linux/mm/zsmalloc.c
<<
>>
Prefs
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
  15 * Following is how we use various fields and flags of underlying
  16 * struct page(s) to form a zspage.
  17 *
  18 * Usage of struct page fields:
  19 *      page->private: points to zspage
  20 *      page->freelist(index): links together all component pages of a zspage
  21 *              For the huge page, this is always 0, so we use this field
  22 *              to store handle.
  23 *      page->units: first object offset in a subpage of zspage
  24 *
  25 * Usage of struct page flags:
  26 *      PG_private: identifies the first component page
  27 *      PG_owner_priv_1: identifies the huge component page
  28 *
  29 */
  30
  31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  32
  33#include <linux/module.h>
  34#include <linux/kernel.h>
  35#include <linux/sched.h>
  36#include <linux/magic.h>
  37#include <linux/bitops.h>
  38#include <linux/errno.h>
  39#include <linux/highmem.h>
  40#include <linux/string.h>
  41#include <linux/slab.h>
  42#include <asm/tlbflush.h>
  43#include <asm/pgtable.h>
  44#include <linux/cpumask.h>
  45#include <linux/cpu.h>
  46#include <linux/vmalloc.h>
  47#include <linux/preempt.h>
  48#include <linux/spinlock.h>
  49#include <linux/shrinker.h>
  50#include <linux/types.h>
  51#include <linux/debugfs.h>
  52#include <linux/zsmalloc.h>
  53#include <linux/zpool.h>
  54#include <linux/mount.h>
  55#include <linux/pseudo_fs.h>
  56#include <linux/migrate.h>
  57#include <linux/wait.h>
  58#include <linux/pagemap.h>
  59#include <linux/fs.h>
  60
  61#define ZSPAGE_MAGIC    0x58
  62
  63/*
  64 * This must be power of 2 and greater than of equal to sizeof(link_free).
  65 * These two conditions ensure that any 'struct link_free' itself doesn't
  66 * span more than 1 page which avoids complex case of mapping 2 pages simply
  67 * to restore link_free pointer values.
  68 */
  69#define ZS_ALIGN                8
  70
  71/*
  72 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
  73 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
  74 */
  75#define ZS_MAX_ZSPAGE_ORDER 2
  76#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
  77
  78#define ZS_HANDLE_SIZE (sizeof(unsigned long))
  79
  80/*
  81 * Object location (<PFN>, <obj_idx>) is encoded as
  82 * as single (unsigned long) handle value.
  83 *
  84 * Note that object index <obj_idx> starts from 0.
  85 *
  86 * This is made more complicated by various memory models and PAE.
  87 */
  88
  89#ifndef MAX_POSSIBLE_PHYSMEM_BITS
  90#ifdef MAX_PHYSMEM_BITS
  91#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
  92#else
  93/*
  94 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
  95 * be PAGE_SHIFT
  96 */
  97#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
  98#endif
  99#endif
 100
 101#define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
 102
 103/*
 104 * Memory for allocating for handle keeps object position by
 105 * encoding <page, obj_idx> and the encoded value has a room
 106 * in least bit(ie, look at obj_to_location).
 107 * We use the bit to synchronize between object access by
 108 * user and migration.
 109 */
 110#define HANDLE_PIN_BIT  0
 111
 112/*
 113 * Head in allocated object should have OBJ_ALLOCATED_TAG
 114 * to identify the object was allocated or not.
 115 * It's okay to add the status bit in the least bit because
 116 * header keeps handle which is 4byte-aligned address so we
 117 * have room for two bit at least.
