linux/mm/z3fold.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * z3fold.c
   4 *
   5 * Author: Vitaly Wool <vitaly.wool@konsulko.com>
   6 * Copyright (C) 2016, Sony Mobile Communications Inc.
   7 *
   8 * This implementation is based on zbud written by Seth Jennings.
   9 *
  10 * z3fold is an special purpose allocator for storing compressed pages. It
  11 * can store up to three compressed pages per page which improves the
  12 * compression ratio of zbud while retaining its main concepts (e. g. always
  13 * storing an integral number of objects per page) and simplicity.
  14 * It still has simple and deterministic reclaim properties that make it
  15 * preferable to a higher density approach (with no requirement on integral
  16 * number of object per page) when reclaim is used.
  17 *
  18 * As in zbud, pages are divided into "chunks".  The size of the chunks is
  19 * fixed at compile time and is determined by NCHUNKS_ORDER below.
  20 *
  21 * z3fold doesn't export any API and is meant to be used via zpool API.
  22 */
  23
  24#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  25
  26#include <linux/atomic.h>
  27#include <linux/sched.h>
  28#include <linux/cpumask.h>
  29#include <linux/list.h>
  30#include <linux/mm.h>
  31#include <linux/module.h>
  32#include <linux/page-flags.h>
  33#include <linux/migrate.h>
  34#include <linux/node.h>
  35#include <linux/compaction.h>
  36#include <linux/percpu.h>
  37#include <linux/mount.h>
  38#include <linux/pseudo_fs.h>
  39#include <linux/fs.h>
  40#include <linux/preempt.h>
  41#include <linux/workqueue.h>
  42#include <linux/slab.h>
  43#include <linux/spinlock.h>
  44#include <linux/wait.h>
  45#include <linux/zpool.h>
  46#include <linux/magic.h>
  47
  48/*
  49 * NCHUNKS_ORDER determines the internal allocation granularity, effectively
  50 * adjusting internal fragmentation.  It also determines the number of
  51 * freelists maintained in each pool. NCHUNKS_ORDER of 6 means that the
  52 * allocation granularity will be in chunks of size PAGE_SIZE/64. Some chunks
  53 * in the beginning of an allocated page are occupied by z3fold header, so
  54 * NCHUNKS will be calculated to 63 (or 62 in case CONFIG_DEBUG_SPINLOCK=y),
  55 * which shows the max number of free chunks in z3fold page, also there will
  56 * be 63, or 62, respectively, freelists per pool.
  57 */
  58#define NCHUNKS_ORDER   6
  59
  60#define CHUNK_SHIFT     (PAGE_SHIFT - NCHUNKS_ORDER)
  61#define CHUNK_SIZE      (1 << CHUNK_SHIFT)
  62#define ZHDR_SIZE_ALIGNED round_up(sizeof(struct z3fold_header), CHUNK_SIZE)
  63#define ZHDR_CHUNKS     (ZHDR_SIZE_ALIGNED >> CHUNK_SHIFT)
  64#define TOTAL_CHUNKS    (PAGE_SIZE >> CHUNK_SHIFT)
  65#define NCHUNKS         ((PAGE_SIZE - ZHDR_SIZE_ALIGNED) >> CHUNK_SHIFT)
  66
  67#define BUDDY_MASK      (0x3)
  68#define BUDDY_SHIFT     2
  69#define SLOTS_ALIGN     (0x40)
  70
  71/*****************
  72 * Structures
  73*****************/
  74struct z3fold_pool;
  75struct z3fold_ops {
  76        int (*evict)(struct z3fold_pool *pool, unsigned long handle);
  77};
  78
  79enum buddy {
  80        HEADLESS = 0,
  81        FIRST,
  82        MIDDLE,
  83        LAST,
  84        BUDDIES_MAX = LAST
  85};
  86
  87struct z3fold_buddy_slots {
  88        /*
  89         * we are using BUDDY_MASK in handle_to_buddy etc. so there should
  90         * be enough slots to hold all possible variants
  91         */
  92        unsigned long slot[BUDDY_MASK + 1];
  93        unsigned long pool; /* back link + flags */
  94};
  95#define HANDLE_FLAG_MASK        (0x03)
  96
  97/*
  98 * struct z3fold_header - z3fold page metadata occupying first chunks of each
  99 *                      z3fold page, except for HEADLESS pages
 100 * @buddy:              links the z3fold page into the relevant list in the
 101 *                      pool
 102 * @page_lock:          per-page lock
 103 * @refcount:           reference count for the z3fold page
 104 * @work:               work_struct for page layout optimization
 105 * @slots:              pointer to the structure holding buddy slots
 106 * @pool:               pointer to the containing pool
 107 * @cpu:                CPU which this page "belongs" to
 108 * @first_chunks:       the size of the first buddy in chunks, 0 if free
 109 * @middle_chunks:      the size of the middle buddy in chunks, 0 if free
 110 * @last_chunks:        the size of the last buddy in chunks, 0 if free
 111 * @first_num:          the starting number (for the first handle)
 112 * @mapped_count:       the number of objects currently mapped
 113 */
 114struct z3fold_header {
 115        struct list_head buddy;
 116        spinlock_t page_lock;
 117        struct kref refcount;
 118        struct work_struct work;
 119        struct z3fold_buddy_slots *slots;
 120        struct z3fold_pool *pool;
 121        short cpu;
 122        unsigned short first_chunks;
 123        unsigned short middle_chunks;
 124        unsigned short last_chunks;
 125        unsigned short start_middle;
 126        unsigned short first_num:2;
 127        unsigned short mapped_count:2;
 128};
 129
 130/**
 131 * struct z3fold_pool - stores metadata for each z3fold pool
 132 * @name:       pool name
 133 * @lock:       protects pool unbuddied/lru lists
 134 * @stale_lock: protects pool stale page list
 135 * @unbuddied:  per-cpu array of lists tracking z3fold pages that contain 2-
 136 *              buddies; the list each z3fold page is added to depends on
 137 *              the size of its free region.
 138 * @lru:        list tracking the z3fold pages in LRU order by most recently
 139 *              added buddy.
 140 * @stale:      list of pages marked for freeing
 141 * @pages_nr:   number of z3fold pages in the pool.
 142 * @c_handle:   cache for z3fold_buddy_slots allocation
 143 * @ops:        pointer to a structure of user defined operations specified at
 144 *              pool creation time.
 145 * @compact_wq: workqueue for page layout background optimization
 146 * @release_wq: workqueue for safe page release
 147 * @work:       work_struct for safe page release
 148 * @inode:      inode for z3fold pseudo filesystem
 149 * @destroying: bool to stop migration once we start destruction
 150 * @isolated: int to count the number of pages currently in isolation
 151 *
 152 * This structure is allocated at pool creation time and maintains metadata
 153 * pertaining to a particular z3fold pool.
