linux/mm/vmscan.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/mm/vmscan.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  Swap reorganised 29.12.95, Stephen Tweedie.
   8 *  kswapd added: 7.1.96  sct
   9 *  Removed kswapd_ctl limits, and swap out as many pages as needed
  10 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  11 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  12 *  Multiqueue VM started 5.8.00, Rik van Riel.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/mm.h>
  18#include <linux/sched/mm.h>
  19#include <linux/module.h>
  20#include <linux/gfp.h>
  21#include <linux/kernel_stat.h>
  22#include <linux/swap.h>
  23#include <linux/pagemap.h>
  24#include <linux/init.h>
  25#include <linux/highmem.h>
  26#include <linux/vmpressure.h>
  27#include <linux/vmstat.h>
  28#include <linux/file.h>
  29#include <linux/writeback.h>
  30#include <linux/blkdev.h>
  31#include <linux/buffer_head.h>  /* for try_to_release_page(),
  32                                        buffer_heads_over_limit */
  33#include <linux/mm_inline.h>
  34#include <linux/backing-dev.h>
  35#include <linux/rmap.h>
  36#include <linux/topology.h>
  37#include <linux/cpu.h>
  38#include <linux/cpuset.h>
  39#include <linux/compaction.h>
  40#include <linux/notifier.h>
  41#include <linux/rwsem.h>
  42#include <linux/delay.h>
  43#include <linux/kthread.h>
  44#include <linux/freezer.h>
  45#include <linux/memcontrol.h>
  46#include <linux/delayacct.h>
  47#include <linux/sysctl.h>
  48#include <linux/oom.h>
  49#include <linux/pagevec.h>
  50#include <linux/prefetch.h>
  51#include <linux/printk.h>
  52#include <linux/dax.h>
  53#include <linux/psi.h>
  54
  55#include <asm/tlbflush.h>
  56#include <asm/div64.h>
  57
  58#include <linux/swapops.h>
  59#include <linux/balloon_compaction.h>
  60
  61#include "internal.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/vmscan.h>
  65
  66struct scan_control {
  67        /* How many pages shrink_list() should reclaim */
  68        unsigned long nr_to_reclaim;
  69
  70        /*
  71         * Nodemask of nodes allowed by the caller. If NULL, all nodes
  72         * are scanned.
  73         */
  74        nodemask_t      *nodemask;
  75
  76        /*
  77         * The memory cgroup that hit its limit and as a result is the
  78         * primary target of this reclaim invocation.
  79         */
  80        struct mem_cgroup *target_mem_cgroup;
  81
  82        /* Writepage batching in laptop mode; RECLAIM_WRITE */
  83        unsigned int may_writepage:1;
  84
  85        /* Can mapped pages be reclaimed? */
  86        unsigned int may_unmap:1;
  87
  88        /* Can pages be swapped as part of reclaim? */
  89        unsigned int may_swap:1;
  90
  91        /*
  92         * Cgroups are not reclaimed below their configured memory.low,
  93         * unless we threaten to OOM. If any cgroups are skipped due to
  94         * memory.low and nothing was reclaimed, go back for memory.low.
  95         */
  96        unsigned int memcg_low_reclaim:1;
  97        unsigned int memcg_low_skipped:1;
  98
  99        unsigned int hibernation_mode:1;
 100
 101        /* One of the zones is ready for compaction */
 102        unsigned int compaction_ready:1;
 103
 104        /* Allocation order */
 105        s8 order;
 106
 107        /* Scan (total_size >> priority) pages at once */
 108        s8 priority;
 109
 110        /* The highest zone to isolate pages for reclaim from */
 111        s8 reclaim_idx;
 112
 113        /* This context's GFP mask */
 114        gfp_t gfp_mask;
 115
 116        /* Incremented by the number of inactive pages that were scanned */
 117        unsigned long nr_scanned;
 118
 119        /* Number of pages freed so far during a call to shrink_zones() */
 120        unsigned long nr_reclaimed;
 121
 122        struct {
 123                unsigned int dirty;
 124                unsigned int unqueued_dirty;
 125                unsigned int congested;
 126                unsigned int writeback;
 127                unsigned int immediate;
 128                unsigned int file_taken;
 129                unsigned int taken;
 130        } nr;
 131
 132        /* for recording the reclaimed slab by now */
 133        struct reclaim_state reclaim_state;
 134};
 135
 136#ifdef ARCH_HAS_PREFETCH
 137#define prefetch_prev_lru_page(_page, _base, _field)                    \
 138        do {                                                            \
 139                if ((_page)->lru.prev != _base) {                       \
 140                        struct page *prev;                              \
 141                                                                        \
 142                        prev = lru_to_page(&(_page->lru));              \
 143                        prefetch(&prev->_field);                        \
 144                }                                                       \
 145        } while (0)
 146#else
 147#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 148#endif
 149
 150#ifdef ARCH_HAS_PREFETCHW
 151#define prefetchw_prev_lru_page(_page, _base, _field)                   \
 152        do {                                                            \
 153                if ((_page)->lru.prev != _base) {                       \
 154                        struct page *prev;                              \
 155                                                                        \
 156                        prev = lru_to_page(&(_page->lru));              \
 157                        prefetchw(&prev->_field);                       \
 158                }                                                       \
 159        } while (0)
 160#else
 161#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 162#endif
 163
 164/*
 165 * From 0 .. 100.  Higher means more swappy.
 166 */
 167int vm_swappiness = 60;
 168/*
 169 * The total number of pages which are beyond the high watermark within all
 170 * zones.
 171 */
 172unsigned long vm_total_pages;
 173
 174static LIST_HEAD(shrinker_list);
 175static DECLARE_RWSEM(shrinker_rwsem);
 176
 177#ifdef CONFIG_MEMCG_KMEM
 178
 179/*
 180 * We allow subsystems to populate their shrinker-related
 181 * LRU lists before register_shrinker_prepared() is called
 182 * for the shrinker, since we don't want to impose
 183 * restrictions on their internal registration order.
 184 * In this case shrink_slab_memcg() may find corresponding
 185 * bit is set in the shrinkers map.
 186 *
 187 * This value is used by the function to detect registering
 188 * shrinkers and to skip do_shrink_slab() calls for them.
 189 */
 190#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
 191
 192static DEFINE_IDR(shrinker_idr);
 193static int shrinker_nr_max;
 194
 195static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 196{
 197        int id, ret = -ENOMEM;
 198
 199        down_write(&shrinker_rwsem);
 200        /* This may call shrinker, so it must use down_read_trylock() */
 201        id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
 202        if (id < 0)
 203                goto unlock;
 204
 205        if (id >= shrinker_nr_max) {
 206                if (memcg_expand_shrinker_maps(id)) {
 207                        idr_remove(&shrinker_idr, id);
 208                        goto unlock;
 209                }
 210
 211                shrinker_nr_max = id + 1;
 212        }
 213        shrinker->id = id;
 214        ret = 0;
 215unlock:
 216        up_write(&shrinker_rwsem);
 217        return ret;
 218}
 219
 220static void unregister_memcg_shrinker(struct shrinker *shrinker)
 221{
 222        int id = shrinker->id;
 223
 224        BUG_ON(id < 0);
 225
 226        down_write(&shrinker_rwsem);
 227        idr_remove(&shrinker_idr, id);
 228        up_write(&shrinker_rwsem);
 229}
 230#else /* CONFIG_MEMCG_KMEM */
 231static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 232{
 233        return 0;
 234}
 235
 236static void unregister_memcg_shrinker(struct shrinker *shrinker)
 237{
 238}
 239#endif /* CONFIG_MEMCG_KMEM */
 240
 241static void set_task_reclaim_state(struct task_struct *task,
 242                                   struct reclaim_state *rs)
 243{
 244        /* Check for an overwrite */
 245        WARN_ON_ONCE(rs && task->reclaim_state);
 246
 247        /* Check for the nulling of an already-nulled member */
 248        WARN_ON_ONCE(!rs && !task->reclaim_state);
 249
 250        task->reclaim_state = rs;
 251}
 252
 253#ifdef CONFIG_MEMCG
 254static bool global_reclaim(struct scan_control *sc)
 255{
 256        return !sc->target_mem_cgroup;
 257}
 258
 259/**
 260 * sane_reclaim - is the usual dirty throttling mechanism operational?
 261 * @sc: scan_control in question
 262 *
 263 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 264 * completely broken with the legacy memcg and direct stalling in
 265 * shrink_page_list() is used for throttling instead, which lacks all the
 266 * niceties such as fairness, adaptive pausing, bandwidth proportional
 267 * allocation and configurability.
 268 *
 269 * This function tests whether the vmscan currently in progress can assume
 270 * that the normal dirty throttling mechanism is operational.
 271 */
 272static bool sane_reclaim(struct scan_control *sc)
 273{
 274        struct mem_cgroup *memcg = sc->target_mem_cgroup;
 275
 276        if (!memcg)
 277                return true;
 278#ifdef CONFIG_CGROUP_WRITEBACK
 279        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 280                return true;
 281#endif
 282        return false;
 283}
 284
 285static void set_memcg_congestion(pg_data_t *pgdat,
 286                                struct mem_cgroup *memcg,
 287                                bool congested)
 288{
 289        struct mem_cgroup_per_node *mn;
 290
 291        if (!memcg)
 292                return;
 293
 294        mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 295        WRITE_ONCE(mn->congested, congested);
 296}
 297
 298static bool memcg_congested(pg_data_t *pgdat,
 299                        struct mem_cgroup *memcg)
 300{
 301        struct mem_cgroup_per_node *mn;
 302
 303        mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 304        return READ_ONCE(mn->congested);
 305
 306}
 307#else
 308static bool global_reclaim(struct scan_control *sc)
 309{
 310        return true;
 311}
 312
 313static bool sane_reclaim(struct scan_control *sc)
 314{
 315        return true;
 316}
 317
 318static inline void set_memcg_congestion(struct pglist_data *pgdat,
 319                                struct mem_cgroup *memcg, bool congested)
 320{
 321}
 322
 323static inline bool memcg_congested(struct pglist_data *pgdat,
 324                        struct mem_cgroup *memcg)
 325{
 326        return false;
 327
 328}
 329#endif
 330
 331/*
 332 * This misses isolated pages which are not accounted for to save counters.
 333 * As the data only determines if reclaim or compaction continues, it is
 334 * not expected that isolated pages will be a dominating factor.
 335 */
 336unsigned long zone_reclaimable_pages(struct zone *zone)
 337{
 338        unsigned long nr;
 339
 340        nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 341                zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 342        if (get_nr_swap_pages() > 0)
 343                nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 344                        zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 345
 346        return nr;
 347}
 348
 349/**
 350 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 351 * @lruvec: lru vector
 352 * @lru: lru to use
 353 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 354 */
 355unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
 356{
 357        unsigned long lru_size;
 358        int zid;
 359
 360        if (!mem_cgroup_disabled())
 361                lru_size = lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
 362        else
 363                lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
 364
 365        for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
 366                struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 367                unsigned long size;
 368
 369                if (!managed_zone(zone))
 370                        continue;
 371
 372                if (!mem_cgroup_disabled())
 373                        size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 374                else
 375                        size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
 376                                       NR_ZONE_LRU_BASE + lru);
 377                lru_size -= min(size, lru_size);
 378        }
 379
 380        return lru_size;
 381
 382}
 383
 384/*
 385 * Add a shrinker callback to be called from the vm.
 386 */
 387int prealloc_shrinker(struct shrinker *shrinker)
 388{
 389        unsigned int size = sizeof(*shrinker->nr_deferred);
 390
 391        if (shrinker->flags & SHRINKER_NUMA_AWARE)
 392                size *= nr_node_ids;
 393
 394        shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 395        if (!shrinker->nr_deferred)
 396                return -ENOMEM;
 397
 398        if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
 399                if (prealloc_memcg_shrinker(shrinker))
 400                        goto free_deferred;
 401        }
 402
 403        return 0;
 404
 405free_deferred:
 406        kfree(shrinker->nr_deferred);
 407        shrinker->nr_deferred = NULL;
 408        return -ENOMEM;
 409}
 410
 411void free_prealloced_shrinker(struct shrinker *shrinker)
 412{
 413        if (!shrinker->nr_deferred)
 414                return;
 415
 416        if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 417                unregister_memcg_shrinker(shrinker);
 418
 419        kfree(shrinker->nr_deferred);
 420        shrinker->nr_deferred = NULL;
 421}
 422
 423void register_shrinker_prepared(struct shrinker *shrinker)
 424{
 425        down_write(&shrinker_rwsem);
 426        list_add_tail(&shrinker->list, &shrinker_list);
 427#ifdef CONFIG_MEMCG_KMEM
 428        if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 429                idr_replace(&shrinker_idr, shrinker, shrinker->id);
 430#endif
 431        up_write(&shrinker_rwsem);
 432}
 433
 434int register_shrinker(struct shrinker *shrinker)
 435{
 436        int err = prealloc_shrinker(shrinker);
 437
 438        if (err)
 439                return err;
 440        register_shrinker_prepared(shrinker);
 441        return 0;
 442}
 443EXPORT_SYMBOL(register_shrinker);
 444
 445/*
 446 * Remove one
 447 */
 448void unregister_shrinker(struct shrinker *shrinker)
 449{
 450        if (!shrinker->nr_deferred)
 451                return;
 452        if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 453                unregister_memcg_shrinker(shrinker);
 454        down_write(&shrinker_rwsem);
 455        list_del(&shrinker->list);
 456        up_write(&shrinker_rwsem);
 457        kfree(shrinker->nr_deferred);
 458        shrinker->nr_deferred = NULL;
 459}
 460EXPORT_SYMBOL(unregister_shrinker);
 461
 462#define SHRINK_BATCH 128
 463
 464static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 465                                    struct shrinker *shrinker, int priority)
 466{
 467        unsigned long freed = 0;
 468        unsigned long long delta;
 469        long total_scan;
 470        long freeable;
 471        long nr;
 472        long new_nr;
 473        int nid = shrinkctl->nid;
 474        long batch_size = shrinker->batch ? shrinker->batch
 475                                          : SHRINK_BATCH;
 476        long scanned = 0, next_deferred;
 477
 478        if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 479                nid = 0;
 480
 481        freeable = shrinker->count_objects(shrinker, shrinkctl);
 482        if (freeable == 0 || freeable == SHRINK_EMPTY)
 483                return freeable;
 484
 485        /*
 486         * copy the current shrinker scan count into a local variable
 487         * and zero it so that other concurrent shrinker invocations
 488         * don't also do this scanning work.
 489         */
 490        nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 491
 492        total_scan = nr;
 493        if (shrinker->seeks) {
 494                delta = freeable >> priority;
 495                delta *= 4;
 496                do_div(delta, shrinker->seeks);
 497        } else {
 498                /*
 499                 * These objects don't require any IO to create. Trim
 500                 * them aggressively under memory pressure to keep
 501                 * them from causing refetches in the IO caches.
 502                 */
 503                delta = freeable / 2;
 504        }
 505
 506        total_scan += delta;
 507        if (total_scan < 0) {
 508                pr_err("shrink_slab: %pS negative objects to delete nr=%ld\n",
 509                       shrinker->scan_objects, total_scan);
 510                total_scan = freeable;
 511                next_deferred = nr;
 512        } else
 513                next_deferred = total_scan;
 514
 515        /*
 516         * We need to avoid excessive windup on filesystem shrinkers
 517         * due to large numbers of GFP_NOFS allocations causing the
 518         * shrinkers to return -1 all the time. This results in a large
 519         * nr being built up so when a shrink that can do some work
 520         * comes along it empties the entire cache due to nr >>>
 521         * freeable. This is bad for sustaining a working set in
 522         * memory.
 523         *
 524         * Hence only allow the shrinker to scan the entire cache when
 525         * a large delta change is calculated directly.
 526         */
 527        if (delta < freeable / 4)
 528                total_scan = min(total_scan, freeable / 2);
 529
 530        /*
 531         * Avoid risking looping forever due to too large nr value:
 532         * never try to free more than twice the estimate number of
 533         * freeable entries.
 534         */
 535        if (total_scan > freeable * 2)
 536                total_scan = freeable * 2;
 537
 538        trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 539                                   freeable, delta, total_scan, priority);
 540
 541        /*
 542         * Normally, we should not scan less than batch_size objects in one
 543         * pass to avoid too frequent shrinker calls, but if the slab has less
 544         * than batch_size objects in total and we are really tight on memory,
 545         * we will try to reclaim all available objects, otherwise we can end
 546         * up failing allocations although there are plenty of reclaimable
 547         * objects spread over several slabs with usage less than the
 548         * batch_size.
 549         *
 550         * We detect the "tight on memory" situations by looking at the total
 551         * number of objects we want to scan (total_scan). If it is greater
 552         * than the total number of objects on slab (freeable), we must be
 553         * scanning at high prio and therefore should try to reclaim as much as
 554         * possible.
 555         */
 556        while (total_scan >= batch_size ||
 557               total_scan >= freeable) {
 558                unsigned long ret;
 559                unsigned long nr_to_scan = min(batch_size, total_scan);
 560
 561                shrinkctl->nr_to_scan = nr_to_scan;
 562                shrinkctl->nr_scanned = nr_to_scan;
 563                ret = shrinker->scan_objects(shrinker, shrinkctl);
 564                if (ret == SHRINK_STOP)
 565                        break;
 566                freed += ret;
 567
 568                count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
 569                total_scan -= shrinkctl->nr_scanned;
 570                scanned += shrinkctl->nr_scanned;
 571
 572                cond_resched();
 573        }
 574
 575        if (next_deferred >= scanned)
 576                next_deferred -= scanned;
 577        else
 578                next_deferred = 0;
 579        /*
 580         * move the unused scan count back into the shrinker in a
 581         * manner that handles concurrent updates. If we exhausted the
 582         * scan, there is no need to do an update.
