linux/mm/page_ext.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/mm.h>
   3#include <linux/mmzone.h>
   4#include <linux/memblock.h>
   5#include <linux/page_ext.h>
   6#include <linux/memory.h>
   7#include <linux/vmalloc.h>
   8#include <linux/kmemleak.h>
   9#include <linux/page_owner.h>
  10#include <linux/page_idle.h>
  11
  12/*
  13 * struct page extension
  14 *
  15 * This is the feature to manage memory for extended data per page.
  16 *
  17 * Until now, we must modify struct page itself to store extra data per page.
  18 * This requires rebuilding the kernel and it is really time consuming process.
  19 * And, sometimes, rebuild is impossible due to third party module dependency.
  20 * At last, enlarging struct page could cause un-wanted system behaviour change.
  21 *
  22 * This feature is intended to overcome above mentioned problems. This feature
  23 * allocates memory for extended data per page in certain place rather than
  24 * the struct page itself. This memory can be accessed by the accessor
  25 * functions provided by this code. During the boot process, it checks whether
  26 * allocation of huge chunk of memory is needed or not. If not, it avoids
  27 * allocating memory at all. With this advantage, we can include this feature
  28 * into the kernel in default and can avoid rebuild and solve related problems.
  29 *
  30 * To help these things to work well, there are two callbacks for clients. One
  31 * is the need callback which is mandatory if user wants to avoid useless
  32 * memory allocation at boot-time. The other is optional, init callback, which
  33 * is used to do proper initialization after memory is allocated.
  34 *
  35 * The need callback is used to decide whether extended memory allocation is
  36 * needed or not. Sometimes users want to deactivate some features in this
  37 * boot and extra memory would be unneccessary. In this case, to avoid
  38 * allocating huge chunk of memory, each clients represent their need of
  39 * extra memory through the need callback. If one of the need callbacks
  40 * returns true, it means that someone needs extra memory so that
  41 * page extension core should allocates memory for page extension. If
  42 * none of need callbacks return true, memory isn't needed at all in this boot
  43 * and page extension core can skip to allocate memory. As result,
  44 * none of memory is wasted.
  45 *
  46 * When need callback returns true, page_ext checks if there is a request for
  47 * extra memory through size in struct page_ext_operations. If it is non-zero,
  48 * extra space is allocated for each page_ext entry and offset is returned to
  49 * user through offset in struct page_ext_operations.
  50 *
  51 * The init callback is used to do proper initialization after page extension
  52 * is completely initialized. In sparse memory system, extra memory is
  53 * allocated some time later than memmap is allocated. In other words, lifetime
  54 * of memory for page extension isn't same with memmap for struct page.
  55 * Therefore, clients can't store extra data until page extension is
  56 * initialized, even if pages are allocated and used freely. This could
  57 * cause inadequate state of extra data per page, so, to prevent it, client
  58 * can utilize this callback to initialize the state of it correctly.
  59 */
  60
  61static struct page_ext_operations *page_ext_ops[] = {
  62#ifdef CONFIG_PAGE_OWNER
  63        &page_owner_ops,
  64#endif
  65#if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
  66        &page_idle_ops,
  67#endif
  68};
  69
  70static unsigned long total_usage;
  71static unsigned long extra_mem;
  72
  73static bool __init invoke_need_callbacks(void)
  74{
  75        int i;
  76        int entries = ARRAY_SIZE(page_ext_ops);
  77        bool need = false;
  78
  79        for (i = 0; i < entries; i++) {
  80                if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
  81                        page_ext_ops[i]->offset = sizeof(struct page_ext) +
  82                                                extra_mem;
  83                        extra_mem += page_ext_ops[i]->size;
  84                        need = true;
  85                }
  86        }
  87
  88        return need;
  89}
  90
  91static void __init invoke_init_callbacks(void)
  92{
  93        int i;
  94        int entries = ARRAY_SIZE(page_ext_ops);
  95
  96        for (i = 0; i < entries; i++) {
  97                if (page_ext_ops[i]->init)
  98                        page_ext_ops[i]->init();
  99        }
 100}
 101
 102static unsigned long get_entry_size(void)
 103{
 104        return sizeof(struct page_ext) + extra_mem;
 105}
 106
 107static inline struct page_ext *get_entry(void *base, unsigned long index)
 108{
 109        return base + get_entry_size() * index;
 110}
 111
 112#if !defined(CONFIG_SPARSEMEM)
 113
 114
 115void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
 116{
 117        pgdat->node_page_ext = NULL;
 118}
 119
 120struct page_ext *lookup_page_ext(const struct page *page)
 121{
 122        unsigned long pfn = page_to_pfn(page);
 123        unsigned long index;
 124        struct page_ext *base;
 125
 126        base = NODE_DATA(page_to_nid(page))->node_page_ext;
 127        /*
 128         * The sanity checks the page allocator does upon freeing a
 129         * page can reach here before the page_ext arrays are
 130         * allocated when feeding a range of pages to the allocator
 131         * for the first time during bootup or memory hotplug.