 118 */
 119#define OBJ_ALLOCATED_TAG 1
 120#define OBJ_TAG_BITS 1
 121#define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
 122#define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 123
 124#define FULLNESS_BITS   2
 125#define CLASS_BITS      8
 126#define ISOLATED_BITS   3
 127#define MAGIC_VAL_BITS  8
 128
 129#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 130/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 131#define ZS_MIN_ALLOC_SIZE \
 132        MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 133/* each chunk includes extra space to keep handle */
 134#define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
 135
 136/*
 137 * On systems with 4K page size, this gives 255 size classes! There is a
 138 * trader-off here:
 139 *  - Large number of size classes is potentially wasteful as free page are
 140 *    spread across these classes
 141 *  - Small number of size classes causes large internal fragmentation
 142 *  - Probably its better to use specific size classes (empirically
 143 *    determined). NOTE: all those class sizes must be set as multiple of
 144 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 145 *
 146 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 147 *  (reason above)
 148 */
 149#define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
 150#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
 151                                      ZS_SIZE_CLASS_DELTA) + 1)
 152
 153enum fullness_group {
 154        ZS_EMPTY,
 155        ZS_ALMOST_EMPTY,
 156        ZS_ALMOST_FULL,
 157        ZS_FULL,
 158        NR_ZS_FULLNESS,
 159};
 160
 161enum zs_stat_type {
 162        CLASS_EMPTY,
 163        CLASS_ALMOST_EMPTY,
 164        CLASS_ALMOST_FULL,
 165        CLASS_FULL,
 166        OBJ_ALLOCATED,
 167        OBJ_USED,
 168        NR_ZS_STAT_TYPE,
 169};
 170
 171struct zs_size_stat {
 172        unsigned long objs[NR_ZS_STAT_TYPE];
 173};
 174
 175#ifdef CONFIG_ZSMALLOC_STAT
 176static struct dentry *zs_stat_root;
 177#endif
 178
 179#ifdef CONFIG_COMPACTION
 180static struct vfsmount *zsmalloc_mnt;
 181#endif
 182
 183/*
 184 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 185 *      n <= N / f, where
 186 * n = number of allocated objects
 187 * N = total number of objects zspage can store
 188 * f = fullness_threshold_frac
 189 *
 190 * Similarly, we assign zspage to:
 191 *      ZS_ALMOST_FULL  when n > N / f
 192 *      ZS_EMPTY        when n == 0
 193 *      ZS_FULL         when n == N
 194 *
 195 * (see: fix_fullness_group())
 196 */
 197static const int fullness_threshold_frac = 4;
 198static size_t huge_class_size;
 199
 200struct size_class {
 201        spinlock_t lock;
 202        struct list_head fullness_list[NR_ZS_FULLNESS];
 203        /*
 204         * Size of objects stored in this class. Must be multiple
 205         * of ZS_ALIGN.
 206         */
 207        int size;
 208        int objs_per_zspage;
 209        /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 210        int pages_per_zspage;
 211
 212        unsigned int index;
 213        struct zs_size_stat stats;
 214};
 215
 216/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 217static void SetPageHugeObject(struct page *page)
 218{
 219        SetPageOwnerPriv1(page);
 220}
 221
 222static void ClearPageHugeObject(struct page *page)
 223{
 224        ClearPageOwnerPriv1(page);
 225}
 226
 227static int PageHugeObject(struct page *page)
 228{
 229        return PageOwnerPriv1(page);
 230}
 231
 232/*
 233 * Placed within free objects to form a singly linked list.
 234 * For every zspage, zspage->freeobj gives head of this list.
 235 *
 236 * This must be power of 2 and less than or equal to ZS_ALIGN
 237 */
 238struct link_free {
 239        union {
 240                /*
 241                 * Free object index;
 242                 * It's valid for non-allocated object
 243                 */
 244                unsigned long next;
 245                /*
 246                 * Handle of allocated object.
