1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * zpool memory storage api 4 * 5 * Copyright (C) 2014 Dan Streetman 6 * 7 * This is a common frontend for memory storage pool implementations. 8 * Typically, this is used to store compressed memory. 9 */ 10 11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13#include <linux/list.h> 14#include <linux/types.h> 15#include <linux/mm.h> 16#include <linux/slab.h> 17#include <linux/spinlock.h> 18#include <linux/module.h> 19#include <linux/zpool.h> 20 21struct zpool { 22 struct zpool_driver *driver; 23 void *pool; 24 const struct zpool_ops *ops; 25 bool evictable; 26 27 struct list_head list; 28}; 29 30static LIST_HEAD(drivers_head); 31static DEFINE_SPINLOCK(drivers_lock); 32 33static LIST_HEAD(pools_head); 34static DEFINE_SPINLOCK(pools_lock); 35 36/** 37 * zpool_register_driver() - register a zpool implementation. 38 * @driver: driver to register 39 */ 40void zpool_register_driver(struct zpool_driver *driver) 41{ 42 spin_lock(&drivers_lock); 43 atomic_set(&driver->refcount, 0); 44 list_add(&driver->list, &drivers_head); 45 spin_unlock(&drivers_lock); 46} 47EXPORT_SYMBOL(zpool_register_driver); 48 49/** 50 * zpool_unregister_driver() - unregister a zpool implementation. 51 * @driver: driver to unregister. 52 * 53 * Module usage counting is used to prevent using a driver 54 * while/after unloading, so if this is called from module 55 * exit function, this should never fail; if called from 56 * other than the module exit function, and this returns 57 * failure, the driver is in use and must remain available. 58 */ 59int zpool_unregister_driver(struct zpool_driver *driver) 60{ 61 int ret = 0, refcount; 62 63 spin_lock(&drivers_lock); 64 refcount = atomic_read(&driver->refcount); 65 WARN_ON(refcount < 0); 66 if (refcount > 0) 67 ret = -EBUSY; 68 else 69 list_del(&driver->list); 70 spin_unlock(&drivers_lock); 71 72 return ret; 73} 74EXPORT_SYMBOL(zpool_unregister_driver); 75 76/* this assumes @type is null-terminated. */ 77static struct zpool_driver *zpool_get_driver(const char *type) 78{ 79 struct zpool_driver *driver; 80 81 spin_lock(&drivers_lock); 82 list_for_each_entry(driver, &drivers_head, list) { 83 if (!strcmp(driver->type, type)) { 84 bool got = try_module_get(driver->owner); 85 86 if (got) 87 atomic_inc(&driver->refcount); 88 spin_unlock(&drivers_lock); 89 return got ? driver : NULL; 90 } 91 } 92 93 spin_unlock(&drivers_lock); 94 return NULL; 95} 96 97static void zpool_put_driver(struct zpool_driver *driver) 98{ 99 atomic_dec(&driver->refcount); 100 module_put(driver->owner); 101} 102 103/** 104 * zpool_has_pool() - Check if the pool driver is available 105 * @type: The type of the zpool to check (e.g. zbud, zsmalloc) 106 * 107 * This checks if the @type pool driver is available. This will try to load 108 * the requested module, if needed, but there is no guarantee the module will 109 * still be loaded and available immediately after calling. If this returns 110 * true, the caller should assume the pool is available, but must be prepared 111 * to handle the @zpool_create_pool() returning failure. However if this 112 * returns false, the caller should assume the requested pool type is not 113 * available; either the requested pool type module does not exist, or could 114 * not be loaded, and calling @zpool_create_pool() with the pool type will 115 * fail. 116 * 117 * The @type string must be null-terminated. 118 * 119 * Returns: true if @type pool is available, false if not 120 */ 121bool zpool_has_pool(char *type) 122{ 123 struct zpool_driver *driver = zpool_get_driver(type); 124 125 if (!driver) { 126 request_module("zpool-%s", type); 127 driver = zpool_get_driver(type); 128 } 129 130 if (!driver) 131 return false; 132 133 zpool_put_driver(driver); 134 return true; 135} 136EXPORT_SYMBOL(zpool_has_pool); 137 138/** 139 * zpool_create_pool() - Create a new zpool 140 * @type: The type of the zpool to create (e.g. zbud, zsmalloc) 141 * @name: The name of the zpool (e.g. zram0, zswap) 142 * @gfp: The GFP flags to use when allocating the pool. 143 * @ops: The optional ops callback. 