinlock_t *ptl;
 357        struct page *page;
 358
 359        ptl = pmd_lock(mm, pmd);
 360        if (!is_pmd_migration_entry(*pmd))
 361                goto unlock;
 362        page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
 363        if (!get_page_unless_zero(page))
 364                goto unlock;
 365        spin_unlock(ptl);
 366        put_and_wait_on_page_locked(page);
 367        return;
 368unlock:
 369        spin_unlock(ptl);
 370}
 371#endif
 372
 373static int expected_page_refs(struct address_space *mapping, struct page *page)
 374{
 375        int expected_count = 1;
 376
 377        /*
 378         * Device public or private pages have an extra refcount as they are
 379         * ZONE_DEVICE pages.
 380         */
 381        expected_count += is_device_private_page(page);
 382        if (mapping)
 383                expected_count += hpage_nr_pages(page) + page_has_private(page);
 384
 385        return expected_count;
 386}
 387
 388/*
 389 * Replace the page in the mapping.
 390 *
 391 * The number of remaining references must be:
 392 * 1 for anonymous pages without a mapping
 393 * 2 for pages with a mapping
 394 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 395 */
 396int migrate_page_move_mapping(struct address_space *mapping,
 397                struct page *newpage, struct page *page, int extra_count)
 398{
 399        XA_STATE(xas, &mapping->i_pages, page_index(page));
 400        struct zone *oldzone, *newzone;
 401        int dirty;
 402        int expected_count = expected_page_refs(mapping, page) + extra_count;
 403
 404        if (!mapping) {
 405                /* Anonymous page without mapping */
 406                if (page_count(page) != expected_count)
 407                        return -EAGAIN;
 408
 409                /* No turning back from here */
 410                newpage->index = page->index;
 411                newpage->mapping = page->mapping;
 412                if (PageSwapBacked(page))
 413                        __SetPageSwapBacked(newpage);
 414
 415                return MIGRATEPAGE_SUCCESS;
 416        }
 417
 418        oldzone = page_zone(page);
 419        newzone = page_zone(newpage);
 420
 421        xas_lock_irq(&xas);
 422        if (page_count(page) != expected_count || xas_load(&xas) != page) {
 423                xas_unlock_irq(&xas);
 424                return -EAGAIN;
 425        }
 426
 427        if (!page_ref_freeze(page, expected_count)) {
 428                xas_unlock_irq(&xas);
 429                return -EAGAIN;
 430        }
 431
 432        /*
 433         * Now we know that no one else is looking at the page:
 434         * no turning back from here.
 435         */
 436        newpage->index = page->index;
 437        newpage->mapping = page->mapping;
 438        page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
 439        if (PageSwapBacked(page)) {
 440                __SetPageSwapBacked(newpage);
 441                if (PageSwapCache(page)) {
 442                        SetPageSwapCache(newpage);
 443                        set_page_private(newpage, page_private(page));
 444                }
 445        } else {
 446                VM_BUG_ON_PAGE(PageSwapCache(page), page);
 447        }
 448
 449        /* Move dirty while page refs frozen and newpage not yet exposed */
 450        dirty = PageDirty(page);
 451        if (dirty) {
 452                ClearPageDirty(page);
 453                SetPageDirty(newpage);
 454        }
 455
 456        xas_store(&xas, newpage);
 457        if (PageTransHuge(page)) {
 458                int i;
 459
 460                for (i = 1; i < HPAGE_PMD_NR; i++) {
 461                        xas_next(&xas);
 462                        xas_store(&xas, newpage + i);
 463                }
 464        }
 465
 466        /*
 467         * Drop cache reference from old page by unfreezing
 468         * to one less reference.
 469         * We know this isn't the last reference.
 470         */
 471        page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
 472
 473        xas_unlock(&xas);
 474        /* Leave irq disabled to prevent preemption while updating stats */
 475
 476        /*
 477         * If moved to a different zone then also account
 478         * the page for that zone. Other VM counters will be
 479         * taken care of when we establish references to the
 480         * new page and drop references to the old page.
 481         *
 482         * Note that anonymous pages are accounted for
 483         * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 484         * are mapped to swap space.
 485         */
 486        if (newzone != oldzone) {
 487                __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
 488                __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
 489                if (PageSwapBacked(page) && !PageSwapCache(page)) {
 490                        __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
 491                        __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
 492                }
 493                if (dirty && mapping_cap_account_dirty(mapping)) {
 494                        __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
 495                        __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
 496                        __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
 497                        __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
 498                }
 499        }
 500        local_irq_enable();
 501
 502        return MIGRATEPAGE_SUCCESS;
 503}
 504EXPORT_SYMBOL(migrate_page_move_mapping);
 505
 506/*
 507 * The expected number of remaining references is the same as that
 508 * of migrate_page_move_mapping().
 509 */
 510int migrate_huge_page_move_mapping(struct address_space *mapping,
 511                                   struct page *newpage, struct page *page)
 512{
 513        XA_STATE(xas, &mapping->i_pages, page_index(page));
 514        int expected_count;
 515
 516        xas_lock_irq(&xas);
 517        expected_count = 2 + page_has_private(page);
 518        if (page_count(page) != expected_count || xas_load(&xas) != page) {
 519                xas_unlock_irq(&xas);
 520                return -EAGAIN;
 521        }
 522
 523        if (!page_ref_freeze(page, expected_count)) {
 524                xas_unlock_irq(&xas);
 525                return -EAGAIN;
 526        }
 527
 528        newpage->index = page->index;
 529        newpage->mapping = page->mapping;
 530
 531        get_page(newpage);
 532
 533        xas_store(&xas, newpage);
 534
 535        page_ref_unfreeze(page, expected_count - 1);
 536
 537        xas_unlock_irq(&xas);
 538
 539        return MIGRATEPAGE_SUCCESS;
 540}
 541
 542/*
 543 * Gigantic pages are so large that we do not guarantee that page++ pointer
 544 * arithmetic will work across the entire page.  We need something more
 545 * specialized.
 546 */
 547static void __copy_gigantic_page(struct page *dst, struct page *src,
 548                                int nr_pages)
 549{
 550        int i;
 551        struct page *dst_base = dst;
 552        struct page *src_base = src;
 553
 554        for (i = 0; i < nr_pages; ) {
 555                cond_resched();
 556                copy_highpage(dst, src);
 557
 558                i++;
 559                dst = mem_map_next(dst, dst_base, i);
 560                src = mem_map_next(src, src_base, i);
 561        }
 562}
 563
 564static void copy_huge_page(struct page *dst, struct page *src)
 565{
 566        int i;
 567        int nr_pages;
 568
 569        if (PageHuge(src)) {
 570                /* hugetlbfs page */
 571                struct hstate *h = page_hstate(src);
 572                nr_pages = pages_per_huge_page(h);
 573
 574                if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 575                        __copy_gigantic_page(dst, src, nr_pages);
 576                        return;
 577                }
 578        } else {
 579                /* thp page */
 580                BUG_ON(!PageTransHuge(src));
 581                nr_pages = hpage_nr_pages(src);
 582        }
 583
 584        for (i = 0; i < nr_pages; i++) {
 585                cond_resched();
 586                copy_highpage(dst + i, src + i);
 587        }
 588}
 589
 590/*
 591 * Copy the page to its new location
 592 */
 593void migrate_page_states(struct page *newpage, struct page *page)
 594{
 595        int cpupid;
 596
 597        if (PageError(page))
 598                SetPageError(newpage);
 599        if (PageReferenced(page))
 600                SetPageReferenced(newpage);
 601        if (PageUptodate(page))
 602                SetPageUptodate(newpage);
 603        if (TestClearPageActive(page)) {
 604                VM_BUG_ON_PAGE(PageUnevictable(page), page);
 605                SetPageActive(newpage);
 606        } else if (TestClearPageUnevictable(page))
 607                SetPageUnevictable(newpage);
 608        if (PageWorkingset(page))
 609                SetPageWorkingset(newpage);
 610        if (PageChecked(page))
 611                SetPageChecked(newpage);
 612        if (PageMappedToDisk(page))
 613                SetPageMappedToDisk(newpage);
 614
 615        /* Move dirty on pages not done by migrate_page_move_mapping() */
 616        if (PageDirty(page))
 617                SetPageDirty(newpage);
 618
 619        if (page_is_young(page))
 620                set_page_young(newpage);
 621        if (page_is_idle(page))
 622                set_page_idle(newpage);
 623
 624        /*
 625         * Copy NUMA information to the new page, to prevent over-eager
 626         * future migrations of this same page.
 627         */
 628        cpupid = page_cpupid_xchg_last(page, -1);
 629        page_cpupid_xchg_last(newpage, cpupid);
 630
 631        ksm_migrate_page(newpage, page);
 632        /*
 633         * Please do not reorder this without considering how mm/ksm.c's
 634         * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 635         */
 636        if (PageSwapCache(page))
 637                ClearPageSwapCache(page);
 638        ClearPagePrivate(page);
 639        set_page_private(page, 0);
 640
 641        /*
 642         * If any waiters have accumulated on the new page then
 643         * wake them up.
 644         */
 645        if (PageWriteback(newpage))
 646                end_page_writeback(newpage);
 647
 648        copy_page_owner(page, newpage);
 649
 650        mem_cgroup_migrate(page, newpage);
 651}
 652EXPORT_SYMBOL(migrate_page_states);
 653
 654void migrate_page_copy(struct page *newpage, struct page *page)
 655{
 656        if (PageHuge(page) || PageTransHuge(page))
 657                copy_huge_page(newpage, page);
 658        else
 659                copy_highpage(newpage, page);
 660
 661        migrate_page_states(newpage, page);
 662}
 663EXPORT_SYMBOL(migrate_page_copy);
 664
 665/************************************************************
 666 *                    Migration functions
 667 ***********************************************************/
 668
 669/*
 670 * Common logic to directly migrate a single LRU page suitable for
 671 * pages that do not use PagePrivate/PagePrivate2.
 672 *
 673 * Pages are locked upon entry and exit.