 247                 */
 248                unsigned long handle;
 249        };
 250};
 251
 252struct zs_pool {
 253        const char *name;
 254
 255        struct size_class *size_class[ZS_SIZE_CLASSES];
 256        struct kmem_cache *handle_cachep;
 257        struct kmem_cache *zspage_cachep;
 258
 259        atomic_long_t pages_allocated;
 260
 261        struct zs_pool_stats stats;
 262
 263        /* Compact classes */
 264        struct shrinker shrinker;
 265
 266#ifdef CONFIG_ZSMALLOC_STAT
 267        struct dentry *stat_dentry;
 268#endif
 269#ifdef CONFIG_COMPACTION
 270        struct inode *inode;
 271        struct work_struct free_work;
 272        /* A wait queue for when migration races with async_free_zspage() */
 273        struct wait_queue_head migration_wait;
 274        atomic_long_t isolated_pages;
 275        bool destroying;
 276#endif
 277};
 278
 279struct zspage {
 280        struct {
 281                unsigned int fullness:FULLNESS_BITS;
 282                unsigned int class:CLASS_BITS + 1;
 283                unsigned int isolated:ISOLATED_BITS;
 284                unsigned int magic:MAGIC_VAL_BITS;
 285        };
 286        unsigned int inuse;
 287        unsigned int freeobj;
 288        struct page *first_page;
 289        struct list_head list; /* fullness list */
 290#ifdef CONFIG_COMPACTION
 291        rwlock_t lock;
 292#endif
 293};
 294
 295struct mapping_area {
 296#ifdef CONFIG_PGTABLE_MAPPING
 297        struct vm_struct *vm; /* vm area for mapping object that span pages */
 298#else
 299        char *vm_buf; /* copy buffer for objects that span pages */
 300#endif
 301        char *vm_addr; /* address of kmap_atomic()'ed pages */
 302        enum zs_mapmode vm_mm; /* mapping mode */
 303};
 304
 305#ifdef CONFIG_COMPACTION
 306static int zs_register_migration(struct zs_pool *pool);
 307static void zs_unregister_migration(struct zs_pool *pool);
 308static void migrate_lock_init(struct zspage *zspage);
 309static void migrate_read_lock(struct zspage *zspage);
 310static void migrate_read_unlock(struct zspage *zspage);
 311static void kick_deferred_free(struct zs_pool *pool);
 312static void init_deferred_free(struct zs_pool *pool);
 313static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
 314#else
 315static int zsmalloc_mount(void) { return 0; }
 316static void zsmalloc_unmount(void) {}
 317static int zs_register_migration(struct zs_pool *pool) { return 0; }
 318static void zs_unregister_migration(struct zs_pool *pool) {}
 319static void migrate_lock_init(struct zspage *zspage) {}
 320static void migrate_read_lock(struct zspage *zspage) {}
 321static void migrate_read_unlock(struct zspage *zspage) {}
 322static void kick_deferred_free(struct zs_pool *pool) {}
 323static void init_deferred_free(struct zs_pool *pool) {}
 324static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
 325#endif
 326
 327static int create_cache(struct zs_pool *pool)
 328{
 329        pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 330                                        0, 0, NULL);
 331        if (!pool->handle_cachep)
 332                return 1;
 333
 334        pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
 335                                        0, 0, NULL);
 336        if (!pool->zspage_cachep) {
 337                kmem_cache_destroy(pool->handle_cachep);
 338                pool->handle_cachep = NULL;
 339                return 1;
 340        }
 341
 342        return 0;
 343}
 344
 345static void destroy_cache(struct zs_pool *pool)
 346{
 347        kmem_cache_destroy(pool->handle_cachep);
 348        kmem_cache_destroy(pool->zspage_cachep);
 349}
 350
 351static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
 352{
 353        return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 354                        gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 355}
 356
 357static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
 358{
 359        kmem_cache_free(pool->handle_cachep, (void *)handle);
 360}
 361
 362static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
 363{
 364        return kmem_cache_alloc(pool->zspage_cachep,
 365                        flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 366}
 367
 368static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
 369{
 370        kmem_cache_free(pool->zspage_cachep, zspage);
 371}
 372
 373static void record_obj(unsigned long handle, unsigned long obj)
 374{
 375        /*
 376         * lsb of @obj represents handle lock while other bits
 377         * represent object value the handle is pointing so
 378         * updating shouldn't do store tearing.
 379         */
 380        WRITE_ONCE(*(unsigned long *)handle, obj);
 381}
 382
 383/* zpool driver */
 384
 385#ifdef CONFIG_ZPOOL
 386
 387static void *zs_zpool_create(const char *name, gfp_t gfp,
 388                             const struct zpool_ops *zpool_ops,
 389                             struct zpool *zpool)
 390{
 391        /*
 392         * Ignore global gfp flags: zs_malloc() may be invoked from
 393         * different contexts and its caller must provide a valid
 394         * gfp mask.
