linux/mm/slob.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SLOB Allocator: Simple List Of Blocks
   4 *
   5 * Matt Mackall <mpm@selenic.com> 12/30/03
   6 *
   7 * NUMA support by Paul Mundt, 2007.
   8 *
   9 * How SLOB works:
  10 *
  11 * The core of SLOB is a traditional K&R style heap allocator, with
  12 * support for returning aligned objects. The granularity of this
  13 * allocator is as little as 2 bytes, however typically most architectures
  14 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
  15 *
  16 * The slob heap is a set of linked list of pages from alloc_pages(),
  17 * and within each page, there is a singly-linked list of free blocks
  18 * (slob_t). The heap is grown on demand. To reduce fragmentation,
  19 * heap pages are segregated into three lists, with objects less than
  20 * 256 bytes, objects less than 1024 bytes, and all other objects.
  21 *
  22 * Allocation from heap involves first searching for a page with
  23 * sufficient free blocks (using a next-fit-like approach) followed by
  24 * a first-fit scan of the page. Deallocation inserts objects back
  25 * into the free list in address order, so this is effectively an
  26 * address-ordered first fit.
  27 *
  28 * Above this is an implementation of kmalloc/kfree. Blocks returned
  29 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
  30 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
  31 * alloc_pages() directly, allocating compound pages so the page order
  32 * does not have to be separately tracked.
  33 * These objects are detected in kfree() because PageSlab()
  34 * is false for them.
  35 *
  36 * SLAB is emulated on top of SLOB by simply calling constructors and
  37 * destructors for every SLAB allocation. Objects are returned with the
  38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
  39 * case the low-level allocator will fragment blocks to create the proper
  40 * alignment. Again, objects of page-size or greater are allocated by
  41 * calling alloc_pages(). As SLAB objects know their size, no separate
  42 * size bookkeeping is necessary and there is essentially no allocation
  43 * space overhead, and compound pages aren't needed for multi-page
  44 * allocations.
  45 *
  46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
  47 * logic down to the page allocator, and simply doing the node accounting
  48 * on the upper levels. In the event that a node id is explicitly
  49 * provided, __alloc_pages_node() with the specified node id is used
  50 * instead. The common case (or when the node id isn't explicitly provided)
  51 * will default to the current node, as per numa_node_id().
  52 *
  53 * Node aware pages are still inserted in to the global freelist, and
  54 * these are scanned for by matching against the node id encoded in the
  55 * page flags. As a result, block allocations that can be satisfied from
  56 * the freelist will only be done so on pages residing on the same node,
  57 * in order to prevent random node placement.
  58 */
  59
  60#include <linux/kernel.h>
  61#include <linux/slab.h>
  62
  63#include <linux/mm.h>
  64#include <linux/swap.h> /* struct reclaim_state */
  65#include <linux/cache.h>
  66#include <linux/init.h>
  67#include <linux/export.h>
  68#include <linux/rcupdate.h>
  69#include <linux/list.h>
  70#include <linux/kmemleak.h>
  71
  72#include <trace/events/kmem.h>
  73
  74#include <linux/atomic.h>
  75
  76#include "slab.h"
  77/*
  78 * slob_block has a field 'units', which indicates size of block if +ve,
  79 * or offset of next block if -ve (in SLOB_UNITs).
  80 *
  81 * Free blocks of size 1 unit simply contain the offset of the next block.
  82 * Those with larger size contain their size in the first SLOB_UNIT of
  83 * memory, and the offset of the next free block in the second SLOB_UNIT.
  84 */
  85#if PAGE_SIZE <= (32767 * 2)
  86typedef s16 slobidx_t;
  87#else
  88typedef s32 slobidx_t;
  89#endif
  90
  91struct slob_block {
  92        slobidx_t units;
  93};
  94typedef struct slob_block slob_t;
  95
  96/*
  97 * All partially free slob pages go on these lists.
  98 */
  99#define SLOB_BREAK1 256
 100#define SLOB_BREAK2 1024
 101static LIST_HEAD(free_slob_small);
 102static LIST_HEAD(free_slob_medium);
 103static LIST_HEAD(free_slob_large);
 104
 105/*
 106 * slob_page_free: true for pages on free_slob_pages list.