 674 */
 675int migrate_page(struct address_space *mapping,
 676                struct page *newpage, struct page *page,
 677                enum migrate_mode mode)
 678{
 679        int rc;
 680
 681        BUG_ON(PageWriteback(page));    /* Writeback must be complete */
 682
 683        rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 684
 685        if (rc != MIGRATEPAGE_SUCCESS)
 686                return rc;
 687
 688        if (mode != MIGRATE_SYNC_NO_COPY)
 689                migrate_page_copy(newpage, page);
 690        else
 691                migrate_page_states(newpage, page);
 692        return MIGRATEPAGE_SUCCESS;
 693}
 694EXPORT_SYMBOL(migrate_page);
 695
 696#ifdef CONFIG_BLOCK
 697/* Returns true if all buffers are successfully locked */
 698static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 699                                                        enum migrate_mode mode)
 700{
 701        struct buffer_head *bh = head;
 702
 703        /* Simple case, sync compaction */
 704        if (mode != MIGRATE_ASYNC) {
 705                do {
 706                        lock_buffer(bh);
 707                        bh = bh->b_this_page;
 708
 709                } while (bh != head);
 710
 711                return true;
 712        }
 713
 714        /* async case, we cannot block on lock_buffer so use trylock_buffer */
 715        do {
 716                if (!trylock_buffer(bh)) {
 717                        /*
 718                         * We failed to lock the buffer and cannot stall in
 719                         * async migration. Release the taken locks
 720                         */
 721                        struct buffer_head *failed_bh = bh;
 722                        bh = head;
 723                        while (bh != failed_bh) {
 724                                unlock_buffer(bh);
 725                                bh = bh->b_this_page;
 726                        }
 727                        return false;
 728                }
 729
 730                bh = bh->b_this_page;
 731        } while (bh != head);
 732        return true;
 733}
 734
 735static int __buffer_migrate_page(struct address_space *mapping,
 736                struct page *newpage, struct page *page, enum migrate_mode mode,
 737                bool check_refs)
 738{
 739        struct buffer_head *bh, *head;
 740        int rc;
 741        int expected_count;
 742
 743        if (!page_has_buffers(page))
 744                return migrate_page(mapping, newpage, page, mode);
 745
 746        /* Check whether page does not have extra refs before we do more work */
 747        expected_count = expected_page_refs(mapping, page);
 748        if (page_count(page) != expected_count)
 749                return -EAGAIN;
 750
 751        head = page_buffers(page);
 752        if (!buffer_migrate_lock_buffers(head, mode))
 753                return -EAGAIN;
 754
 755        if (check_refs) {
 756                bool busy;
 757                bool invalidated = false;
 758
 759recheck_buffers:
 760                busy = false;
 761                spin_lock(&mapping->private_lock);
 762                bh = head;
 763                do {
 764                        if (atomic_read(&bh->b_count)) {
 765                                busy = true;
 766                                break;
 767                        }
 768                        bh = bh->b_this_page;
 769                } while (bh != head);
 770                if (busy) {
 771                        if (invalidated) {
 772                                rc = -EAGAIN;
 773                                goto unlock_buffers;
 774                        }
 775                        spin_unlock(&mapping->private_lock);
 776                        invalidate_bh_lrus();
 777                        invalidated = true;
 778                        goto recheck_buffers;
 779                }
 780        }
 781
 782        rc = migrate_page_move_mapping(mapping, newpage, page, 0);
 783        if (rc != MIGRATEPAGE_SUCCESS)
 784                goto unlock_buffers;
 785
 786        ClearPagePrivate(page);
 787        set_page_private(newpage, page_private(page));
 788        set_page_private(page, 0);
 789        put_page(page);
 790        get_page(newpage);
 791
 792        bh = head;
 793        do {
 794                set_bh_page(bh, newpage, bh_offset(bh));
 795                bh = bh->b_this_page;
 796
 797        } while (bh != head);
 798
 799        SetPagePrivate(newpage);
 800
 801        if (mode != MIGRATE_SYNC_NO_COPY)
 802                migrate_page_copy(newpage, page);
 803        else
 804                migrate_page_states(newpage, page);
 805
 806        rc = MIGRATEPAGE_SUCCESS;
 807unlock_buffers:
 808        if (check_refs)
 809                spin_unlock(&mapping->private_lock);
 810        bh = head;
 811        do {
 812                unlock_buffer(bh);
 813                bh = bh->b_this_page;
 814
 815        } while (bh != head);
 816
 817        return rc;
 818}
 819
 820/*
 821 * Migration function for pages with buffers. This function can only be used
 822 * if the underlying filesystem guarantees that no other references to "page"
 823 * exist. For example attached buffer heads are accessed only under page lock.
 824 */
 825int buffer_migrate_page(struct address_space *mapping,
 826                struct page *newpage, struct page *page, enum migrate_mode mode)
 827{
 828        return __buffer_migrate_page(mapping, newpage, page, mode, false);
 829}
 830EXPORT_SYMBOL(buffer_migrate_page);
 831
 832/*
 833 * Same as above except that this variant is more careful and checks that there
 834 * are also no buffer head references. This function is the right one for
 835 * mappings where buffer heads are directly looked up and referenced (such as
 836 * block device mappings).
 837 */
 838int buffer_migrate_page_norefs(struct address_space *mapping,
 839                struct page *newpage, struct page *page, enum migrate_mode mode)
 840{
 841        return __buffer_migrate_page(mapping, newpage, page, mode, true);
 842}
 843#endif
 844
 845/*
 846 * Writeback a page to clean the dirty state
 847 */
 848static int writeout(struct address_space *mapping, struct page *page)
 849{
 850        struct writeback_control wbc = {
 851                .sync_mode = WB_SYNC_NONE,
 852                .nr_to_write = 1,
 853                .range_start = 0,
 854                .range_end = LLONG_MAX,
 855                .for_reclaim = 1
 856        };
 857        int rc;
 858
 859        if (!mapping->a_ops->writepage)
 860                /* No write method for the address space */
 861                return -EINVAL;
 862
 863        if (!clear_page_dirty_for_io(page))
 864                /* Someone else already triggered a write */
 865                return -EAGAIN;
 866
 867        /*
 868         * A dirty page may imply that the underlying filesystem has
 869         * the page on some queue. So the page must be clean for
 870         * migration. Writeout may mean we loose the lock and the
 871         * page state is no longer what we checked for earlier.
 872         * At this point we know that the migration attempt cannot
 873         * be successful.
 874         */
 875        remove_migration_ptes(page, page, false);
 876
 877        rc = mapping->a_ops->writepage(page, &wbc);
 878
 879        if (rc != AOP_WRITEPAGE_ACTIVATE)
 880                /* unlocked. Relock */
 881                lock_page(page);
 882
 883        return (rc < 0) ? -EIO : -EAGAIN;
 884}
 885
 886/*
 887 * Default handling if a filesystem does not provide a migration function.
 888 */
 889static int fallback_migrate_page(struct address_space *mapping,
 890        struct page *newpage, struct page *page, enum migrate_mode mode)
 891{
 892        if (PageDirty(page)) {
 893                /* Only writeback pages in full synchronous migration */
 894                switch (mode) {
 895                case MIGRATE_SYNC:
 896                case MIGRATE_SYNC_NO_COPY:
 897                        break;
 898                default:
 899                        return -EBUSY;
 900                }
 901                return writeout(mapping, page);
 902        }
 903
 904        /*
 905         * Buffers may be managed in a filesystem specific way.
 906         * We must have no buffers or drop them.
 907         */
 908        if (page_has_private(page) &&
 909            !try_to_release_page(page, GFP_KERNEL))
 910                return mode == MIGRATE_SYNC ? -EAGAIN : -EBUSY;
 911
 912        return migrate_page(mapping, newpage, page, mode);
 913}
 914
 915/*
 916 * Move a page to a newly allocated page
 917 * The page is locked and all ptes have been successfully removed.
 918 *
 919 * The new page will have replaced the old page if this function
 920 * is successful.
 921 *
 922 * Return value:
 923 *   < 0 - error code
 924 *  MIGRATEPAGE_SUCCESS - success
 925 */
 926static int move_to_new_page(struct page *newpage, struct page *page,
 927                                enum migrate_mode mode)
 928{
 929        struct address_space *mapping;
 930        int rc = -EAGAIN;
 931        bool is_lru = !__PageMovable(page);
 932
 933        VM_BUG_ON_PAGE(!PageLocked(page), page);
 934        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 935
 936        mapping = page_mapping(page);
 937
 938        if (likely(is_lru)) {
 939                if (!mapping)
 940                        rc = migrate_page(mapping, newpage, page, mode);
 941                else if (mapping->a_ops->migratepage)
 942                        /*
 943                         * Most pages have a mapping and most filesystems
 944                         * provide a migratepage callback. Anonymous pages
 945                         * are part of swap space which also has its own
 946                         * migratepage callback. This is the most common path
 947                         * for page migration.
 948                         */
 949                        rc = mapping->a_ops->migratepage(mapping, newpage,
 950                                                        page, mode);
 951                else
 952                        rc = fallback_migrate_page(mapping, newpage,
 953                                                        page, mode);
 954        } else {
 955                /*
 956                 * In case of non-lru page, it could be released after
 957                 * isolation step. In that case, we shouldn't try migration.
 958                 */
 959                VM_BUG_ON_PAGE(!PageIsolated(page), page);
 960                if (!PageMovable(page)) {
 961                        rc = MIGRATEPAGE_SUCCESS;
 962                        __ClearPageIsolated(page);
 963                        goto out;
 964                }
 965
 966                rc = mapping->a_ops->migratepage(mapping, newpage,
 967                                                page, mode);
 968                WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 969                        !PageIsolated(page));
 970        }
 971
 972        /*
 973         * When successful, old pagecache page->mapping must be cleared before
 974         * page is freed; but stats require that PageAnon be left as PageAnon.
 975         */
 976        if (rc == MIGRATEPAGE_SUCCESS) {
 977                if (__PageMovable(page)) {
 978                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 979
 980                        /*
 981                         * We clear PG_movable under page_lock so any compactor
 982                         * cannot try to migrate this page.
 983                         */
 984                        __ClearPageIsolated(page);
 985                }
 986
 987                /*
 988                 * Anonymous and movable page->mapping will be cleard by
 989                 * free_pages_prepare so don't reset it here for keeping
 990                 * the type to work PageAnon, for example.
 991                 */
 992                if (!PageMappingFlags(page))
 993                        page->mapping = NULL;
 994
 995                if (likely(!is_zone_device_page(newpage)))
 996                        flush_dcache_page(newpage);
 997
 998        }
 999out:
1000        return rc;
1001}
1002
1003static int __unmap_and_move(struct page *page, struct page *newpage,
1004                                int force, enum migrate_mode mode)
1005{
1006        int rc = -EAGAIN;
1007        int page_was_mapped = 0;
1008        struct anon_vma *anon_vma = NULL;
1009        bool is_lru = !__PageMovable(page);
1010
1011        if (!trylock_page(page)) {
1012                if (!force || mode == MIGRATE_ASYNC)
1013                        goto out;
1014
1015                /*
1016                 * It's not safe for direct compaction to call lock_page.