144 * 145 * This creates a new zpool of the specified type. The gfp flags will be 146 * used when allocating memory, if the implementation supports it. If the 147 * ops param is NULL, then the created zpool will not be evictable. 148 * 149 * Implementations must guarantee this to be thread-safe. 150 * 151 * The @type and @name strings must be null-terminated. 152 * 153 * Returns: New zpool on success, NULL on failure. 154 */ 155struct zpool *zpool_create_pool(const char *type, const char *name, gfp_t gfp, 156 const struct zpool_ops *ops) 157{ 158 struct zpool_driver *driver; 159 struct zpool *zpool; 160 161 pr_debug("creating pool type %s\n", type); 162 163 driver = zpool_get_driver(type); 164 165 if (!driver) { 166 request_module("zpool-%s", type); 167 driver = zpool_get_driver(type); 168 } 169 170 if (!driver) { 171 pr_err("no driver for type %s\n", type); 172 return NULL; 173 } 174 175 zpool = kmalloc(sizeof(*zpool), gfp); 176 if (!zpool) { 177 pr_err("couldn't create zpool - out of memory\n"); 178 zpool_put_driver(driver); 179 return NULL; 180 } 181 182 zpool->driver = driver; 183 zpool->pool = driver->create(name, gfp, ops, zpool); 184 zpool->ops = ops; 185 zpool->evictable = driver->shrink && ops && ops->evict; 186 187 if (!zpool->pool) { 188 pr_err("couldn't create %s pool\n", type); 189 zpool_put_driver(driver); 190 kfree(zpool); 191 return NULL; 192 } 193 194 pr_debug("created pool type %s\n", type); 195 196 spin_lock(&pools_lock); 197 list_add(&zpool->list, &pools_head); 198 spin_unlock(&pools_lock); 199 200 return zpool; 201} 202 203/** 204 * zpool_destroy_pool() - Destroy a zpool 205 * @zpool: The zpool to destroy. 206 * 207 * Implementations must guarantee this to be thread-safe, 208 * however only when destroying different pools. The same 209 * pool should only be destroyed once, and should not be used 210 * after it is destroyed. 211 * 212 * This destroys an existing zpool. The zpool should not be in use. 213 */ 214void zpool_destroy_pool(struct zpool *zpool) 215{ 216 pr_debug("destroying pool type %s\n", zpool->driver->type); 217 218 spin_lock(&pools_lock); 219 list_del(&zpool->list); 220 spin_unlock(&pools_lock); 221 zpool->driver->destroy(zpool->pool); 222 zpool_put_driver(zpool->driver); 223 kfree(zpool); 224} 225 226/** 227 * zpool_get_type() - Get the type of the zpool 228 * @zpool: The zpool to check 229 * 230 * This returns the type of the pool. 231 * 232 * Implementations must guarantee this to be thread-safe. 233 * 234 * Returns: The type of zpool. 235 */ 236const char *zpool_get_type(struct zpool *zpool) 237{ 238 return zpool->driver->type; 239} 240 241/** 242 * zpool_malloc() - Allocate memory 243 * @zpool: The zpool to allocate from. 244 * @size: The amount of memory to allocate. 245 * @gfp: The GFP flags to use when allocating memory. 246 * @handle: Pointer to the handle to set 247 * 248 * This allocates the requested amount of memory from the pool. 249 * The gfp flags will be used when allocating memory, if the 250 * implementation supports it. The provided @handle will be 251 * set to the allocated object handle. 252 * 253 * Implementations must guarantee this to be thread-safe. 254 * 255 * Returns: 0 on success, negative value on error. 256 */ 257int zpool_malloc(struct zpool *zpool, size_t size, gfp_t gfp, 258 unsigned long *handle) 259{ 260 return zpool->driver->malloc(zpool->pool, size, gfp, handle); 261} 262 263/** 264 * zpool_free() - Free previously allocated memory 265 * @zpool: The zpool that allocated the memory. 266 * @handle: The handle to the memory to free. 267 * 268 * This frees previously allocated memory. This does not guarantee 269 * that the pool will actually free memory, only that the memory 270 * in the pool will become available for use by the pool. 271 * 272 * Implementations must guarantee this to be thread-safe, 273 * however only when freeing different handles. The same 274 * handle should only be freed once, and should not be used 275 * after freeing. 