 583         */
 584        if (next_deferred > 0)
 585                new_nr = atomic_long_add_return(next_deferred,
 586                                                &shrinker->nr_deferred[nid]);
 587        else
 588                new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 589
 590        trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
 591        return freed;
 592}
 593
 594#ifdef CONFIG_MEMCG_KMEM
 595static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 596                        struct mem_cgroup *memcg, int priority)
 597{
 598        struct memcg_shrinker_map *map;
 599        unsigned long ret, freed = 0;
 600        int i;
 601
 602        if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
 603                return 0;
 604
 605        if (!down_read_trylock(&shrinker_rwsem))
 606                return 0;
 607
 608        map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
 609                                        true);
 610        if (unlikely(!map))
 611                goto unlock;
 612
 613        for_each_set_bit(i, map->map, shrinker_nr_max) {
 614                struct shrink_control sc = {
 615                        .gfp_mask = gfp_mask,
 616                        .nid = nid,
 617                        .memcg = memcg,
 618                };
 619                struct shrinker *shrinker;
 620
 621                shrinker = idr_find(&shrinker_idr, i);
 622                if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
 623                        if (!shrinker)
 624                                clear_bit(i, map->map);
 625                        continue;
 626                }
 627
 628                ret = do_shrink_slab(&sc, shrinker, priority);
 629                if (ret == SHRINK_EMPTY) {
 630                        clear_bit(i, map->map);
 631                        /*
 632                         * After the shrinker reported that it had no objects to
 633                         * free, but before we cleared the corresponding bit in
 634                         * the memcg shrinker map, a new object might have been
 635                         * added. To make sure, we have the bit set in this
 636                         * case, we invoke the shrinker one more time and reset
 637                         * the bit if it reports that it is not empty anymore.
 638                         * The memory barrier here pairs with the barrier in
 639                         * memcg_set_shrinker_bit():
 640                         *
 641                         * list_lru_add()     shrink_slab_memcg()
 642                         *   list_add_tail()    clear_bit()
 643                         *   <MB>               <MB>
 644                         *   set_bit()          do_shrink_slab()
 645                         */
 646                        smp_mb__after_atomic();
 647                        ret = do_shrink_slab(&sc, shrinker, priority);
 648                        if (ret == SHRINK_EMPTY)
 649                                ret = 0;
 650                        else
 651                                memcg_set_shrinker_bit(memcg, nid, i);
 652                }
 653                freed += ret;
 654
 655                if (rwsem_is_contended(&shrinker_rwsem)) {
 656                        freed = freed ? : 1;
 657                        break;
 658                }
 659        }
 660unlock:
 661        up_read(&shrinker_rwsem);
 662        return freed;
 663}
 664#else /* CONFIG_MEMCG_KMEM */
 665static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 666                        struct mem_cgroup *memcg, int priority)
 667{
 668        return 0;
 669}
 670#endif /* CONFIG_MEMCG_KMEM */
 671
 672/**
 673 * shrink_slab - shrink slab caches
 674 * @gfp_mask: allocation context
 675 * @nid: node whose slab caches to target
 676 * @memcg: memory cgroup whose slab caches to target
 677 * @priority: the reclaim priority
 678 *
 679 * Call the shrink functions to age shrinkable caches.
 680 *
 681 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 682 * unaware shrinkers will receive a node id of 0 instead.
 683 *
 684 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 685 * are called only if it is the root cgroup.
 686 *
 687 * @priority is sc->priority, we take the number of objects and >> by priority
 688 * in order to get the scan target.
 689 *
 690 * Returns the number of reclaimed slab objects.
 691 */
 692static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 693                                 struct mem_cgroup *memcg,
 694                                 int priority)
 695{
 696        unsigned long ret, freed = 0;
 697        struct shrinker *shrinker;
 698
 699        /*
 700         * The root memcg might be allocated even though memcg is disabled
 701         * via "cgroup_disable=memory" boot parameter.  This could make
 702         * mem_cgroup_is_root() return false, then just run memcg slab
 703         * shrink, but skip global shrink.  This may result in premature
 704         * oom.
 705         */
 706        if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
 707                return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
 708
 709        if (!down_read_trylock(&shrinker_rwsem))
 710                goto out;
 711
 712        list_for_each_entry(shrinker, &shrinker_list, list) {
 713                struct shrink_control sc = {
 714                        .gfp_mask = gfp_mask,
 715                        .nid = nid,
 716                        .memcg = memcg,
 717                };
 718
 719                ret = do_shrink_slab(&sc, shrinker, priority);
 720                if (ret == SHRINK_EMPTY)
 721                        ret = 0;
 722                freed += ret;
 723                /*
 724                 * Bail out if someone want to register a new shrinker to
 725                 * prevent the regsitration from being stalled for long periods
 726                 * by parallel ongoing shrinking.
 727                 */
 728                if (rwsem_is_contended(&shrinker_rwsem)) {
 729                        freed = freed ? : 1;
 730                        break;
 731                }
 732        }
 733
 734        up_read(&shrinker_rwsem);
 735out:
 736        cond_resched();
 737        return freed;
 738}
 739
 740void drop_slab_node(int nid)
 741{
 742        unsigned long freed;
 743
 744        do {
 745                struct mem_cgroup *memcg = NULL;
 746
 747                freed = 0;
 748                memcg = mem_cgroup_iter(NULL, NULL, NULL);
 749                do {
 750                        freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 751                } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 752        } while (freed > 10);
 753}
 754
 755void drop_slab(void)
 756{
 757        int nid;
 758
 759        for_each_online_node(nid)
 760                drop_slab_node(nid);
 761}
 762
 763static inline int is_page_cache_freeable(struct page *page)
 764{
 765        /*
 766         * A freeable page cache page is referenced only by the caller
 767         * that isolated the page, the page cache and optional buffer
 768         * heads at page->private.
 769         */
 770        int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
 771                HPAGE_PMD_NR : 1;
 772        return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
 773}
 774
 775static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
 776{
 777        if (current->flags & PF_SWAPWRITE)
 778                return 1;
 779        if (!inode_write_congested(inode))
 780                return 1;
 781        if (inode_to_bdi(inode) == current->backing_dev_info)
 782                return 1;
 783        return 0;
 784}
 785
 786/*
 787 * We detected a synchronous write error writing a page out.  Probably
 788 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 789 * fsync(), msync() or close().
 790 *
 791 * The tricky part is that after writepage we cannot touch the mapping: nothing
 792 * prevents it from being freed up.  But we have a ref on the page and once
 793 * that page is locked, the mapping is pinned.
 794 *
 795 * We're allowed to run sleeping lock_page() here because we know the caller has
 796 * __GFP_FS.
 797 */
 798static void handle_write_error(struct address_space *mapping,
 799                                struct page *page, int error)
 800{
 801        lock_page(page);
 802        if (page_mapping(page) == mapping)
 803                mapping_set_error(mapping, error);
 804        unlock_page(page);
 805}
 806
 807/* possible outcome of pageout() */
 808typedef enum {
 809        /* failed to write page out, page is locked */
 810        PAGE_KEEP,
 811        /* move page to the active list, page is locked */
 812        PAGE_ACTIVATE,
 813        /* page has been sent to the disk successfully, page is unlocked */
 814        PAGE_SUCCESS,
 815        /* page is clean and locked */
 816        PAGE_CLEAN,
 817} pageout_t;
 818
 819/*
 820 * pageout is called by shrink_page_list() for each dirty page.
 821 * Calls ->writepage().
 822 */
 823static pageout_t pageout(struct page *page, struct address_space *mapping,
 824                         struct scan_control *sc)
 825{
 826        /*
 827         * If the page is dirty, only perform writeback if that write
 828         * will be non-blocking.  To prevent this allocation from being
 829         * stalled by pagecache activity.  But note that there may be
 830         * stalls if we need to run get_block().  We could test
 831         * PagePrivate for that.
 832         *
 833         * If this process is currently in __generic_file_write_iter() against
 834         * this page's queue, we can perform writeback even if that
 835         * will block.
 836         *
 837         * If the page is swapcache, write it back even if that would
 838         * block, for some throttling. This happens by accident, because
 839         * swap_backing_dev_info is bust: it doesn't reflect the
 840         * congestion state of the swapdevs.  Easy to fix, if needed.
 841         */
 842        if (!is_page_cache_freeable(page))
 843                return PAGE_KEEP;
 844        if (!mapping) {
 845                /*
 846                 * Some data journaling orphaned pages can have
 847                 * page->mapping == NULL while being dirty with clean buffers.
 848                 */
 849                if (page_has_private(page)) {
 850                        if (try_to_free_buffers(page)) {
 851                                ClearPageDirty(page);
 852                                pr_info("%s: orphaned page\n", __func__);
 853                                return PAGE_CLEAN;
 854                        }
 855                }
 856                return PAGE_KEEP;
 857        }
 858        if (mapping->a_ops->writepage == NULL)
 859                return PAGE_ACTIVATE;
 860        if (!may_write_to_inode(mapping->host, sc))
 861                return PAGE_KEEP;
 862
 863        if (clear_page_dirty_for_io(page)) {
 864                int res;
 865                struct writeback_control wbc = {
 866                        .sync_mode = WB_SYNC_NONE,
 867                        .nr_to_write = SWAP_CLUSTER_MAX,
 868                        .range_start = 0,
 869                        .range_end = LLONG_MAX,
 870                        .for_reclaim = 1,
 871                };
 872
 873                SetPageReclaim(page);
 874                res = mapping->a_ops->writepage(page, &wbc);
 875                if (res < 0)
 876                        handle_write_error(mapping, page, res);
 877                if (res == AOP_WRITEPAGE_ACTIVATE) {
 878                        ClearPageReclaim(page);
 879                        return PAGE_ACTIVATE;
 880                }
 881
 882                if (!PageWriteback(page)) {
 883                        /* synchronous write or broken a_ops? */
 884                        ClearPageReclaim(page);
 885                }
 886                trace_mm_vmscan_writepage(page);
 887                inc_node_page_state(page, NR_VMSCAN_WRITE);
 888                return PAGE_SUCCESS;
 889        }
 890
 891        return PAGE_CLEAN;
 892}
 893
 894/*
 895 * Same as remove_mapping, but if the page is removed from the mapping, it
 896 * gets returned with a refcount of 0.
 897 */
 898static int __remove_mapping(struct address_space *mapping, struct page *page,
 899                            bool reclaimed)
 900{
 901        unsigned long flags;
 902        int refcount;
 903
 904        BUG_ON(!PageLocked(page));
 905        BUG_ON(mapping != page_mapping(page));
 906
 907        xa_lock_irqsave(&mapping->i_pages, flags);
 908        /*
 909         * The non racy check for a busy page.
 910         *
 911         * Must be careful with the order of the tests. When someone has
 912         * a ref to the page, it may be possible that they dirty it then
 913         * drop the reference. So if PageDirty is tested before page_count
 914         * here, then the following race may occur:
 915         *
 916         * get_user_pages(&page);
 917         * [user mapping goes away]
 918         * write_to(page);
 919         *                              !PageDirty(page)    [good]
 920         * SetPageDirty(page);
 921         * put_page(page);
 922         *                              !page_count(page)   [good, discard it]
 923         *
 924         * [oops, our write_to data is lost]
 925         *
 926         * Reversing the order of the tests ensures such a situation cannot
 927         * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 928         * load is not satisfied before that of page->_refcount.
 929         *
 930         * Note that if SetPageDirty is always performed via set_page_dirty,
 931         * and thus under the i_pages lock, then this ordering is not required.
 932         */
 933        if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
 934                refcount = 1 + HPAGE_PMD_NR;
 935        else
 936                refcount = 2;
 937        if (!page_ref_freeze(page, refcount))
 938                goto cannot_free;
 939        /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
 940        if (unlikely(PageDirty(page))) {
 941                page_ref_unfreeze(page, refcount);
 942                goto cannot_free;
 943        }
 944
 945        if (PageSwapCache(page)) {
 946                swp_entry_t swap = { .val = page_private(page) };
 947                mem_cgroup_swapout(page, swap);
 948                __delete_from_swap_cache(page, swap);
 949                xa_unlock_irqrestore(&mapping->i_pages, flags);
 950                put_swap_page(page, swap);
 951        } else {
 952                void (*freepage)(struct page *);
 953                void *shadow = NULL;
 954
 955                freepage = mapping->a_ops->freepage;
 956                /*
 957                 * Remember a shadow entry for reclaimed file cache in
 958                 * order to detect refaults, thus thrashing, later on.
 959                 *
 960                 * But don't store shadows in an address space that is
 961                 * already exiting.  This is not just an optizimation,
 962                 * inode reclaim needs to empty out the radix tree or
 963                 * the nodes are lost.  Don't plant shadows behind its
 964                 * back.
 965                 *
 966                 * We also don't store shadows for DAX mappings because the
 967                 * only page cache pages found in these are zero pages
 968                 * covering holes, and because we don't want to mix DAX
 969                 * exceptional entries and shadow exceptional entries in the
 970                 * same address_space.
 971                 */
 972                if (reclaimed && page_is_file_cache(page) &&
 973                    !mapping_exiting(mapping) && !dax_mapping(mapping))
 974                        shadow = workingset_eviction(page);
 975                __delete_from_page_cache(page, shadow);
 976                xa_unlock_irqrestore(&mapping->i_pages, flags);
 977
 978                if (freepage != NULL)
 979                        freepage(page);
 980        }
 981
 982        return 1;
 983
 984cannot_free:
 985        xa_unlock_irqrestore(&mapping->i_pages, flags);
 986        return 0;
 987}
 988
 989/*
 990 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 991 * someone else has a ref on the page, abort and return 0.  If it was
 992 * successfully detached, return 1.  Assumes the caller has a single ref on
 993 * this page.
 994 */
 995int remove_mapping(struct address_space *mapping, struct page *page)
 996{
 997        if (__remove_mapping(mapping, page, false)) {
 998                /*
 999                 * Unfreezing the refcount with 1 rather than 2 effectively
1000                 * drops the pagecache ref for us without requiring another
1001                 * atomic operation.
1002                 */
1003                page_ref_unfreeze(page, 1);
1004                return 1;
1005        }
1006        return 0;
1007}
1008
1009/**
1010 * putback_lru_page - put previously isolated page onto appropriate LRU list
1011 * @page: page to be put back to appropriate lru list
1012 *
1013 * Add previously isolated @page to appropriate LRU list.
1014 * Page may still be unevictable for other reasons.
1015 *
1016 * lru_lock must not be held, interrupts must be enabled.
1017 */
1018void putback_lru_page(struct page *page)
1019{
1020        lru_cache_add(page);
1021        put_page(page);         /* drop ref from isolate */
1022}
1023
1024enum page_references {
1025        PAGEREF_RECLAIM,
1026        PAGEREF_RECLAIM_CLEAN,
1027        PAGEREF_KEEP,
1028        PAGEREF_ACTIVATE,
1029};
1030
1031static enum page_references page_check_references(struct page *page,
1032                                                  struct scan_control *sc)
1033{
1034        int referenced_ptes, referenced_page;
1035        unsigned long vm_flags;
1036
1037        referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1038                                          &vm_flags);
1039        referenced_page = TestClearPageReferenced(page);
1040
1041        /*
1042         * Mlock lost the isolation race with us.  Let try_to_unmap()
1043         * move the page to the unevictable list.
1044         */
1045        if (vm_flags & VM_LOCKED)
1046                return PAGEREF_RECLAIM;
1047
1048        if (referenced_ptes) {
1049                if (PageSwapBacked(page))
1050                        return PAGEREF_ACTIVATE;
1051                /*
1052                 * All mapped pages start out with page table
1053                 * references from the instantiating fault, so we need
1054                 * to look twice if a mapped file page is used more
1055                 * than once.
1056                 *
1057                 * Mark it and spare it for another trip around the
1058                 * inactive list.  Another page table reference will
1059                 * lead to its activation.
1060                 *
1061                 * Note: the mark is set for activated pages as well
1062                 * so that recently deactivated but used pages are
1063                 * quickly recovered.
1064                 */
1065                SetPageReferenced(page);
1066
1067                if (referenced_page || referenced_ptes > 1)
1068                        return PAGEREF_ACTIVATE;
1069
1070                /*
1071                 * Activate file-backed executable pages after first usage.