1017                 * For example, during page readahead pages are added locked
1018                 * to the LRU. Later, when the IO completes the pages are
1019                 * marked uptodate and unlocked. However, the queueing
1020                 * could be merging multiple pages for one bio (e.g.
1021                 * mpage_readpages). If an allocation happens for the
1022                 * second or third page, the process can end up locking
1023                 * the same page twice and deadlocking. Rather than
1024                 * trying to be clever about what pages can be locked,
1025                 * avoid the use of lock_page for direct compaction
1026                 * altogether.
1027                 */
1028                if (current->flags & PF_MEMALLOC)
1029                        goto out;
1030
1031                lock_page(page);
1032        }
1033
1034        if (PageWriteback(page)) {
1035                /*
1036                 * Only in the case of a full synchronous migration is it
1037                 * necessary to wait for PageWriteback. In the async case,
1038                 * the retry loop is too short and in the sync-light case,
1039                 * the overhead of stalling is too much
1040                 */
1041                switch (mode) {
1042                case MIGRATE_SYNC:
1043                case MIGRATE_SYNC_NO_COPY:
1044                        break;
1045                default:
1046                        rc = -EBUSY;
1047                        goto out_unlock;
1048                }
1049                if (!force)
1050                        goto out_unlock;
1051                wait_on_page_writeback(page);
1052        }
1053
1054        /*
1055         * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1056         * we cannot notice that anon_vma is freed while we migrates a page.
1057         * This get_anon_vma() delays freeing anon_vma pointer until the end
1058         * of migration. File cache pages are no problem because of page_lock()
1059         * File Caches may use write_page() or lock_page() in migration, then,
1060         * just care Anon page here.
1061         *
1062         * Only page_get_anon_vma() understands the subtleties of
1063         * getting a hold on an anon_vma from outside one of its mms.
1064         * But if we cannot get anon_vma, then we won't need it anyway,
1065         * because that implies that the anon page is no longer mapped
1066         * (and cannot be remapped so long as we hold the page lock).
1067         */
1068        if (PageAnon(page) && !PageKsm(page))
1069                anon_vma = page_get_anon_vma(page);
1070
1071        /*
1072         * Block others from accessing the new page when we get around to
1073         * establishing additional references. We are usually the only one
1074         * holding a reference to newpage at this point. We used to have a BUG
1075         * here if trylock_page(newpage) fails, but would like to allow for
1076         * cases where there might be a race with the previous use of newpage.
1077         * This is much like races on refcount of oldpage: just don't BUG().
1078         */
1079        if (unlikely(!trylock_page(newpage)))
1080                goto out_unlock;
1081
1082        if (unlikely(!is_lru)) {
1083                rc = move_to_new_page(newpage, page, mode);
1084                goto out_unlock_both;
1085        }
1086
1087        /*
1088         * Corner case handling:
1089         * 1. When a new swap-cache page is read into, it is added to the LRU
1090         * and treated as swapcache but it has no rmap yet.
1091         * Calling try_to_unmap() against a page->mapping==NULL page will
1092         * trigger a BUG.  So handle it here.
1093         * 2. An orphaned page (see truncate_complete_page) might have
1094         * fs-private metadata. The page can be picked up due to memory
1095         * offlining.  Everywhere else except page reclaim, the page is
1096         * invisible to the vm, so the page can not be migrated.  So try to
1097         * free the metadata, so the page can be freed.
1098         */
1099        if (!page->mapping) {
1100                VM_BUG_ON_PAGE(PageAnon(page), page);
1101                if (page_has_private(page)) {
1102                        try_to_free_buffers(page);
1103                        goto out_unlock_both;
1104                }
1105        } else if (page_mapped(page)) {
1106                /* Establish migration ptes */
1107                VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1108                                page);
1109                try_to_unmap(page,
1110                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1111                page_was_mapped = 1;
1112        }
1113
1114        if (!page_mapped(page))
1115                rc = move_to_new_page(newpage, page, mode);
1116
1117        if (page_was_mapped)
1118                remove_migration_ptes(page,
1119                        rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1120
1121out_unlock_both:
1122        unlock_page(newpage);
1123out_unlock:
1124        /* Drop an anon_vma reference if we took one */
1125        if (anon_vma)
1126                put_anon_vma(anon_vma);
1127        unlock_page(page);
1128out:
1129        /*
1130         * If migration is successful, decrease refcount of the newpage
1131         * which will not free the page because new page owner increased
1132         * refcounter. As well, if it is LRU page, add the page to LRU
1133         * list in here. Use the old state of the isolated source page to
1134         * determine if we migrated a LRU page. newpage was already unlocked
1135         * and possibly modified by its owner - don't rely on the page
1136         * state.
1137         */
1138        if (rc == MIGRATEPAGE_SUCCESS) {
1139                if (unlikely(!is_lru))
1140                        put_page(newpage);
1141                else
1142                        putback_lru_page(newpage);
1143        }
1144
1145        return rc;
1146}
1147
1148/*
1149 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1150 * around it.
1151 */
1152#if defined(CONFIG_ARM) && \
1153        defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1154#define ICE_noinline noinline
1155#else
1156#define ICE_noinline
1157#endif
1158
1159/*
1160 * Obtain the lock on page, remove all ptes and migrate the page
1161 * to the newly allocated page in newpage.
1162 */
1163static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1164                                   free_page_t put_new_page,
1165                                   unsigned long private, struct page *page,
1166                                   int force, enum migrate_mode mode,
1167                                   enum migrate_reason reason)
1168{
1169        int rc = MIGRATEPAGE_SUCCESS;
1170        struct page *newpage;
1171
1172        if (!thp_migration_supported() && PageTransHuge(page))
1173                return -ENOMEM;
1174
1175        newpage = get_new_page(page, private);
1176        if (!newpage)
1177                return -ENOMEM;
1178
1179        if (page_count(page) == 1) {
1180                /* page was freed from under us. So we are done. */
1181                ClearPageActive(page);
1182                ClearPageUnevictable(page);
1183                if (unlikely(__PageMovable(page))) {
1184                        lock_page(page);
1185                        if (!PageMovable(page))
1186                                __ClearPageIsolated(page);
1187                        unlock_page(page);
1188                }
1189                if (put_new_page)
1190                        put_new_page(newpage, private);
1191                else
1192                        put_page(newpage);
1193                goto out;
1194        }
1195
1196        rc = __unmap_and_move(page, newpage, force, mode);
1197        if (rc == MIGRATEPAGE_SUCCESS)
1198                set_page_owner_migrate_reason(newpage, reason);
1199
1200out:
1201        if (rc != -EAGAIN) {
1202                /*
1203                 * A page that has been migrated has all references
1204                 * removed and will be freed. A page that has not been
1205                 * migrated will have kepts its references and be
1206                 * restored.
1207                 */
1208                list_del(&page->lru);
1209
1210                /*
1211                 * Compaction can migrate also non-LRU pages which are
1212                 * not accounted to NR_ISOLATED_*. They can be recognized
1213                 * as __PageMovable
1214                 */
1215                if (likely(!__PageMovable(page)))
1216                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1217                                        page_is_file_cache(page), -hpage_nr_pages(page));
1218        }
1219
1220        /*
1221         * If migration is successful, releases reference grabbed during
1222         * isolation. Otherwise, restore the page to right list unless
1223         * we want to retry.
1224         */
1225        if (rc == MIGRATEPAGE_SUCCESS) {
1226                put_page(page);
1227                if (reason == MR_MEMORY_FAILURE) {
1228                        /*
1229                         * Set PG_HWPoison on just freed page
1230                         * intentionally. Although it's rather weird,
1231                         * it's how HWPoison flag works at the moment.
1232                         */
1233                        if (set_hwpoison_free_buddy_page(page))
1234                                num_poisoned_pages_inc();
1235                }
1236        } else {
1237                if (rc != -EAGAIN) {
1238                        if (likely(!__PageMovable(page))) {
1239                                putback_lru_page(page);
1240                                goto put_new;
1241                        }
1242
1243                        lock_page(page);
1244                        if (PageMovable(page))
1245                                putback_movable_page(page);
1246                        else
1247                                __ClearPageIsolated(page);
1248                        unlock_page(page);
1249                        put_page(page);
1250                }
1251put_new:
1252                if (put_new_page)
1253                        put_new_page(newpage, private);
1254                else
1255                        put_page(newpage);
1256        }
1257
1258        return rc;
1259}
1260
1261/*
1262 * Counterpart of unmap_and_move_page() for hugepage migration.
1263 *
1264 * This function doesn't wait the completion of hugepage I/O
1265 * because there is no race between I/O and migration for hugepage.
1266 * Note that currently hugepage I/O occurs only in direct I/O
1267 * where no lock is held and PG_writeback is irrelevant,
1268 * and writeback status of all subpages are counted in the reference
1269 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1270 * under direct I/O, the reference of the head page is 512 and a bit more.)
1271 * This means that when we try to migrate hugepage whose subpages are
1272 * doing direct I/O, some references remain after try_to_unmap() and
1273 * hugepage migration fails without data corruption.
1274 *
1275 * There is also no race when direct I/O is issued on the page under migration,
1276 * because then pte is replaced with migration swap entry and direct I/O code
1277 * will wait in the page fault for migration to complete.
1278 */
1279static int unmap_and_move_huge_page(new_page_t get_new_page,
1280                                free_page_t put_new_page, unsigned long private,
1281                                struct page *hpage, int force,
1282                                enum migrate_mode mode, int reason)
1283{
1284        int rc = -EAGAIN;
1285        int page_was_mapped = 0;
1286        struct page *new_hpage;
1287        struct anon_vma *anon_vma = NULL;
1288
1289        /*
1290         * Migratability of hugepages depends on architectures and their size.
1291         * This check is necessary because some callers of hugepage migration
1292         * like soft offline and memory hotremove don't walk through page
1293         * tables or check whether the hugepage is pmd-based or not before
1294         * kicking migration.