 395         */
 396        return zs_create_pool(name);
 397}
 398
 399static void zs_zpool_destroy(void *pool)
 400{
 401        zs_destroy_pool(pool);
 402}
 403
 404static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 405                        unsigned long *handle)
 406{
 407        *handle = zs_malloc(pool, size, gfp);
 408        return *handle ? 0 : -1;
 409}
 410static void zs_zpool_free(void *pool, unsigned long handle)
 411{
 412        zs_free(pool, handle);
 413}
 414
 415static void *zs_zpool_map(void *pool, unsigned long handle,
 416                        enum zpool_mapmode mm)
 417{
 418        enum zs_mapmode zs_mm;
 419
 420        switch (mm) {
 421        case ZPOOL_MM_RO:
 422                zs_mm = ZS_MM_RO;
 423                break;
 424        case ZPOOL_MM_WO:
 425                zs_mm = ZS_MM_WO;
 426                break;
 427        case ZPOOL_MM_RW: /* fall through */
 428        default:
 429                zs_mm = ZS_MM_RW;
 430                break;
 431        }
 432
 433        return zs_map_object(pool, handle, zs_mm);
 434}
 435static void zs_zpool_unmap(void *pool, unsigned long handle)
 436{
 437        zs_unmap_object(pool, handle);
 438}
 439
 440static u64 zs_zpool_total_size(void *pool)
 441{
 442        return zs_get_total_pages(pool) << PAGE_SHIFT;
 443}
 444
 445static struct zpool_driver zs_zpool_driver = {
 446        .type =         "zsmalloc",
 447        .owner =        THIS_MODULE,
 448        .create =       zs_zpool_create,
 449        .destroy =      zs_zpool_destroy,
 450        .malloc =       zs_zpool_malloc,
 451        .free =         zs_zpool_free,
 452        .map =          zs_zpool_map,
 453        .unmap =        zs_zpool_unmap,
 454        .total_size =   zs_zpool_total_size,
 455};
 456
 457MODULE_ALIAS("zpool-zsmalloc");
 458#endif /* CONFIG_ZPOOL */
 459
 460/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 461static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
 462
 463static bool is_zspage_isolated(struct zspage *zspage)
 464{
 465        return zspage->isolated;
 466}
 467
 468static __maybe_unused int is_first_page(struct page *page)
 469{
 470        return PagePrivate(page);
 471}
 472
 473/* Protected by class->lock */
 474static inline int get_zspage_inuse(struct zspage *zspage)
 475{
 476        return zspage->inuse;
 477}
 478
 479static inline void set_zspage_inuse(struct zspage *zspage, int val)
 480{
 481        zspage->inuse = val;
 482}
 483
 484static inline void mod_zspage_inuse(struct zspage *zspage, int val)
 485{
 486        zspage->inuse += val;
 487}
 488
 489static inline struct page *get_first_page(struct zspage *zspage)
 490{
 491        struct page *first_page = zspage->first_page;
 492
 493        VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 494        return first_page;
 495}
 496
 497static inline int get_first_obj_offset(struct page *page)
 498{
 499        return page->units;
 500}
 501
 502static inline void set_first_obj_offset(struct page *page, int offset)
 503{
 504        page->units = offset;
 505}
 506
 507static inline unsigned int get_freeobj(struct zspage *zspage)
 508{
 509        return zspage->freeobj;
 510}
 511
 512static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
 513{
 514        zspage->freeobj = obj;
 515}
 516
 517static void get_zspage_mapping(struct zspage *zspage,
 518                                unsigned int *class_idx,
 519                                enum fullness_group *fullness)
 520{
 521        BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 522
 523        *fullness = zspage->fullness;
 524        *class_idx = zspage->class;
 525}
 526
 527static void set_zspage_mapping(struct zspage *zspage,
 528                                unsigned int class_idx,
 529                                enum fullness_group fullness)
 530{
 531        zspage->class = class_idx;
 532        zspage->fullness = fullness;
 533}
 534
 535/*
 536 * zsmalloc divides the pool into various size classes where each
 537 * class maintains a list of zspages where each zspage is divided
 538 * into equal sized chunks. Each allocation falls into one of these
 539 * classes depending on its size. This function returns index of the
 540 * size class which has chunk size big enough to hold the give size.