 154 */
 155struct z3fold_pool {
 156        const char *name;
 157        spinlock_t lock;
 158        spinlock_t stale_lock;
 159        struct list_head *unbuddied;
 160        struct list_head lru;
 161        struct list_head stale;
 162        atomic64_t pages_nr;
 163        struct kmem_cache *c_handle;
 164        const struct z3fold_ops *ops;
 165        struct zpool *zpool;
 166        const struct zpool_ops *zpool_ops;
 167        struct workqueue_struct *compact_wq;
 168        struct workqueue_struct *release_wq;
 169        struct wait_queue_head isolate_wait;
 170        struct work_struct work;
 171        struct inode *inode;
 172        bool destroying;
 173        int isolated;
 174};
 175
 176/*
 177 * Internal z3fold page flags
 178 */
 179enum z3fold_page_flags {
 180        PAGE_HEADLESS = 0,
 181        MIDDLE_CHUNK_MAPPED,
 182        NEEDS_COMPACTING,
 183        PAGE_STALE,
 184        PAGE_CLAIMED, /* by either reclaim or free */
 185};
 186
 187/*****************
 188 * Helpers
 189*****************/
 190
 191/* Converts an allocation size in bytes to size in z3fold chunks */
 192static int size_to_chunks(size_t size)
 193{
 194        return (size + CHUNK_SIZE - 1) >> CHUNK_SHIFT;
 195}
 196
 197#define for_each_unbuddied_list(_iter, _begin) \
 198        for ((_iter) = (_begin); (_iter) < NCHUNKS; (_iter)++)
 199
 200static void compact_page_work(struct work_struct *w);
 201
 202static inline struct z3fold_buddy_slots *alloc_slots(struct z3fold_pool *pool,
 203                                                        gfp_t gfp)
 204{
 205        struct z3fold_buddy_slots *slots;
 206
 207        slots = kmem_cache_alloc(pool->c_handle,
 208                                 (gfp & ~(__GFP_HIGHMEM | __GFP_MOVABLE)));
 209
 210        if (slots) {
 211                memset(slots->slot, 0, sizeof(slots->slot));
 212                slots->pool = (unsigned long)pool;
 213        }
 214
 215        return slots;
 216}
 217
 218static inline struct z3fold_pool *slots_to_pool(struct z3fold_buddy_slots *s)
 219{
 220        return (struct z3fold_pool *)(s->pool & ~HANDLE_FLAG_MASK);
 221}
 222
 223static inline struct z3fold_buddy_slots *handle_to_slots(unsigned long handle)
 224{
 225        return (struct z3fold_buddy_slots *)(handle & ~(SLOTS_ALIGN - 1));
 226}
 227
 228static inline void free_handle(unsigned long handle)
 229{
 230        struct z3fold_buddy_slots *slots;
 231        int i;
 232        bool is_free;
 233
 234        if (handle & (1 << PAGE_HEADLESS))
 235                return;
 236
 237        WARN_ON(*(unsigned long *)handle == 0);
 238        *(unsigned long *)handle = 0;
 239        slots = handle_to_slots(handle);
 240        is_free = true;
 241        for (i = 0; i <= BUDDY_MASK; i++) {
 242                if (slots->slot[i]) {
 243                        is_free = false;
 244                        break;
 245                }
 246        }
 247
 248        if (is_free) {
 249                struct z3fold_pool *pool = slots_to_pool(slots);
 250
 251                kmem_cache_free(pool->c_handle, slots);
 252        }
 253}
 254
 255static int z3fold_init_fs_context(struct fs_context *fc)
 256{
 257        return init_pseudo(fc, Z3FOLD_MAGIC) ? 0 : -ENOMEM;
 258}
 259
 260static struct file_system_type z3fold_fs = {
 261        .name           = "z3fold",
 262        .init_fs_context = z3fold_init_fs_context,
 263        .kill_sb        = kill_anon_super,
 264};
 265
 266static struct vfsmount *z3fold_mnt;
 267static int z3fold_mount(void)
 268{
 269        int ret = 0;
 270
 271        z3fold_mnt = kern_mount(&z3fold_fs);
 272        if (IS_ERR(z3fold_mnt))
 273                ret = PTR_ERR(z3fold_mnt);
 274
 275        return ret;
 276}
 277
 278static void z3fold_unmount(void)
 279{
 280        kern_unmount(z3fold_mnt);
 281}
 282
 283static const struct address_space_operations z3fold_aops;
 284static int z3fold_register_migration(struct z3fold_pool *pool)
 285{
 286        pool->inode = alloc_anon_inode(z3fold_mnt->mnt_sb);
 287        if (IS_ERR(pool->inode)) {
 288                pool->inode = NULL;
 289                return 1;
 290        }
 291
 292        pool->inode->i_mapping->private_data = pool;
 293        pool->inode->i_mapping->a_ops = &z3fold_aops;
 294        return 0;
 295}
 296
 297static void z3fold_unregister_migration(struct z3fold_pool *pool)
 298{
 299        if (pool->inode)
 300                iput(pool->inode);
 301 }
 302
 303/* Initializes the z3fold header of a newly allocated z3fold page */
 304static struct z3fold_header *init_z3fold_page(struct page *page,
 305                                        struct z3fold_pool *pool, gfp_t gfp)
 306{
 307        struct z3fold_header *zhdr = page_address(page);
 308        struct z3fold_buddy_slots *slots = alloc_slots(pool, gfp);
 309
 310        if (!slots)
 311                return NULL;
 312
 313        INIT_LIST_HEAD(&page->lru);
 314        clear_bit(PAGE_HEADLESS, &page->private);
 315        clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
 316        clear_bit(NEEDS_COMPACTING, &page->private);
 317        clear_bit(PAGE_STALE, &page->private);
 318        clear_bit(PAGE_CLAIMED, &page->private);
 319
 320        spin_lock_init(&zhdr->page_lock);
 321        kref_init(&zhdr->refcount);
 322        zhdr->first_chunks = 0;
 323        zhdr->middle_chunks = 0;
 324        zhdr->last_chunks = 0;
 325        zhdr->first_num = 0;
 326        zhdr->start_middle = 0;
 327        zhdr->cpu = -1;
 328        zhdr->slots = slots;
 329        zhdr->pool = pool;
 330        INIT_LIST_HEAD(&zhdr->buddy);
 331        INIT_WORK(&zhdr->work, compact_page_work);
 332        return zhdr;
 333}
 334
 335/* Resets the struct page fields and frees the page */
 336static void free_z3fold_page(struct page *page, bool headless)
 337{
 338        if (!headless) {
 339                lock_page(page);
 340                __ClearPageMovable(page);
 341                unlock_page(page);
 342        }
 343        ClearPagePrivate(page);
 344        __free_page(page);
 345}
 346
 347/* Lock a z3fold page */
 348static inline void z3fold_page_lock(struct z3fold_header *zhdr)
 349{
 350        spin_lock(&zhdr->page_lock);
 351}
 352
 353/* Try to lock a z3fold page */
 354static inline int z3fold_page_trylock(struct z3fold_header *zhdr)
 355{
 356        return spin_trylock(&zhdr->page_lock);
 357}
 358
 359/* Unlock a z3fold page */
 360static inline void z3fold_page_unlock(struct z3fold_header *zhdr)
 361{
 362        spin_unlock(&zhdr->page_lock);
 363}
 364
 365/* Helper function to build the index */
 366static inline int __idx(struct z3fold_header *zhdr, enum buddy bud)
 367{
 368        return (bud + zhdr->first_num) & BUDDY_MASK;
 369}
 370
 371/*
 372 * Encodes the handle of a particular buddy within a z3fold page
 373 * Pool lock should be held as this function accesses first_num
 374 */
 375static unsigned long encode_handle(struct z3fold_header *zhdr, enum buddy bud)
 376{
 377        struct z3fold_buddy_slots *slots;
 378        unsigned long h = (unsigned long)zhdr;
 379        int idx = 0;
 380
 381        /*
 382         * For a headless page, its handle is its pointer with the extra
 383         * PAGE_HEADLESS bit set
 384         */
 385        if (bud == HEADLESS)
 386                return h | (1 << PAGE_HEADLESS);
 387
 388        /* otherwise, return pointer to encoded handle */
 389        idx = __idx(zhdr, bud);
 390        h += idx;
 391        if (bud == LAST)
 392                h |= (zhdr->last_chunks << BUDDY_SHIFT);
 393
 394        slots = zhdr->slots;
 395        slots->slot[idx] = h;
 396        return (unsigned long)&slots->slot[idx];
 397}
 398
 399/* Returns the z3fold page where a given handle is stored */
 400static inline struct z3fold_header *handle_to_z3fold_header(unsigned long h)
 401{
 402        unsigned long addr = h;
 403
 404        if (!(addr & (1 << PAGE_HEADLESS)))
 405                addr = *(unsigned long *)h;
 406
 407        return (struct z3fold_header *)(addr & PAGE_MASK);
 408}
 409
 410/* only for LAST bud, returns zero otherwise */
 411static unsigned short handle_to_chunks(unsigned long handle)
 412{
 413        unsigned long addr = *(unsigned long *)handle;
 414
 415        return (addr & ~PAGE_MASK) >> BUDDY_SHIFT;
 416}
 417
 418/*
 419 * (handle & BUDDY_MASK) < zhdr->first_num is possible in encode_handle
 420 *  but that doesn't matter. because the masking will result in the
 421 *  correct buddy number.