1295         */
1296        if (!hugepage_migration_supported(page_hstate(hpage))) {
1297                putback_active_hugepage(hpage);
1298                return -ENOSYS;
1299        }
1300
1301        new_hpage = get_new_page(hpage, private);
1302        if (!new_hpage)
1303                return -ENOMEM;
1304
1305        if (!trylock_page(hpage)) {
1306                if (!force)
1307                        goto out;
1308                switch (mode) {
1309                case MIGRATE_SYNC:
1310                case MIGRATE_SYNC_NO_COPY:
1311                        break;
1312                default:
1313                        goto out;
1314                }
1315                lock_page(hpage);
1316        }
1317
1318        /*
1319         * Check for pages which are in the process of being freed.  Without
1320         * page_mapping() set, hugetlbfs specific move page routine will not
1321         * be called and we could leak usage counts for subpools.
1322         */
1323        if (page_private(hpage) && !page_mapping(hpage)) {
1324                rc = -EBUSY;
1325                goto out_unlock;
1326        }
1327
1328        if (PageAnon(hpage))
1329                anon_vma = page_get_anon_vma(hpage);
1330
1331        if (unlikely(!trylock_page(new_hpage)))
1332                goto put_anon;
1333
1334        if (page_mapped(hpage)) {
1335                try_to_unmap(hpage,
1336                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1337                page_was_mapped = 1;
1338        }
1339
1340        if (!page_mapped(hpage))
1341                rc = move_to_new_page(new_hpage, hpage, mode);
1342
1343        if (page_was_mapped)
1344                remove_migration_ptes(hpage,
1345                        rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1346
1347        unlock_page(new_hpage);
1348
1349put_anon:
1350        if (anon_vma)
1351                put_anon_vma(anon_vma);
1352
1353        if (rc == MIGRATEPAGE_SUCCESS) {
1354                move_hugetlb_state(hpage, new_hpage, reason);
1355                put_new_page = NULL;
1356        }
1357
1358out_unlock:
1359        unlock_page(hpage);
1360out:
1361        if (rc != -EAGAIN)
1362                putback_active_hugepage(hpage);
1363
1364        /*
1365         * If migration was not successful and there's a freeing callback, use
1366         * it.  Otherwise, put_page() will drop the reference grabbed during
1367         * isolation.
1368         */
1369        if (put_new_page)
1370                put_new_page(new_hpage, private);
1371        else
1372                putback_active_hugepage(new_hpage);
1373
1374        return rc;
1375}
1376
1377/*
1378 * migrate_pages - migrate the pages specified in a list, to the free pages
1379 *                 supplied as the target for the page migration
1380 *
1381 * @from:               The list of pages to be migrated.
1382 * @get_new_page:       The function used to allocate free pages to be used
1383 *                      as the target of the page migration.
1384 * @put_new_page:       The function used to free target pages if migration
1385 *                      fails, or NULL if no special handling is necessary.
1386 * @private:            Private data to be passed on to get_new_page()
1387 * @mode:               The migration mode that specifies the constraints for
1388 *                      page migration, if any.
1389 * @reason:             The reason for page migration.
1390 *
1391 * The function returns after 10 attempts or if no pages are movable any more
1392 * because the list has become empty or no retryable pages exist any more.
1393 * The caller should call putback_movable_pages() to return pages to the LRU
1394 * or free list only if ret != 0.
1395 *
1396 * Returns the number of pages that were not migrated, or an error code.
1397 */
1398int migrate_pages(struct list_head *from, new_page_t get_new_page,
1399                free_page_t put_new_page, unsigned long private,
1400                enum migrate_mode mode, int reason)
1401{
1402        int retry = 1;
1403        int nr_failed = 0;
1404        int nr_succeeded = 0;
1405        int pass = 0;
1406        struct page *page;
1407        struct page *page2;
1408        int swapwrite = current->flags & PF_SWAPWRITE;
1409        int rc;
1410
1411        if (!swapwrite)
1412                current->flags |= PF_SWAPWRITE;
1413
1414        for(pass = 0; pass < 10 && retry; pass++) {
1415                retry = 0;
1416
1417                list_for_each_entry_safe(page, page2, from, lru) {
1418retry:
1419                        cond_resched();
1420
1421                        if (PageHuge(page))
1422                                rc = unmap_and_move_huge_page(get_new_page,
1423                                                put_new_page, private, page,
1424                                                pass > 2, mode, reason);
1425                        else
1426                                rc = unmap_and_move(get_new_page, put_new_page,
1427                                                private, page, pass > 2, mode,
1428                                                reason);
1429
1430                        switch(rc) {
1431                        case -ENOMEM:
1432                                /*
1433                                 * THP migration might be unsupported or the
1434                                 * allocation could've failed so we should
1435                                 * retry on the same page with the THP split
1436                                 * to base pages.
1437                                 *
1438                                 * Head page is retried immediately and tail
1439                                 * pages are added to the tail of the list so
1440                                 * we encounter them after the rest of the list
1441                                 * is processed.
1442                                 */
1443                                if (PageTransHuge(page) && !PageHuge(page)) {
1444                                        lock_page(page);
1445                                        rc = split_huge_page_to_list(page, from);
1446                                        unlock_page(page);
1447                                        if (!rc) {
1448                                                list_safe_reset_next(page, page2, lru);
1449                                                goto retry;
1450                                        }
1451                                }
1452                                nr_failed++;
1453                                goto out;
1454                        case -EAGAIN:
1455                                retry++;
1456                                break;
1457                        case MIGRATEPAGE_SUCCESS:
1458                                nr_succeeded++;
1459                                break;
1460                        default:
1461                                /*
1462                                 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1463                                 * unlike -EAGAIN case, the failed page is
1464                                 * removed from migration page list and not
1465                                 * retried in the next outer loop.
1466                                 */
1467                                nr_failed++;
1468                                break;
1469                        }
1470                }
1471        }
1472        nr_failed += retry;
1473        rc = nr_failed;
1474out:
1475        if (nr_succeeded)
1476                count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1477        if (nr_failed)
1478                count_vm_events(PGMIGRATE_FAIL, nr_failed);
1479        trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1480
1481        if (!swapwrite)
1482                current->flags &= ~PF_SWAPWRITE;
1483
1484        return rc;
1485}
1486
1487#ifdef CONFIG_NUMA
1488
1489static int store_status(int __user *status, int start, int value, int nr)
1490{
1491        while (nr-- > 0) {
1492                if (put_user(value, status + start))
1493                        return -EFAULT;
1494                start++;
1495        }
1496
1497        return 0;
1498}
1499
1500static int do_move_pages_to_node(struct mm_struct *mm,
1501                struct list_head *pagelist, int node)
1502{
1503        int err;
1504
1505        if (list_empty(pagelist))
1506                return 0;
1507
1508        err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1509                        MIGRATE_SYNC, MR_SYSCALL);
1510        if (err)
1511                putback_movable_pages(pagelist);
1512        return err;
1513}
1514
1515/*
1516 * Resolves the given address to a struct page, isolates it from the LRU and
1517 * puts it to the given pagelist.
1518 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1519 * queued or the page doesn't need to be migrated because it is already on
1520 * the target node
1521 */
1522static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1523                int node, struct list_head *pagelist, bool migrate_all)
1524{
1525        struct vm_area_struct *vma;
1526        struct page *page;
1527        unsigned int follflags;
1528        int err;
1529
1530        down_read(&mm->mmap_sem);
1531        err = -EFAULT;
1532        vma = find_vma(mm, addr);
1533        if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1534                goto out;
1535
1536        /* FOLL_DUMP to ignore special (like zero) pages */
1537        follflags = FOLL_GET | FOLL_DUMP;
1538        page = follow_page(vma, addr, follflags);
1539
1540        err = PTR_ERR(page);
1541        if (IS_ERR(page))
1542                goto out;
1543
1544        err = -ENOENT;
1545        if (!page)
1546                goto out;
1547
1548        err = 0;
1549        if (page_to_nid(page) == node)
1550                goto out_putpage;
1551
1552        err = -EACCES;
1553        if (page_mapcount(page) > 1 && !migrate_all)
1554                goto out_putpage;
1555
1556        if (PageHuge(page)) {
1557                if (PageHead(page)) {
1558                        isolate_huge_page(page, pagelist);
1559                        err = 0;
1560                }
1561        } else {
1562                struct page *head;
1563
1564                head = compound_head(page);
1565                err = isolate_lru_page(head);
1566                if (err)
1567                        goto out_putpage;
1568
1569                err = 0;
1570                list_add_tail(&head->lru, pagelist);
1571                mod_node_page_state(page_pgdat(head),
1572                        NR_ISOLATED_ANON + page_is_file_cache(head),
1573                        hpage_nr_pages(head));
1574        }
1575out_putpage:
1576        /*
1577         * Either remove the duplicate refcount from
1578         * isolate_lru_page() or drop the page ref if it was
1579         * not isolated.
1580         */
1581        put_page(page);
1582out:
1583        up_read(&mm->mmap_sem);
1584        return err;
1585}
1586
1587/*
1588 * Migrate an array of page address onto an array of nodes and fill
1589 * the corresponding array of status.
1590 */
1591static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1592                         unsigned long nr_pages,
1593                         const void __user * __user *pages,
1594                         const int __user *nodes,
1595                         int __user *status, int flags)
1596{
1597        int current_node = NUMA_NO_NODE;
1598        LIST_HEAD(pagelist);
1599        int start, i;
1600        int err = 0, err1;
1601
1602        migrate_prep();
1603
1604        for (i = start = 0; i < nr_pages; i++) {
1605                const void __user *p;
1606                unsigned long addr;
1607                int node;
1608
1609                err = -EFAULT;
1610                if (get_user(p, pages + i))
1611                        goto out_flush;
1612                if (get_user(node, nodes + i))
1613                        goto out_flush;
1614                addr = (unsigned long)p;
1615
1616                err = -ENODEV;
1617                if (node < 0 || node >= MAX_NUMNODES)
1618                        goto out_flush;
1619                if (!node_state(node, N_MEMORY))
1620                        goto out_flush;
1621
1622                err = -EACCES;
1623                if (!node_isset(node, task_nodes))
1624                        goto out_flush;
1625
1626                if (current_node == NUMA_NO_NODE) {
1627                        current_node = node;
1628                        start = i;
1629                } else if (node != current_node) {
1630                        err = do_move_pages_to_node(mm, &pagelist, current_node);
1631                        if (err)
1632                                goto out;
1633                        err = store_status(status, start, current_node, i - start);
1634                        if (err)
1635                                goto out;
1636                        start = i;
1637                        current_node = node;
1638                }
1639
1640                /*
1641                 * Errors in the page lookup or isolation are not fatal and we simply
1642                 * report them via status
1643                 */
1644                err = add_page_for_migration(mm, addr, current_node,
1645                                &pagelist, flags & MPOL_MF_MOVE_ALL);
1646                if (!err)
1647                        continue;
1648
1649                err = store_status(status, i, err, 1);
1650                if (err)
1651                        goto out_flush;
1652
1653                err = do_move_pages_to_node(mm, &pagelist, current_node);
1654                if (err)
1655                        goto out;
1656                if (i > start) {
1657                        err = store_status(status, start, current_node, i - start);
1658                        if (err)
1659                                goto out;
1660                }
1661                current_node = NUMA_NO_NODE;
1662        }
1663out_flush:
1664        if (list_empty(&pagelist))
1665                return err;
1666
1667        /* Make sure we do not overwrite the existing error */
1668        err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1669        if (!err1)
1670                err1 = store_status(status, start, current_node, i - start);
1671        if (!err)
1672                err = err1;
1673out:
1674        return err;
1675}
1676
1677/*
1678 * Determine the nodes of an array of pages and store it in an array of status.