1072                 */
1073                if (vm_flags & VM_EXEC)
1074                        return PAGEREF_ACTIVATE;
1075
1076                return PAGEREF_KEEP;
1077        }
1078
1079        /* Reclaim if clean, defer dirty pages to writeback */
1080        if (referenced_page && !PageSwapBacked(page))
1081                return PAGEREF_RECLAIM_CLEAN;
1082
1083        return PAGEREF_RECLAIM;
1084}
1085
1086/* Check if a page is dirty or under writeback */
1087static void page_check_dirty_writeback(struct page *page,
1088                                       bool *dirty, bool *writeback)
1089{
1090        struct address_space *mapping;
1091
1092        /*
1093         * Anonymous pages are not handled by flushers and must be written
1094         * from reclaim context. Do not stall reclaim based on them
1095         */
1096        if (!page_is_file_cache(page) ||
1097            (PageAnon(page) && !PageSwapBacked(page))) {
1098                *dirty = false;
1099                *writeback = false;
1100                return;
1101        }
1102
1103        /* By default assume that the page flags are accurate */
1104        *dirty = PageDirty(page);
1105        *writeback = PageWriteback(page);
1106
1107        /* Verify dirty/writeback state if the filesystem supports it */
1108        if (!page_has_private(page))
1109                return;
1110
1111        mapping = page_mapping(page);
1112        if (mapping && mapping->a_ops->is_dirty_writeback)
1113                mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1114}
1115
1116/*
1117 * shrink_page_list() returns the number of reclaimed pages
1118 */
1119static unsigned long shrink_page_list(struct list_head *page_list,
1120                                      struct pglist_data *pgdat,
1121                                      struct scan_control *sc,
1122                                      enum ttu_flags ttu_flags,
1123                                      struct reclaim_stat *stat,
1124                                      bool force_reclaim)
1125{
1126        LIST_HEAD(ret_pages);
1127        LIST_HEAD(free_pages);
1128        unsigned nr_reclaimed = 0;
1129        unsigned pgactivate = 0;
1130
1131        memset(stat, 0, sizeof(*stat));
1132        cond_resched();
1133
1134        while (!list_empty(page_list)) {
1135                struct address_space *mapping;
1136                struct page *page;
1137                int may_enter_fs;
1138                enum page_references references = PAGEREF_RECLAIM_CLEAN;
1139                bool dirty, writeback;
1140                unsigned int nr_pages;
1141
1142                cond_resched();
1143
1144                page = lru_to_page(page_list);
1145                list_del(&page->lru);
1146
1147                if (!trylock_page(page))
1148                        goto keep;
1149
1150                VM_BUG_ON_PAGE(PageActive(page), page);
1151
1152                nr_pages = 1 << compound_order(page);
1153
1154                /* Account the number of base pages even though THP */
1155                sc->nr_scanned += nr_pages;
1156
1157                if (unlikely(!page_evictable(page)))
1158                        goto activate_locked;
1159
1160                if (!sc->may_unmap && page_mapped(page))
1161                        goto keep_locked;
1162
1163                may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1164                        (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1165
1166                /*
1167                 * The number of dirty pages determines if a node is marked
1168                 * reclaim_congested which affects wait_iff_congested. kswapd
1169                 * will stall and start writing pages if the tail of the LRU
1170                 * is all dirty unqueued pages.
1171                 */
1172                page_check_dirty_writeback(page, &dirty, &writeback);
1173                if (dirty || writeback)
1174                        stat->nr_dirty++;
1175
1176                if (dirty && !writeback)
1177                        stat->nr_unqueued_dirty++;
1178
1179                /*
1180                 * Treat this page as congested if the underlying BDI is or if
1181                 * pages are cycling through the LRU so quickly that the
1182                 * pages marked for immediate reclaim are making it to the
1183                 * end of the LRU a second time.
1184                 */
1185                mapping = page_mapping(page);
1186                if (((dirty || writeback) && mapping &&
1187                     inode_write_congested(mapping->host)) ||
1188                    (writeback && PageReclaim(page)))
1189                        stat->nr_congested++;
1190
1191                /*
1192                 * If a page at the tail of the LRU is under writeback, there
1193                 * are three cases to consider.
1194                 *
1195                 * 1) If reclaim is encountering an excessive number of pages
1196                 *    under writeback and this page is both under writeback and
1197                 *    PageReclaim then it indicates that pages are being queued
1198                 *    for IO but are being recycled through the LRU before the
1199                 *    IO can complete. Waiting on the page itself risks an
1200                 *    indefinite stall if it is impossible to writeback the
1201                 *    page due to IO error or disconnected storage so instead
1202                 *    note that the LRU is being scanned too quickly and the
1203                 *    caller can stall after page list has been processed.
1204                 *
1205                 * 2) Global or new memcg reclaim encounters a page that is
1206                 *    not marked for immediate reclaim, or the caller does not
1207                 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1208                 *    not to fs). In this case mark the page for immediate
1209                 *    reclaim and continue scanning.
1210                 *
1211                 *    Require may_enter_fs because we would wait on fs, which
1212                 *    may not have submitted IO yet. And the loop driver might
1213                 *    enter reclaim, and deadlock if it waits on a page for
1214                 *    which it is needed to do the write (loop masks off
1215                 *    __GFP_IO|__GFP_FS for this reason); but more thought
1216                 *    would probably show more reasons.
1217                 *
1218                 * 3) Legacy memcg encounters a page that is already marked
1219                 *    PageReclaim. memcg does not have any dirty pages
1220                 *    throttling so we could easily OOM just because too many
1221                 *    pages are in writeback and there is nothing else to
1222                 *    reclaim. Wait for the writeback to complete.
1223                 *
1224                 * In cases 1) and 2) we activate the pages to get them out of
1225                 * the way while we continue scanning for clean pages on the
1226                 * inactive list and refilling from the active list. The
1227                 * observation here is that waiting for disk writes is more
1228                 * expensive than potentially causing reloads down the line.
1229                 * Since they're marked for immediate reclaim, they won't put
1230                 * memory pressure on the cache working set any longer than it
1231                 * takes to write them to disk.
1232                 */
1233                if (PageWriteback(page)) {
1234                        /* Case 1 above */
1235                        if (current_is_kswapd() &&
1236                            PageReclaim(page) &&
1237                            test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1238                                stat->nr_immediate++;
1239                                goto activate_locked;
1240
1241                        /* Case 2 above */
1242                        } else if (sane_reclaim(sc) ||
1243                            !PageReclaim(page) || !may_enter_fs) {
1244                                /*
1245                                 * This is slightly racy - end_page_writeback()
1246                                 * might have just cleared PageReclaim, then
1247                                 * setting PageReclaim here end up interpreted
1248                                 * as PageReadahead - but that does not matter
1249                                 * enough to care.  What we do want is for this
1250                                 * page to have PageReclaim set next time memcg
1251                                 * reclaim reaches the tests above, so it will
1252                                 * then wait_on_page_writeback() to avoid OOM;
1253                                 * and it's also appropriate in global reclaim.
1254                                 */
1255                                SetPageReclaim(page);
1256                                stat->nr_writeback++;
1257                                goto activate_locked;
1258
1259                        /* Case 3 above */
1260                        } else {
1261                                unlock_page(page);
1262                                wait_on_page_writeback(page);
1263                                /* then go back and try same page again */
1264                                list_add_tail(&page->lru, page_list);
1265                                continue;
1266                        }
1267                }
1268
1269                if (!force_reclaim)
1270                        references = page_check_references(page, sc);
1271
1272                switch (references) {
1273                case PAGEREF_ACTIVATE:
1274                        goto activate_locked;
1275                case PAGEREF_KEEP:
1276                        stat->nr_ref_keep += nr_pages;
1277                        goto keep_locked;
1278                case PAGEREF_RECLAIM:
1279                case PAGEREF_RECLAIM_CLEAN:
1280                        ; /* try to reclaim the page below */
1281                }
1282
1283                /*
1284                 * Anonymous process memory has backing store?
1285                 * Try to allocate it some swap space here.
1286                 * Lazyfree page could be freed directly
1287                 */
1288                if (PageAnon(page) && PageSwapBacked(page)) {
1289                        if (!PageSwapCache(page)) {
1290                                if (!(sc->gfp_mask & __GFP_IO))
1291                                        goto keep_locked;
1292                                if (PageTransHuge(page)) {
1293                                        /* cannot split THP, skip it */
1294                                        if (!can_split_huge_page(page, NULL))
1295                                                goto activate_locked;
1296                                        /*
1297                                         * Split pages without a PMD map right
1298                                         * away. Chances are some or all of the
1299                                         * tail pages can be freed without IO.
1300                                         */
1301                                        if (!compound_mapcount(page) &&
1302                                            split_huge_page_to_list(page,
1303                                                                    page_list))
1304                                                goto activate_locked;
1305                                }
1306                                if (!add_to_swap(page)) {
1307                                        if (!PageTransHuge(page))
1308                                                goto activate_locked_split;
1309                                        /* Fallback to swap normal pages */
1310                                        if (split_huge_page_to_list(page,
1311                                                                    page_list))
1312                                                goto activate_locked;
1313#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1314                                        count_vm_event(THP_SWPOUT_FALLBACK);
1315#endif
1316                                        if (!add_to_swap(page))
1317                                                goto activate_locked_split;
1318                                }
1319
1320                                may_enter_fs = 1;
1321
1322                                /* Adding to swap updated mapping */
1323                                mapping = page_mapping(page);
1324                        }
1325                } else if (unlikely(PageTransHuge(page))) {
1326                        /* Split file THP */
1327                        if (split_huge_page_to_list(page, page_list))
1328                                goto keep_locked;
1329                }
1330
1331                /*
1332                 * THP may get split above, need minus tail pages and update
1333                 * nr_pages to avoid accounting tail pages twice.
1334                 *
1335                 * The tail pages that are added into swap cache successfully
1336                 * reach here.
1337                 */
1338                if ((nr_pages > 1) && !PageTransHuge(page)) {
1339                        sc->nr_scanned -= (nr_pages - 1);
1340                        nr_pages = 1;
1341                }
1342
1343                /*
1344                 * The page is mapped into the page tables of one or more
1345                 * processes. Try to unmap it here.
1346                 */
1347                if (page_mapped(page)) {
1348                        enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1349
1350                        if (unlikely(PageTransHuge(page)))
1351                                flags |= TTU_SPLIT_HUGE_PMD;
1352                        if (!try_to_unmap(page, flags)) {
1353                                stat->nr_unmap_fail += nr_pages;
1354                                goto activate_locked;
1355                        }
1356                }
1357
1358                if (PageDirty(page)) {
1359                        /*
1360                         * Only kswapd can writeback filesystem pages
1361                         * to avoid risk of stack overflow. But avoid
1362                         * injecting inefficient single-page IO into
1363                         * flusher writeback as much as possible: only
1364                         * write pages when we've encountered many
1365                         * dirty pages, and when we've already scanned
1366                         * the rest of the LRU for clean pages and see
1367                         * the same dirty pages again (PageReclaim).
1368                         */
1369                        if (page_is_file_cache(page) &&
1370                            (!current_is_kswapd() || !PageReclaim(page) ||
1371                             !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1372                                /*
1373                                 * Immediately reclaim when written back.
1374                                 * Similar in principal to deactivate_page()
1375                                 * except we already have the page isolated
1376                                 * and know it's dirty
1377                                 */
1378                                inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1379                                SetPageReclaim(page);
1380
1381                                goto activate_locked;
1382                        }
1383
1384                        if (references == PAGEREF_RECLAIM_CLEAN)
1385                                goto keep_locked;
1386                        if (!may_enter_fs)
1387                                goto keep_locked;
1388                        if (!sc->may_writepage)
1389                                goto keep_locked;
1390
1391                        /*
1392                         * Page is dirty. Flush the TLB if a writable entry
1393                         * potentially exists to avoid CPU writes after IO
1394                         * starts and then write it out here.
1395                         */
1396                        try_to_unmap_flush_dirty();
1397                        switch (pageout(page, mapping, sc)) {
1398                        case PAGE_KEEP:
1399                                goto keep_locked;
1400                        case PAGE_ACTIVATE:
1401                                goto activate_locked;
1402                        case PAGE_SUCCESS:
1403                                if (PageWriteback(page))
1404                                        goto keep;
1405                                if (PageDirty(page))
1406                                        goto keep;
1407
1408                                /*
1409                                 * A synchronous write - probably a ramdisk.  Go
1410                                 * ahead and try to reclaim the page.
1411                                 */
1412                                if (!trylock_page(page))
1413                                        goto keep;
1414                                if (PageDirty(page) || PageWriteback(page))
1415                                        goto keep_locked;
1416                                mapping = page_mapping(page);
1417                        case PAGE_CLEAN:
1418                                ; /* try to free the page below */
1419                        }
1420                }
1421
1422                /*
1423                 * If the page has buffers, try to free the buffer mappings
1424                 * associated with this page. If we succeed we try to free
1425                 * the page as well.
1426                 *
1427                 * We do this even if the page is PageDirty().
1428                 * try_to_release_page() does not perform I/O, but it is
1429                 * possible for a page to have PageDirty set, but it is actually
1430                 * clean (all its buffers are clean).  This happens if the
1431                 * buffers were written out directly, with submit_bh(). ext3
1432                 * will do this, as well as the blockdev mapping.
1433                 * try_to_release_page() will discover that cleanness and will
1434                 * drop the buffers and mark the page clean - it can be freed.
1435                 *
1436                 * Rarely, pages can have buffers and no ->mapping.  These are
1437                 * the pages which were not successfully invalidated in
1438                 * truncate_complete_page().  We try to drop those buffers here
1439                 * and if that worked, and the page is no longer mapped into
1440                 * process address space (page_count == 1) it can be freed.
1441                 * Otherwise, leave the page on the LRU so it is swappable.
1442                 */
1443                if (page_has_private(page)) {
1444                        if (!try_to_release_page(page, sc->gfp_mask))
1445                                goto activate_locked;
1446                        if (!mapping && page_count(page) == 1) {
1447                                unlock_page(page);
1448                                if (put_page_testzero(page))
1449                                        goto free_it;
1450                                else {
1451                                        /*
1452                                         * rare race with speculative reference.
1453                                         * the speculative reference will free
1454                                         * this page shortly, so we may
1455                                         * increment nr_reclaimed here (and
1456                                         * leave it off the LRU).
1457                                         */
1458                                        nr_reclaimed++;
1459                                        continue;
1460                                }
1461                        }
1462                }
1463
1464                if (PageAnon(page) && !PageSwapBacked(page)) {
1465                        /* follow __remove_mapping for reference */
1466                        if (!page_ref_freeze(page, 1))
1467                                goto keep_locked;
1468                        if (PageDirty(page)) {
1469                                page_ref_unfreeze(page, 1);
1470                                goto keep_locked;
1471                        }
1472
1473                        count_vm_event(PGLAZYFREED);
1474                        count_memcg_page_event(page, PGLAZYFREED);
1475                } else if (!mapping || !__remove_mapping(mapping, page, true))
1476                        goto keep_locked;
1477
1478                unlock_page(page);
1479free_it:
1480                /*
1481                 * THP may get swapped out in a whole, need account
1482                 * all base pages.
1483                 */
1484                nr_reclaimed += nr_pages;
1485
1486                /*
1487                 * Is there need to periodically free_page_list? It would
1488                 * appear not as the counts should be low
1489                 */
1490                if (unlikely(PageTransHuge(page))) {
1491                        mem_cgroup_uncharge(page);
1492                        (*get_compound_page_dtor(page))(page);
1493                } else
1494                        list_add(&page->lru, &free_pages);
1495                continue;
1496
1497activate_locked_split:
1498                /*
1499                 * The tail pages that are failed to add into swap cache
1500                 * reach here.  Fixup nr_scanned and nr_pages.
1501                 */
1502                if (nr_pages > 1) {
1503                        sc->nr_scanned -= (nr_pages - 1);
1504                        nr_pages = 1;
1505                }
1506activate_locked:
1507                /* Not a candidate for swapping, so reclaim swap space. */
1508                if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1509                                                PageMlocked(page)))
1510                        try_to_free_swap(page);
1511                VM_BUG_ON_PAGE(PageActive(page), page);
1512                if (!PageMlocked(page)) {
1513                        int type = page_is_file_cache(page);
1514                        SetPageActive(page);
1515                        stat->nr_activate[type] += nr_pages;
1516                        count_memcg_page_event(page, PGACTIVATE);
1517                }
1518keep_locked:
1519                unlock_page(page);
1520keep:
1521                list_add(&page->lru, &ret_pages);
1522                VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1523        }
1524
1525        pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1526
1527        mem_cgroup_uncharge_list(&free_pages);
1528        try_to_unmap_flush();
1529        free_unref_page_list(&free_pages);
1530
1531        list_splice(&ret_pages, page_list);
1532        count_vm_events(PGACTIVATE, pgactivate);
1533
1534        return nr_reclaimed;
1535}
1536
1537unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1538                                            struct list_head *page_list)
1539{
1540        struct scan_control sc = {
1541                .gfp_mask = GFP_KERNEL,
1542                .priority = DEF_PRIORITY,
1543                .may_unmap = 1,
1544        };
1545        struct reclaim_stat dummy_stat;
1546        unsigned long ret;
1547        struct page *page, *next;
1548        LIST_HEAD(clean_pages);
1549
1550        list_for_each_entry_safe(page, next, page_list, lru) {
1551                if (page_is_file_cache(page) && !PageDirty(page) &&
1552                    !__PageMovable(page) && !PageUnevictable(page)) {
1553                        ClearPageActive(page);
1554                        list_move(&page->lru, &clean_pages);
1555                }
1556        }
1557
1558        ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1559                        TTU_IGNORE_ACCESS, &dummy_stat, true);
1560        list_splice(&clean_pages, page_list);
1561        mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1562        return ret;
1563}
1564
1565/*
1566 * Attempt to remove the specified page from its LRU.  Only take this page
1567 * if it is of the appropriate PageActive status.  Pages which are being
1568 * freed elsewhere are also ignored.
1569 *
1570 * page:        page to consider
1571 * mode:        one of the LRU isolation modes defined above
1572 *
1573 * returns 0 on success, -ve errno on failure.
1574 */
1575int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1576{
1577        int ret = -EINVAL;
1578
1579        /* Only take pages on the LRU. */
1580        if (!PageLRU(page))
1581                return ret;
1582
1583        /* Compaction should not handle unevictable pages but CMA can do so */
1584        if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1585                return ret;
1586
1587        ret = -EBUSY;
1588
1589        /*
1590         * To minimise LRU disruption, the caller can indicate that it only
1591         * wants to isolate pages it will be able to operate on without
1592         * blocking - clean pages for the most part.