 422 */
 423static enum buddy handle_to_buddy(unsigned long handle)
 424{
 425        struct z3fold_header *zhdr;
 426        unsigned long addr;
 427
 428        WARN_ON(handle & (1 << PAGE_HEADLESS));
 429        addr = *(unsigned long *)handle;
 430        zhdr = (struct z3fold_header *)(addr & PAGE_MASK);
 431        return (addr - zhdr->first_num) & BUDDY_MASK;
 432}
 433
 434static inline struct z3fold_pool *zhdr_to_pool(struct z3fold_header *zhdr)
 435{
 436        return zhdr->pool;
 437}
 438
 439static void __release_z3fold_page(struct z3fold_header *zhdr, bool locked)
 440{
 441        struct page *page = virt_to_page(zhdr);
 442        struct z3fold_pool *pool = zhdr_to_pool(zhdr);
 443
 444        WARN_ON(!list_empty(&zhdr->buddy));
 445        set_bit(PAGE_STALE, &page->private);
 446        clear_bit(NEEDS_COMPACTING, &page->private);
 447        spin_lock(&pool->lock);
 448        if (!list_empty(&page->lru))
 449                list_del_init(&page->lru);
 450        spin_unlock(&pool->lock);
 451        if (locked)
 452                z3fold_page_unlock(zhdr);
 453        spin_lock(&pool->stale_lock);
 454        list_add(&zhdr->buddy, &pool->stale);
 455        queue_work(pool->release_wq, &pool->work);
 456        spin_unlock(&pool->stale_lock);
 457}
 458
 459static void __attribute__((__unused__))
 460                        release_z3fold_page(struct kref *ref)
 461{
 462        struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
 463                                                refcount);
 464        __release_z3fold_page(zhdr, false);
 465}
 466
 467static void release_z3fold_page_locked(struct kref *ref)
 468{
 469        struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
 470                                                refcount);
 471        WARN_ON(z3fold_page_trylock(zhdr));
 472        __release_z3fold_page(zhdr, true);
 473}
 474
 475static void release_z3fold_page_locked_list(struct kref *ref)
 476{
 477        struct z3fold_header *zhdr = container_of(ref, struct z3fold_header,
 478                                               refcount);
 479        struct z3fold_pool *pool = zhdr_to_pool(zhdr);
 480        spin_lock(&pool->lock);
 481        list_del_init(&zhdr->buddy);
 482        spin_unlock(&pool->lock);
 483
 484        WARN_ON(z3fold_page_trylock(zhdr));
 485        __release_z3fold_page(zhdr, true);
 486}
 487
 488static void free_pages_work(struct work_struct *w)
 489{
 490        struct z3fold_pool *pool = container_of(w, struct z3fold_pool, work);
 491
 492        spin_lock(&pool->stale_lock);
 493        while (!list_empty(&pool->stale)) {
 494                struct z3fold_header *zhdr = list_first_entry(&pool->stale,
 495                                                struct z3fold_header, buddy);
 496                struct page *page = virt_to_page(zhdr);
 497
 498                list_del(&zhdr->buddy);
 499                if (WARN_ON(!test_bit(PAGE_STALE, &page->private)))
 500                        continue;
 501                spin_unlock(&pool->stale_lock);
 502                cancel_work_sync(&zhdr->work);
 503                free_z3fold_page(page, false);
 504                cond_resched();
 505                spin_lock(&pool->stale_lock);
 506        }
 507        spin_unlock(&pool->stale_lock);
 508}
 509
 510/*
 511 * Returns the number of free chunks in a z3fold page.
 512 * NB: can't be used with HEADLESS pages.
 513 */
 514static int num_free_chunks(struct z3fold_header *zhdr)
 515{
 516        int nfree;
 517        /*
 518         * If there is a middle object, pick up the bigger free space
 519         * either before or after it. Otherwise just subtract the number
 520         * of chunks occupied by the first and the last objects.
 521         */
 522        if (zhdr->middle_chunks != 0) {
 523                int nfree_before = zhdr->first_chunks ?
 524                        0 : zhdr->start_middle - ZHDR_CHUNKS;
 525                int nfree_after = zhdr->last_chunks ?
 526                        0 : TOTAL_CHUNKS -
 527                                (zhdr->start_middle + zhdr->middle_chunks);
 528                nfree = max(nfree_before, nfree_after);
 529        } else
 530                nfree = NCHUNKS - zhdr->first_chunks - zhdr->last_chunks;
 531        return nfree;
 532}
 533
 534/* Add to the appropriate unbuddied list */
 535static inline void add_to_unbuddied(struct z3fold_pool *pool,
 536                                struct z3fold_header *zhdr)
 537{
 538        if (zhdr->first_chunks == 0 || zhdr->last_chunks == 0 ||
 539                        zhdr->middle_chunks == 0) {
 540                struct list_head *unbuddied = get_cpu_ptr(pool->unbuddied);
 541
 542                int freechunks = num_free_chunks(zhdr);
 543                spin_lock(&pool->lock);
 544                list_add(&zhdr->buddy, &unbuddied[freechunks]);
 545                spin_unlock(&pool->lock);
 546                zhdr->cpu = smp_processor_id();
 547                put_cpu_ptr(pool->unbuddied);
 548        }
 549}
 550
 551static inline void *mchunk_memmove(struct z3fold_header *zhdr,
 552                                unsigned short dst_chunk)
 553{
 554        void *beg = zhdr;
 555        return memmove(beg + (dst_chunk << CHUNK_SHIFT),
 556                       beg + (zhdr->start_middle << CHUNK_SHIFT),
 557                       zhdr->middle_chunks << CHUNK_SHIFT);
 558}
 559
 560#define BIG_CHUNK_GAP   3
 561/* Has to be called with lock held */
 562static int z3fold_compact_page(struct z3fold_header *zhdr)
 563{
 564        struct page *page = virt_to_page(zhdr);
 565
 566        if (test_bit(MIDDLE_CHUNK_MAPPED, &page->private))
 567                return 0; /* can't move middle chunk, it's used */
 568
 569        if (unlikely(PageIsolated(page)))
 570                return 0;
 571
 572        if (zhdr->middle_chunks == 0)
 573                return 0; /* nothing to compact */
 574
 575        if (zhdr->first_chunks == 0 && zhdr->last_chunks == 0) {
 576                /* move to the beginning */
 577                mchunk_memmove(zhdr, ZHDR_CHUNKS);
 578                zhdr->first_chunks = zhdr->middle_chunks;
 579                zhdr->middle_chunks = 0;
 580                zhdr->start_middle = 0;
 581                zhdr->first_num++;
 582                return 1;
 583        }
 584
 585        /*
 586         * moving data is expensive, so let's only do that if
 587         * there's substantial gain (at least BIG_CHUNK_GAP chunks)
 588         */
 589        if (zhdr->first_chunks != 0 && zhdr->last_chunks == 0 &&
 590            zhdr->start_middle - (zhdr->first_chunks + ZHDR_CHUNKS) >=
 591                        BIG_CHUNK_GAP) {
 592                mchunk_memmove(zhdr, zhdr->first_chunks + ZHDR_CHUNKS);
 593                zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
 594                return 1;
 595        } else if (zhdr->last_chunks != 0 && zhdr->first_chunks == 0 &&
 596                   TOTAL_CHUNKS - (zhdr->last_chunks + zhdr->start_middle
 597                                        + zhdr->middle_chunks) >=
 598                        BIG_CHUNK_GAP) {
 599                unsigned short new_start = TOTAL_CHUNKS - zhdr->last_chunks -
 600                        zhdr->middle_chunks;
 601                mchunk_memmove(zhdr, new_start);
 602                zhdr->start_middle = new_start;
 603                return 1;
 604        }
 605
 606        return 0;
 607}
 608
 609static void do_compact_page(struct z3fold_header *zhdr, bool locked)
 610{
 611        struct z3fold_pool *pool = zhdr_to_pool(zhdr);
 612        struct page *page;
 613
 614        page = virt_to_page(zhdr);
 615        if (locked)
 616                WARN_ON(z3fold_page_trylock(zhdr));
 617        else
 618                z3fold_page_lock(zhdr);
 619        if (WARN_ON(!test_and_clear_bit(NEEDS_COMPACTING, &page->private))) {
 620                z3fold_page_unlock(zhdr);