1679 */
1680static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1681                                const void __user **pages, int *status)
1682{
1683        unsigned long i;
1684
1685        down_read(&mm->mmap_sem);
1686
1687        for (i = 0; i < nr_pages; i++) {
1688                unsigned long addr = (unsigned long)(*pages);
1689                struct vm_area_struct *vma;
1690                struct page *page;
1691                int err = -EFAULT;
1692
1693                vma = find_vma(mm, addr);
1694                if (!vma || addr < vma->vm_start)
1695                        goto set_status;
1696
1697                /* FOLL_DUMP to ignore special (like zero) pages */
1698                page = follow_page(vma, addr, FOLL_DUMP);
1699
1700                err = PTR_ERR(page);
1701                if (IS_ERR(page))
1702                        goto set_status;
1703
1704                err = page ? page_to_nid(page) : -ENOENT;
1705set_status:
1706                *status = err;
1707
1708                pages++;
1709                status++;
1710        }
1711
1712        up_read(&mm->mmap_sem);
1713}
1714
1715/*
1716 * Determine the nodes of a user array of pages and store it in
1717 * a user array of status.
1718 */
1719static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1720                         const void __user * __user *pages,
1721                         int __user *status)
1722{
1723#define DO_PAGES_STAT_CHUNK_NR 16
1724        const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1725        int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1726
1727        while (nr_pages) {
1728                unsigned long chunk_nr;
1729
1730                chunk_nr = nr_pages;
1731                if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1732                        chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1733
1734                if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1735                        break;
1736
1737                do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1738
1739                if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1740                        break;
1741
1742                pages += chunk_nr;
1743                status += chunk_nr;
1744                nr_pages -= chunk_nr;
1745        }
1746        return nr_pages ? -EFAULT : 0;
1747}
1748
1749/*
1750 * Move a list of pages in the address space of the currently executing
1751 * process.
1752 */
1753static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1754                             const void __user * __user *pages,
1755                             const int __user *nodes,
1756                             int __user *status, int flags)
1757{
1758        struct task_struct *task;
1759        struct mm_struct *mm;
1760        int err;
1761        nodemask_t task_nodes;
1762
1763        /* Check flags */
1764        if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1765                return -EINVAL;
1766
1767        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1768                return -EPERM;
1769
1770        /* Find the mm_struct */
1771        rcu_read_lock();
1772        task = pid ? find_task_by_vpid(pid) : current;
1773        if (!task) {
1774                rcu_read_unlock();
1775                return -ESRCH;
1776        }
1777        get_task_struct(task);
1778
1779        /*
1780         * Check if this process has the right to modify the specified
1781         * process. Use the regular "ptrace_may_access()" checks.
1782         */
1783        if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1784                rcu_read_unlock();
1785                err = -EPERM;
1786                goto out;
1787        }
1788        rcu_read_unlock();
1789
1790        err = security_task_movememory(task);
1791        if (err)
1792                goto out;
1793
1794        task_nodes = cpuset_mems_allowed(task);
1795        mm = get_task_mm(task);
1796        put_task_struct(task);
1797
1798        if (!mm)
1799                return -EINVAL;
1800
1801        if (nodes)
1802                err = do_pages_move(mm, task_nodes, nr_pages, pages,
1803                                    nodes, status, flags);
1804        else
1805                err = do_pages_stat(mm, nr_pages, pages, status);
1806
1807        mmput(mm);
1808        return err;
1809
1810out:
1811        put_task_struct(task);
1812        return err;
1813}
1814
1815SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1816                const void __user * __user *, pages,
1817                const int __user *, nodes,
1818                int __user *, status, int, flags)
1819{
1820        return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1821}
1822
1823#ifdef CONFIG_COMPAT
1824COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1825                       compat_uptr_t __user *, pages32,
1826                       const int __user *, nodes,
1827                       int __user *, status,
1828                       int, flags)
1829{
1830        const void __user * __user *pages;
1831        int i;
1832
1833        pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1834        for (i = 0; i < nr_pages; i++) {
1835                compat_uptr_t p;
1836
1837                if (get_user(p, pages32 + i) ||
1838                        put_user(compat_ptr(p), pages + i))
1839                        return -EFAULT;
1840        }
1841        return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1842}
1843#endif /* CONFIG_COMPAT */
1844
1845#ifdef CONFIG_NUMA_BALANCING
1846/*
1847 * Returns true if this is a safe migration target node for misplaced NUMA
1848 * pages. Currently it only checks the watermarks which crude
1849 */
1850static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1851                                   unsigned long nr_migrate_pages)
1852{
1853        int z;
1854
1855        for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1856                struct zone *zone = pgdat->node_zones + z;
1857
1858                if (!populated_zone(zone))
1859                        continue;
1860
1861                /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1862                if (!zone_watermark_ok(zone, 0,
1863                                       high_wmark_pages(zone) +
1864                                       nr_migrate_pages,
1865                                       0, 0))
1866                        continue;
1867                return true;
1868        }
1869        return false;
1870}
1871
1872static struct page *alloc_misplaced_dst_page(struct page *page,
1873                                           unsigned long data)
1874{
1875        int nid = (int) data;
1876        struct page *newpage;
1877
1878        newpage = __alloc_pages_node(nid,
1879                                         (GFP_HIGHUSER_MOVABLE |
1880                                          __GFP_THISNODE | __GFP_NOMEMALLOC |
1881                                          __GFP_NORETRY | __GFP_NOWARN) &
1882                                         ~__GFP_RECLAIM, 0);
1883
1884        return newpage;
1885}
1886
1887static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1888{
1889        int page_lru;
1890
1891        VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1892
1893        /* Avoid migrating to a node that is nearly full */
1894        if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1895                return 0;
1896
1897        if (isolate_lru_page(page))
1898                return 0;
1899
1900        /*
1901         * migrate_misplaced_transhuge_page() skips page migration's usual
1902         * check on page_count(), so we must do it here, now that the page
1903         * has been isolated: a GUP pin, or any other pin, prevents migration.
1904         * The expected page count is 3: 1 for page's mapcount and 1 for the
1905         * caller's pin and 1 for the reference taken by isolate_lru_page().
1906         */
1907        if (PageTransHuge(page) && page_count(page) != 3) {
1908                putback_lru_page(page);
1909                return 0;
1910        }
1911
1912        page_lru = page_is_file_cache(page);
1913        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1914                                hpage_nr_pages(page));
1915
1916        /*
1917         * Isolating the page has taken another reference, so the
1918         * caller's reference can be safely dropped without the page
1919         * disappearing underneath us during migration.
1920         */
1921        put_page(page);
1922        return 1;
1923}
1924
1925bool pmd_trans_migrating(pmd_t pmd)
1926{
1927        struct page *page = pmd_page(pmd);
1928        return PageLocked(page);
1929}
1930
1931/*
1932 * Attempt to migrate a misplaced page to the specified destination
1933 * node. Caller is expected to have an elevated reference count on
1934 * the page that will be dropped by this function before returning.
1935 */
1936int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1937                           int node)
1938{
1939        pg_data_t *pgdat = NODE_DATA(node);
1940        int isolated;
1941        int nr_remaining;
1942        LIST_HEAD(migratepages);
1943
1944        /*
1945         * Don't migrate file pages that are mapped in multiple processes
1946         * with execute permissions as they are probably shared libraries.
1947         */
1948        if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1949            (vma->vm_flags & VM_EXEC))
1950                goto out;
1951
1952        /*
1953         * Also do not migrate dirty pages as not all filesystems can move
1954         * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1955         */
1956        if (page_is_file_cache(page) && PageDirty(page))
1957                goto out;
1958
1959        isolated = numamigrate_isolate_page(pgdat, page);
1960        if (!isolated)
1961                goto out;
1962
1963        list_add(&page->lru, &migratepages);
1964        nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1965                                     NULL, node, MIGRATE_ASYNC,
1966                                     MR_NUMA_MISPLACED);
1967        if (nr_remaining) {
1968                if (!list_empty(&migratepages)) {
1969                        list_del(&page->lru);
1970                        dec_node_page_state(page, NR_ISOLATED_ANON +
1971                                        page_is_file_cache(page));
1972                        putback_lru_page(page);
1973                }
1974                isolated = 0;
1975        } else
1976                count_vm_numa_event(NUMA_PAGE_MIGRATE);
1977        BUG_ON(!list_empty(&migratepages));
1978        return isolated;
1979
1980out:
1981        put_page(page);
1982        return 0;
1983}
1984#endif /* CONFIG_NUMA_BALANCING */
1985
1986#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1987/*
1988 * Migrates a THP to a given target node. page must be locked and is unlocked
1989 * before returning.