 541 */
 542static int get_size_class_index(int size)
 543{
 544        int idx = 0;
 545
 546        if (likely(size > ZS_MIN_ALLOC_SIZE))
 547                idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 548                                ZS_SIZE_CLASS_DELTA);
 549
 550        return min_t(int, ZS_SIZE_CLASSES - 1, idx);
 551}
 552
 553/* type can be of enum type zs_stat_type or fullness_group */
 554static inline void zs_stat_inc(struct size_class *class,
 555                                int type, unsigned long cnt)
 556{
 557        class->stats.objs[type] += cnt;
 558}
 559
 560/* type can be of enum type zs_stat_type or fullness_group */
 561static inline void zs_stat_dec(struct size_class *class,
 562                                int type, unsigned long cnt)
 563{
 564        class->stats.objs[type] -= cnt;
 565}
 566
 567/* type can be of enum type zs_stat_type or fullness_group */
 568static inline unsigned long zs_stat_get(struct size_class *class,
 569                                int type)
 570{
 571        return class->stats.objs[type];
 572}
 573
 574#ifdef CONFIG_ZSMALLOC_STAT
 575
 576static void __init zs_stat_init(void)
 577{
 578        if (!debugfs_initialized()) {
 579                pr_warn("debugfs not available, stat dir not created\n");
 580                return;
 581        }
 582
 583        zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 584}
 585
 586static void __exit zs_stat_exit(void)
 587{
 588        debugfs_remove_recursive(zs_stat_root);
 589}
 590
 591static unsigned long zs_can_compact(struct size_class *class);
 592
 593static int zs_stats_size_show(struct seq_file *s, void *v)
 594{
 595        int i;
 596        struct zs_pool *pool = s->private;
 597        struct size_class *class;
 598        int objs_per_zspage;
 599        unsigned long class_almost_full, class_almost_empty;
 600        unsigned long obj_allocated, obj_used, pages_used, freeable;
 601        unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
 602        unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 603        unsigned long total_freeable = 0;
 604
 605        seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
 606                        "class", "size", "almost_full", "almost_empty",
 607                        "obj_allocated", "obj_used", "pages_used",
 608                        "pages_per_zspage", "freeable");
 609
 610        for (i = 0; i < ZS_SIZE_CLASSES; i++) {
 611                class = pool->size_class[i];
 612
 613                if (class->index != i)
 614                        continue;
 615
 616                spin_lock(&class->lock);
 617                class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
 618                class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
 619                obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
 620                obj_used = zs_stat_get(class, OBJ_USED);
 621                freeable = zs_can_compact(class);
 622                spin_unlock(&class->lock);
 623
 624                objs_per_zspage = class->objs_per_zspage;
 625                pages_used = obj_allocated / objs_per_zspage *
 626                                class->pages_per_zspage;
 627
 628                seq_printf(s, " %5u %5u %11lu %12lu %13lu"
 629                                " %10lu %10lu %16d %8lu\n",
 630                        i, class->size, class_almost_full, class_almost_empty,
 631                        obj_allocated, obj_used, pages_used,
 632                        class->pages_per_zspage, freeable);
 633
 634                total_class_almost_full += class_almost_full;
 635                total_class_almost_empty += class_almost_empty;
 636                total_objs += obj_allocated;
 637                total_used_objs += obj_used;
 638                total_pages += pages_used;
 639                total_freeable += freeable;
 640        }
 641
 642        seq_puts(s, "\n");
 643        seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
 644                        "Total", "", total_class_almost_full,
 645                        total_class_almost_empty, total_objs,
 646                        total_used_objs, total_pages, "", total_freeable);
 647
 648        return 0;
 649}
 650DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
 651
 652static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 653{
 654        if (!zs_stat_root) {
 655                pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
 656                return;
 657        }
 658
 659        pool->stat_dentry = debugfs_create_dir(name, zs_stat_root);
 660
 661        debugfs_create_file("classes", S_IFREG | 0444, pool->stat_dentry, pool,
 662                            &zs_stats_size_fops);
 663}
 664
 665static void zs_pool_stat_destroy(struct zs_pool *pool)
 666{
 667        debugfs_remove_recursive(pool->stat_dentry);
 668}
 669
 670#else /* CONFIG_ZSMALLOC_STAT */
 671static void __init zs_stat_init(void)
 672{
 673}
 674
 675static void __exit zs_stat_exit(void)
 676{
 677}
 678
 679static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 680{
 681}
 682
 683static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 684{
 685}
 686#endif
 687
 688
 689/*
 690 * For each size class, zspages are divided into different groups
 691 * depending on how "full" they are. This was done so that we could
 692 * easily find empty or nearly empty zspages when we try to shrink
 693 * the pool (not yet implemented). This function returns fullness
 694 * status of the given page.