 621                return;
 622        }
 623        spin_lock(&pool->lock);
 624        list_del_init(&zhdr->buddy);
 625        spin_unlock(&pool->lock);
 626
 627        if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
 628                atomic64_dec(&pool->pages_nr);
 629                return;
 630        }
 631
 632        if (unlikely(PageIsolated(page) ||
 633                     test_bit(PAGE_STALE, &page->private))) {
 634                z3fold_page_unlock(zhdr);
 635                return;
 636        }
 637
 638        z3fold_compact_page(zhdr);
 639        add_to_unbuddied(pool, zhdr);
 640        z3fold_page_unlock(zhdr);
 641}
 642
 643static void compact_page_work(struct work_struct *w)
 644{
 645        struct z3fold_header *zhdr = container_of(w, struct z3fold_header,
 646                                                work);
 647
 648        do_compact_page(zhdr, false);
 649}
 650
 651/* returns _locked_ z3fold page header or NULL */
 652static inline struct z3fold_header *__z3fold_alloc(struct z3fold_pool *pool,
 653                                                size_t size, bool can_sleep)
 654{
 655        struct z3fold_header *zhdr = NULL;
 656        struct page *page;
 657        struct list_head *unbuddied;
 658        int chunks = size_to_chunks(size), i;
 659
 660lookup:
 661        /* First, try to find an unbuddied z3fold page. */
 662        unbuddied = get_cpu_ptr(pool->unbuddied);
 663        for_each_unbuddied_list(i, chunks) {
 664                struct list_head *l = &unbuddied[i];
 665
 666                zhdr = list_first_entry_or_null(READ_ONCE(l),
 667                                        struct z3fold_header, buddy);
 668
 669                if (!zhdr)
 670                        continue;
 671
 672                /* Re-check under lock. */
 673                spin_lock(&pool->lock);
 674                l = &unbuddied[i];
 675                if (unlikely(zhdr != list_first_entry(READ_ONCE(l),
 676                                                struct z3fold_header, buddy)) ||
 677                    !z3fold_page_trylock(zhdr)) {
 678                        spin_unlock(&pool->lock);
 679                        zhdr = NULL;
 680                        put_cpu_ptr(pool->unbuddied);
 681                        if (can_sleep)
 682                                cond_resched();
 683                        goto lookup;
 684                }
 685                list_del_init(&zhdr->buddy);
 686                zhdr->cpu = -1;
 687                spin_unlock(&pool->lock);
 688
 689                page = virt_to_page(zhdr);
 690                if (test_bit(NEEDS_COMPACTING, &page->private)) {
 691                        z3fold_page_unlock(zhdr);
 692                        zhdr = NULL;
 693                        put_cpu_ptr(pool->unbuddied);
 694                        if (can_sleep)
 695                                cond_resched();
 696                        goto lookup;
 697                }
 698
 699                /*
 700                 * this page could not be removed from its unbuddied
 701                 * list while pool lock was held, and then we've taken
 702                 * page lock so kref_put could not be called before
 703                 * we got here, so it's safe to just call kref_get()
 704                 */
 705                kref_get(&zhdr->refcount);
 706                break;
 707        }
 708        put_cpu_ptr(pool->unbuddied);
 709
 710        if (!zhdr) {
 711                int cpu;
 712
 713                /* look for _exact_ match on other cpus' lists */
 714                for_each_online_cpu(cpu) {
 715                        struct list_head *l;
 716
 717                        unbuddied = per_cpu_ptr(pool->unbuddied, cpu);
 718                        spin_lock(&pool->lock);
 719                        l = &unbuddied[chunks];
 720
 721                        zhdr = list_first_entry_or_null(READ_ONCE(l),
 722                                                struct z3fold_header, buddy);
 723
 724                        if (!zhdr || !z3fold_page_trylock(zhdr)) {
 725                                spin_unlock(&pool->lock);
 726                                zhdr = NULL;
 727                                continue;
 728                        }
 729                        list_del_init(&zhdr->buddy);
 730                        zhdr->cpu = -1;
 731                        spin_unlock(&pool->lock);
 732
 733                        page = virt_to_page(zhdr);
 734                        if (test_bit(NEEDS_COMPACTING, &page->private)) {
 735                                z3fold_page_unlock(zhdr);
 736                                zhdr = NULL;
 737                                if (can_sleep)
 738                                        cond_resched();
 739                                continue;
 740                        }
 741                        kref_get(&zhdr->refcount);
 742                        break;
 743                }
 744        }
 745
 746        return zhdr;
 747}
 748
 749/*
 750 * API Functions
 751 */
 752
 753/**
 754 * z3fold_create_pool() - create a new z3fold pool
 755 * @name:       pool name
 756 * @gfp:        gfp flags when allocating the z3fold pool structure
 757 * @ops:        user-defined operations for the z3fold pool
 758 *
 759 * Return: pointer to the new z3fold pool or NULL if the metadata allocation
 760 * failed.
 761 */
 762static struct z3fold_pool *z3fold_create_pool(const char *name, gfp_t gfp,
 763                const struct z3fold_ops *ops)
 764{
 765        struct z3fold_pool *pool = NULL;
 766        int i, cpu;
 767
 768        pool = kzalloc(sizeof(struct z3fold_pool), gfp);
 769        if (!pool)
 770                goto out;
 771        pool->c_handle = kmem_cache_create("z3fold_handle",
 772                                sizeof(struct z3fold_buddy_slots),
 773                                SLOTS_ALIGN, 0, NULL);
 774        if (!pool->c_handle)
 775                goto out_c;
 776        spin_lock_init(&pool->lock);
 777        spin_lock_init(&pool->stale_lock);
 778        init_waitqueue_head(&pool->isolate_wait);
 779        pool->unbuddied = __alloc_percpu(sizeof(struct list_head)*NCHUNKS, 2);
 780        if (!pool->unbuddied)
 781                goto out_pool;
 782        for_each_possible_cpu(cpu) {
 783                struct list_head *unbuddied =
 784                                per_cpu_ptr(pool->unbuddied, cpu);
 785                for_each_unbuddied_list(i, 0)
 786                        INIT_LIST_HEAD(&unbuddied[i]);
 787        }
 788        INIT_LIST_HEAD(&pool->lru);
 789        INIT_LIST_HEAD(&pool->stale);
 790        atomic64_set(&pool->pages_nr, 0);
 791        pool->name = name;
 792        pool->compact_wq = create_singlethread_workqueue(pool->name);
 793        if (!pool->compact_wq)
 794                goto out_unbuddied;
 795        pool->release_wq = create_singlethread_workqueue(pool->name);
 796        if (!pool->release_wq)
 797                goto out_wq;
 798        if (z3fold_register_migration(pool))
 799                goto out_rwq;
 800        INIT_WORK(&pool->work, free_pages_work);
 801        pool->ops = ops;
 802        return pool;
 803
 804out_rwq:
 805        destroy_workqueue(pool->release_wq);
 806out_wq:
 807        destroy_workqueue(pool->compact_wq);
 808out_unbuddied:
 809        free_percpu(pool->unbuddied);
 810out_pool:
 811        kmem_cache_destroy(pool->c_handle);
 812out_c:
 813        kfree(pool);
 814out:
 815        return NULL;
 816}
 817
 818static bool pool_isolated_are_drained(struct z3fold_pool *pool)
 819{
 820        bool ret;
 821
 822        spin_lock(&pool->lock);
 823        ret = pool->isolated == 0;
 824        spin_unlock(&pool->lock);
 825        return ret;
 826}
 827/**
 828 * z3fold_destroy_pool() - destroys an existing z3fold pool
 829 * @pool:       the z3fold pool to be destroyed
 830 *
 831 * The pool should be emptied before this function is called.