 107 */
 108static inline int slob_page_free(struct page *sp)
 109{
 110        return PageSlobFree(sp);
 111}
 112
 113static void set_slob_page_free(struct page *sp, struct list_head *list)
 114{
 115        list_add(&sp->slab_list, list);
 116        __SetPageSlobFree(sp);
 117}
 118
 119static inline void clear_slob_page_free(struct page *sp)
 120{
 121        list_del(&sp->slab_list);
 122        __ClearPageSlobFree(sp);
 123}
 124
 125#define SLOB_UNIT sizeof(slob_t)
 126#define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)
 127
 128/*
 129 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
 130 * were created with a SLAB_TYPESAFE_BY_RCU slab. slob_rcu is used to free
 131 * the block using call_rcu.
 132 */
 133struct slob_rcu {
 134        struct rcu_head head;
 135        int size;
 136};
 137
 138/*
 139 * slob_lock protects all slob allocator structures.
 140 */
 141static DEFINE_SPINLOCK(slob_lock);
 142
 143/*
 144 * Encode the given size and next info into a free slob block s.
 145 */
 146static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
 147{
 148        slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
 149        slobidx_t offset = next - base;
 150
 151        if (size > 1) {
 152                s[0].units = size;
 153                s[1].units = offset;
 154        } else
 155                s[0].units = -offset;
 156}
 157
 158/*
 159 * Return the size of a slob block.
 160 */
 161static slobidx_t slob_units(slob_t *s)
 162{
 163        if (s->units > 0)
 164                return s->units;
 165        return 1;
 166}
 167
 168/*
 169 * Return the next free slob block pointer after this one.
 170 */
 171static slob_t *slob_next(slob_t *s)
 172{
 173        slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
 174        slobidx_t next;
 175
 176        if (s[0].units < 0)
 177                next = -s[0].units;
 178        else
 179                next = s[1].units;
 180        return base+next;
 181}
 182
 183/*
 184 * Returns true if s is the last free block in its page.
 185 */
 186static int slob_last(slob_t *s)
 187{
 188        return !((unsigned long)slob_next(s) & ~PAGE_MASK);
 189}
 190
 191static void *slob_new_pages(gfp_t gfp, int order, int node)
 192{
 193        void *page;
 194
 195#ifdef CONFIG_NUMA
 196        if (node != NUMA_NO_NODE)
 197                page = __alloc_pages_node(node, gfp, order);
 198        else
 199#endif
 200                page = alloc_pages(gfp, order);
 201
 202        if (!page)
 203                return NULL;
 204
 205        return page_address(page);
 206}
 207
 208static void slob_free_pages(void *b, int order)
 209{
 210        if (current->reclaim_state)
 211                current->reclaim_state->reclaimed_slab += 1 << order;
 212        free_pages((unsigned long)b, order);
 213}
 214
 215/*
 216 * slob_page_alloc() - Allocate a slob block within a given slob_page sp.
 217 * @sp: Page to look in.
 218 * @size: Size of the allocation.
 219 * @align: Allocation alignment.
 220 * @page_removed_from_list: Return parameter.
 221 *
 222 * Tries to find a chunk of memory at least @size bytes big within @page.
 223 *
 224 * Return: Pointer to memory if allocated, %NULL otherwise.  If the
 225 *         allocation fills up @page then the page is removed from the
 226 *         freelist, in this case @page_removed_from_list will be set to
 227 *         true (set to false otherwise).
 228 */
 229static void *slob_page_alloc(struct page *sp, size_t size, int align,
 230                             bool *page_removed_from_list)
 231{
 232        slob_t *prev, *cur, *aligned = NULL;
 233        int delta = 0, units = SLOB_UNITS(size);
 234
 235        *page_removed_from_list = false;
 236        for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
 237                slobidx_t avail = slob_units(cur);
 238
 239                if (align) {
 240                        aligned = (slob_t *)ALIGN((unsigned long)cur, align);
 241                        delta = aligned - cur;
 242                }
 243                if (avail >= units + delta) { /* room enough? */
 244                        slob_t *next;
 245
 246                        if (delta) { /* need to fragment head to align? */
 247                                next = slob_next(cur);
 248                                set_slob(aligned, avail - delta, next);
 249                                set_slob(cur, delta, aligned);
 250                                prev = cur;
 251                                cur = aligned;
 252                                avail = slob_units(cur);
 253                        }
 254
 255                        next = slob_next(cur);
 256                        if (avail == units) { /* exact fit? unlink. */
 257                                if (prev)
 258                                        set_slob(prev, slob_units(prev), next);
 259                                else
 260                                        sp->freelist = next;
 261                        } else { /* fragment */
 262                                if (prev)
 263                                        set_slob(prev, slob_units(prev), cur + units);
 264                                else
 265                                        sp->freelist = cur + units;
 266                                set_slob(cur + units, avail - units, next);
 267                        }
 268
 269                        sp->units -= units;
 270                        if (!sp->units) {
 271                                clear_slob_page_free(sp);
 272                                *page_removed_from_list = true;
 273                        }
 274                        return cur;
 275                }
 276                if (slob_last(cur))
 277                        return NULL;
 278        }
 279}
 280
 281/*
 282 * slob_alloc: entry point into the slob allocator.