 695 */
 696static enum fullness_group get_fullness_group(struct size_class *class,
 697                                                struct zspage *zspage)
 698{
 699        int inuse, objs_per_zspage;
 700        enum fullness_group fg;
 701
 702        inuse = get_zspage_inuse(zspage);
 703        objs_per_zspage = class->objs_per_zspage;
 704
 705        if (inuse == 0)
 706                fg = ZS_EMPTY;
 707        else if (inuse == objs_per_zspage)
 708                fg = ZS_FULL;
 709        else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
 710                fg = ZS_ALMOST_EMPTY;
 711        else
 712                fg = ZS_ALMOST_FULL;
 713
 714        return fg;
 715}
 716
 717/*
 718 * Each size class maintains various freelists and zspages are assigned
 719 * to one of these freelists based on the number of live objects they
 720 * have. This functions inserts the given zspage into the freelist
 721 * identified by <class, fullness_group>.
 722 */
 723static void insert_zspage(struct size_class *class,
 724                                struct zspage *zspage,
 725                                enum fullness_group fullness)
 726{
 727        struct zspage *head;
 728
 729        zs_stat_inc(class, fullness, 1);
 730        head = list_first_entry_or_null(&class->fullness_list[fullness],
 731                                        struct zspage, list);
 732        /*
 733         * We want to see more ZS_FULL pages and less almost empty/full.
 734         * Put pages with higher ->inuse first.
 735         */
 736        if (head) {
 737                if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
 738                        list_add(&zspage->list, &head->list);
 739                        return;
 740                }
 741        }
 742        list_add(&zspage->list, &class->fullness_list[fullness]);
 743}
 744
 745/*
 746 * This function removes the given zspage from the freelist identified
 747 * by <class, fullness_group>.
 748 */
 749static void remove_zspage(struct size_class *class,
 750                                struct zspage *zspage,
 751                                enum fullness_group fullness)
 752{
 753        VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
 754        VM_BUG_ON(is_zspage_isolated(zspage));
 755
 756        list_del_init(&zspage->list);
 757        zs_stat_dec(class, fullness, 1);
 758}
 759
 760/*
 761 * Each size class maintains zspages in different fullness groups depending
 762 * on the number of live objects they contain. When allocating or freeing
 763 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 764 * to ALMOST_EMPTY when freeing an object. This function checks if such
 765 * a status change has occurred for the given page and accordingly moves the
 766 * page from the freelist of the old fullness group to that of the new
 767 * fullness group.
 768 */
 769static enum fullness_group fix_fullness_group(struct size_class *class,
 770                                                struct zspage *zspage)
 771{
 772        int class_idx;
 773        enum fullness_group currfg, newfg;
 774
 775        get_zspage_mapping(zspage, &class_idx, &currfg);
 776        newfg = get_fullness_group(class, zspage);
 777        if (newfg == currfg)
 778                goto out;
 779
 780        if (!is_zspage_isolated(zspage)) {
 781                remove_zspage(class, zspage, currfg);
 782                insert_zspage(class, zspage, newfg);
 783        }
 784
 785        set_zspage_mapping(zspage, class_idx, newfg);
 786
 787out:
 788        return newfg;
 789}
 790
 791/*
 792 * We have to decide on how many pages to link together
 793 * to form a zspage for each size class. This is important
 794 * to reduce wastage due to unusable space left at end of
 795 * each zspage which is given as:
 796 *     wastage = Zp % class_size
 797 *     usage = Zp - wastage
 798 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 799 *
 800 * For example, for size class of 3/8 * PAGE_SIZE, we should
 801 * link together 3 PAGE_SIZE sized pages to form a zspage
 802 * since then we can perfectly fit in 8 such objects.