 832 */
 833static void z3fold_destroy_pool(struct z3fold_pool *pool)
 834{
 835        kmem_cache_destroy(pool->c_handle);
 836        /*
 837         * We set pool-> destroying under lock to ensure that
 838         * z3fold_page_isolate() sees any changes to destroying. This way we
 839         * avoid the need for any memory barriers.
 840         */
 841
 842        spin_lock(&pool->lock);
 843        pool->destroying = true;
 844        spin_unlock(&pool->lock);
 845
 846        /*
 847         * We need to ensure that no pages are being migrated while we destroy
 848         * these workqueues, as migration can queue work on either of the
 849         * workqueues.
 850         */
 851        wait_event(pool->isolate_wait, !pool_isolated_are_drained(pool));
 852
 853        /*
 854         * We need to destroy pool->compact_wq before pool->release_wq,
 855         * as any pending work on pool->compact_wq will call
 856         * queue_work(pool->release_wq, &pool->work).
 857         *
 858         * There are still outstanding pages until both workqueues are drained,
 859         * so we cannot unregister migration until then.
 860         */
 861
 862        destroy_workqueue(pool->compact_wq);
 863        destroy_workqueue(pool->release_wq);
 864        z3fold_unregister_migration(pool);
 865        kfree(pool);
 866}
 867
 868/**
 869 * z3fold_alloc() - allocates a region of a given size
 870 * @pool:       z3fold pool from which to allocate
 871 * @size:       size in bytes of the desired allocation
 872 * @gfp:        gfp flags used if the pool needs to grow
 873 * @handle:     handle of the new allocation
 874 *
 875 * This function will attempt to find a free region in the pool large enough to
 876 * satisfy the allocation request.  A search of the unbuddied lists is
 877 * performed first. If no suitable free region is found, then a new page is
 878 * allocated and added to the pool to satisfy the request.
 879 *
 880 * gfp should not set __GFP_HIGHMEM as highmem pages cannot be used
 881 * as z3fold pool pages.
 882 *
 883 * Return: 0 if success and handle is set, otherwise -EINVAL if the size or
 884 * gfp arguments are invalid or -ENOMEM if the pool was unable to allocate
 885 * a new page.
 886 */
 887static int z3fold_alloc(struct z3fold_pool *pool, size_t size, gfp_t gfp,
 888                        unsigned long *handle)
 889{
 890        int chunks = size_to_chunks(size);
 891        struct z3fold_header *zhdr = NULL;
 892        struct page *page = NULL;
 893        enum buddy bud;
 894        bool can_sleep = gfpflags_allow_blocking(gfp);
 895
 896        if (!size)
 897                return -EINVAL;
 898
 899        if (size > PAGE_SIZE)
 900                return -ENOSPC;
 901
 902        if (size > PAGE_SIZE - ZHDR_SIZE_ALIGNED - CHUNK_SIZE)
 903                bud = HEADLESS;
 904        else {
 905retry:
 906                zhdr = __z3fold_alloc(pool, size, can_sleep);
 907                if (zhdr) {
 908                        if (zhdr->first_chunks == 0) {
 909                                if (zhdr->middle_chunks != 0 &&
 910                                    chunks >= zhdr->start_middle)
 911                                        bud = LAST;
 912                                else
 913                                        bud = FIRST;
 914                        } else if (zhdr->last_chunks == 0)
 915                                bud = LAST;
 916                        else if (zhdr->middle_chunks == 0)
 917                                bud = MIDDLE;
 918                        else {
 919                                if (kref_put(&zhdr->refcount,
 920                                             release_z3fold_page_locked))
 921                                        atomic64_dec(&pool->pages_nr);
 922                                else
 923                                        z3fold_page_unlock(zhdr);
 924                                pr_err("No free chunks in unbuddied\n");
 925                                WARN_ON(1);
 926                                goto retry;
 927                        }
 928                        page = virt_to_page(zhdr);
 929                        goto found;
 930                }
 931                bud = FIRST;
 932        }
 933
 934        page = NULL;
 935        if (can_sleep) {
 936                spin_lock(&pool->stale_lock);
 937                zhdr = list_first_entry_or_null(&pool->stale,
 938                                                struct z3fold_header, buddy);
 939                /*
 940                 * Before allocating a page, let's see if we can take one from
 941                 * the stale pages list. cancel_work_sync() can sleep so we
 942                 * limit this case to the contexts where we can sleep
 943                 */
 944                if (zhdr) {
 945                        list_del(&zhdr->buddy);
 946                        spin_unlock(&pool->stale_lock);
 947                        cancel_work_sync(&zhdr->work);
 948                        page = virt_to_page(zhdr);
 949                } else {
 950                        spin_unlock(&pool->stale_lock);
 951                }
 952        }
 953        if (!page)
 954                page = alloc_page(gfp);
 955
 956        if (!page)
 957                return -ENOMEM;
 958
 959        zhdr = init_z3fold_page(page, pool, gfp);
 960        if (!zhdr) {
 961                __free_page(page);
 962                return -ENOMEM;
 963        }
 964        atomic64_inc(&pool->pages_nr);
 965
 966        if (bud == HEADLESS) {
 967                set_bit(PAGE_HEADLESS, &page->private);
 968                goto headless;
 969        }
 970        if (can_sleep) {
 971                lock_page(page);
 972                __SetPageMovable(page, pool->inode->i_mapping);
 973                unlock_page(page);
 974        } else {
 975                if (trylock_page(page)) {
 976                        __SetPageMovable(page, pool->inode->i_mapping);
 977                        unlock_page(page);
 978                }
 979        }
 980        z3fold_page_lock(zhdr);
 981
 982found:
 983        if (bud == FIRST)
 984                zhdr->first_chunks = chunks;
 985        else if (bud == LAST)
 986                zhdr->last_chunks = chunks;
 987        else {
 988                zhdr->middle_chunks = chunks;
 989                zhdr->start_middle = zhdr->first_chunks + ZHDR_CHUNKS;
 990        }
 991        add_to_unbuddied(pool, zhdr);
 992
 993headless:
 994        spin_lock(&pool->lock);
 995        /* Add/move z3fold page to beginning of LRU */
 996        if (!list_empty(&page->lru))
 997                list_del(&page->lru);
 998
 999        list_add(&page->lru, &pool->lru);
1000
1001        *handle = encode_handle(zhdr, bud);
1002        spin_unlock(&pool->lock);
1003        if (bud != HEADLESS)
1004                z3fold_page_unlock(zhdr);
1005
1006        return 0;
1007}
1008
1009/**
1010 * z3fold_free() - frees the allocation associated with the given handle
1011 * @pool:       pool in which the allocation resided
1012 * @handle:     handle associated with the allocation returned by z3fold_alloc()
1013 *
1014 * In the case that the z3fold page in which the allocation resides is under
1015 * reclaim, as indicated by the PG_reclaim flag being set, this function
1016 * only sets the first|last_chunks to 0.  The page is actually freed
1017 * once both buddies are evicted (see z3fold_reclaim_page() below).