1593         *
1594         * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1595         * that it is possible to migrate without blocking
1596         */
1597        if (mode & ISOLATE_ASYNC_MIGRATE) {
1598                /* All the caller can do on PageWriteback is block */
1599                if (PageWriteback(page))
1600                        return ret;
1601
1602                if (PageDirty(page)) {
1603                        struct address_space *mapping;
1604                        bool migrate_dirty;
1605
1606                        /*
1607                         * Only pages without mappings or that have a
1608                         * ->migratepage callback are possible to migrate
1609                         * without blocking. However, we can be racing with
1610                         * truncation so it's necessary to lock the page
1611                         * to stabilise the mapping as truncation holds
1612                         * the page lock until after the page is removed
1613                         * from the page cache.
1614                         */
1615                        if (!trylock_page(page))
1616                                return ret;
1617
1618                        mapping = page_mapping(page);
1619                        migrate_dirty = !mapping || mapping->a_ops->migratepage;
1620                        unlock_page(page);
1621                        if (!migrate_dirty)
1622                                return ret;
1623                }
1624        }
1625
1626        if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1627                return ret;
1628
1629        if (likely(get_page_unless_zero(page))) {
1630                /*
1631                 * Be careful not to clear PageLRU until after we're
1632                 * sure the page is not being freed elsewhere -- the
1633                 * page release code relies on it.
1634                 */
1635                ClearPageLRU(page);
1636                ret = 0;
1637        }
1638
1639        return ret;
1640}
1641
1642
1643/*
1644 * Update LRU sizes after isolating pages. The LRU size updates must
1645 * be complete before mem_cgroup_update_lru_size due to a santity check.
1646 */
1647static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1648                        enum lru_list lru, unsigned long *nr_zone_taken)
1649{
1650        int zid;
1651
1652        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1653                if (!nr_zone_taken[zid])
1654                        continue;
1655
1656                __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1657#ifdef CONFIG_MEMCG
1658                mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1659#endif
1660        }
1661
1662}
1663
1664/**
1665 * pgdat->lru_lock is heavily contended.  Some of the functions that
1666 * shrink the lists perform better by taking out a batch of pages
1667 * and working on them outside the LRU lock.
1668 *
1669 * For pagecache intensive workloads, this function is the hottest
1670 * spot in the kernel (apart from copy_*_user functions).
1671 *
1672 * Appropriate locks must be held before calling this function.
1673 *
1674 * @nr_to_scan: The number of eligible pages to look through on the list.
1675 * @lruvec:     The LRU vector to pull pages from.
1676 * @dst:        The temp list to put pages on to.
1677 * @nr_scanned: The number of pages that were scanned.
1678 * @sc:         The scan_control struct for this reclaim session
1679 * @mode:       One of the LRU isolation modes
1680 * @lru:        LRU list id for isolating
1681 *
1682 * returns how many pages were moved onto *@dst.
1683 */
1684static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1685                struct lruvec *lruvec, struct list_head *dst,
1686                unsigned long *nr_scanned, struct scan_control *sc,
1687                enum lru_list lru)
1688{
1689        struct list_head *src = &lruvec->lists[lru];
1690        unsigned long nr_taken = 0;
1691        unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1692        unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1693        unsigned long skipped = 0;
1694        unsigned long scan, total_scan, nr_pages;
1695        LIST_HEAD(pages_skipped);
1696        isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
1697
1698        total_scan = 0;
1699        scan = 0;
1700        while (scan < nr_to_scan && !list_empty(src)) {
1701                struct page *page;
1702
1703                page = lru_to_page(src);
1704                prefetchw_prev_lru_page(page, src, flags);
1705
1706                VM_BUG_ON_PAGE(!PageLRU(page), page);
1707
1708                nr_pages = 1 << compound_order(page);
1709                total_scan += nr_pages;
1710
1711                if (page_zonenum(page) > sc->reclaim_idx) {
1712                        list_move(&page->lru, &pages_skipped);
1713                        nr_skipped[page_zonenum(page)] += nr_pages;
1714                        continue;
1715                }
1716
1717                /*
1718                 * Do not count skipped pages because that makes the function
1719                 * return with no isolated pages if the LRU mostly contains
1720                 * ineligible pages.  This causes the VM to not reclaim any
1721                 * pages, triggering a premature OOM.
1722                 *
1723                 * Account all tail pages of THP.  This would not cause
1724                 * premature OOM since __isolate_lru_page() returns -EBUSY
1725                 * only when the page is being freed somewhere else.
1726                 */
1727                scan += nr_pages;
1728                switch (__isolate_lru_page(page, mode)) {
1729                case 0:
1730                        nr_taken += nr_pages;
1731                        nr_zone_taken[page_zonenum(page)] += nr_pages;
1732                        list_move(&page->lru, dst);
1733                        break;
1734
1735                case -EBUSY:
1736                        /* else it is being freed elsewhere */
1737                        list_move(&page->lru, src);
1738                        continue;
1739
1740                default:
1741                        BUG();
1742                }
1743        }
1744
1745        /*
1746         * Splice any skipped pages to the start of the LRU list. Note that
1747         * this disrupts the LRU order when reclaiming for lower zones but
1748         * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1749         * scanning would soon rescan the same pages to skip and put the
1750         * system at risk of premature OOM.
1751         */
1752        if (!list_empty(&pages_skipped)) {
1753                int zid;
1754
1755                list_splice(&pages_skipped, src);
1756                for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1757                        if (!nr_skipped[zid])
1758                                continue;
1759
1760                        __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1761                        skipped += nr_skipped[zid];
1762                }
1763        }
1764        *nr_scanned = total_scan;
1765        trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1766                                    total_scan, skipped, nr_taken, mode, lru);
1767        update_lru_sizes(lruvec, lru, nr_zone_taken);
1768        return nr_taken;
1769}
1770
1771/**
1772 * isolate_lru_page - tries to isolate a page from its LRU list
1773 * @page: page to isolate from its LRU list
1774 *
1775 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1776 * vmstat statistic corresponding to whatever LRU list the page was on.
1777 *
1778 * Returns 0 if the page was removed from an LRU list.
1779 * Returns -EBUSY if the page was not on an LRU list.
1780 *
1781 * The returned page will have PageLRU() cleared.  If it was found on
1782 * the active list, it will have PageActive set.  If it was found on
1783 * the unevictable list, it will have the PageUnevictable bit set. That flag
1784 * may need to be cleared by the caller before letting the page go.
1785 *
1786 * The vmstat statistic corresponding to the list on which the page was
1787 * found will be decremented.
1788 *
1789 * Restrictions:
1790 *
1791 * (1) Must be called with an elevated refcount on the page. This is a
1792 *     fundamentnal difference from isolate_lru_pages (which is called
1793 *     without a stable reference).
1794 * (2) the lru_lock must not be held.
1795 * (3) interrupts must be enabled.
1796 */
1797int isolate_lru_page(struct page *page)
1798{
1799        int ret = -EBUSY;
1800
1801        VM_BUG_ON_PAGE(!page_count(page), page);
1802        WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1803
1804        if (PageLRU(page)) {
1805                pg_data_t *pgdat = page_pgdat(page);
1806                struct lruvec *lruvec;
1807
1808                spin_lock_irq(&pgdat->lru_lock);
1809                lruvec = mem_cgroup_page_lruvec(page, pgdat);
1810                if (PageLRU(page)) {
1811                        int lru = page_lru(page);
1812                        get_page(page);
1813                        ClearPageLRU(page);
1814                        del_page_from_lru_list(page, lruvec, lru);
1815                        ret = 0;
1816                }
1817                spin_unlock_irq(&pgdat->lru_lock);
1818        }
1819        return ret;
1820}
1821
1822/*
1823 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1824 * then get resheduled. When there are massive number of tasks doing page
1825 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1826 * the LRU list will go small and be scanned faster than necessary, leading to
1827 * unnecessary swapping, thrashing and OOM.
1828 */
1829static int too_many_isolated(struct pglist_data *pgdat, int file,
1830                struct scan_control *sc)
1831{
1832        unsigned long inactive, isolated;
1833
1834        if (current_is_kswapd())
1835                return 0;
1836
1837        if (!sane_reclaim(sc))
1838                return 0;
1839
1840        if (file) {
1841                inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1842                isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1843        } else {
1844                inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1845                isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1846        }
1847
1848        /*
1849         * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1850         * won't get blocked by normal direct-reclaimers, forming a circular
1851         * deadlock.
1852         */
1853        if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1854                inactive >>= 3;
1855
1856        return isolated > inactive;
1857}
1858
1859/*
1860 * This moves pages from @list to corresponding LRU list.
1861 *
1862 * We move them the other way if the page is referenced by one or more
1863 * processes, from rmap.
1864 *
1865 * If the pages are mostly unmapped, the processing is fast and it is
1866 * appropriate to hold zone_lru_lock across the whole operation.  But if
1867 * the pages are mapped, the processing is slow (page_referenced()) so we
1868 * should drop zone_lru_lock around each page.  It's impossible to balance
1869 * this, so instead we remove the pages from the LRU while processing them.
1870 * It is safe to rely on PG_active against the non-LRU pages in here because
1871 * nobody will play with that bit on a non-LRU page.
1872 *
1873 * The downside is that we have to touch page->_refcount against each page.
1874 * But we had to alter page->flags anyway.
1875 *
1876 * Returns the number of pages moved to the given lruvec.
1877 */
1878
1879static unsigned noinline_for_stack move_pages_to_lru(struct lruvec *lruvec,
1880                                                     struct list_head *list)
1881{
1882        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1883        int nr_pages, nr_moved = 0;
1884        LIST_HEAD(pages_to_free);
1885        struct page *page;
1886        enum lru_list lru;
1887
1888        while (!list_empty(list)) {
1889                page = lru_to_page(list);
1890                VM_BUG_ON_PAGE(PageLRU(page), page);
1891                if (unlikely(!page_evictable(page))) {
1892                        list_del(&page->lru);
1893                        spin_unlock_irq(&pgdat->lru_lock);
1894                        putback_lru_page(page);
1895                        spin_lock_irq(&pgdat->lru_lock);
1896                        continue;
1897                }
1898                lruvec = mem_cgroup_page_lruvec(page, pgdat);
1899
1900                SetPageLRU(page);
1901                lru = page_lru(page);
1902
1903                nr_pages = hpage_nr_pages(page);
1904                update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
1905                list_move(&page->lru, &lruvec->lists[lru]);
1906
1907                if (put_page_testzero(page)) {
1908                        __ClearPageLRU(page);
1909                        __ClearPageActive(page);
1910                        del_page_from_lru_list(page, lruvec, lru);
1911
1912                        if (unlikely(PageCompound(page))) {
1913                                spin_unlock_irq(&pgdat->lru_lock);
1914                                mem_cgroup_uncharge(page);
1915                                (*get_compound_page_dtor(page))(page);
1916                                spin_lock_irq(&pgdat->lru_lock);
1917                        } else
1918                                list_add(&page->lru, &pages_to_free);
1919                } else {
1920                        nr_moved += nr_pages;
1921                }
1922        }
1923
1924        /*
1925         * To save our caller's stack, now use input list for pages to free.
1926         */
1927        list_splice(&pages_to_free, list);
1928
1929        return nr_moved;
1930}
1931
1932/*
1933 * If a kernel thread (such as nfsd for loop-back mounts) services
1934 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1935 * In that case we should only throttle if the backing device it is
1936 * writing to is congested.  In other cases it is safe to throttle.
1937 */
1938static int current_may_throttle(void)
1939{
1940        return !(current->flags & PF_LESS_THROTTLE) ||
1941                current->backing_dev_info == NULL ||
1942                bdi_write_congested(current->backing_dev_info);
1943}
1944
1945/*
1946 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1947 * of reclaimed pages
1948 */
1949static noinline_for_stack unsigned long
1950shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1951                     struct scan_control *sc, enum lru_list lru)
1952{
1953        LIST_HEAD(page_list);
1954        unsigned long nr_scanned;
1955        unsigned long nr_reclaimed = 0;
1956        unsigned long nr_taken;
1957        struct reclaim_stat stat;
1958        int file = is_file_lru(lru);
1959        enum vm_event_item item;
1960        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1961        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1962        bool stalled = false;
1963
1964        while (unlikely(too_many_isolated(pgdat, file, sc))) {
1965                if (stalled)
1966                        return 0;
1967
1968                /* wait a bit for the reclaimer. */
1969                msleep(100);
1970                stalled = true;
1971
1972                /* We are about to die and free our memory. Return now. */
1973                if (fatal_signal_pending(current))
1974                        return SWAP_CLUSTER_MAX;
1975        }
1976
1977        lru_add_drain();
1978
1979        spin_lock_irq(&pgdat->lru_lock);
1980
1981        nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1982                                     &nr_scanned, sc, lru);
1983
1984        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1985        reclaim_stat->recent_scanned[file] += nr_taken;
1986
1987        item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
1988        if (global_reclaim(sc))
1989                __count_vm_events(item, nr_scanned);
1990        __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1991        spin_unlock_irq(&pgdat->lru_lock);
1992
1993        if (nr_taken == 0)
1994                return 0;
1995
1996        nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1997                                &stat, false);
1998
1999        spin_lock_irq(&pgdat->lru_lock);
2000
2001        item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2002        if (global_reclaim(sc))
2003                __count_vm_events(item, nr_reclaimed);
2004        __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2005        reclaim_stat->recent_rotated[0] += stat.nr_activate[0];
2006        reclaim_stat->recent_rotated[1] += stat.nr_activate[1];
2007
2008        move_pages_to_lru(lruvec, &page_list);
2009
2010        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2011
2012        spin_unlock_irq(&pgdat->lru_lock);
2013
2014        mem_cgroup_uncharge_list(&page_list);
2015        free_unref_page_list(&page_list);
2016
2017        /*
2018         * If dirty pages are scanned that are not queued for IO, it
2019         * implies that flushers are not doing their job. This can
2020         * happen when memory pressure pushes dirty pages to the end of
2021         * the LRU before the dirty limits are breached and the dirty
2022         * data has expired. It can also happen when the proportion of
2023         * dirty pages grows not through writes but through memory
2024         * pressure reclaiming all the clean cache. And in some cases,
2025         * the flushers simply cannot keep up with the allocation
2026         * rate. Nudge the flusher threads in case they are asleep.
2027         */
2028        if (stat.nr_unqueued_dirty == nr_taken)
2029                wakeup_flusher_threads(WB_REASON_VMSCAN);
2030
2031        sc->nr.dirty += stat.nr_dirty;
2032        sc->nr.congested += stat.nr_congested;
2033        sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2034        sc->nr.writeback += stat.nr_writeback;
2035        sc->nr.immediate += stat.nr_immediate;
2036        sc->nr.taken += nr_taken;
2037        if (file)
2038                sc->nr.file_taken += nr_taken;
2039
2040        trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2041                        nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2042        return nr_reclaimed;
2043}
2044
2045static void shrink_active_list(unsigned long nr_to_scan,
2046                               struct lruvec *lruvec,
2047                               struct scan_control *sc,
2048                               enum lru_list lru)
2049{
2050        unsigned long nr_taken;
2051        unsigned long nr_scanned;
2052        unsigned long vm_flags;
2053        LIST_HEAD(l_hold);      /* The pages which were snipped off */
2054        LIST_HEAD(l_active);
2055        LIST_HEAD(l_inactive);
2056        struct page *page;
2057        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2058        unsigned nr_deactivate, nr_activate;
2059        unsigned nr_rotated = 0;
2060        int file = is_file_lru(lru);
2061        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2062
2063        lru_add_drain();
2064
2065        spin_lock_irq(&pgdat->lru_lock);
2066
2067        nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2068                                     &nr_scanned, sc, lru);
2069
2070        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2071        reclaim_stat->recent_scanned[file] += nr_taken;
2072
2073        __count_vm_events(PGREFILL, nr_scanned);
2074        __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2075
2076        spin_unlock_irq(&pgdat->lru_lock);
2077
2078        while (!list_empty(&l_hold)) {
2079                cond_resched();
2080                page = lru_to_page(&l_hold);
2081                list_del(&page->lru);
2082
2083                if (unlikely(!page_evictable(page))) {
2084                        putback_lru_page(page);
2085                        continue;
2086                }
2087
2088                if (unlikely(buffer_heads_over_limit)) {
2089                        if (page_has_private(page) && trylock_page(page)) {
2090                                if (page_has_private(page))
2091                                        try_to_release_page(page, 0);
2092                                unlock_page(page);
2093                        }
2094                }
2095
2096                if (page_referenced(page, 0, sc->target_mem_cgroup,
2097                                    &vm_flags)) {
2098                        nr_rotated += hpage_nr_pages(page);
2099                        /*
2100                         * Identify referenced, file-backed active pages and
2101                         * give them one more trip around the active list. So
2102                         * that executable code get better chances to stay in
2103                         * memory under moderate memory pressure.  Anon pages
2104                         * are not likely to be evicted by use-once streaming
2105                         * IO, plus JVM can create lots of anon VM_EXEC pages,
2106                         * so we ignore them here.
2107                         */
2108                        if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2109                                list_add(&page->lru, &l_active);
2110                                continue;
2111                        }
2112                }
2113
2114                ClearPageActive(page);  /* we are de-activating */
2115                SetPageWorkingset(page);
2116                list_add(&page->lru, &l_inactive);
2117        }
2118
2119        /*
2120         * Move pages back to the lru list.
2121         */
2122        spin_lock_irq(&pgdat->lru_lock);
2123        /*
2124         * Count referenced pages from currently used mappings as rotated,
2125         * even though only some of them are actually re-activated.  This
2126         * helps balance scan pressure between file and anonymous pages in
2127         * get_scan_count.