1990 */
1991int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1992                                struct vm_area_struct *vma,
1993                                pmd_t *pmd, pmd_t entry,
1994                                unsigned long address,
1995                                struct page *page, int node)
1996{
1997        spinlock_t *ptl;
1998        pg_data_t *pgdat = NODE_DATA(node);
1999        int isolated = 0;
2000        struct page *new_page = NULL;
2001        int page_lru = page_is_file_cache(page);
2002        unsigned long start = address & HPAGE_PMD_MASK;
2003
2004        new_page = alloc_pages_node(node,
2005                (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
2006                HPAGE_PMD_ORDER);
2007        if (!new_page)
2008                goto out_fail;
2009        prep_transhuge_page(new_page);
2010
2011        isolated = numamigrate_isolate_page(pgdat, page);
2012        if (!isolated) {
2013                put_page(new_page);
2014                goto out_fail;
2015        }
2016
2017        /* Prepare a page as a migration target */
2018        __SetPageLocked(new_page);
2019        if (PageSwapBacked(page))
2020                __SetPageSwapBacked(new_page);
2021
2022        /* anon mapping, we can simply copy page->mapping to the new page: */
2023        new_page->mapping = page->mapping;
2024        new_page->index = page->index;
2025        /* flush the cache before copying using the kernel virtual address */
2026        flush_cache_range(vma, start, start + HPAGE_PMD_SIZE);
2027        migrate_page_copy(new_page, page);
2028        WARN_ON(PageLRU(new_page));
2029
2030        /* Recheck the target PMD */
2031        ptl = pmd_lock(mm, pmd);
2032        if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2033                spin_unlock(ptl);
2034
2035                /* Reverse changes made by migrate_page_copy() */
2036                if (TestClearPageActive(new_page))
2037                        SetPageActive(page);
2038                if (TestClearPageUnevictable(new_page))
2039                        SetPageUnevictable(page);
2040
2041                unlock_page(new_page);
2042                put_page(new_page);             /* Free it */
2043
2044                /* Retake the callers reference and putback on LRU */
2045                get_page(page);
2046                putback_lru_page(page);
2047                mod_node_page_state(page_pgdat(page),
2048                         NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2049
2050                goto out_unlock;
2051        }
2052
2053        entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2054        entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2055
2056        /*
2057         * Overwrite the old entry under pagetable lock and establish
2058         * the new PTE. Any parallel GUP will either observe the old
2059         * page blocking on the page lock, block on the page table
2060         * lock or observe the new page. The SetPageUptodate on the
2061         * new page and page_add_new_anon_rmap guarantee the copy is
2062         * visible before the pagetable update.
2063         */
2064        page_add_anon_rmap(new_page, vma, start, true);
2065        /*
2066         * At this point the pmd is numa/protnone (i.e. non present) and the TLB
2067         * has already been flushed globally.  So no TLB can be currently
2068         * caching this non present pmd mapping.  There's no need to clear the
2069         * pmd before doing set_pmd_at(), nor to flush the TLB after
2070         * set_pmd_at().  Clearing the pmd here would introduce a race
2071         * condition against MADV_DONTNEED, because MADV_DONTNEED only holds the
2072         * mmap_sem for reading.  If the pmd is set to NULL at any given time,
2073         * MADV_DONTNEED won't wait on the pmd lock and it'll skip clearing this
2074         * pmd.
2075         */
2076        set_pmd_at(mm, start, pmd, entry);
2077        update_mmu_cache_pmd(vma, address, &entry);
2078
2079        page_ref_unfreeze(page, 2);
2080        mlock_migrate_page(new_page, page);
2081        page_remove_rmap(page, true);
2082        set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2083
2084        spin_unlock(ptl);
2085
2086        /* Take an "isolate" reference and put new page on the LRU. */
2087        get_page(new_page);
2088        putback_lru_page(new_page);
2089
2090        unlock_page(new_page);
2091        unlock_page(page);
2092        put_page(page);                 /* Drop the rmap reference */
2093        put_page(page);                 /* Drop the LRU isolation reference */
2094
2095        count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2096        count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2097
2098        mod_node_page_state(page_pgdat(page),
2099                        NR_ISOLATED_ANON + page_lru,
2100                        -HPAGE_PMD_NR);
2101        return isolated;
2102
2103out_fail:
2104        count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2105        ptl = pmd_lock(mm, pmd);
2106        if (pmd_same(*pmd, entry)) {
2107                entry = pmd_modify(entry, vma->vm_page_prot);
2108                set_pmd_at(mm, start, pmd, entry);
2109                update_mmu_cache_pmd(vma, address, &entry);
2110        }
2111        spin_unlock(ptl);
2112
2113out_unlock:
2114        unlock_page(page);
2115        put_page(page);
2116        return 0;
2117}
2118#endif /* CONFIG_NUMA_BALANCING */
2119
2120#endif /* CONFIG_NUMA */
2121
2122#if defined(CONFIG_MIGRATE_VMA_HELPER)
2123struct migrate_vma {
2124        struct vm_area_struct   *vma;
2125        unsigned long           *dst;
2126        unsigned long           *src;
2127        unsigned long           cpages;
2128        unsigned long           npages;
2129        unsigned long           start;
2130        unsigned long           end;
2131};
2132
2133static int migrate_vma_collect_hole(unsigned long start,
2134                                    unsigned long end,
2135                                    struct mm_walk *walk)
2136{
2137        struct migrate_vma *migrate = walk->private;
2138        unsigned long addr;
2139
2140        for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2141                migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2142                migrate->dst[migrate->npages] = 0;
2143                migrate->npages++;
2144                migrate->cpages++;
2145        }
2146
2147        return 0;
2148}
2149
2150static int migrate_vma_collect_skip(unsigned long start,
2151                                    unsigned long end,
2152                                    struct mm_walk *walk)
2153{
2154        struct migrate_vma *migrate = walk->private;
2155        unsigned long addr;
2156
2157        for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2158                migrate->dst[migrate->npages] = 0;
2159                migrate->src[migrate->npages++] = 0;
2160        }
2161
2162        return 0;
2163}
2164
2165static int migrate_vma_collect_pmd(pmd_t *pmdp,
2166                                   unsigned long start,
2167                                   unsigned long end,
2168                                   struct mm_walk *walk)
2169{
2170        struct migrate_vma *migrate = walk->private;
2171        struct vm_area_struct *vma = walk->vma;
2172        struct mm_struct *mm = vma->vm_mm;
2173        unsigned long addr = start, unmapped = 0;
2174        spinlock_t *ptl;
2175        pte_t *ptep;
2176
2177again:
2178        if (pmd_none(*pmdp))
2179                return migrate_vma_collect_hole(start, end, walk);
2180
2181        if (pmd_trans_huge(*pmdp)) {
2182                struct page *page;
2183
2184                ptl = pmd_lock(mm, pmdp);
2185                if (unlikely(!pmd_trans_huge(*pmdp))) {
2186                        spin_unlock(ptl);
2187                        goto again;
2188                }
2189
2190                page = pmd_page(*pmdp);
2191                if (is_huge_zero_page(page)) {
2192                        spin_unlock(ptl);
2193                        split_huge_pmd(vma, pmdp, addr);
2194                        if (pmd_trans_unstable(pmdp))
2195                                return migrate_vma_collect_skip(start, end,
2196                                                                walk);
2197                } else {
2198                        int ret;
2199
2200                        get_page(page);
2201                        spin_unlock(ptl);
2202                        if (unlikely(!trylock_page(page)))
2203                                return migrate_vma_collect_skip(start, end,
2204                                                                walk);
2205                        ret = split_huge_page(page);
2206                        unlock_page(page);
2207                        put_page(page);
2208                        if (ret)
2209                                return migrate_vma_collect_skip(start, end,
2210                                                                walk);
2211                        if (pmd_none(*pmdp))
2212                                return migrate_vma_collect_hole(start, end,
2213                                                                walk);
2214                }
2215        }
2216
2217        if (unlikely(pmd_bad(*pmdp)))
2218                return migrate_vma_collect_skip(start, end, walk);
2219
2220        ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2221        arch_enter_lazy_mmu_mode();
2222
2223        for (; addr < end; addr += PAGE_SIZE, ptep++) {
2224                unsigned long mpfn, pfn;
2225                struct page *page;
2226                swp_entry_t entry;
2227                pte_t pte;
2228
2229                pte = *ptep;
2230                pfn = pte_pfn(pte);
2231
2232                if (pte_none(pte)) {
2233                        mpfn = MIGRATE_PFN_MIGRATE;
2234                        migrate->cpages++;
2235                        pfn = 0;
2236                        goto next;
2237                }
2238
2239                if (!pte_present(pte)) {
2240                        mpfn = pfn = 0;
2241
2242                        /*
2243                         * Only care about unaddressable device page special
2244                         * page table entry. Other special swap entries are not
2245                         * migratable, and we ignore regular swapped page.
2246                         */
2247                        entry = pte_to_swp_entry(pte);
2248                        if (!is_device_private_entry(entry))
2249                                goto next;
2250
2251                        page = device_private_entry_to_page(entry);
2252                        mpfn = migrate_pfn(page_to_pfn(page))|
2253                                MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2254                        if (is_write_device_private_entry(entry))
2255                                mpfn |= MIGRATE_PFN_WRITE;
2256                } else {
2257                        if (is_zero_pfn(pfn)) {
2258                                mpfn = MIGRATE_PFN_MIGRATE;
2259                                migrate->cpages++;
2260                                pfn = 0;
2261                                goto next;
2262                        }
2263                        page = vm_normal_page(migrate->vma, addr, pte);
2264                        mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2265                        mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2266                }
2267
2268                /* FIXME support THP */
2269                if (!page || !page->mapping || PageTransCompound(page)) {
2270                        mpfn = pfn = 0;
2271                        goto next;
2272                }
2273                pfn = page_to_pfn(page);
2274
2275                /*
2276                 * By getting a reference on the page we pin it and that blocks
2277                 * any kind of migration. Side effect is that it "freezes" the
2278                 * pte.
2279                 *
2280                 * We drop this reference after isolating the page from the lru
2281                 * for non device page (device page are not on the lru and thus
2282                 * can't be dropped from it).
2283                 */
2284                get_page(page);
2285                migrate->cpages++;
2286
2287                /*
2288                 * Optimize for the common case where page is only mapped once
2289                 * in one process. If we can lock the page, then we can safely
2290                 * set up a special migration page table entry now.
2291                 */
2292                if (trylock_page(page)) {
2293                        pte_t swp_pte;
2294
2295                        mpfn |= MIGRATE_PFN_LOCKED;
2296                        ptep_get_and_clear(mm, addr, ptep);
2297
2298                        /* Setup special migration page table entry */
2299                        entry = make_migration_entry(page, mpfn &
2300                                                     MIGRATE_PFN_WRITE);
2301                        swp_pte = swp_entry_to_pte(entry);
2302                        if (pte_soft_dirty(pte))
2303                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
2304                        set_pte_at(mm, addr, ptep, swp_pte);
2305
2306                        /*
2307                         * This is like regular unmap: we remove the rmap and
2308                         * drop page refcount. Page won't be freed, as we took
2309                         * a reference just above.