1018 */
1019static void z3fold_free(struct z3fold_pool *pool, unsigned long handle)
1020{
1021        struct z3fold_header *zhdr;
1022        struct page *page;
1023        enum buddy bud;
1024
1025        zhdr = handle_to_z3fold_header(handle);
1026        page = virt_to_page(zhdr);
1027
1028        if (test_bit(PAGE_HEADLESS, &page->private)) {
1029                /* if a headless page is under reclaim, just leave.
1030                 * NB: we use test_and_set_bit for a reason: if the bit
1031                 * has not been set before, we release this page
1032                 * immediately so we don't care about its value any more.
1033                 */
1034                if (!test_and_set_bit(PAGE_CLAIMED, &page->private)) {
1035                        spin_lock(&pool->lock);
1036                        list_del(&page->lru);
1037                        spin_unlock(&pool->lock);
1038                        free_z3fold_page(page, true);
1039                        atomic64_dec(&pool->pages_nr);
1040                }
1041                return;
1042        }
1043
1044        /* Non-headless case */
1045        z3fold_page_lock(zhdr);
1046        bud = handle_to_buddy(handle);
1047
1048        switch (bud) {
1049        case FIRST:
1050                zhdr->first_chunks = 0;
1051                break;
1052        case MIDDLE:
1053                zhdr->middle_chunks = 0;
1054                break;
1055        case LAST:
1056                zhdr->last_chunks = 0;
1057                break;
1058        default:
1059                pr_err("%s: unknown bud %d\n", __func__, bud);
1060                WARN_ON(1);
1061                z3fold_page_unlock(zhdr);
1062                return;
1063        }
1064
1065        free_handle(handle);
1066        if (kref_put(&zhdr->refcount, release_z3fold_page_locked_list)) {
1067                atomic64_dec(&pool->pages_nr);
1068                return;
1069        }
1070        if (test_bit(PAGE_CLAIMED, &page->private)) {
1071                z3fold_page_unlock(zhdr);
1072                return;
1073        }
1074        if (unlikely(PageIsolated(page)) ||
1075            test_and_set_bit(NEEDS_COMPACTING, &page->private)) {
1076                z3fold_page_unlock(zhdr);
1077                return;
1078        }
1079        if (zhdr->cpu < 0 || !cpu_online(zhdr->cpu)) {
1080                spin_lock(&pool->lock);
1081                list_del_init(&zhdr->buddy);
1082                spin_unlock(&pool->lock);
1083                zhdr->cpu = -1;
1084                kref_get(&zhdr->refcount);
1085                do_compact_page(zhdr, true);
1086                return;
1087        }
1088        kref_get(&zhdr->refcount);
1089        queue_work_on(zhdr->cpu, pool->compact_wq, &zhdr->work);
1090        z3fold_page_unlock(zhdr);
1091}
1092
1093/**
1094 * z3fold_reclaim_page() - evicts allocations from a pool page and frees it
1095 * @pool:       pool from which a page will attempt to be evicted
1096 * @retries:    number of pages on the LRU list for which eviction will
1097 *              be attempted before failing
1098 *
1099 * z3fold reclaim is different from normal system reclaim in that it is done
1100 * from the bottom, up. This is because only the bottom layer, z3fold, has
1101 * information on how the allocations are organized within each z3fold page.
1102 * This has the potential to create interesting locking situations between
1103 * z3fold and the user, however.
1104 *
1105 * To avoid these, this is how z3fold_reclaim_page() should be called:
1106 *
1107 * The user detects a page should be reclaimed and calls z3fold_reclaim_page().
1108 * z3fold_reclaim_page() will remove a z3fold page from the pool LRU list and
1109 * call the user-defined eviction handler with the pool and handle as
1110 * arguments.
1111 *
1112 * If the handle can not be evicted, the eviction handler should return
1113 * non-zero. z3fold_reclaim_page() will add the z3fold page back to the
1114 * appropriate list and try the next z3fold page on the LRU up to
1115 * a user defined number of retries.
1116 *
1117 * If the handle is successfully evicted, the eviction handler should
1118 * return 0 _and_ should have called z3fold_free() on the handle. z3fold_free()
1119 * contains logic to delay freeing the page if the page is under reclaim,
1120 * as indicated by the setting of the PG_reclaim flag on the underlying page.
1121 *
1122 * If all buddies in the z3fold page are successfully evicted, then the
1123 * z3fold page can be freed.
1124 *
1125 * Returns: 0 if page is successfully freed, otherwise -EINVAL if there are
1126 * no pages to evict or an eviction handler is not registered, -EAGAIN if
1127 * the retry limit was hit.
1128 */
1129static int z3fold_reclaim_page(struct z3fold_pool *pool, unsigned int retries)
1130{
1131        int i, ret = 0;
1132        struct z3fold_header *zhdr = NULL;
1133        struct page *page = NULL;
1134        struct list_head *pos;
1135        unsigned long first_handle = 0, middle_handle = 0, last_handle = 0;
1136
1137        spin_lock(&pool->lock);
1138        if (!pool->ops || !pool->ops->evict || retries == 0) {
1139                spin_unlock(&pool->lock);
1140                return -EINVAL;
1141        }
1142        for (i = 0; i < retries; i++) {
1143                if (list_empty(&pool->lru)) {
1144                        spin_unlock(&pool->lock);
1145                        return -EINVAL;
1146                }
1147                list_for_each_prev(pos, &pool->lru) {
1148                        page = list_entry(pos, struct page, lru);
1149
1150                        /* this bit could have been set by free, in which case
1151                         * we pass over to the next page in the pool.
1152                         */
1153                        if (test_and_set_bit(PAGE_CLAIMED, &page->private))
1154                                continue;
1155
1156                        if (unlikely(PageIsolated(page)))
1157                                continue;
1158                        if (test_bit(PAGE_HEADLESS, &page->private))
1159                                break;
1160
1161                        zhdr = page_address(page);
1162                        if (!z3fold_page_trylock(zhdr)) {
1163                                zhdr = NULL;
1164                                continue; /* can't evict at this point */
1165                        }
1166                        kref_get(&zhdr->refcount);
1167                        list_del_init(&zhdr->buddy);
1168                        zhdr->cpu = -1;
1169                        break;
1170                }
1171
1172                if (!zhdr)
1173                        break;
1174
1175                list_del_init(&page->lru);
1176                spin_unlock(&pool->lock);
1177
1178                if (!test_bit(PAGE_HEADLESS, &page->private)) {
1179                        /*
1180                         * We need encode the handles before unlocking, since
1181                         * we can race with free that will set
1182                         * (first|last)_chunks to 0
1183                         */
1184                        first_handle = 0;
1185                        last_handle = 0;
1186                        middle_handle = 0;
1187                        if (zhdr->first_chunks)
1188                                first_handle = encode_handle(zhdr, FIRST);
1189                        if (zhdr->middle_chunks)
1190                                middle_handle = encode_handle(zhdr, MIDDLE);
1191                        if (zhdr->last_chunks)
1192                                last_handle = encode_handle(zhdr, LAST);
1193                        /*
1194                         * it's safe to unlock here because we hold a
1195                         * reference to this page
1196                         */
1197                        z3fold_page_unlock(zhdr);
1198                } else {
1199                        first_handle = encode_handle(zhdr, HEADLESS);
1200                        last_handle = middle_handle = 0;
1201                }
1202
1203                /* Issue the eviction callback(s) */
1204                if (middle_handle) {
1205                        ret = pool->ops->evict(pool, middle_handle);
1206                        if (ret)
1207                                goto next;
1208                }
1209                if (first_handle) {
1210                        ret = pool->ops->evict(pool, first_handle);
1211                        if (ret)
1212                                goto next;
1213                }
1214                if (last_handle) {
1215                        ret = pool->ops->evict(pool, last_handle);
1216                        if (ret)
1217                                goto next;
1218                }
1219next:
1220                if (test_bit(PAGE_HEADLESS, &page->private)) {
1221                        if (ret == 0) {
1222                                free_z3fold_page(page, true);
1223                                atomic64_dec(&pool->pages_nr);
1224                                return 0;
1225                        }
1226                        spin_lock(&pool->lock);
1227                        list_add(&page->lru, &pool->lru);
1228                        spin_unlock(&pool->lock);
1229                } else {
1230                        z3fold_page_lock(zhdr);
1231                        clear_bit(PAGE_CLAIMED, &page->private);
1232                        if (kref_put(&zhdr->refcount,
1233                                        release_z3fold_page_locked)) {
1234                                atomic64_dec(&pool->pages_nr);
1235                                return 0;
1236                        }
1237                        /*
1238                         * if we are here, the page is still not completely
1239                         * free. Take the global pool lock then to be able
1240                         * to add it back to the lru list
1241                         */
1242                        spin_lock(&pool->lock);
1243                        list_add(&page->lru, &pool->lru);
1244                        spin_unlock(&pool->lock);
1245                        z3fold_page_unlock(zhdr);
1246                }
1247
1248                /* We started off locked to we need to lock the pool back */
1249                spin_lock(&pool->lock);
1250        }
1251        spin_unlock(&pool->lock);
1252        return -EAGAIN;
1253}
1254
1255/**
1256 * z3fold_map() - maps the allocation associated with the given handle
1257 * @pool:       pool in which the allocation resides
1258 * @handle:     handle associated with the allocation to be mapped
1259 *
1260 * Extracts the buddy number from handle and constructs the pointer to the
1261 * correct starting chunk within the page.