 132         */
 133        if (unlikely(!base))
 134                return NULL;
 135        index = pfn - round_down(node_start_pfn(page_to_nid(page)),
 136                                        MAX_ORDER_NR_PAGES);
 137        return get_entry(base, index);
 138}
 139
 140static int __init alloc_node_page_ext(int nid)
 141{
 142        struct page_ext *base;
 143        unsigned long table_size;
 144        unsigned long nr_pages;
 145
 146        nr_pages = NODE_DATA(nid)->node_spanned_pages;
 147        if (!nr_pages)
 148                return 0;
 149
 150        /*
 151         * Need extra space if node range is not aligned with
 152         * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
 153         * checks buddy's status, range could be out of exact node range.
 154         */
 155        if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
 156                !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
 157                nr_pages += MAX_ORDER_NR_PAGES;
 158
 159        table_size = get_entry_size() * nr_pages;
 160
 161        base = memblock_alloc_try_nid(
 162                        table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
 163                        MEMBLOCK_ALLOC_ACCESSIBLE, nid);
 164        if (!base)
 165                return -ENOMEM;
 166        NODE_DATA(nid)->node_page_ext = base;
 167        total_usage += table_size;
 168        return 0;
 169}
 170
 171void __init page_ext_init_flatmem(void)
 172{
 173
 174        int nid, fail;
 175
 176        if (!invoke_need_callbacks())
 177                return;
 178
 179        for_each_online_node(nid)  {
 180                fail = alloc_node_page_ext(nid);
 181                if (fail)
 182                        goto fail;
 183        }
 184        pr_info("allocated %ld bytes of page_ext\n", total_usage);
 185        invoke_init_callbacks();
 186        return;
 187
 188fail:
 189        pr_crit("allocation of page_ext failed.\n");
 190        panic("Out of memory");
 191}
 192
 193#else /* CONFIG_FLAT_NODE_MEM_MAP */
 194
 195struct page_ext *lookup_page_ext(const struct page *page)
 196{
 197        unsigned long pfn = page_to_pfn(page);
 198        struct mem_section *section = __pfn_to_section(pfn);
 199        /*
 200         * The sanity checks the page allocator does upon freeing a
 201         * page can reach here before the page_ext arrays are
 202         * allocated when feeding a range of pages to the allocator
 203         * for the first time during bootup or memory hotplug.
 204         */
 205        if (!section->page_ext)
 206                return NULL;
 207        return get_entry(section->page_ext, pfn);
 208}
 209
 210static void *__meminit alloc_page_ext(size_t size, int nid)
 211{
 212        gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
 213        void *addr = NULL;
 214
 215        addr = alloc_pages_exact_nid(nid, size, flags);
 216        if (addr) {
 217                kmemleak_alloc(addr, size, 1, flags);
 218                return addr;
 219        }
 220
 221        addr = vzalloc_node(size, nid);
 222
 223        return addr;
 224}
 225
 226static int __meminit init_section_page_ext(unsigned long pfn, int nid)
 227{
 228        struct mem_section *section;
 229        struct page_ext *base;
 230        unsigned long table_size;
 231
 232        section = __pfn_to_section(pfn);
 233
 234        if (section->page_ext)
 235                return 0;
 236
 237        table_size = get_entry_size() * PAGES_PER_SECTION;
 238        base = alloc_page_ext(table_size, nid);
 239
 240        /*
 241         * The value stored in section->page_ext is (base - pfn)
 242         * and it does not point to the memory block allocated above,
 243         * causing kmemleak false positives.
 244         */
 245        kmemleak_not_leak(base);
 246
 247        if (!base) {
 248                pr_err("page ext allocation failure\n");
 249                return -ENOMEM;
 250        }
 251
 252        /*
 253         * The passed "pfn" may not be aligned to SECTION.  For the calculation
 254         * we need to apply a mask.