2128         */
2129        reclaim_stat->recent_rotated[file] += nr_rotated;
2130
2131        nr_activate = move_pages_to_lru(lruvec, &l_active);
2132        nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2133        /* Keep all free pages in l_active list */
2134        list_splice(&l_inactive, &l_active);
2135
2136        __count_vm_events(PGDEACTIVATE, nr_deactivate);
2137        __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2138
2139        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2140        spin_unlock_irq(&pgdat->lru_lock);
2141
2142        mem_cgroup_uncharge_list(&l_active);
2143        free_unref_page_list(&l_active);
2144        trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2145                        nr_deactivate, nr_rotated, sc->priority, file);
2146}
2147
2148/*
2149 * The inactive anon list should be small enough that the VM never has
2150 * to do too much work.
2151 *
2152 * The inactive file list should be small enough to leave most memory
2153 * to the established workingset on the scan-resistant active list,
2154 * but large enough to avoid thrashing the aggregate readahead window.
2155 *
2156 * Both inactive lists should also be large enough that each inactive
2157 * page has a chance to be referenced again before it is reclaimed.
2158 *
2159 * If that fails and refaulting is observed, the inactive list grows.
2160 *
2161 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2162 * on this LRU, maintained by the pageout code. An inactive_ratio
2163 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2164 *
2165 * total     target    max
2166 * memory    ratio     inactive
2167 * -------------------------------------
2168 *   10MB       1         5MB
2169 *  100MB       1        50MB
2170 *    1GB       3       250MB
2171 *   10GB      10       0.9GB
2172 *  100GB      31         3GB
2173 *    1TB     101        10GB
2174 *   10TB     320        32GB
2175 */
2176static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2177                                 struct scan_control *sc, bool trace)
2178{
2179        enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2180        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2181        enum lru_list inactive_lru = file * LRU_FILE;
2182        unsigned long inactive, active;
2183        unsigned long inactive_ratio;
2184        unsigned long refaults;
2185        unsigned long gb;
2186
2187        /*
2188         * If we don't have swap space, anonymous page deactivation
2189         * is pointless.
2190         */
2191        if (!file && !total_swap_pages)
2192                return false;
2193
2194        inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2195        active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2196
2197        /*
2198         * When refaults are being observed, it means a new workingset
2199         * is being established. Disable active list protection to get
2200         * rid of the stale workingset quickly.
2201         */
2202        refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2203        if (file && lruvec->refaults != refaults) {
2204                inactive_ratio = 0;
2205        } else {
2206                gb = (inactive + active) >> (30 - PAGE_SHIFT);
2207                if (gb)
2208                        inactive_ratio = int_sqrt(10 * gb);
2209                else
2210                        inactive_ratio = 1;
2211        }
2212
2213        if (trace)
2214                trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2215                        lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2216                        lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2217                        inactive_ratio, file);
2218
2219        return inactive * inactive_ratio < active;
2220}
2221
2222static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2223                                 struct lruvec *lruvec, struct scan_control *sc)
2224{
2225        if (is_active_lru(lru)) {
2226                if (inactive_list_is_low(lruvec, is_file_lru(lru), sc, true))
2227                        shrink_active_list(nr_to_scan, lruvec, sc, lru);
2228                return 0;
2229        }
2230
2231        return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2232}
2233
2234enum scan_balance {
2235        SCAN_EQUAL,
2236        SCAN_FRACT,
2237        SCAN_ANON,
2238        SCAN_FILE,
2239};
2240
2241/*
2242 * Determine how aggressively the anon and file LRU lists should be
2243 * scanned.  The relative value of each set of LRU lists is determined
2244 * by looking at the fraction of the pages scanned we did rotate back
2245 * onto the active list instead of evict.
2246 *
2247 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2248 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2249 */
2250static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2251                           struct scan_control *sc, unsigned long *nr,
2252                           unsigned long *lru_pages)
2253{
2254        int swappiness = mem_cgroup_swappiness(memcg);
2255        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2256        u64 fraction[2];
2257        u64 denominator = 0;    /* gcc */
2258        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2259        unsigned long anon_prio, file_prio;
2260        enum scan_balance scan_balance;
2261        unsigned long anon, file;
2262        unsigned long ap, fp;
2263        enum lru_list lru;
2264
2265        /* If we have no swap space, do not bother scanning anon pages. */
2266        if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2267                scan_balance = SCAN_FILE;
2268                goto out;
2269        }
2270
2271        /*
2272         * Global reclaim will swap to prevent OOM even with no
2273         * swappiness, but memcg users want to use this knob to
2274         * disable swapping for individual groups completely when
2275         * using the memory controller's swap limit feature would be
2276         * too expensive.
2277         */
2278        if (!global_reclaim(sc) && !swappiness) {
2279                scan_balance = SCAN_FILE;
2280                goto out;
2281        }
2282
2283        /*
2284         * Do not apply any pressure balancing cleverness when the
2285         * system is close to OOM, scan both anon and file equally
2286         * (unless the swappiness setting disagrees with swapping).
2287         */
2288        if (!sc->priority && swappiness) {
2289                scan_balance = SCAN_EQUAL;
2290                goto out;
2291        }
2292
2293        /*
2294         * Prevent the reclaimer from falling into the cache trap: as
2295         * cache pages start out inactive, every cache fault will tip
2296         * the scan balance towards the file LRU.  And as the file LRU
2297         * shrinks, so does the window for rotation from references.
2298         * This means we have a runaway feedback loop where a tiny
2299         * thrashing file LRU becomes infinitely more attractive than
2300         * anon pages.  Try to detect this based on file LRU size.
2301         */
2302        if (global_reclaim(sc)) {
2303                unsigned long pgdatfile;
2304                unsigned long pgdatfree;
2305                int z;
2306                unsigned long total_high_wmark = 0;
2307
2308                pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2309                pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2310                           node_page_state(pgdat, NR_INACTIVE_FILE);
2311
2312                for (z = 0; z < MAX_NR_ZONES; z++) {
2313                        struct zone *zone = &pgdat->node_zones[z];
2314                        if (!managed_zone(zone))
2315                                continue;
2316
2317                        total_high_wmark += high_wmark_pages(zone);
2318                }
2319
2320                if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2321                        /*
2322                         * Force SCAN_ANON if there are enough inactive
2323                         * anonymous pages on the LRU in eligible zones.
2324                         * Otherwise, the small LRU gets thrashed.
2325                         */
2326                        if (!inactive_list_is_low(lruvec, false, sc, false) &&
2327                            lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2328                                        >> sc->priority) {
2329                                scan_balance = SCAN_ANON;
2330                                goto out;
2331                        }
2332                }
2333        }
2334
2335        /*
2336         * If there is enough inactive page cache, i.e. if the size of the
2337         * inactive list is greater than that of the active list *and* the
2338         * inactive list actually has some pages to scan on this priority, we
2339         * do not reclaim anything from the anonymous working set right now.
2340         * Without the second condition we could end up never scanning an
2341         * lruvec even if it has plenty of old anonymous pages unless the
2342         * system is under heavy pressure.
2343         */
2344        if (!inactive_list_is_low(lruvec, true, sc, false) &&
2345            lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2346                scan_balance = SCAN_FILE;
2347                goto out;
2348        }
2349
2350        scan_balance = SCAN_FRACT;
2351
2352        /*
2353         * With swappiness at 100, anonymous and file have the same priority.
2354         * This scanning priority is essentially the inverse of IO cost.
2355         */
2356        anon_prio = swappiness;
2357        file_prio = 200 - anon_prio;
2358
2359        /*
2360         * OK, so we have swap space and a fair amount of page cache
2361         * pages.  We use the recently rotated / recently scanned
2362         * ratios to determine how valuable each cache is.
2363         *
2364         * Because workloads change over time (and to avoid overflow)
2365         * we keep these statistics as a floating average, which ends
2366         * up weighing recent references more than old ones.
2367         *
2368         * anon in [0], file in [1]
2369         */
2370
2371        anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2372                lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2373        file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2374                lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2375
2376        spin_lock_irq(&pgdat->lru_lock);
2377        if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2378                reclaim_stat->recent_scanned[0] /= 2;
2379                reclaim_stat->recent_rotated[0] /= 2;
2380        }
2381
2382        if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2383                reclaim_stat->recent_scanned[1] /= 2;
2384                reclaim_stat->recent_rotated[1] /= 2;
2385        }
2386
2387        /*
2388         * The amount of pressure on anon vs file pages is inversely
2389         * proportional to the fraction of recently scanned pages on
2390         * each list that were recently referenced and in active use.
2391         */
2392        ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2393        ap /= reclaim_stat->recent_rotated[0] + 1;
2394
2395        fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2396        fp /= reclaim_stat->recent_rotated[1] + 1;
2397        spin_unlock_irq(&pgdat->lru_lock);
2398
2399        fraction[0] = ap;
2400        fraction[1] = fp;
2401        denominator = ap + fp + 1;
2402out:
2403        *lru_pages = 0;
2404        for_each_evictable_lru(lru) {
2405                int file = is_file_lru(lru);
2406                unsigned long size;
2407                unsigned long scan;
2408
2409                size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2410                scan = size >> sc->priority;
2411                /*
2412                 * If the cgroup's already been deleted, make sure to
2413                 * scrape out the remaining cache.
2414                 */
2415                if (!scan && !mem_cgroup_online(memcg))
2416                        scan = min(size, SWAP_CLUSTER_MAX);
2417
2418                switch (scan_balance) {
2419                case SCAN_EQUAL:
2420                        /* Scan lists relative to size */
2421                        break;
2422                case SCAN_FRACT:
2423                        /*
2424                         * Scan types proportional to swappiness and
2425                         * their relative recent reclaim efficiency.
2426                         * Make sure we don't miss the last page
2427                         * because of a round-off error.
2428                         */
2429                        scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2430                                                  denominator);
2431                        break;
2432                case SCAN_FILE:
2433                case SCAN_ANON:
2434                        /* Scan one type exclusively */
2435                        if ((scan_balance == SCAN_FILE) != file) {
2436                                size = 0;
2437                                scan = 0;
2438                        }
2439                        break;
2440                default:
2441                        /* Look ma, no brain */
2442                        BUG();
2443                }
2444
2445                *lru_pages += size;
2446                nr[lru] = scan;
2447        }
2448}
2449
2450/*
2451 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2452 */
2453static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2454                              struct scan_control *sc, unsigned long *lru_pages)
2455{
2456        struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2457        unsigned long nr[NR_LRU_LISTS];
2458        unsigned long targets[NR_LRU_LISTS];
2459        unsigned long nr_to_scan;
2460        enum lru_list lru;
2461        unsigned long nr_reclaimed = 0;
2462        unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2463        struct blk_plug plug;
2464        bool scan_adjusted;
2465
2466        get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2467
2468        /* Record the original scan target for proportional adjustments later */
2469        memcpy(targets, nr, sizeof(nr));
2470
2471        /*
2472         * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2473         * event that can occur when there is little memory pressure e.g.
2474         * multiple streaming readers/writers. Hence, we do not abort scanning
2475         * when the requested number of pages are reclaimed when scanning at
2476         * DEF_PRIORITY on the assumption that the fact we are direct
2477         * reclaiming implies that kswapd is not keeping up and it is best to
2478         * do a batch of work at once. For memcg reclaim one check is made to
2479         * abort proportional reclaim if either the file or anon lru has already
2480         * dropped to zero at the first pass.
2481         */
2482        scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2483                         sc->priority == DEF_PRIORITY);
2484
2485        blk_start_plug(&plug);
2486        while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2487                                        nr[LRU_INACTIVE_FILE]) {
2488                unsigned long nr_anon, nr_file, percentage;
2489                unsigned long nr_scanned;
2490
2491                for_each_evictable_lru(lru) {
2492                        if (nr[lru]) {
2493                                nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2494                                nr[lru] -= nr_to_scan;
2495
2496                                nr_reclaimed += shrink_list(lru, nr_to_scan,
2497                                                            lruvec, sc);
2498                        }
2499                }
2500
2501                cond_resched();
2502
2503                if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2504                        continue;
2505
2506                /*
2507                 * For kswapd and memcg, reclaim at least the number of pages
2508                 * requested. Ensure that the anon and file LRUs are scanned
2509                 * proportionally what was requested by get_scan_count(). We
2510                 * stop reclaiming one LRU and reduce the amount scanning
2511                 * proportional to the original scan target.
2512                 */
2513                nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2514                nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2515
2516                /*
2517                 * It's just vindictive to attack the larger once the smaller
2518                 * has gone to zero.  And given the way we stop scanning the
2519                 * smaller below, this makes sure that we only make one nudge
2520                 * towards proportionality once we've got nr_to_reclaim.
2521                 */
2522                if (!nr_file || !nr_anon)
2523                        break;
2524
2525                if (nr_file > nr_anon) {
2526                        unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2527                                                targets[LRU_ACTIVE_ANON] + 1;
2528                        lru = LRU_BASE;
2529                        percentage = nr_anon * 100 / scan_target;
2530                } else {
2531                        unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2532                                                targets[LRU_ACTIVE_FILE] + 1;
2533                        lru = LRU_FILE;
2534                        percentage = nr_file * 100 / scan_target;
2535                }
2536
2537                /* Stop scanning the smaller of the LRU */
2538                nr[lru] = 0;
2539                nr[lru + LRU_ACTIVE] = 0;
2540
2541                /*
2542                 * Recalculate the other LRU scan count based on its original
2543                 * scan target and the percentage scanning already complete
2544                 */
2545                lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2546                nr_scanned = targets[lru] - nr[lru];
2547                nr[lru] = targets[lru] * (100 - percentage) / 100;
2548                nr[lru] -= min(nr[lru], nr_scanned);
2549
2550                lru += LRU_ACTIVE;
2551                nr_scanned = targets[lru] - nr[lru];
2552                nr[lru] = targets[lru] * (100 - percentage) / 100;
2553                nr[lru] -= min(nr[lru], nr_scanned);
2554
2555                scan_adjusted = true;
2556        }
2557        blk_finish_plug(&plug);
2558        sc->nr_reclaimed += nr_reclaimed;
2559
2560        /*
2561         * Even if we did not try to evict anon pages at all, we want to
2562         * rebalance the anon lru active/inactive ratio.
2563         */
2564        if (inactive_list_is_low(lruvec, false, sc, true))
2565                shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2566                                   sc, LRU_ACTIVE_ANON);
2567}
2568
2569/* Use reclaim/compaction for costly allocs or under memory pressure */
2570static bool in_reclaim_compaction(struct scan_control *sc)
2571{
2572        if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2573                        (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2574                         sc->priority < DEF_PRIORITY - 2))
2575                return true;
2576
2577        return false;
2578}
2579
2580/*
2581 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2582 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2583 * true if more pages should be reclaimed such that when the page allocator
2584 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2585 * It will give up earlier than that if there is difficulty reclaiming pages.
2586 */
2587static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2588                                        unsigned long nr_reclaimed,
2589                                        unsigned long nr_scanned,
2590                                        struct scan_control *sc)
2591{
2592        unsigned long pages_for_compaction;
2593        unsigned long inactive_lru_pages;
2594        int z;
2595
2596        /* If not in reclaim/compaction mode, stop */
2597        if (!in_reclaim_compaction(sc))
2598                return false;
2599
2600        /* Consider stopping depending on scan and reclaim activity */
2601        if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2602                /*
2603                 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2604                 * full LRU list has been scanned and we are still failing
2605                 * to reclaim pages. This full LRU scan is potentially
2606                 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2607                 */
2608                if (!nr_reclaimed && !nr_scanned)
2609                        return false;
2610        } else {
2611                /*
2612                 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2613                 * fail without consequence, stop if we failed to reclaim
2614                 * any pages from the last SWAP_CLUSTER_MAX number of
2615                 * pages that were scanned. This will return to the
2616                 * caller faster at the risk reclaim/compaction and
2617                 * the resulting allocation attempt fails
2618                 */
2619                if (!nr_reclaimed)
2620                        return false;
2621        }
2622
2623        /*
2624         * If we have not reclaimed enough pages for compaction and the
2625         * inactive lists are large enough, continue reclaiming
2626         */
2627        pages_for_compaction = compact_gap(sc->order);
2628        inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2629        if (get_nr_swap_pages() > 0)
2630                inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2631        if (sc->nr_reclaimed < pages_for_compaction &&
2632                        inactive_lru_pages > pages_for_compaction)
2633                return true;
2634
2635        /* If compaction would go ahead or the allocation would succeed, stop */
2636        for (z = 0; z <= sc->reclaim_idx; z++) {
2637                struct zone *zone = &pgdat->node_zones[z];
2638                if (!managed_zone(zone))
2639                        continue;
2640
2641                switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2642                case COMPACT_SUCCESS:
2643                case COMPACT_CONTINUE:
2644                        return false;
2645                default:
2646                        /* check next zone */
2647                        ;
2648                }
2649        }
2650        return true;
2651}
2652
2653static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2654{
2655        return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2656                (memcg && memcg_congested(pgdat, memcg));
2657}
2658
2659static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2660{
2661        struct reclaim_state *reclaim_state = current->reclaim_state;
2662        unsigned long nr_reclaimed, nr_scanned;
2663        bool reclaimable = false;
2664
2665        do {
2666                struct mem_cgroup *root = sc->target_mem_cgroup;
2667                struct mem_cgroup_reclaim_cookie reclaim = {
2668                        .pgdat = pgdat,
2669                        .priority = sc->priority,
2670                };
2671                unsigned long node_lru_pages = 0;
2672                struct mem_cgroup *memcg;
2673
2674                memset(&sc->nr, 0, sizeof(sc->nr));
2675
2676                nr_reclaimed = sc->nr_reclaimed;
2677                nr_scanned = sc->nr_scanned;
2678
2679                memcg = mem_cgroup_iter(root, NULL, &reclaim);
2680                do {
2681                        unsigned long lru_pages;
2682                        unsigned long reclaimed;
2683                        unsigned long scanned;
2684
2685                        switch (mem_cgroup_protected(root, memcg)) {
2686                        case MEMCG_PROT_MIN:
2687                                /*
2688                                 * Hard protection.