1262 *
1263 * Returns: a pointer to the mapped allocation
1264 */
1265static void *z3fold_map(struct z3fold_pool *pool, unsigned long handle)
1266{
1267        struct z3fold_header *zhdr;
1268        struct page *page;
1269        void *addr;
1270        enum buddy buddy;
1271
1272        zhdr = handle_to_z3fold_header(handle);
1273        addr = zhdr;
1274        page = virt_to_page(zhdr);
1275
1276        if (test_bit(PAGE_HEADLESS, &page->private))
1277                goto out;
1278
1279        z3fold_page_lock(zhdr);
1280        buddy = handle_to_buddy(handle);
1281        switch (buddy) {
1282        case FIRST:
1283                addr += ZHDR_SIZE_ALIGNED;
1284                break;
1285        case MIDDLE:
1286                addr += zhdr->start_middle << CHUNK_SHIFT;
1287                set_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1288                break;
1289        case LAST:
1290                addr += PAGE_SIZE - (handle_to_chunks(handle) << CHUNK_SHIFT);
1291                break;
1292        default:
1293                pr_err("unknown buddy id %d\n", buddy);
1294                WARN_ON(1);
1295                addr = NULL;
1296                break;
1297        }
1298
1299        if (addr)
1300                zhdr->mapped_count++;
1301        z3fold_page_unlock(zhdr);
1302out:
1303        return addr;
1304}
1305
1306/**
1307 * z3fold_unmap() - unmaps the allocation associated with the given handle
1308 * @pool:       pool in which the allocation resides
1309 * @handle:     handle associated with the allocation to be unmapped
1310 */
1311static void z3fold_unmap(struct z3fold_pool *pool, unsigned long handle)
1312{
1313        struct z3fold_header *zhdr;
1314        struct page *page;
1315        enum buddy buddy;
1316
1317        zhdr = handle_to_z3fold_header(handle);
1318        page = virt_to_page(zhdr);
1319
1320        if (test_bit(PAGE_HEADLESS, &page->private))
1321                return;
1322
1323        z3fold_page_lock(zhdr);
1324        buddy = handle_to_buddy(handle);
1325        if (buddy == MIDDLE)
1326                clear_bit(MIDDLE_CHUNK_MAPPED, &page->private);
1327        zhdr->mapped_count--;
1328        z3fold_page_unlock(zhdr);
1329}
1330
1331/**
1332 * z3fold_get_pool_size() - gets the z3fold pool size in pages
1333 * @pool:       pool whose size is being queried
1334 *
1335 * Returns: size in pages of the given pool.
1336 */
1337static u64 z3fold_get_pool_size(struct z3fold_pool *pool)
1338{
1339        return atomic64_read(&pool->pages_nr);
1340}
1341
1342/*
1343 * z3fold_dec_isolated() expects to be called while pool->lock is held.
1344 */
1345static void z3fold_dec_isolated(struct z3fold_pool *pool)
1346{
1347        assert_spin_locked(&pool->lock);
1348        VM_BUG_ON(pool->isolated <= 0);
1349        pool->isolated--;
1350
1351        /*
1352         * If we have no more isolated pages, we have to see if
1353         * z3fold_destroy_pool() is waiting for a signal.
1354         */
1355        if (pool->isolated == 0 && waitqueue_active(&pool->isolate_wait))
1356                wake_up_all(&pool->isolate_wait);
1357}
1358
1359static void z3fold_inc_isolated(struct z3fold_pool *pool)
1360{
1361        pool->isolated++;
1362}
1363
1364static bool z3fold_page_isolate(struct page *page, isolate_mode_t mode)
1365{
1366        struct z3fold_header *zhdr;
1367        struct z3fold_pool *pool;
1368
1369        VM_BUG_ON_PAGE(!PageMovable(page), page);
1370        VM_BUG_ON_PAGE(PageIsolated(page), page);
1371
1372        if (test_bit(PAGE_HEADLESS, &page->private))
1373                return false;
1374
1375        zhdr = page_address(page);
1376        z3fold_page_lock(zhdr);
1377        if (test_bit(NEEDS_COMPACTING, &page->private) ||
1378            test_bit(PAGE_STALE, &page->private))
1379                goto out;
1380
1381        pool = zhdr_to_pool(zhdr);
1382
1383        if (zhdr->mapped_count == 0) {
1384                kref_get(&zhdr->refcount);
1385                if (!list_empty(&zhdr->buddy))
1386                        list_del_init(&zhdr->buddy);
1387                spin_lock(&pool->lock);
1388                if (!list_empty(&page->lru))
1389                        list_del(&page->lru);
1390                /*
1391                 * We need to check for destruction while holding pool->lock, as
1392                 * otherwise destruction could see 0 isolated pages, and
1393                 * proceed.
1394                 */
1395                if (unlikely(pool->destroying)) {
1396                        spin_unlock(&pool->lock);
1397                        /*
1398                         * If this page isn't stale, somebody else holds a
1399                         * reference to it. Let't drop our refcount so that they
1400                         * can call the release logic.
1401                         */
1402                        if (unlikely(kref_put(&zhdr->refcount,
1403                                              release_z3fold_page_locked))) {
1404                                /*
1405                                 * If we get here we have kref problems, so we
1406                                 * should freak out.