2310                         */
2311                        page_remove_rmap(page, false);
2312                        put_page(page);
2313
2314                        if (pte_present(pte))
2315                                unmapped++;
2316                }
2317
2318next:
2319                migrate->dst[migrate->npages] = 0;
2320                migrate->src[migrate->npages++] = mpfn;
2321        }
2322        arch_leave_lazy_mmu_mode();
2323        pte_unmap_unlock(ptep - 1, ptl);
2324
2325        /* Only flush the TLB if we actually modified any entries */
2326        if (unmapped)
2327                flush_tlb_range(walk->vma, start, end);
2328
2329        return 0;
2330}
2331
2332/*
2333 * migrate_vma_collect() - collect pages over a range of virtual addresses
2334 * @migrate: migrate struct containing all migration information
2335 *
2336 * This will walk the CPU page table. For each virtual address backed by a
2337 * valid page, it updates the src array and takes a reference on the page, in
2338 * order to pin the page until we lock it and unmap it.
2339 */
2340static void migrate_vma_collect(struct migrate_vma *migrate)
2341{
2342        struct mmu_notifier_range range;
2343        struct mm_walk mm_walk = {
2344                .pmd_entry = migrate_vma_collect_pmd,
2345                .pte_hole = migrate_vma_collect_hole,
2346                .vma = migrate->vma,
2347                .mm = migrate->vma->vm_mm,
2348                .private = migrate,
2349        };
2350
2351        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm_walk.mm,
2352                                migrate->start,
2353                                migrate->end);
2354        mmu_notifier_invalidate_range_start(&range);
2355        walk_page_range(migrate->start, migrate->end, &mm_walk);
2356        mmu_notifier_invalidate_range_end(&range);
2357
2358        migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2359}
2360
2361/*
2362 * migrate_vma_check_page() - check if page is pinned or not
2363 * @page: struct page to check
2364 *
2365 * Pinned pages cannot be migrated. This is the same test as in
2366 * migrate_page_move_mapping(), except that here we allow migration of a
2367 * ZONE_DEVICE page.
2368 */
2369static bool migrate_vma_check_page(struct page *page)
2370{
2371        /*
2372         * One extra ref because caller holds an extra reference, either from
2373         * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2374         * a device page.
2375         */
2376        int extra = 1;
2377
2378        /*
2379         * FIXME support THP (transparent huge page), it is bit more complex to
2380         * check them than regular pages, because they can be mapped with a pmd
2381         * or with a pte (split pte mapping).
2382         */
2383        if (PageCompound(page))
2384                return false;
2385
2386        /* Page from ZONE_DEVICE have one extra reference */
2387        if (is_zone_device_page(page)) {
2388                /*
2389                 * Private page can never be pin as they have no valid pte and
2390                 * GUP will fail for those. Yet if there is a pending migration
2391                 * a thread might try to wait on the pte migration entry and
2392                 * will bump the page reference count. Sadly there is no way to
2393                 * differentiate a regular pin from migration wait. Hence to
2394                 * avoid 2 racing thread trying to migrate back to CPU to enter
2395                 * infinite loop (one stoping migration because the other is
2396                 * waiting on pte migration entry). We always return true here.
2397                 *
2398                 * FIXME proper solution is to rework migration_entry_wait() so
2399                 * it does not need to take a reference on page.
2400                 */
2401                return is_device_private_page(page);
2402        }
2403
2404        /* For file back page */
2405        if (page_mapping(page))
2406                extra += 1 + page_has_private(page);
2407
2408        if ((page_count(page) - extra) > page_mapcount(page))
2409                return false;
2410
2411        return true;
2412}
2413
2414/*
2415 * migrate_vma_prepare() - lock pages and isolate them from the lru
2416 * @migrate: migrate struct containing all migration information
2417 *
2418 * This locks pages that have been collected by migrate_vma_collect(). Once each
2419 * page is locked it is isolated from the lru (for non-device pages). Finally,
2420 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2421 * migrated by concurrent kernel threads.
2422 */
2423static void migrate_vma_prepare(struct migrate_vma *migrate)
2424{
2425        const unsigned long npages = migrate->npages;
2426        const unsigned long start = migrate->start;
2427        unsigned long addr, i, restore = 0;
2428        bool allow_drain = true;
2429
2430        lru_add_drain();
2431
2432        for (i = 0; (i < npages) && migrate->cpages; i++) {
2433                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2434                bool remap = true;
2435
2436                if (!page)
2437                        continue;
2438
2439                if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2440                        /*
2441                         * Because we are migrating several pages there can be
2442                         * a deadlock between 2 concurrent migration where each
2443                         * are waiting on each other page lock.
2444                         *
2445                         * Make migrate_vma() a best effort thing and backoff
2446                         * for any page we can not lock right away.
2447                         */
2448                        if (!trylock_page(page)) {
2449                                migrate->src[i] = 0;
2450                                migrate->cpages--;
2451                                put_page(page);
2452                                continue;
2453                        }
2454                        remap = false;
2455                        migrate->src[i] |= MIGRATE_PFN_LOCKED;
2456                }
2457
2458                /* ZONE_DEVICE pages are not on LRU */
2459                if (!is_zone_device_page(page)) {
2460                        if (!PageLRU(page) && allow_drain) {
2461                                /* Drain CPU's pagevec */
2462                                lru_add_drain_all();
2463                                allow_drain = false;
2464                        }
2465
2466                        if (isolate_lru_page(page)) {
2467                                if (remap) {
2468                                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2469                                        migrate->cpages--;
2470                                        restore++;
2471                                } else {
2472                                        migrate->src[i] = 0;
2473                                        unlock_page(page);
2474                                        migrate->cpages--;
2475                                        put_page(page);
2476                                }
2477                                continue;
2478                        }
2479
2480                        /* Drop the reference we took in collect */
2481                        put_page(page);
2482                }
2483
2484                if (!migrate_vma_check_page(page)) {
2485                        if (remap) {
2486                                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2487                                migrate->cpages--;
2488                                restore++;
2489
2490                                if (!is_zone_device_page(page)) {
2491                                        get_page(page);
2492                                        putback_lru_page(page);
2493                                }
2494                        } else {
2495                                migrate->src[i] = 0;
2496                                unlock_page(page);
2497                                migrate->cpages--;
2498
2499                                if (!is_zone_device_page(page))
2500                                        putback_lru_page(page);
2501                                else
2502                                        put_page(page);
2503                        }
2504                }
2505        }
2506
2507        for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2508                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2509
2510                if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2511                        continue;
2512
2513                remove_migration_pte(page, migrate->vma, addr, page);
2514
2515                migrate->src[i] = 0;
2516                unlock_page(page);
2517                put_page(page);
2518                restore--;
2519        }
2520}
2521
2522/*
2523 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2524 * @migrate: migrate struct containing all migration information
2525 *
2526 * Replace page mapping (CPU page table pte) with a special migration pte entry
2527 * and check again if it has been pinned. Pinned pages are restored because we
2528 * cannot migrate them.
2529 *
2530 * This is the last step before we call the device driver callback to allocate
2531 * destination memory and copy contents of original page over to new page.
2532 */
2533static void migrate_vma_unmap(struct migrate_vma *migrate)
2534{
2535        int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2536        const unsigned long npages = migrate->npages;
2537        const unsigned long start = migrate->start;
2538        unsigned long addr, i, restore = 0;
2539
2540        for (i = 0; i < npages; i++) {
2541                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2542
2543                if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2544                        continue;
2545
2546                if (page_mapped(page)) {
2547                        try_to_unmap(page, flags);
2548                        if (page_mapped(page))
2549                                goto restore;
2550                }
2551
2552                if (migrate_vma_check_page(page))
2553                        continue;
2554
2555restore:
2556                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2557                migrate->cpages--;
2558                restore++;
2559        }
2560
2561        for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2562                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2563
2564                if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2565                        continue;
2566
2567                remove_migration_ptes(page, page, false);
2568
2569                migrate->src[i] = 0;
2570                unlock_page(page);
2571                restore--;
2572
2573                if (is_zone_device_page(page))
2574                        put_page(page);
2575                else
2576                        putback_lru_page(page);
2577        }
2578}
2579
2580static void migrate_vma_insert_page(struct migrate_vma *migrate,
2581                                    unsigned long addr,
2582                                    struct page *page,
2583                                    unsigned long *src,
2584                                    unsigned long *dst)
2585{
2586        struct vm_area_struct *vma = migrate->vma;
2587        struct mm_struct *mm = vma->vm_mm;
2588        struct mem_cgroup *memcg;
2589        bool flush = false;
2590        spinlock_t *ptl;
2591        pte_t entry;
2592        pgd_t *pgdp;
2593        p4d_t *p4dp;
2594        pud_t *pudp;
2595        pmd_t *pmdp;
2596        pte_t *ptep;
2597
2598        /* Only allow populating anonymous memory */
2599        if (!vma_is_anonymous(vma))
2600                goto abort;
2601
2602        pgdp = pgd_offset(mm, addr);
2603        p4dp = p4d_alloc(mm, pgdp, addr);
2604        if (!p4dp)
2605                goto abort;
2606        pudp = pud_alloc(mm, p4dp, addr);
2607        if (!pudp)
2608                goto abort;
2609        pmdp = pmd_alloc(mm, pudp, addr);
2610        if (!pmdp)
2611                goto abort;
2612
2613        if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2614                goto abort;
2615
2616        /*
2617         * Use pte_alloc() instead of pte_alloc_map().  We can't run
2618         * pte_offset_map() on pmds where a huge pmd might be created
2619         * from a different thread.
2620         *
2621         * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2622         * parallel threads are excluded by other means.
2623         *
2624         * Here we only have down_read(mmap_sem).
2625         */
2626        if (pte_alloc(mm, pmdp))
2627                goto abort;
2628
2629        /* See the comment in pte_alloc_one_map() */
2630        if (unlikely(pmd_trans_unstable(pmdp)))
2631                goto abort;
2632
2633        if (unlikely(anon_vma_prepare(vma)))
2634                goto abort;
2635        if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2636                goto abort;
2637
2638        /*
2639         * The memory barrier inside __SetPageUptodate makes sure that
2640         * preceding stores to the page contents become visible before
2641         * the set_pte_at() write.