2689                                 * If there is no reclaimable memory, OOM.
2690                                 */
2691                                continue;
2692                        case MEMCG_PROT_LOW:
2693                                /*
2694                                 * Soft protection.
2695                                 * Respect the protection only as long as
2696                                 * there is an unprotected supply
2697                                 * of reclaimable memory from other cgroups.
2698                                 */
2699                                if (!sc->memcg_low_reclaim) {
2700                                        sc->memcg_low_skipped = 1;
2701                                        continue;
2702                                }
2703                                memcg_memory_event(memcg, MEMCG_LOW);
2704                                break;
2705                        case MEMCG_PROT_NONE:
2706                                break;
2707                        }
2708
2709                        reclaimed = sc->nr_reclaimed;
2710                        scanned = sc->nr_scanned;
2711                        shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2712                        node_lru_pages += lru_pages;
2713
2714                        shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
2715                                        sc->priority);
2716
2717                        /* Record the group's reclaim efficiency */
2718                        vmpressure(sc->gfp_mask, memcg, false,
2719                                   sc->nr_scanned - scanned,
2720                                   sc->nr_reclaimed - reclaimed);
2721
2722                        /*
2723                         * Kswapd have to scan all memory cgroups to fulfill
2724                         * the overall scan target for the node.
2725                         *
2726                         * Limit reclaim, on the other hand, only cares about
2727                         * nr_to_reclaim pages to be reclaimed and it will
2728                         * retry with decreasing priority if one round over the
2729                         * whole hierarchy is not sufficient.
2730                         */
2731                        if (!current_is_kswapd() &&
2732                                        sc->nr_reclaimed >= sc->nr_to_reclaim) {
2733                                mem_cgroup_iter_break(root, memcg);
2734                                break;
2735                        }
2736                } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2737
2738                if (reclaim_state) {
2739                        sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2740                        reclaim_state->reclaimed_slab = 0;
2741                }
2742
2743                /* Record the subtree's reclaim efficiency */
2744                vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2745                           sc->nr_scanned - nr_scanned,
2746                           sc->nr_reclaimed - nr_reclaimed);
2747
2748                if (sc->nr_reclaimed - nr_reclaimed)
2749                        reclaimable = true;
2750
2751                if (current_is_kswapd()) {
2752                        /*
2753                         * If reclaim is isolating dirty pages under writeback,
2754                         * it implies that the long-lived page allocation rate
2755                         * is exceeding the page laundering rate. Either the
2756                         * global limits are not being effective at throttling
2757                         * processes due to the page distribution throughout
2758                         * zones or there is heavy usage of a slow backing
2759                         * device. The only option is to throttle from reclaim
2760                         * context which is not ideal as there is no guarantee
2761                         * the dirtying process is throttled in the same way
2762                         * balance_dirty_pages() manages.
2763                         *
2764                         * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2765                         * count the number of pages under pages flagged for
2766                         * immediate reclaim and stall if any are encountered
2767                         * in the nr_immediate check below.
2768                         */
2769                        if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2770                                set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2771
2772                        /*
2773                         * Tag a node as congested if all the dirty pages
2774                         * scanned were backed by a congested BDI and
2775                         * wait_iff_congested will stall.
2776                         */
2777                        if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2778                                set_bit(PGDAT_CONGESTED, &pgdat->flags);
2779
2780                        /* Allow kswapd to start writing pages during reclaim.*/
2781                        if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2782                                set_bit(PGDAT_DIRTY, &pgdat->flags);
2783
2784                        /*
2785                         * If kswapd scans pages marked marked for immediate
2786                         * reclaim and under writeback (nr_immediate), it
2787                         * implies that pages are cycling through the LRU
2788                         * faster than they are written so also forcibly stall.
2789                         */
2790                        if (sc->nr.immediate)
2791                                congestion_wait(BLK_RW_ASYNC, HZ/10);
2792                }
2793
2794                /*
2795                 * Legacy memcg will stall in page writeback so avoid forcibly
2796                 * stalling in wait_iff_congested().
2797                 */
2798                if (!global_reclaim(sc) && sane_reclaim(sc) &&
2799                    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2800                        set_memcg_congestion(pgdat, root, true);
2801
2802                /*
2803                 * Stall direct reclaim for IO completions if underlying BDIs
2804                 * and node is congested. Allow kswapd to continue until it
2805                 * starts encountering unqueued dirty pages or cycling through
2806                 * the LRU too quickly.
2807                 */
2808                if (!sc->hibernation_mode && !current_is_kswapd() &&
2809                   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2810                        wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2811
2812        } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2813                                         sc->nr_scanned - nr_scanned, sc));
2814
2815        /*
2816         * Kswapd gives up on balancing particular nodes after too
2817         * many failures to reclaim anything from them and goes to
2818         * sleep. On reclaim progress, reset the failure counter. A
2819         * successful direct reclaim run will revive a dormant kswapd.
2820         */
2821        if (reclaimable)
2822                pgdat->kswapd_failures = 0;
2823
2824        return reclaimable;
2825}
2826
2827/*
2828 * Returns true if compaction should go ahead for a costly-order request, or
2829 * the allocation would already succeed without compaction. Return false if we
2830 * should reclaim first.
2831 */
2832static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2833{
2834        unsigned long watermark;
2835        enum compact_result suitable;
2836
2837        suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2838        if (suitable == COMPACT_SUCCESS)
2839                /* Allocation should succeed already. Don't reclaim. */
2840                return true;
2841        if (suitable == COMPACT_SKIPPED)
2842                /* Compaction cannot yet proceed. Do reclaim. */
2843                return false;
2844
2845        /*
2846         * Compaction is already possible, but it takes time to run and there
2847         * are potentially other callers using the pages just freed. So proceed
2848         * with reclaim to make a buffer of free pages available to give
2849         * compaction a reasonable chance of completing and allocating the page.
2850         * Note that we won't actually reclaim the whole buffer in one attempt
2851         * as the target watermark in should_continue_reclaim() is lower. But if
2852         * we are already above the high+gap watermark, don't reclaim at all.
2853         */
2854        watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2855
2856        return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2857}
2858
2859/*
2860 * This is the direct reclaim path, for page-allocating processes.  We only
2861 * try to reclaim pages from zones which will satisfy the caller's allocation
2862 * request.
2863 *
2864 * If a zone is deemed to be full of pinned pages then just give it a light
2865 * scan then give up on it.
2866 */
2867static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2868{
2869        struct zoneref *z;
2870        struct zone *zone;
2871        unsigned long nr_soft_reclaimed;
2872        unsigned long nr_soft_scanned;
2873        gfp_t orig_mask;
2874        pg_data_t *last_pgdat = NULL;
2875
2876        /*
2877         * If the number of buffer_heads in the machine exceeds the maximum
2878         * allowed level, force direct reclaim to scan the highmem zone as
2879         * highmem pages could be pinning lowmem pages storing buffer_heads
2880         */
2881        orig_mask = sc->gfp_mask;
2882        if (buffer_heads_over_limit) {
2883                sc->gfp_mask |= __GFP_HIGHMEM;
2884                sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2885        }
2886
2887        for_each_zone_zonelist_nodemask(zone, z, zonelist,
2888                                        sc->reclaim_idx, sc->nodemask) {
2889                /*
2890                 * Take care memory controller reclaiming has small influence
2891                 * to global LRU.
2892                 */
2893                if (global_reclaim(sc)) {
2894                        if (!cpuset_zone_allowed(zone,
2895                                                 GFP_KERNEL | __GFP_HARDWALL))
2896                                continue;
2897
2898                        /*
2899                         * If we already have plenty of memory free for
2900                         * compaction in this zone, don't free any more.
2901                         * Even though compaction is invoked for any
2902                         * non-zero order, only frequent costly order
2903                         * reclamation is disruptive enough to become a
2904                         * noticeable problem, like transparent huge
2905                         * page allocations.
2906                         */
2907                        if (IS_ENABLED(CONFIG_COMPACTION) &&
2908                            sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2909                            compaction_ready(zone, sc)) {
2910                                sc->compaction_ready = true;
2911                                continue;
2912                        }
2913
2914                        /*
2915                         * Shrink each node in the zonelist once. If the
2916                         * zonelist is ordered by zone (not the default) then a
2917                         * node may be shrunk multiple times but in that case
2918                         * the user prefers lower zones being preserved.
2919                         */
2920                        if (zone->zone_pgdat == last_pgdat)
2921                                continue;
2922
2923                        /*
2924                         * This steals pages from memory cgroups over softlimit
2925                         * and returns the number of reclaimed pages and
2926                         * scanned pages. This works for global memory pressure
2927                         * and balancing, not for a memcg's limit.
2928                         */
2929                        nr_soft_scanned = 0;
2930                        nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2931                                                sc->order, sc->gfp_mask,
2932                                                &nr_soft_scanned);
2933                        sc->nr_reclaimed += nr_soft_reclaimed;
2934                        sc->nr_scanned += nr_soft_scanned;
2935                        /* need some check for avoid more shrink_zone() */
2936                }
2937
2938                /* See comment about same check for global reclaim above */
2939                if (zone->zone_pgdat == last_pgdat)
2940                        continue;
2941                last_pgdat = zone->zone_pgdat;
2942                shrink_node(zone->zone_pgdat, sc);
2943        }
2944
2945        /*
2946         * Restore to original mask to avoid the impact on the caller if we
2947         * promoted it to __GFP_HIGHMEM.
2948         */
2949        sc->gfp_mask = orig_mask;
2950}
2951
2952static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2953{
2954        struct mem_cgroup *memcg;
2955
2956        memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2957        do {
2958                unsigned long refaults;
2959                struct lruvec *lruvec;
2960
2961                lruvec = mem_cgroup_lruvec(pgdat, memcg);
2962                refaults = lruvec_page_state_local(lruvec, WORKINGSET_ACTIVATE);
2963                lruvec->refaults = refaults;
2964        } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2965}
2966
2967/*
2968 * This is the main entry point to direct page reclaim.
2969 *
2970 * If a full scan of the inactive list fails to free enough memory then we
2971 * are "out of memory" and something needs to be killed.
2972 *
2973 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2974 * high - the zone may be full of dirty or under-writeback pages, which this
2975 * caller can't do much about.  We kick the writeback threads and take explicit
2976 * naps in the hope that some of these pages can be written.  But if the
2977 * allocating task holds filesystem locks which prevent writeout this might not
2978 * work, and the allocation attempt will fail.
2979 *
2980 * returns:     0, if no pages reclaimed
2981 *              else, the number of pages reclaimed
2982 */
2983static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2984                                          struct scan_control *sc)
2985{
2986        int initial_priority = sc->priority;
2987        pg_data_t *last_pgdat;
2988        struct zoneref *z;
2989        struct zone *zone;
2990retry:
2991        delayacct_freepages_start();
2992
2993        if (global_reclaim(sc))
2994                __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2995
2996        do {
2997                vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2998                                sc->priority);
2999                sc->nr_scanned = 0;
3000                shrink_zones(zonelist, sc);
3001
3002                if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3003                        break;
3004
3005                if (sc->compaction_ready)
3006                        break;
3007
3008                /*
3009                 * If we're getting trouble reclaiming, start doing
3010                 * writepage even in laptop mode.
3011                 */
3012                if (sc->priority < DEF_PRIORITY - 2)
3013                        sc->may_writepage = 1;
3014        } while (--sc->priority >= 0);
3015
3016        last_pgdat = NULL;
3017        for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3018                                        sc->nodemask) {
3019                if (zone->zone_pgdat == last_pgdat)
3020                        continue;
3021                last_pgdat = zone->zone_pgdat;
3022                snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3023                set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3024        }
3025
3026        delayacct_freepages_end();
3027
3028        if (sc->nr_reclaimed)
3029                return sc->nr_reclaimed;
3030
3031        /* Aborted reclaim to try compaction? don't OOM, then */
3032        if (sc->compaction_ready)
3033                return 1;
3034
3035        /* Untapped cgroup reserves?  Don't OOM, retry. */
3036        if (sc->memcg_low_skipped) {
3037                sc->priority = initial_priority;
3038                sc->memcg_low_reclaim = 1;
3039                sc->memcg_low_skipped = 0;
3040                goto retry;
3041        }
3042
3043        return 0;
3044}
3045
3046static bool allow_direct_reclaim(pg_data_t *pgdat)
3047{
3048        struct zone *zone;
3049        unsigned long pfmemalloc_reserve = 0;
3050        unsigned long free_pages = 0;
3051        int i;
3052        bool wmark_ok;
3053
3054        if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3055                return true;
3056
3057        for (i = 0; i <= ZONE_NORMAL; i++) {
3058                zone = &pgdat->node_zones[i];
3059                if (!managed_zone(zone))
3060                        continue;
3061
3062                if (!zone_reclaimable_pages(zone))
3063                        continue;
3064
3065                pfmemalloc_reserve += min_wmark_pages(zone);
3066                free_pages += zone_page_state(zone, NR_FREE_PAGES);
3067        }
3068
3069        /* If there are no reserves (unexpected config) then do not throttle */
3070        if (!pfmemalloc_reserve)
3071                return true;
3072
3073        wmark_ok = free_pages > pfmemalloc_reserve / 2;
3074
3075        /* kswapd must be awake if processes are being throttled */
3076        if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3077                pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3078                                                (enum zone_type)ZONE_NORMAL);
3079                wake_up_interruptible(&pgdat->kswapd_wait);
3080        }
3081
3082        return wmark_ok;
3083}
3084
3085/*
3086 * Throttle direct reclaimers if backing storage is backed by the network
3087 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3088 * depleted. kswapd will continue to make progress and wake the processes
3089 * when the low watermark is reached.
3090 *
3091 * Returns true if a fatal signal was delivered during throttling. If this
3092 * happens, the page allocator should not consider triggering the OOM killer.
3093 */
3094static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3095                                        nodemask_t *nodemask)
3096{
3097        struct zoneref *z;
3098        struct zone *zone;
3099        pg_data_t *pgdat = NULL;
3100
3101        /*
3102         * Kernel threads should not be throttled as they may be indirectly
3103         * responsible for cleaning pages necessary for reclaim to make forward
3104         * progress. kjournald for example may enter direct reclaim while
3105         * committing a transaction where throttling it could forcing other
3106         * processes to block on log_wait_commit().
3107         */
3108        if (current->flags & PF_KTHREAD)
3109                goto out;
3110
3111        /*
3112         * If a fatal signal is pending, this process should not throttle.
3113         * It should return quickly so it can exit and free its memory
3114         */
3115        if (fatal_signal_pending(current))
3116                goto out;
3117
3118        /*
3119         * Check if the pfmemalloc reserves are ok by finding the first node
3120         * with a usable ZONE_NORMAL or lower zone. The expectation is that
3121         * GFP_KERNEL will be required for allocating network buffers when
3122         * swapping over the network so ZONE_HIGHMEM is unusable.
3123         *
3124         * Throttling is based on the first usable node and throttled processes
3125         * wait on a queue until kswapd makes progress and wakes them. There
3126         * is an affinity then between processes waking up and where reclaim
3127         * progress has been made assuming the process wakes on the same node.
3128         * More importantly, processes running on remote nodes will not compete
3129         * for remote pfmemalloc reserves and processes on different nodes
3130         * should make reasonable progress.
3131         */
3132        for_each_zone_zonelist_nodemask(zone, z, zonelist,
3133                                        gfp_zone(gfp_mask), nodemask) {
3134                if (zone_idx(zone) > ZONE_NORMAL)
3135                        continue;
3136
3137                /* Throttle based on the first usable node */
3138                pgdat = zone->zone_pgdat;
3139                if (allow_direct_reclaim(pgdat))
3140                        goto out;
3141                break;
3142        }
3143
3144        /* If no zone was usable by the allocation flags then do not throttle */
3145        if (!pgdat)
3146                goto out;
3147
3148        /* Account for the throttling */
3149        count_vm_event(PGSCAN_DIRECT_THROTTLE);
3150
3151        /*
3152         * If the caller cannot enter the filesystem, it's possible that it
3153         * is due to the caller holding an FS lock or performing a journal
3154         * transaction in the case of a filesystem like ext[3|4]. In this case,
3155         * it is not safe to block on pfmemalloc_wait as kswapd could be
3156         * blocked waiting on the same lock. Instead, throttle for up to a
3157         * second before continuing.
3158         */
3159        if (!(gfp_mask & __GFP_FS)) {
3160                wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3161                        allow_direct_reclaim(pgdat), HZ);
3162
3163                goto check_pending;
3164        }
3165
3166        /* Throttle until kswapd wakes the process */
3167        wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3168                allow_direct_reclaim(pgdat));
3169
3170check_pending:
3171        if (fatal_signal_pending(current))
3172                return true;
3173
3174out:
3175        return false;
3176}
3177
3178unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3179                                gfp_t gfp_mask, nodemask_t *nodemask)
3180{
3181        unsigned long nr_reclaimed;
3182        struct scan_control sc = {
3183                .nr_to_reclaim = SWAP_CLUSTER_MAX,
3184                .gfp_mask = current_gfp_context(gfp_mask),
3185                .reclaim_idx = gfp_zone(gfp_mask),
3186                .order = order,
3187                .nodemask = nodemask,
3188                .priority = DEF_PRIORITY,
3189                .may_writepage = !laptop_mode,
3190                .may_unmap = 1,
3191                .may_swap = 1,
3192        };
3193
3194        /*
3195         * scan_control uses s8 fields for order, priority, and reclaim_idx.