 283 */
 284static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
 285{
 286        struct page *sp;
 287        struct list_head *slob_list;
 288        slob_t *b = NULL;
 289        unsigned long flags;
 290        bool _unused;
 291
 292        if (size < SLOB_BREAK1)
 293                slob_list = &free_slob_small;
 294        else if (size < SLOB_BREAK2)
 295                slob_list = &free_slob_medium;
 296        else
 297                slob_list = &free_slob_large;
 298
 299        spin_lock_irqsave(&slob_lock, flags);
 300        /* Iterate through each partially free page, try to find room */
 301        list_for_each_entry(sp, slob_list, slab_list) {
 302                bool page_removed_from_list = false;
 303#ifdef CONFIG_NUMA
 304                /*
 305                 * If there's a node specification, search for a partial
 306                 * page with a matching node id in the freelist.
 307                 */
 308                if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
 309                        continue;
 310#endif
 311                /* Enough room on this page? */
 312                if (sp->units < SLOB_UNITS(size))
 313                        continue;
 314
 315                b = slob_page_alloc(sp, size, align, &page_removed_from_list);
 316                if (!b)
 317                        continue;
 318
 319                /*
 320                 * If slob_page_alloc() removed sp from the list then we
 321                 * cannot call list functions on sp.  If so allocation
 322                 * did not fragment the page anyway so optimisation is
 323                 * unnecessary.
 324                 */
 325                if (!page_removed_from_list) {
 326                        /*
 327                         * Improve fragment distribution and reduce our average
 328                         * search time by starting our next search here. (see
 329                         * Knuth vol 1, sec 2.5, pg 449)
 330                         */
 331                        if (!list_is_first(&sp->slab_list, slob_list))
 332                                list_rotate_to_front(&sp->slab_list, slob_list);
 333                }
 334                break;
 335        }
 336        spin_unlock_irqrestore(&slob_lock, flags);
 337
 338        /* Not enough space: must allocate a new page */
 339        if (!b) {
 340                b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
 341                if (!b)
 342                        return NULL;
 343                sp = virt_to_page(b);
 344                __SetPageSlab(sp);
 345
 346                spin_lock_irqsave(&slob_lock, flags);
 347                sp->units = SLOB_UNITS(PAGE_SIZE);
 348                sp->freelist = b;
 349                INIT_LIST_HEAD(&sp->slab_list);
 350                set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
 351                set_slob_page_free(sp, slob_list);
 352                b = slob_page_alloc(sp, size, align, &_unused);
 353                BUG_ON(!b);
 354                spin_unlock_irqrestore(&slob_lock, flags);
 355        }
 356        if (unlikely(gfp & __GFP_ZERO))
 357                memset(b, 0, size);
 358        return b;
 359}
 360
 361/*
 362 * slob_free: entry point into the slob allocator.
 363 */
 364static void slob_free(void *block, int size)
 365{
 366        struct page *sp;
 367        slob_t *prev, *next, *b = (slob_t *)block;
 368        slobidx_t units;
 369        unsigned long flags;
 370        struct list_head *slob_list;
 371
 372        if (unlikely(ZERO_OR_NULL_PTR(block)))
 373                return;
 374        BUG_ON(!size);
 375
 376        sp = virt_to_page(block);
 377        units = SLOB_UNITS(size);
 378
 379        spin_lock_irqsave(&slob_lock, flags);
 380
 381        if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
 382                /* Go directly to page allocator. Do not pass slob allocator */
 383                if (slob_page_free(sp))
 384                        clear_slob_page_free(sp);
 385                spin_unlock_irqrestore(&slob_lock, flags);
 386                __ClearPageSlab(sp);
 387                page_mapcount_reset(sp);
 388                slob_free_pages(b, 0);
 389                return;
 390        }
 391
 392        if (!slob_page_free(sp)) {
 393                /* This slob page is about to become partially free. Easy! */
 394                sp->units = units;
 395                sp->freelist = b;
 396                set_slob(b, units,
 397                        (void *)((unsigned long)(b +
 398                                        SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
 399                if (size < SLOB_BREAK1)
 400                        slob_list = &free_slob_small;
 401                else if (size < SLOB_BREAK2)
 402                        slob_list = &free_slob_medium;
 403                else
 404                        slob_list = &free_slob_large;
 405                set_slob_page_free(sp, slob_list);
 406                goto out;
 407        }
 408
 409        /*
 410         * Otherwise the page is already partially free, so find reinsertion
 411         * point.