 255         */
 256        pfn &= PAGE_SECTION_MASK;
 257        section->page_ext = (void *)base - get_entry_size() * pfn;
 258        total_usage += table_size;
 259        return 0;
 260}
 261#ifdef CONFIG_MEMORY_HOTPLUG
 262static void free_page_ext(void *addr)
 263{
 264        if (is_vmalloc_addr(addr)) {
 265                vfree(addr);
 266        } else {
 267                struct page *page = virt_to_page(addr);
 268                size_t table_size;
 269
 270                table_size = get_entry_size() * PAGES_PER_SECTION;
 271
 272                BUG_ON(PageReserved(page));
 273                kmemleak_free(addr);
 274                free_pages_exact(addr, table_size);
 275        }
 276}
 277
 278static void __free_page_ext(unsigned long pfn)
 279{
 280        struct mem_section *ms;
 281        struct page_ext *base;
 282
 283        ms = __pfn_to_section(pfn);
 284        if (!ms || !ms->page_ext)
 285                return;
 286        base = get_entry(ms->page_ext, pfn);
 287        free_page_ext(base);
 288        ms->page_ext = NULL;
 289}
 290
 291static int __meminit online_page_ext(unsigned long start_pfn,
 292                                unsigned long nr_pages,
 293                                int nid)
 294{
 295        unsigned long start, end, pfn;
 296        int fail = 0;
 297
 298        start = SECTION_ALIGN_DOWN(start_pfn);
 299        end = SECTION_ALIGN_UP(start_pfn + nr_pages);
 300
 301        if (nid == NUMA_NO_NODE) {
 302                /*
 303                 * In this case, "nid" already exists and contains valid memory.
 304                 * "start_pfn" passed to us is a pfn which is an arg for
 305                 * online__pages(), and start_pfn should exist.
 306                 */
 307                nid = pfn_to_nid(start_pfn);
 308                VM_BUG_ON(!node_state(nid, N_ONLINE));
 309        }
 310
 311        for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
 312                if (!pfn_present(pfn))
 313                        continue;
 314                fail = init_section_page_ext(pfn, nid);
 315        }
 316        if (!fail)
 317                return 0;
 318
 319        /* rollback */
 320        for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
 321                __free_page_ext(pfn);
 322
 323        return -ENOMEM;
 324}
 325
 326static int __meminit offline_page_ext(unsigned long start_pfn,
 327                                unsigned long nr_pages, int nid)
 328{
 329        unsigned long start, end, pfn;
 330
 331        start = SECTION_ALIGN_DOWN(start_pfn);
 332        end = SECTION_ALIGN_UP(start_pfn + nr_pages);
 333
 334        for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
 335                __free_page_ext(pfn);
 336        return 0;
 337
 338}
 339
 340static int __meminit page_ext_callback(struct notifier_block *self,
 341                               unsigned long action, void *arg)
 342{
 343        struct memory_notify *mn = arg;
 344        int ret = 0;
 345
 346        switch (action) {
 347        case MEM_GOING_ONLINE:
 348                ret = online_page_ext(mn->start_pfn,
 349                                   mn->nr_pages, mn->status_change_nid);
 350                break;
 351        case MEM_OFFLINE:
 352                offline_page_ext(mn->start_pfn,
 353                                mn->nr_pages, mn->status_change_nid);
 354                break;
 355        case MEM_CANCEL_ONLINE:
 356                offline_page_ext(mn->start_pfn,
 357                                mn->nr_pages, mn->status_change_nid);
 358                break;
 359        case MEM_GOING_OFFLINE:
 360                break;
 361        case MEM_ONLINE:
 362        case MEM_CANCEL_OFFLINE:
 363                break;
 364        }
 365
 366        return notifier_from_errno(ret);
 367}
 368
 369#endif
 370
 371void __init page_ext_init(void)
 372{
 373        unsigned long pfn;
 374        int nid;
 375
 376        if (!invoke_need_callbacks())
 377                return;
 378
 379        for_each_node_state(nid, N_MEMORY) {
 380                unsigned long start_pfn, end_pfn;
 381
 382                start_pfn = node_start_pfn(nid);
 383                end_pfn = node_end_pfn(nid);
 384                /*
 385                 * start_pfn and end_pfn may not be aligned to SECTION and the
 386                 * page->flags of out of node pages are not initialized.  So we
 387                 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
 388                 */
 389                for (pfn = start_pfn; pfn < end_pfn;
 390                        pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
 391
 392                        if (!pfn_valid(pfn))
 393                                continue;
 394                        /*
 395                         * Nodes's pfns can be overlapping.
 396                         * We know some arch can have a nodes layout such as
 397                         * -------------pfn-------------->
 398                         * N0 | N1 | N2 | N0 | N1 | N2|....
 399                         */
 400                        if (pfn_to_nid(pfn) != nid)
 401                                continue;
 402                        if (init_section_page_ext(pfn, nid))
 403                                goto oom;
 404                        cond_resched();
 405                }
 406        }
 407        hotplug_memory_notifier(page_ext_callback, 0);
 408        pr_info("allocated %ld bytes of page_ext\n", total_usage);
 409        invoke_init_callbacks();
 410        return;
 411
 412oom:
 413        panic("Out of memory");
 414}
 415
 416void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
 417{
 418}
 419
 420#endif
 421