3196         * Confirm they are large enough for max values.
3197         */
3198        BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3199        BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3200        BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3201
3202        /*
3203         * Do not enter reclaim if fatal signal was delivered while throttled.
3204         * 1 is returned so that the page allocator does not OOM kill at this
3205         * point.
3206         */
3207        if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3208                return 1;
3209
3210        set_task_reclaim_state(current, &sc.reclaim_state);
3211        trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3212
3213        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3214
3215        trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3216        set_task_reclaim_state(current, NULL);
3217
3218        return nr_reclaimed;
3219}
3220
3221#ifdef CONFIG_MEMCG
3222
3223/* Only used by soft limit reclaim. Do not reuse for anything else. */
3224unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3225                                                gfp_t gfp_mask, bool noswap,
3226                                                pg_data_t *pgdat,
3227                                                unsigned long *nr_scanned)
3228{
3229        struct scan_control sc = {
3230                .nr_to_reclaim = SWAP_CLUSTER_MAX,
3231                .target_mem_cgroup = memcg,
3232                .may_writepage = !laptop_mode,
3233                .may_unmap = 1,
3234                .reclaim_idx = MAX_NR_ZONES - 1,
3235                .may_swap = !noswap,
3236        };
3237        unsigned long lru_pages;
3238
3239        WARN_ON_ONCE(!current->reclaim_state);
3240
3241        sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3242                        (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3243
3244        trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3245                                                      sc.gfp_mask);
3246
3247        /*
3248         * NOTE: Although we can get the priority field, using it
3249         * here is not a good idea, since it limits the pages we can scan.
3250         * if we don't reclaim here, the shrink_node from balance_pgdat
3251         * will pick up pages from other mem cgroup's as well. We hack
3252         * the priority and make it zero.
3253         */
3254        shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3255
3256        trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3257
3258        *nr_scanned = sc.nr_scanned;
3259
3260        return sc.nr_reclaimed;
3261}
3262
3263unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3264                                           unsigned long nr_pages,
3265                                           gfp_t gfp_mask,
3266                                           bool may_swap)
3267{
3268        struct zonelist *zonelist;
3269        unsigned long nr_reclaimed;
3270        unsigned long pflags;
3271        int nid;
3272        unsigned int noreclaim_flag;
3273        struct scan_control sc = {
3274                .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3275                .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3276                                (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3277                .reclaim_idx = MAX_NR_ZONES - 1,
3278                .target_mem_cgroup = memcg,
3279                .priority = DEF_PRIORITY,
3280                .may_writepage = !laptop_mode,
3281                .may_unmap = 1,
3282                .may_swap = may_swap,
3283        };
3284
3285        set_task_reclaim_state(current, &sc.reclaim_state);
3286        /*
3287         * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3288         * take care of from where we get pages. So the node where we start the
3289         * scan does not need to be the current node.
3290         */
3291        nid = mem_cgroup_select_victim_node(memcg);
3292
3293        zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3294
3295        trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3296
3297        psi_memstall_enter(&pflags);
3298        noreclaim_flag = memalloc_noreclaim_save();
3299
3300        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3301
3302        memalloc_noreclaim_restore(noreclaim_flag);
3303        psi_memstall_leave(&pflags);
3304
3305        trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3306        set_task_reclaim_state(current, NULL);
3307
3308        return nr_reclaimed;
3309}
3310#endif
3311
3312static void age_active_anon(struct pglist_data *pgdat,
3313                                struct scan_control *sc)
3314{
3315        struct mem_cgroup *memcg;
3316
3317        if (!total_swap_pages)
3318                return;
3319
3320        memcg = mem_cgroup_iter(NULL, NULL, NULL);
3321        do {
3322                struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3323
3324                if (inactive_list_is_low(lruvec, false, sc, true))
3325                        shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3326                                           sc, LRU_ACTIVE_ANON);
3327
3328                memcg = mem_cgroup_iter(NULL, memcg, NULL);
3329        } while (memcg);
3330}
3331
3332static bool pgdat_watermark_boosted(pg_data_t *pgdat, int classzone_idx)
3333{
3334        int i;
3335        struct zone *zone;
3336
3337        /*
3338         * Check for watermark boosts top-down as the higher zones
3339         * are more likely to be boosted. Both watermarks and boosts
3340         * should not be checked at the time time as reclaim would
3341         * start prematurely when there is no boosting and a lower
3342         * zone is balanced.
3343         */
3344        for (i = classzone_idx; i >= 0; i--) {
3345                zone = pgdat->node_zones + i;
3346                if (!managed_zone(zone))
3347                        continue;
3348
3349                if (zone->watermark_boost)
3350                        return true;
3351        }
3352
3353        return false;
3354}
3355
3356/*
3357 * Returns true if there is an eligible zone balanced for the request order
3358 * and classzone_idx
3359 */
3360static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3361{
3362        int i;
3363        unsigned long mark = -1;
3364        struct zone *zone;
3365
3366        /*
3367         * Check watermarks bottom-up as lower zones are more likely to
3368         * meet watermarks.
3369         */
3370        for (i = 0; i <= classzone_idx; i++) {
3371                zone = pgdat->node_zones + i;
3372
3373                if (!managed_zone(zone))
3374                        continue;
3375
3376                mark = high_wmark_pages(zone);
3377                if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3378                        return true;
3379        }
3380
3381        /*
3382         * If a node has no populated zone within classzone_idx, it does not
3383         * need balancing by definition. This can happen if a zone-restricted
3384         * allocation tries to wake a remote kswapd.
3385         */
3386        if (mark == -1)
3387                return true;
3388
3389        return false;
3390}
3391
3392/* Clear pgdat state for congested, dirty or under writeback. */
3393static void clear_pgdat_congested(pg_data_t *pgdat)
3394{
3395        clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3396        clear_bit(PGDAT_DIRTY, &pgdat->flags);
3397        clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3398}
3399
3400/*
3401 * Prepare kswapd for sleeping. This verifies that there are no processes
3402 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3403 *
3404 * Returns true if kswapd is ready to sleep
3405 */
3406static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3407{
3408        /*
3409         * The throttled processes are normally woken up in balance_pgdat() as
3410         * soon as allow_direct_reclaim() is true. But there is a potential
3411         * race between when kswapd checks the watermarks and a process gets
3412         * throttled. There is also a potential race if processes get
3413         * throttled, kswapd wakes, a large process exits thereby balancing the
3414         * zones, which causes kswapd to exit balance_pgdat() before reaching
3415         * the wake up checks. If kswapd is going to sleep, no process should
3416         * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3417         * the wake up is premature, processes will wake kswapd and get
3418         * throttled again. The difference from wake ups in balance_pgdat() is
3419         * that here we are under prepare_to_wait().
3420         */
3421        if (waitqueue_active(&pgdat->pfmemalloc_wait))
3422                wake_up_all(&pgdat->pfmemalloc_wait);
3423
3424        /* Hopeless node, leave it to direct reclaim */
3425        if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3426                return true;
3427
3428        if (pgdat_balanced(pgdat, order, classzone_idx)) {
3429                clear_pgdat_congested(pgdat);
3430                return true;
3431        }
3432
3433        return false;
3434}
3435
3436/*
3437 * kswapd shrinks a node of pages that are at or below the highest usable
3438 * zone that is currently unbalanced.
3439 *
3440 * Returns true if kswapd scanned at least the requested number of pages to
3441 * reclaim or if the lack of progress was due to pages under writeback.
3442 * This is used to determine if the scanning priority needs to be raised.
3443 */
3444static bool kswapd_shrink_node(pg_data_t *pgdat,
3445                               struct scan_control *sc)
3446{
3447        struct zone *zone;
3448        int z;
3449
3450        /* Reclaim a number of pages proportional to the number of zones */
3451        sc->nr_to_reclaim = 0;
3452        for (z = 0; z <= sc->reclaim_idx; z++) {
3453                zone = pgdat->node_zones + z;
3454                if (!managed_zone(zone))
3455                        continue;
3456
3457                sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3458        }
3459
3460        /*
3461         * Historically care was taken to put equal pressure on all zones but
3462         * now pressure is applied based on node LRU order.
3463         */
3464        shrink_node(pgdat, sc);
3465
3466        /*
3467         * Fragmentation may mean that the system cannot be rebalanced for
3468         * high-order allocations. If twice the allocation size has been
3469         * reclaimed then recheck watermarks only at order-0 to prevent
3470         * excessive reclaim. Assume that a process requested a high-order
3471         * can direct reclaim/compact.
3472         */
3473        if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3474                sc->order = 0;
3475
3476        return sc->nr_scanned >= sc->nr_to_reclaim;
3477}
3478
3479/*
3480 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3481 * that are eligible for use by the caller until at least one zone is
3482 * balanced.
3483 *
3484 * Returns the order kswapd finished reclaiming at.
3485 *
3486 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3487 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3488 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
3489 * or lower is eligible for reclaim until at least one usable zone is
3490 * balanced.
3491 */
3492static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3493{
3494        int i;
3495        unsigned long nr_soft_reclaimed;
3496        unsigned long nr_soft_scanned;
3497        unsigned long pflags;
3498        unsigned long nr_boost_reclaim;
3499        unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
3500        bool boosted;
3501        struct zone *zone;
3502        struct scan_control sc = {
3503                .gfp_mask = GFP_KERNEL,
3504                .order = order,
3505                .may_unmap = 1,
3506        };
3507
3508        set_task_reclaim_state(current, &sc.reclaim_state);
3509        psi_memstall_enter(&pflags);
3510        __fs_reclaim_acquire();
3511
3512        count_vm_event(PAGEOUTRUN);
3513
3514        /*
3515         * Account for the reclaim boost. Note that the zone boost is left in
3516         * place so that parallel allocations that are near the watermark will
3517         * stall or direct reclaim until kswapd is finished.
3518         */
3519        nr_boost_reclaim = 0;
3520        for (i = 0; i <= classzone_idx; i++) {
3521                zone = pgdat->node_zones + i;
3522                if (!managed_zone(zone))
3523                        continue;
3524
3525                nr_boost_reclaim += zone->watermark_boost;
3526                zone_boosts[i] = zone->watermark_boost;
3527        }
3528        boosted = nr_boost_reclaim;
3529
3530restart:
3531        sc.priority = DEF_PRIORITY;
3532        do {
3533                unsigned long nr_reclaimed = sc.nr_reclaimed;
3534                bool raise_priority = true;
3535                bool balanced;
3536                bool ret;
3537
3538                sc.reclaim_idx = classzone_idx;
3539
3540                /*
3541                 * If the number of buffer_heads exceeds the maximum allowed
3542                 * then consider reclaiming from all zones. This has a dual
3543                 * purpose -- on 64-bit systems it is expected that
3544                 * buffer_heads are stripped during active rotation. On 32-bit
3545                 * systems, highmem pages can pin lowmem memory and shrinking
3546                 * buffers can relieve lowmem pressure. Reclaim may still not
3547                 * go ahead if all eligible zones for the original allocation
3548                 * request are balanced to avoid excessive reclaim from kswapd.
3549                 */
3550                if (buffer_heads_over_limit) {
3551                        for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3552                                zone = pgdat->node_zones + i;
3553                                if (!managed_zone(zone))
3554                                        continue;
3555
3556                                sc.reclaim_idx = i;
3557                                break;
3558                        }
3559                }
3560
3561                /*
3562                 * If the pgdat is imbalanced then ignore boosting and preserve
3563                 * the watermarks for a later time and restart. Note that the
3564                 * zone watermarks will be still reset at the end of balancing
3565                 * on the grounds that the normal reclaim should be enough to
3566                 * re-evaluate if boosting is required when kswapd next wakes.
3567                 */
3568                balanced = pgdat_balanced(pgdat, sc.order, classzone_idx);
3569                if (!balanced && nr_boost_reclaim) {
3570                        nr_boost_reclaim = 0;
3571                        goto restart;
3572                }
3573
3574                /*
3575                 * If boosting is not active then only reclaim if there are no
3576                 * eligible zones. Note that sc.reclaim_idx is not used as
3577                 * buffer_heads_over_limit may have adjusted it.
3578                 */
3579                if (!nr_boost_reclaim && balanced)
3580                        goto out;
3581
3582                /* Limit the priority of boosting to avoid reclaim writeback */
3583                if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
3584                        raise_priority = false;
3585
3586                /*
3587                 * Do not writeback or swap pages for boosted reclaim. The
3588                 * intent is to relieve pressure not issue sub-optimal IO
3589                 * from reclaim context. If no pages are reclaimed, the
3590                 * reclaim will be aborted.
3591                 */
3592                sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
3593                sc.may_swap = !nr_boost_reclaim;
3594
3595                /*
3596                 * Do some background aging of the anon list, to give
3597                 * pages a chance to be referenced before reclaiming. All
3598                 * pages are rotated regardless of classzone as this is
3599                 * about consistent aging.
3600                 */
3601                age_active_anon(pgdat, &sc);
3602
3603                /*
3604                 * If we're getting trouble reclaiming, start doing writepage
3605                 * even in laptop mode.
3606                 */
3607                if (sc.priority < DEF_PRIORITY - 2)
3608                        sc.may_writepage = 1;
3609
3610                /* Call soft limit reclaim before calling shrink_node. */
3611                sc.nr_scanned = 0;
3612                nr_soft_scanned = 0;
3613                nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3614                                                sc.gfp_mask, &nr_soft_scanned);
3615                sc.nr_reclaimed += nr_soft_reclaimed;
3616
3617                /*
3618                 * There should be no need to raise the scanning priority if
3619                 * enough pages are already being scanned that that high
3620                 * watermark would be met at 100% efficiency.
3621                 */
3622                if (kswapd_shrink_node(pgdat, &sc))
3623                        raise_priority = false;
3624
3625                /*
3626                 * If the low watermark is met there is no need for processes
3627                 * to be throttled on pfmemalloc_wait as they should not be
3628                 * able to safely make forward progress. Wake them
3629                 */
3630                if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3631                                allow_direct_reclaim(pgdat))
3632                        wake_up_all(&pgdat->pfmemalloc_wait);
3633
3634                /* Check if kswapd should be suspending */
3635                __fs_reclaim_release();
3636                ret = try_to_freeze();
3637                __fs_reclaim_acquire();
3638                if (ret || kthread_should_stop())
3639                        break;
3640
3641                /*
3642                 * Raise priority if scanning rate is too low or there was no
3643                 * progress in reclaiming pages
3644                 */
3645                nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3646                nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
3647
3648                /*
3649                 * If reclaim made no progress for a boost, stop reclaim as
3650                 * IO cannot be queued and it could be an infinite loop in
3651                 * extreme circumstances.
3652                 */
3653                if (nr_boost_reclaim && !nr_reclaimed)
3654                        break;
3655
3656                if (raise_priority || !nr_reclaimed)
3657                        sc.priority--;
3658        } while (sc.priority >= 1);
3659
3660        if (!sc.nr_reclaimed)
3661                pgdat->kswapd_failures++;
3662
3663out:
3664        /* If reclaim was boosted, account for the reclaim done in this pass */
3665        if (boosted) {
3666                unsigned long flags;
3667
3668                for (i = 0; i <= classzone_idx; i++) {
3669                        if (!zone_boosts[i])
3670                                continue;
3671
3672                        /* Increments are under the zone lock */
3673                        zone = pgdat->node_zones + i;
3674                        spin_lock_irqsave(&zone->lock, flags);
3675                        zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
3676                        spin_unlock_irqrestore(&zone->lock, flags);
3677                }
3678
3679                /*
3680                 * As there is now likely space, wakeup kcompact to defragment
3681                 * pageblocks.
3682                 */
3683                wakeup_kcompactd(pgdat, pageblock_order, classzone_idx);
3684        }
3685
3686        snapshot_refaults(NULL, pgdat);
3687        __fs_reclaim_release();
3688        psi_memstall_leave(&pflags);
3689        set_task_reclaim_state(current, NULL);
3690
3691        /*
3692         * Return the order kswapd stopped reclaiming at as
3693         * prepare_kswapd_sleep() takes it into account. If another caller
3694         * entered the allocator slow path while kswapd was awake, order will
3695         * remain at the higher level.
3696         */
3697        return sc.order;
3698}
3699
3700/*
3701 * The pgdat->kswapd_classzone_idx is used to pass the highest zone index to be
3702 * reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is not
3703 * a valid index then either kswapd runs for first time or kswapd couldn't sleep
3704 * after previous reclaim attempt (node is still unbalanced). In that case
3705 * return the zone index of the previous kswapd reclaim cycle.
3706 */
3707static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3708                                           enum zone_type prev_classzone_idx)
3709{
3710        if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3711                return prev_classzone_idx;
3712        return pgdat->kswapd_classzone_idx;
3713}
3714
3715static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3716                                unsigned int classzone_idx)
3717{
3718        long remaining = 0;
3719        DEFINE_WAIT(wait);
3720
3721        if (freezing(current) || kthread_should_stop())
3722                return;
3723
3724        prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3725
3726        /*
3727         * Try to sleep for a short interval. Note that kcompactd will only be
3728         * woken if it is possible to sleep for a short interval. This is
3729         * deliberate on the assumption that if reclaim cannot keep an
3730         * eligible zone balanced that it's also unlikely that compaction will
3731         * succeed.