2642         */
2643        __SetPageUptodate(page);
2644
2645        if (is_zone_device_page(page)) {
2646                if (is_device_private_page(page)) {
2647                        swp_entry_t swp_entry;
2648
2649                        swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2650                        entry = swp_entry_to_pte(swp_entry);
2651                }
2652        } else {
2653                entry = mk_pte(page, vma->vm_page_prot);
2654                if (vma->vm_flags & VM_WRITE)
2655                        entry = pte_mkwrite(pte_mkdirty(entry));
2656        }
2657
2658        ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2659
2660        if (pte_present(*ptep)) {
2661                unsigned long pfn = pte_pfn(*ptep);
2662
2663                if (!is_zero_pfn(pfn)) {
2664                        pte_unmap_unlock(ptep, ptl);
2665                        mem_cgroup_cancel_charge(page, memcg, false);
2666                        goto abort;
2667                }
2668                flush = true;
2669        } else if (!pte_none(*ptep)) {
2670                pte_unmap_unlock(ptep, ptl);
2671                mem_cgroup_cancel_charge(page, memcg, false);
2672                goto abort;
2673        }
2674
2675        /*
2676         * Check for usefaultfd but do not deliver the fault. Instead,
2677         * just back off.
2678         */
2679        if (userfaultfd_missing(vma)) {
2680                pte_unmap_unlock(ptep, ptl);
2681                mem_cgroup_cancel_charge(page, memcg, false);
2682                goto abort;
2683        }
2684
2685        inc_mm_counter(mm, MM_ANONPAGES);
2686        page_add_new_anon_rmap(page, vma, addr, false);
2687        mem_cgroup_commit_charge(page, memcg, false, false);
2688        if (!is_zone_device_page(page))
2689                lru_cache_add_active_or_unevictable(page, vma);
2690        get_page(page);
2691
2692        if (flush) {
2693                flush_cache_page(vma, addr, pte_pfn(*ptep));
2694                ptep_clear_flush_notify(vma, addr, ptep);
2695                set_pte_at_notify(mm, addr, ptep, entry);
2696                update_mmu_cache(vma, addr, ptep);
2697        } else {
2698                /* No need to invalidate - it was non-present before */
2699                set_pte_at(mm, addr, ptep, entry);
2700                update_mmu_cache(vma, addr, ptep);
2701        }
2702
2703        pte_unmap_unlock(ptep, ptl);
2704        *src = MIGRATE_PFN_MIGRATE;
2705        return;
2706
2707abort:
2708        *src &= ~MIGRATE_PFN_MIGRATE;
2709}
2710
2711/*
2712 * migrate_vma_pages() - migrate meta-data from src page to dst page
2713 * @migrate: migrate struct containing all migration information
2714 *
2715 * This migrates struct page meta-data from source struct page to destination
2716 * struct page. This effectively finishes the migration from source page to the
2717 * destination page.
2718 */
2719static void migrate_vma_pages(struct migrate_vma *migrate)
2720{
2721        const unsigned long npages = migrate->npages;
2722        const unsigned long start = migrate->start;
2723        struct mmu_notifier_range range;
2724        unsigned long addr, i;
2725        bool notified = false;
2726
2727        for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2728                struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2729                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2730                struct address_space *mapping;
2731                int r;
2732
2733                if (!newpage) {
2734                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2735                        continue;
2736                }
2737
2738                if (!page) {
2739                        if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2740                                continue;
2741                        }
2742                        if (!notified) {
2743                                notified = true;
2744
2745                                mmu_notifier_range_init(&range,
2746                                                        MMU_NOTIFY_CLEAR, 0,
2747                                                        NULL,
2748                                                        migrate->vma->vm_mm,
2749                                                        addr, migrate->end);
2750                                mmu_notifier_invalidate_range_start(&range);
2751                        }
2752                        migrate_vma_insert_page(migrate, addr, newpage,
2753                                                &migrate->src[i],
2754                                                &migrate->dst[i]);
2755                        continue;
2756                }
2757
2758                mapping = page_mapping(page);
2759
2760                if (is_zone_device_page(newpage)) {
2761                        if (is_device_private_page(newpage)) {
2762                                /*
2763                                 * For now only support private anonymous when
2764                                 * migrating to un-addressable device memory.
2765                                 */
2766                                if (mapping) {
2767                                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2768                                        continue;
2769                                }
2770                        } else {
2771                                /*
2772                                 * Other types of ZONE_DEVICE page are not
2773                                 * supported.
2774                                 */
2775                                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2776                                continue;
2777                        }
2778                }
2779
2780                r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2781                if (r != MIGRATEPAGE_SUCCESS)
2782                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2783        }
2784
2785        /*
2786         * No need to double call mmu_notifier->invalidate_range() callback as
2787         * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2788         * did already call it.
2789         */
2790        if (notified)
2791                mmu_notifier_invalidate_range_only_end(&range);
2792}
2793
2794/*
2795 * migrate_vma_finalize() - restore CPU page table entry
2796 * @migrate: migrate struct containing all migration information
2797 *
2798 * This replaces the special migration pte entry with either a mapping to the
2799 * new page if migration was successful for that page, or to the original page
2800 * otherwise.
2801 *
2802 * This also unlocks the pages and puts them back on the lru, or drops the extra
2803 * refcount, for device pages.
2804 */
2805static void migrate_vma_finalize(struct migrate_vma *migrate)
2806{
2807        const unsigned long npages = migrate->npages;
2808        unsigned long i;
2809
2810        for (i = 0; i < npages; i++) {
2811                struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2812                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2813
2814                if (!page) {
2815                        if (newpage) {
2816                                unlock_page(newpage);
2817                                put_page(newpage);
2818                        }
2819                        continue;
2820                }
2821
2822                if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2823                        if (newpage) {
2824                                unlock_page(newpage);
2825                                put_page(newpage);
2826                        }
2827                        newpage = page;
2828                }
2829
2830                remove_migration_ptes(page, newpage, false);
2831                unlock_page(page);
2832                migrate->cpages--;
2833
2834                if (is_zone_device_page(page))
2835                        put_page(page);
2836                else
2837                        putback_lru_page(page);
2838
2839                if (newpage != page) {
2840                        unlock_page(newpage);
2841                        if (is_zone_device_page(newpage))
2842                                put_page(newpage);
2843                        else
2844                                putback_lru_page(newpage);
2845                }
2846        }
2847}
2848
2849/*
2850 * migrate_vma() - migrate a range of memory inside vma
2851 *
2852 * @ops: migration callback for allocating destination memory and copying
2853 * @vma: virtual memory area containing the range to be migrated
2854 * @start: start address of the range to migrate (inclusive)
2855 * @end: end address of the range to migrate (exclusive)
2856 * @src: array of hmm_pfn_t containing source pfns
2857 * @dst: array of hmm_pfn_t containing destination pfns
2858 * @private: pointer passed back to each of the callback
2859 * Returns: 0 on success, error code otherwise
2860 *
2861 * This function tries to migrate a range of memory virtual address range, using
2862 * callbacks to allocate and copy memory from source to destination. First it
2863 * collects all the pages backing each virtual address in the range, saving this
2864 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2865 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2866 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2867 * in the corresponding src array entry. It then restores any pages that are
2868 * pinned, by remapping and unlocking those pages.
2869 *
2870 * At this point it calls the alloc_and_copy() callback. For documentation on
2871 * what is expected from that callback, see struct migrate_vma_ops comments in
2872 * include/linux/migrate.h
2873 *
2874 * After the alloc_and_copy() callback, this function goes over each entry in
2875 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2876 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2877 * then the function tries to migrate struct page information from the source
2878 * struct page to the destination struct page. If it fails to migrate the struct
2879 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2880 * array.
2881 *
2882 * At this point all successfully migrated pages have an entry in the src
2883 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2884 * array entry with MIGRATE_PFN_VALID flag set.
2885 *
2886 * It then calls the finalize_and_map() callback. See comments for "struct
2887 * migrate_vma_ops", in include/linux/migrate.h for details about
2888 * finalize_and_map() behavior.
2889 *
2890 * After the finalize_and_map() callback, for successfully migrated pages, this
2891 * function updates the CPU page table to point to new pages, otherwise it
2892 * restores the CPU page table to point to the original source pages.
2893 *
2894 * Function returns 0 after the above steps, even if no pages were migrated
2895 * (The function only returns an error if any of the arguments are invalid.)
2896 *
2897 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2898 * unsigned long entries.
2899 */
2900int migrate_vma(const struct migrate_vma_ops *ops,
2901                struct vm_area_struct *vma,
2902                unsigned long start,
2903                unsigned long end,
2904                unsigned long *src,
2905                unsigned long *dst,
2906                void *private)
2907{
2908        struct migrate_vma migrate;
2909
2910        /* Sanity check the arguments */
2911        start &= PAGE_MASK;
2912        end &= PAGE_MASK;
2913        if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2914                        vma_is_dax(vma))
2915                return -EINVAL;
2916        if (start < vma->vm_start || start >= vma->vm_end)
2917                return -EINVAL;
2918        if (end <= vma->vm_start || end > vma->vm_end)
2919                return -EINVAL;
2920        if (!ops || !src || !dst || start >= end)
2921                return -EINVAL;
2922
2923        memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2924        migrate.src = src;
2925        migrate.dst = dst;
2926        migrate.start = start;
2927        migrate.npages = 0;
2928        migrate.cpages = 0;
2929        migrate.end = end;
2930        migrate.vma = vma;
2931
2932        /* Collect, and try to unmap source pages */
2933        migrate_vma_collect(&migrate);
2934        if (!migrate.cpages)
2935                return 0;
2936
2937        /* Lock and isolate page */
2938        migrate_vma_prepare(&migrate);
2939        if (!migrate.cpages)
2940                return 0;
2941
2942        /* Unmap pages */
2943        migrate_vma_unmap(&migrate);
2944        if (!migrate.cpages)
2945                return 0;
2946
2947        /*
2948         * At this point pages are locked and unmapped, and thus they have
2949         * stable content and can safely be copied to destination memory that
2950         * is allocated by the callback.
2951         *
2952         * Note that migration can fail in migrate_vma_struct_page() for each
2953         * individual page.
2954         */
2955        ops->alloc_and_copy(vma, src, dst, start, end, private);
2956
2957        /* This does the real migration of struct page */
2958        migrate_vma_pages(&migrate);
2959
2960        ops->finalize_and_map(vma, src, dst, start, end, private);
2961
2962        /* Unlock and remap pages */
2963        migrate_vma_finalize(&migrate);
2964
2965        return 0;
2966}
2967EXPORT_SYMBOL(migrate_vma);
2968#endif /* defined(MIGRATE_VMA_HELPER) */
2969