276 */ 277void zpool_free(struct zpool *zpool, unsigned long handle) 278{ 279 zpool->driver->free(zpool->pool, handle); 280} 281 282/** 283 * zpool_shrink() - Shrink the pool size 284 * @zpool: The zpool to shrink. 285 * @pages: The number of pages to shrink the pool. 286 * @reclaimed: The number of pages successfully evicted. 287 * 288 * This attempts to shrink the actual memory size of the pool 289 * by evicting currently used handle(s). If the pool was 290 * created with no zpool_ops, or the evict call fails for any 291 * of the handles, this will fail. If non-NULL, the @reclaimed 292 * parameter will be set to the number of pages reclaimed, 293 * which may be more than the number of pages requested. 294 * 295 * Implementations must guarantee this to be thread-safe. 296 * 297 * Returns: 0 on success, negative value on error/failure. 298 */ 299int zpool_shrink(struct zpool *zpool, unsigned int pages, 300 unsigned int *reclaimed) 301{ 302 return zpool->driver->shrink ? 303 zpool->driver->shrink(zpool->pool, pages, reclaimed) : -EINVAL; 304} 305 306/** 307 * zpool_map_handle() - Map a previously allocated handle into memory 308 * @zpool: The zpool that the handle was allocated from 309 * @handle: The handle to map 310 * @mapmode: How the memory should be mapped 311 * 312 * This maps a previously allocated handle into memory. The @mapmode 313 * param indicates to the implementation how the memory will be 314 * used, i.e. read-only, write-only, read-write. If the 315 * implementation does not support it, the memory will be treated 316 * as read-write. 317 * 318 * This may hold locks, disable interrupts, and/or preemption, 319 * and the zpool_unmap_handle() must be called to undo those 320 * actions. The code that uses the mapped handle should complete 321 * its operatons on the mapped handle memory quickly and unmap 322 * as soon as possible. As the implementation may use per-cpu 323 * data, multiple handles should not be mapped concurrently on 324 * any cpu. 325 * 326 * Returns: A pointer to the handle's mapped memory area. 327 */ 328void *zpool_map_handle(struct zpool *zpool, unsigned long handle, 329 enum zpool_mapmode mapmode) 330{ 331 return zpool->driver->map(zpool->pool, handle, mapmode); 332} 333 334/** 335 * zpool_unmap_handle() - Unmap a previously mapped handle 336 * @zpool: The zpool that the handle was allocated from 337 * @handle: The handle to unmap 338 * 339 * This unmaps a previously mapped handle. Any locks or other 340 * actions that the implementation took in zpool_map_handle() 341 * will be undone here. The memory area returned from 342 * zpool_map_handle() should no longer be used after this. 343 */ 344void zpool_unmap_handle(struct zpool *zpool, unsigned long handle) 345{ 346 zpool->driver->unmap(zpool->pool, handle); 347} 348 349/** 350 * zpool_get_total_size() - The total size of the pool 351 * @zpool: The zpool to check 352 * 353 * This returns the total size in bytes of the pool. 354 * 355 * Returns: Total size of the zpool in bytes. 356 */ 357u64 zpool_get_total_size(struct zpool *zpool) 358{ 359 return zpool->driver->total_size(zpool->pool); 360} 361 362/** 363 * zpool_evictable() - Test if zpool is potentially evictable 364 * @zpool: The zpool to test 365 * 366 * Zpool is only potentially evictable when it's created with struct 367 * zpool_ops.evict and its driver implements struct zpool_driver.shrink. 368 * 369 * However, it doesn't necessarily mean driver will use zpool_ops.evict 370 * in its implementation of zpool_driver.shrink. It could do internal 371 * defragmentation instead. 372 * 373 * Returns: true if potentially evictable; false otherwise. 374 */ 375bool zpool_evictable(struct zpool *zpool) 376{ 377 return zpool->evictable; 378} 379 380MODULE_LICENSE("GPL"); 381MODULE_AUTHOR("Dan Streetman <ddstreet@ieee.org>"); 382MODULE_DESCRIPTION("Common API for compressed memory storage"); 383