3732         */
3733        if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3734                /*
3735                 * Compaction records what page blocks it recently failed to
3736                 * isolate pages from and skips them in the future scanning.
3737                 * When kswapd is going to sleep, it is reasonable to assume
3738                 * that pages and compaction may succeed so reset the cache.
3739                 */
3740                reset_isolation_suitable(pgdat);
3741
3742                /*
3743                 * We have freed the memory, now we should compact it to make
3744                 * allocation of the requested order possible.
3745                 */
3746                wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3747
3748                remaining = schedule_timeout(HZ/10);
3749
3750                /*
3751                 * If woken prematurely then reset kswapd_classzone_idx and
3752                 * order. The values will either be from a wakeup request or
3753                 * the previous request that slept prematurely.
3754                 */
3755                if (remaining) {
3756                        pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3757                        pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3758                }
3759
3760                finish_wait(&pgdat->kswapd_wait, &wait);
3761                prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3762        }
3763
3764        /*
3765         * After a short sleep, check if it was a premature sleep. If not, then
3766         * go fully to sleep until explicitly woken up.
3767         */
3768        if (!remaining &&
3769            prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3770                trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3771
3772                /*
3773                 * vmstat counters are not perfectly accurate and the estimated
3774                 * value for counters such as NR_FREE_PAGES can deviate from the
3775                 * true value by nr_online_cpus * threshold. To avoid the zone
3776                 * watermarks being breached while under pressure, we reduce the
3777                 * per-cpu vmstat threshold while kswapd is awake and restore
3778                 * them before going back to sleep.
3779                 */
3780                set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3781
3782                if (!kthread_should_stop())
3783                        schedule();
3784
3785                set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3786        } else {
3787                if (remaining)
3788                        count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3789                else
3790                        count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3791        }
3792        finish_wait(&pgdat->kswapd_wait, &wait);
3793}
3794
3795/*
3796 * The background pageout daemon, started as a kernel thread
3797 * from the init process.
3798 *
3799 * This basically trickles out pages so that we have _some_
3800 * free memory available even if there is no other activity
3801 * that frees anything up. This is needed for things like routing
3802 * etc, where we otherwise might have all activity going on in
3803 * asynchronous contexts that cannot page things out.
3804 *
3805 * If there are applications that are active memory-allocators
3806 * (most normal use), this basically shouldn't matter.
3807 */
3808static int kswapd(void *p)
3809{
3810        unsigned int alloc_order, reclaim_order;
3811        unsigned int classzone_idx = MAX_NR_ZONES - 1;
3812        pg_data_t *pgdat = (pg_data_t*)p;
3813        struct task_struct *tsk = current;
3814        const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3815
3816        if (!cpumask_empty(cpumask))
3817                set_cpus_allowed_ptr(tsk, cpumask);
3818
3819        /*
3820         * Tell the memory management that we're a "memory allocator",
3821         * and that if we need more memory we should get access to it
3822         * regardless (see "__alloc_pages()"). "kswapd" should
3823         * never get caught in the normal page freeing logic.
3824         *
3825         * (Kswapd normally doesn't need memory anyway, but sometimes
3826         * you need a small amount of memory in order to be able to
3827         * page out something else, and this flag essentially protects
3828         * us from recursively trying to free more memory as we're
3829         * trying to free the first piece of memory in the first place).
3830         */
3831        tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3832        set_freezable();
3833
3834        pgdat->kswapd_order = 0;
3835        pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3836        for ( ; ; ) {
3837                bool ret;
3838
3839                alloc_order = reclaim_order = pgdat->kswapd_order;
3840                classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3841
3842kswapd_try_sleep:
3843                kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3844                                        classzone_idx);
3845
3846                /* Read the new order and classzone_idx */
3847                alloc_order = reclaim_order = pgdat->kswapd_order;
3848                classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3849                pgdat->kswapd_order = 0;
3850                pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3851
3852                ret = try_to_freeze();
3853                if (kthread_should_stop())
3854                        break;
3855
3856                /*
3857                 * We can speed up thawing tasks if we don't call balance_pgdat
3858                 * after returning from the refrigerator
3859                 */
3860                if (ret)
3861                        continue;
3862
3863                /*
3864                 * Reclaim begins at the requested order but if a high-order
3865                 * reclaim fails then kswapd falls back to reclaiming for
3866                 * order-0. If that happens, kswapd will consider sleeping
3867                 * for the order it finished reclaiming at (reclaim_order)
3868                 * but kcompactd is woken to compact for the original
3869                 * request (alloc_order).
3870                 */
3871                trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3872                                                alloc_order);
3873                reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3874                if (reclaim_order < alloc_order)
3875                        goto kswapd_try_sleep;
3876        }
3877
3878        tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3879
3880        return 0;
3881}
3882
3883/*
3884 * A zone is low on free memory or too fragmented for high-order memory.  If
3885 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3886 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3887 * has failed or is not needed, still wake up kcompactd if only compaction is
3888 * needed.
3889 */
3890void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3891                   enum zone_type classzone_idx)
3892{
3893        pg_data_t *pgdat;
3894
3895        if (!managed_zone(zone))
3896                return;
3897
3898        if (!cpuset_zone_allowed(zone, gfp_flags))
3899                return;
3900        pgdat = zone->zone_pgdat;
3901
3902        if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3903                pgdat->kswapd_classzone_idx = classzone_idx;
3904        else
3905                pgdat->kswapd_classzone_idx = max(pgdat->kswapd_classzone_idx,
3906                                                  classzone_idx);
3907        pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3908        if (!waitqueue_active(&pgdat->kswapd_wait))
3909                return;
3910
3911        /* Hopeless node, leave it to direct reclaim if possible */
3912        if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3913            (pgdat_balanced(pgdat, order, classzone_idx) &&
3914             !pgdat_watermark_boosted(pgdat, classzone_idx))) {
3915                /*
3916                 * There may be plenty of free memory available, but it's too
3917                 * fragmented for high-order allocations.  Wake up kcompactd
3918                 * and rely on compaction_suitable() to determine if it's
3919                 * needed.  If it fails, it will defer subsequent attempts to
3920                 * ratelimit its work.
3921                 */
3922                if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3923                        wakeup_kcompactd(pgdat, order, classzone_idx);
3924                return;
3925        }
3926
3927        trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3928                                      gfp_flags);
3929        wake_up_interruptible(&pgdat->kswapd_wait);
3930}
3931
3932#ifdef CONFIG_HIBERNATION
3933/*
3934 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3935 * freed pages.
3936 *
3937 * Rather than trying to age LRUs the aim is to preserve the overall
3938 * LRU order by reclaiming preferentially
3939 * inactive > active > active referenced > active mapped
3940 */
3941unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3942{
3943        struct scan_control sc = {
3944                .nr_to_reclaim = nr_to_reclaim,
3945                .gfp_mask = GFP_HIGHUSER_MOVABLE,
3946                .reclaim_idx = MAX_NR_ZONES - 1,
3947                .priority = DEF_PRIORITY,
3948                .may_writepage = 1,
3949                .may_unmap = 1,
3950                .may_swap = 1,
3951                .hibernation_mode = 1,
3952        };
3953        struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3954        unsigned long nr_reclaimed;
3955        unsigned int noreclaim_flag;
3956
3957        fs_reclaim_acquire(sc.gfp_mask);
3958        noreclaim_flag = memalloc_noreclaim_save();
3959        set_task_reclaim_state(current, &sc.reclaim_state);
3960
3961        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3962
3963        set_task_reclaim_state(current, NULL);
3964        memalloc_noreclaim_restore(noreclaim_flag);
3965        fs_reclaim_release(sc.gfp_mask);
3966
3967        return nr_reclaimed;
3968}
3969#endif /* CONFIG_HIBERNATION */
3970
3971/* It's optimal to keep kswapds on the same CPUs as their memory, but
3972   not required for correctness.  So if the last cpu in a node goes
3973   away, we get changed to run anywhere: as the first one comes back,
3974   restore their cpu bindings. */
3975static int kswapd_cpu_online(unsigned int cpu)
3976{
3977        int nid;
3978
3979        for_each_node_state(nid, N_MEMORY) {
3980                pg_data_t *pgdat = NODE_DATA(nid);
3981                const struct cpumask *mask;
3982
3983                mask = cpumask_of_node(pgdat->node_id);
3984
3985                if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3986                        /* One of our CPUs online: restore mask */
3987                        set_cpus_allowed_ptr(pgdat->kswapd, mask);
3988        }
3989        return 0;
3990}
3991
3992/*
3993 * This kswapd start function will be called by init and node-hot-add.
3994 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3995 */
3996int kswapd_run(int nid)
3997{
3998        pg_data_t *pgdat = NODE_DATA(nid);
3999        int ret = 0;
4000
4001        if (pgdat->kswapd)
4002                return 0;
4003
4004        pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4005        if (IS_ERR(pgdat->kswapd)) {
4006                /* failure at boot is fatal */
4007                BUG_ON(system_state < SYSTEM_RUNNING);
4008                pr_err("Failed to start kswapd on node %d\n", nid);
4009                ret = PTR_ERR(pgdat->kswapd);
4010                pgdat->kswapd = NULL;
4011        }
4012        return ret;
4013}
4014
4015/*
4016 * Called by memory hotplug when all memory in a node is offlined.  Caller must
4017 * hold mem_hotplug_begin/end().
4018 */
4019void kswapd_stop(int nid)
4020{
4021        struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4022
4023        if (kswapd) {
4024                kthread_stop(kswapd);
4025                NODE_DATA(nid)->kswapd = NULL;
4026        }
4027}
4028
4029static int __init kswapd_init(void)
4030{
4031        int nid, ret;
4032
4033        swap_setup();
4034        for_each_node_state(nid, N_MEMORY)
4035                kswapd_run(nid);
4036        ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
4037                                        "mm/vmscan:online", kswapd_cpu_online,
4038                                        NULL);
4039        WARN_ON(ret < 0);
4040        return 0;
4041}
4042
4043module_init(kswapd_init)
4044
4045#ifdef CONFIG_NUMA
4046/*
4047 * Node reclaim mode
4048 *
4049 * If non-zero call node_reclaim when the number of free pages falls below
4050 * the watermarks.
4051 */
4052int node_reclaim_mode __read_mostly;
4053
4054#define RECLAIM_OFF 0
4055#define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
4056#define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
4057#define RECLAIM_UNMAP (1<<2)    /* Unmap pages during reclaim */
4058
4059/*
4060 * Priority for NODE_RECLAIM. This determines the fraction of pages
4061 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4062 * a zone.
4063 */
4064#define NODE_RECLAIM_PRIORITY 4
4065
4066/*
4067 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4068 * occur.
4069 */
4070int sysctl_min_unmapped_ratio = 1;
4071
4072/*
4073 * If the number of slab pages in a zone grows beyond this percentage then
4074 * slab reclaim needs to occur.
4075 */
4076int sysctl_min_slab_ratio = 5;
4077
4078static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4079{
4080        unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4081        unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4082                node_page_state(pgdat, NR_ACTIVE_FILE);
4083
4084        /*
4085         * It's possible for there to be more file mapped pages than
4086         * accounted for by the pages on the file LRU lists because
4087         * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4088         */
4089        return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4090}
4091
4092/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4093static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4094{
4095        unsigned long nr_pagecache_reclaimable;
4096        unsigned long delta = 0;
4097
4098        /*
4099         * If RECLAIM_UNMAP is set, then all file pages are considered
4100         * potentially reclaimable. Otherwise, we have to worry about
4101         * pages like swapcache and node_unmapped_file_pages() provides
4102         * a better estimate
4103         */
4104        if (node_reclaim_mode & RECLAIM_UNMAP)
4105                nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4106        else
4107                nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4108
4109        /* If we can't clean pages, remove dirty pages from consideration */
4110        if (!(node_reclaim_mode & RECLAIM_WRITE))
4111                delta += node_page_state(pgdat, NR_FILE_DIRTY);
4112
4113        /* Watch for any possible underflows due to delta */
4114        if (unlikely(delta > nr_pagecache_reclaimable))
4115                delta = nr_pagecache_reclaimable;
4116
4117        return nr_pagecache_reclaimable - delta;
4118}
4119
4120/*
4121 * Try to free up some pages from this node through reclaim.
4122 */
4123static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4124{
4125        /* Minimum pages needed in order to stay on node */
4126        const unsigned long nr_pages = 1 << order;
4127        struct task_struct *p = current;
4128        unsigned int noreclaim_flag;
4129        struct scan_control sc = {
4130                .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4131                .gfp_mask = current_gfp_context(gfp_mask),
4132                .order = order,
4133                .priority = NODE_RECLAIM_PRIORITY,
4134                .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4135                .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4136                .may_swap = 1,
4137                .reclaim_idx = gfp_zone(gfp_mask),
4138        };
4139
4140        trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4141                                           sc.gfp_mask);
4142
4143        cond_resched();
4144        fs_reclaim_acquire(sc.gfp_mask);
4145        /*
4146         * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4147         * and we also need to be able to write out pages for RECLAIM_WRITE
4148         * and RECLAIM_UNMAP.
4149         */
4150        noreclaim_flag = memalloc_noreclaim_save();
4151        p->flags |= PF_SWAPWRITE;
4152        set_task_reclaim_state(p, &sc.reclaim_state);
4153
4154        if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4155                /*
4156                 * Free memory by calling shrink node with increasing
4157                 * priorities until we have enough memory freed.
4158                 */
4159                do {
4160                        shrink_node(pgdat, &sc);
4161                } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4162        }
4163
4164        set_task_reclaim_state(p, NULL);
4165        current->flags &= ~PF_SWAPWRITE;
4166        memalloc_noreclaim_restore(noreclaim_flag);
4167        fs_reclaim_release(sc.gfp_mask);
4168
4169        trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4170
4171        return sc.nr_reclaimed >= nr_pages;
4172}
4173
4174int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4175{
4176        int ret;
4177
4178        /*
4179         * Node reclaim reclaims unmapped file backed pages and
4180         * slab pages if we are over the defined limits.
4181         *
4182         * A small portion of unmapped file backed pages is needed for
4183         * file I/O otherwise pages read by file I/O will be immediately
4184         * thrown out if the node is overallocated. So we do not reclaim
4185         * if less than a specified percentage of the node is used by
4186         * unmapped file backed pages.
4187         */
4188        if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4189            node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4190                return NODE_RECLAIM_FULL;
4191
4192        /*
4193         * Do not scan if the allocation should not be delayed.
4194         */
4195        if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4196                return NODE_RECLAIM_NOSCAN;
4197
4198        /*
4199         * Only run node reclaim on the local node or on nodes that do not
4200         * have associated processors. This will favor the local processor
4201         * over remote processors and spread off node memory allocations
4202         * as wide as possible.
4203         */
4204        if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4205                return NODE_RECLAIM_NOSCAN;
4206
4207        if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4208                return NODE_RECLAIM_NOSCAN;
4209
4210        ret = __node_reclaim(pgdat, gfp_mask, order);
4211        clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4212
4213        if (!ret)
4214                count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4215
4216        return ret;
4217}
4218#endif
4219
4220/*
4221 * page_evictable - test whether a page is evictable
4222 * @page: the page to test
4223 *
4224 * Test whether page is evictable--i.e., should be placed on active/inactive
4225 * lists vs unevictable list.
4226 *
4227 * Reasons page might not be evictable:
4228 * (1) page's mapping marked unevictable
4229 * (2) page is part of an mlocked VMA
4230 *
4231 */
4232int page_evictable(struct page *page)
4233{
4234        int ret;
4235
4236        /* Prevent address_space of inode and swap cache from being freed */
4237        rcu_read_lock();
4238        ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4239        rcu_read_unlock();
4240        return ret;
4241}
4242
4243/**
4244 * check_move_unevictable_pages - check pages for evictability and move to
4245 * appropriate zone lru list
4246 * @pvec: pagevec with lru pages to check
4247 *
4248 * Checks pages for evictability, if an evictable page is in the unevictable
4249 * lru list, moves it to the appropriate evictable lru list. This function
4250 * should be only used for lru pages.
4251 */
4252void check_move_unevictable_pages(struct pagevec *pvec)
4253{
4254        struct lruvec *lruvec;
4255        struct pglist_data *pgdat = NULL;
4256        int pgscanned = 0;
4257        int pgrescued = 0;
4258        int i;
4259
4260        for (i = 0; i < pvec->nr; i++) {
4261                struct page *page = pvec->pages[i];
4262                struct pglist_data *pagepgdat = page_pgdat(page);
4263
4264                pgscanned++;
4265                if (pagepgdat != pgdat) {
4266                        if (pgdat)
4267                                spin_unlock_irq(&pgdat->lru_lock);
4268                        pgdat = pagepgdat;
4269                        spin_lock_irq(&pgdat->lru_lock);
4270                }
4271                lruvec = mem_cgroup_page_lruvec(page, pgdat);
4272
4273                if (!PageLRU(page) || !PageUnevictable(page))
4274                        continue;
4275
4276                if (page_evictable(page)) {
4277                        enum lru_list lru = page_lru_base_type(page);
4278
4279                        VM_BUG_ON_PAGE(PageActive(page), page);
4280                        ClearPageUnevictable(page);
4281                        del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4282                        add_page_to_lru_list(page, lruvec, lru);
4283                        pgrescued++;
4284                }
4285        }
4286
4287        if (pgdat) {
4288                __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4289                __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4290                spin_unlock_irq(&pgdat->lru_lock);
4291        }
4292}
4293EXPORT_SYMBOL_GPL(check_move_unevictable_pages);
4294