 412         */
 413        sp->units += units;
 414
 415        if (b < (slob_t *)sp->freelist) {
 416                if (b + units == sp->freelist) {
 417                        units += slob_units(sp->freelist);
 418                        sp->freelist = slob_next(sp->freelist);
 419                }
 420                set_slob(b, units, sp->freelist);
 421                sp->freelist = b;
 422        } else {
 423                prev = sp->freelist;
 424                next = slob_next(prev);
 425                while (b > next) {
 426                        prev = next;
 427                        next = slob_next(prev);
 428                }
 429
 430                if (!slob_last(prev) && b + units == next) {
 431                        units += slob_units(next);
 432                        set_slob(b, units, slob_next(next));
 433                } else
 434                        set_slob(b, units, next);
 435
 436                if (prev + slob_units(prev) == b) {
 437                        units = slob_units(b) + slob_units(prev);
 438                        set_slob(prev, units, slob_next(b));
 439                } else
 440                        set_slob(prev, slob_units(prev), b);
 441        }
 442out:
 443        spin_unlock_irqrestore(&slob_lock, flags);
 444}
 445
 446/*
 447 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
 448 */
 449
 450static __always_inline void *
 451__do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
 452{
 453        unsigned int *m;
 454        int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 455        void *ret;
 456
 457        gfp &= gfp_allowed_mask;
 458
 459        fs_reclaim_acquire(gfp);
 460        fs_reclaim_release(gfp);
 461
 462        if (size < PAGE_SIZE - align) {
 463                if (!size)
 464                        return ZERO_SIZE_PTR;
 465
 466                m = slob_alloc(size + align, gfp, align, node);
 467
 468                if (!m)
 469                        return NULL;
 470                *m = size;
 471                ret = (void *)m + align;
 472
 473                trace_kmalloc_node(caller, ret,
 474                                   size, size + align, gfp, node);
 475        } else {
 476                unsigned int order = get_order(size);
 477
 478                if (likely(order))
 479                        gfp |= __GFP_COMP;
 480                ret = slob_new_pages(gfp, order, node);
 481
 482                trace_kmalloc_node(caller, ret,
 483                                   size, PAGE_SIZE << order, gfp, node);
 484        }
 485
 486        kmemleak_alloc(ret, size, 1, gfp);
 487        return ret;
 488}
 489
 490void *__kmalloc(size_t size, gfp_t gfp)
 491{
 492        return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
 493}
 494EXPORT_SYMBOL(__kmalloc);
 495
 496void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
 497{
 498        return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
 499}
 500
 501#ifdef CONFIG_NUMA
 502void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
 503                                        int node, unsigned long caller)
 504{
 505        return __do_kmalloc_node(size, gfp, node, caller);
 506}
 507#endif
 508
 509void kfree(const void *block)
 510{
 511        struct page *sp;
 512
 513        trace_kfree(_RET_IP_, block);
 514
 515        if (unlikely(ZERO_OR_NULL_PTR(block)))
 516                return;
 517        kmemleak_free(block);
 518
 519        sp = virt_to_page(block);
 520        if (PageSlab(sp)) {
 521                int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 522                unsigned int *m = (unsigned int *)(block - align);
 523                slob_free(m, *m + align);
 524        } else
 525                __free_pages(sp, compound_order(sp));
 526}
 527EXPORT_SYMBOL(kfree);
 528
 529/* can't use ksize for kmem_cache_alloc memory, only kmalloc */
 530size_t __ksize(const void *block)
 531{
 532        struct page *sp;
 533        int align;
 534        unsigned int *m;
 535
 536        BUG_ON(!block);
 537        if (unlikely(block == ZERO_SIZE_PTR))
 538                return 0;
 539
 540        sp = virt_to_page(block);
 541        if (unlikely(!PageSlab(sp)))
 542                return PAGE_SIZE << compound_order(sp);
 543
 544        align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