1407                                 */
1408                                WARN(1, "Z3fold is experiencing kref problems\n");
1409                                z3fold_page_unlock(zhdr);
1410                                return false;
1411                        }
1412                        z3fold_page_unlock(zhdr);
1413                        return false;
1414                }
1415
1416
1417                z3fold_inc_isolated(pool);
1418                spin_unlock(&pool->lock);
1419                z3fold_page_unlock(zhdr);
1420                return true;
1421        }
1422out:
1423        z3fold_page_unlock(zhdr);
1424        return false;
1425}
1426
1427static int z3fold_page_migrate(struct address_space *mapping, struct page *newpage,
1428                               struct page *page, enum migrate_mode mode)
1429{
1430        struct z3fold_header *zhdr, *new_zhdr;
1431        struct z3fold_pool *pool;
1432        struct address_space *new_mapping;
1433
1434        VM_BUG_ON_PAGE(!PageMovable(page), page);
1435        VM_BUG_ON_PAGE(!PageIsolated(page), page);
1436        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1437
1438        zhdr = page_address(page);
1439        pool = zhdr_to_pool(zhdr);
1440
1441        if (!z3fold_page_trylock(zhdr)) {
1442                return -EAGAIN;
1443        }
1444        if (zhdr->mapped_count != 0) {
1445                z3fold_page_unlock(zhdr);
1446                return -EBUSY;
1447        }
1448        if (work_pending(&zhdr->work)) {
1449                z3fold_page_unlock(zhdr);
1450                return -EAGAIN;
1451        }
1452        new_zhdr = page_address(newpage);
1453        memcpy(new_zhdr, zhdr, PAGE_SIZE);
1454        newpage->private = page->private;
1455        page->private = 0;
1456        z3fold_page_unlock(zhdr);
1457        spin_lock_init(&new_zhdr->page_lock);
1458        INIT_WORK(&new_zhdr->work, compact_page_work);
1459        /*
1460         * z3fold_page_isolate() ensures that new_zhdr->buddy is empty,
1461         * so we only have to reinitialize it.
1462         */
1463        INIT_LIST_HEAD(&new_zhdr->buddy);
1464        new_mapping = page_mapping(page);
1465        __ClearPageMovable(page);
1466        ClearPagePrivate(page);
1467
1468        get_page(newpage);
1469        z3fold_page_lock(new_zhdr);
1470        if (new_zhdr->first_chunks)
1471                encode_handle(new_zhdr, FIRST);
1472        if (new_zhdr->last_chunks)
1473                encode_handle(new_zhdr, LAST);
1474        if (new_zhdr->middle_chunks)
1475                encode_handle(new_zhdr, MIDDLE);
1476        set_bit(NEEDS_COMPACTING, &newpage->private);
1477        new_zhdr->cpu = smp_processor_id();
1478        spin_lock(&pool->lock);
1479        list_add(&newpage->lru, &pool->lru);
1480        spin_unlock(&pool->lock);
1481        __SetPageMovable(newpage, new_mapping);
1482        z3fold_page_unlock(new_zhdr);
1483
1484        queue_work_on(new_zhdr->cpu, pool->compact_wq, &new_zhdr->work);
1485
1486        spin_lock(&pool->lock);
1487        z3fold_dec_isolated(pool);
1488        spin_unlock(&pool->lock);
1489
1490        page_mapcount_reset(page);
1491        put_page(page);
1492        return 0;
1493}
1494
1495static void z3fold_page_putback(struct page *page)
1496{
1497        struct z3fold_header *zhdr;
1498        struct z3fold_pool *pool;
1499
1500        zhdr = page_address(page);
1501        pool = zhdr_to_pool(zhdr);
1502
1503        z3fold_page_lock(zhdr);
1504        if (!list_empty(&zhdr->buddy))
1505                list_del_init(&zhdr->buddy);
1506        INIT_LIST_HEAD(&page->lru);
1507        if (kref_put(&zhdr->refcount, release_z3fold_page_locked)) {
1508                atomic64_dec(&pool->pages_nr);
1509                spin_lock(&pool->lock);
1510                z3fold_dec_isolated(pool);
1511                spin_unlock(&pool->lock);
1512                return;
1513        }
1514        spin_lock(&pool->lock);
1515        list_add(&page->lru, &pool->lru);
1516        z3fold_dec_isolated(pool);
1517        spin_unlock(&pool->lock);
1518        z3fold_page_unlock(zhdr);
1519}
1520
1521static const struct address_space_operations z3fold_aops = {
1522        .isolate_page = z3fold_page_isolate,
1523        .migratepage = z3fold_page_migrate,
1524        .putback_page = z3fold_page_putback,
1525};
1526
1527/*****************
1528 * zpool
1529 ****************/
1530
1531static int z3fold_zpool_evict(struct z3fold_pool *pool, unsigned long handle)
1532{
1533        if (pool->zpool && pool->zpool_ops && pool->zpool_ops->evict)
1534                return pool->zpool_ops->evict(pool->zpool, handle);
1535        else
1536                return -ENOENT;
1537}
1538
1539static const struct z3fold_ops z3fold_zpool_ops = {
1540        .evict =        z3fold_zpool_evict
1541};
1542
1543static void *z3fold_zpool_create(const char *name, gfp_t gfp,
1544                               const struct zpool_ops *zpool_ops,
1545                               struct zpool *zpool)
1546{
1547        struct z3fold_pool *pool;
1548
1549        pool = z3fold_create_pool(name, gfp,
1550                                zpool_ops ? &z3fold_zpool_ops : NULL);
1551        if (pool) {
1552                pool->zpool = zpool;
1553                pool->zpool_ops = zpool_ops;
1554        }
1555        return pool;
1556}
1557
1558static void z3fold_zpool_destroy(void *pool)
1559{
1560        z3fold_destroy_pool(pool);
1561}
1562
1563static int z3fold_zpool_malloc(void *pool, size_t size, gfp_t gfp,
1564                        unsigned long *handle)
1565{
1566        return z3fold_alloc(pool, size, gfp, handle);
1567}
1568static void z3fold_zpool_free(void *pool, unsigned long handle)
1569{
1570        z3fold_free(pool, handle);
1571}
1572
1573static int z3fold_zpool_shrink(void *pool, unsigned int pages,
1574                        unsigned int *reclaimed)
1575{
1576        unsigned int total = 0;
1577        int ret = -EINVAL;
1578
1579        while (total < pages) {
1580                ret = z3fold_reclaim_page(pool, 8);
1581                if (ret < 0)
1582                        break;
1583                total++;
1584        }
1585
1586        if (reclaimed)
1587                *reclaimed = total;
1588
1589        return ret;
1590}
1591
1592static void *z3fold_zpool_map(void *pool, unsigned long handle,
1593                        enum zpool_mapmode mm)
1594{
1595        return z3fold_map(pool, handle);
1596}
1597static void z3fold_zpool_unmap(void *pool, unsigned long handle)
1598{
1599        z3fold_unmap(pool, handle);
1600}
1601
1602static u64 z3fold_zpool_total_size(void *pool)
1603{
1604        return z3fold_get_pool_size(pool) * PAGE_SIZE;
1605}
1606
1607static struct zpool_driver z3fold_zpool_driver = {
1608        .type =         "z3fold",
1609        .owner =        THIS_MODULE,
1610        .create =       z3fold_zpool_create,
1611        .destroy =      z3fold_zpool_destroy,
1612        .malloc =       z3fold_zpool_malloc,
1613        .free =         z3fold_zpool_free,
1614        .shrink =       z3fold_zpool_shrink,
1615        .map =          z3fold_zpool_map,
1616        .unmap =        z3fold_zpool_unmap,
1617        .total_size =   z3fold_zpool_total_size,
1618};
1619
1620MODULE_ALIAS("zpool-z3fold");
1621
1622static int __init init_z3fold(void)
1623{
1624        int ret;
1625
1626        /* Make sure the z3fold header is not larger than the page size */
1627        BUILD_BUG_ON(ZHDR_SIZE_ALIGNED > PAGE_SIZE);
1628        ret = z3fold_mount();
1629        if (ret)
1630                return ret;
1631
1632        zpool_register_driver(&z3fold_zpool_driver);
1633
1634        return 0;
1635}
1636
1637static void __exit exit_z3fold(void)
1638{
1639        z3fold_unmount();
1640        zpool_unregister_driver(&z3fold_zpool_driver);
1641}
1642
1643module_init(init_z3fold);
1644module_exit(exit_z3fold);
1645
1646MODULE_LICENSE("GPL");
1647MODULE_AUTHOR("Vitaly Wool <vitalywool@gmail.com>");
1648MODULE_DESCRIPTION("3-Fold Allocator for Compressed Pages");
1649