 545        m = (unsigned int *)(block - align);
 546        return SLOB_UNITS(*m) * SLOB_UNIT;
 547}
 548EXPORT_SYMBOL(__ksize);
 549
 550int __kmem_cache_create(struct kmem_cache *c, slab_flags_t flags)
 551{
 552        if (flags & SLAB_TYPESAFE_BY_RCU) {
 553                /* leave room for rcu footer at the end of object */
 554                c->size += sizeof(struct slob_rcu);
 555        }
 556        c->flags = flags;
 557        return 0;
 558}
 559
 560static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
 561{
 562        void *b;
 563
 564        flags &= gfp_allowed_mask;
 565
 566        fs_reclaim_acquire(flags);
 567        fs_reclaim_release(flags);
 568
 569        if (c->size < PAGE_SIZE) {
 570                b = slob_alloc(c->size, flags, c->align, node);
 571                trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
 572                                            SLOB_UNITS(c->size) * SLOB_UNIT,
 573                                            flags, node);
 574        } else {
 575                b = slob_new_pages(flags, get_order(c->size), node);
 576                trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
 577                                            PAGE_SIZE << get_order(c->size),
 578                                            flags, node);
 579        }
 580
 581        if (b && c->ctor) {
 582                WARN_ON_ONCE(flags & __GFP_ZERO);
 583                c->ctor(b);
 584        }
 585
 586        kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
 587        return b;
 588}
 589
 590void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
 591{
 592        return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
 593}
 594EXPORT_SYMBOL(kmem_cache_alloc);
 595
 596#ifdef CONFIG_NUMA
 597void *__kmalloc_node(size_t size, gfp_t gfp, int node)
 598{
 599        return __do_kmalloc_node(size, gfp, node, _RET_IP_);
 600}
 601EXPORT_SYMBOL(__kmalloc_node);
 602
 603void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
 604{
 605        return slob_alloc_node(cachep, gfp, node);
 606}
 607EXPORT_SYMBOL(kmem_cache_alloc_node);
 608#endif
 609
 610static void __kmem_cache_free(void *b, int size)
 611{
 612        if (size < PAGE_SIZE)
 613                slob_free(b, size);
 614        else
 615                slob_free_pages(b, get_order(size));
 616}
 617
 618static void kmem_rcu_free(struct rcu_head *head)
 619{
 620        struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
 621        void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
 622
 623        __kmem_cache_free(b, slob_rcu->size);
 624}
 625
 626void kmem_cache_free(struct kmem_cache *c, void *b)
 627{
 628        kmemleak_free_recursive(b, c->flags);
 629        if (unlikely(c->flags & SLAB_TYPESAFE_BY_RCU)) {
 630                struct slob_rcu *slob_rcu;
 631                slob_rcu = b + (c->size - sizeof(struct slob_rcu));
 632                slob_rcu->size = c->size;
 633                call_rcu(&slob_rcu->head, kmem_rcu_free);
 634        } else {
 635                __kmem_cache_free(b, c->size);
 636        }
 637
 638        trace_kmem_cache_free(_RET_IP_, b);
 639}
 640EXPORT_SYMBOL(kmem_cache_free);
 641
 642void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
 643{
 644        __kmem_cache_free_bulk(s, size, p);
 645}
 646EXPORT_SYMBOL(kmem_cache_free_bulk);
 647
 648int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
 649                                                                void **p)
 650{
 651        return __kmem_cache_alloc_bulk(s, flags, size, p);
 652}
 653EXPORT_SYMBOL(kmem_cache_alloc_bulk);
 654
 655int __kmem_cache_shutdown(struct kmem_cache *c)
 656{
 657        /* No way to check for remaining objects */
 658        return 0;
 659}
 660
 661void __kmem_cache_release(struct kmem_cache *c)
 662{
 663}
 664
 665int __kmem_cache_shrink(struct kmem_cache *d)
 666{
 667        return 0;
 668}
 669
 670struct kmem_cache kmem_cache_boot = {
 671        .name = "kmem_cache",
 672        .size = sizeof(struct kmem_cache),
 673        .flags = SLAB_PANIC,
 674        .align = ARCH_KMALLOC_MINALIGN,
 675};
 676
 677void __init kmem_cache_init(void)
 678{
 679        kmem_cache = &kmem_cache_boot;
 680        slab_state = UP;
 681}
 682
 683void __init kmem_cache_init_late(void)
 684{
 685        slab_state = FULL;
 686}
 687