 803 */
 804static int get_pages_per_zspage(int class_size)
 805{
 806        int i, max_usedpc = 0;
 807        /* zspage order which gives maximum used size per KB */
 808        int max_usedpc_order = 1;
 809
 810        for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 811                int zspage_size;
 812                int waste, usedpc;
 813
 814                zspage_size = i * PAGE_SIZE;
 815                waste = zspage_size % class_size;
 816                usedpc = (zspage_size - waste) * 100 / zspage_size;
 817
 818                if (usedpc > max_usedpc) {
 819                        max_usedpc = usedpc;
 820                        max_usedpc_order = i;
 821                }
 822        }
 823
 824        return max_usedpc_order;
 825}
 826
 827static struct zspage *get_zspage(struct page *page)
 828{
 829        struct zspage *zspage = (struct zspage *)page->private;
 830
 831        BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 832        return zspage;
 833}
 834
 835static struct page *get_next_page(struct page *page)
 836{
 837        if (unlikely(PageHugeObject(page)))
 838                return NULL;
 839
 840        return page->freelist;
 841}
 842
 843/**
 844 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
 845 * @obj: the encoded object value
 846 * @page: page object resides in zspage
 847 * @obj_idx: object index
 848 */
 849static void obj_to_location(unsigned long obj, struct page **page,
 850                                unsigned int *obj_idx)
 851{
 852        obj >>= OBJ_TAG_BITS;
 853        *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 854        *obj_idx = (obj & OBJ_INDEX_MASK);
 855}
 856
 857/**
 858 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
 859 * @page: page object resides in zspage
 860 * @obj_idx: object index
 861 */
 862static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
 863{
 864        unsigned long obj;
 865
 866        obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 867        obj |= obj_idx & OBJ_INDEX_MASK;
 868        obj <<= OBJ_TAG_BITS;
 869
 870        return obj;
 871}
 872
 873static unsigned long handle_to_obj(unsigned long handle)
 874{
 875        return *(unsigned long *)handle;
 876}
 877
 878static unsigned long obj_to_head(struct page *page, void *obj)
 879{
 880        if (unlikely(PageHugeObject(page))) {
 881                VM_BUG_ON_PAGE(!is_first_page(page), page);
 882                return page->index;
 883        } else
 884                return *(unsigned long *)obj;
 885}
 886
 887static inline int testpin_tag(unsigned long handle)
 888{
 889        return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
 890}
 891
 892static inline int trypin_tag(unsigned long handle)
 893{
 894        return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
 895}
 896
 897static void pin_tag(unsigned long handle)
 898{
 899        bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
 900}
 901
 902static void unpin_tag(unsigned long handle)
 903{
 904        bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
 905}
 906
 907static void reset_page(struct page *page)
 908{
 909        __ClearPageMovable(page);
 910        ClearPagePrivate(page);
 911        set_page_private(page, 0);
 912        page_mapcount_reset(page);
 913        ClearPageHugeObject(page);
 914        page->freelist = NULL;
 915}
 916
 917static int trylock_zspage(struct zspage *zspage)
 918{
 919        struct page *cursor, *fail;
 920
 921        for (cursor = get_first_page(zspage); cursor != NULL; cursor =
 922                                        get_next_page(cursor)) {
 923                if (!trylock_page(cursor)) {
 924                        fail = cursor;
 925                        goto unlock;
 926                }
 927        }
 928
 929        return 1;
 930unlock:
 931        for (cursor = get_first_page(zspage); cursor != fail; cursor =
 932                                        get_next_page(cursor))
 933                unlock_page(cursor);
 934
 935        return 0;
 936}
 937
 938static void __free_zspage(struct zs_pool *pool, struct size_class *class,
 939                                struct zspage *zspage)
 940{
 941        struct page *page, *next;
 942        enum fullness_group fg;
 943        unsigned int class_idx;
 944
 945        get_zspage_mapping(zspage, &class_idx, &fg);
 946
 947        assert_spin_locked(&class->lock);
 948
 949        VM_BUG_ON(get_zspage_inuse(zspage));
 950        VM_BUG_ON(fg != ZS_EMPTY);
 951
 952        next = page = get_first_page(zspage);
 953        do {
 954                VM_BUG_ON_PAGE(!PageLocked(page), page);
 955                next = get_next_page(page);
 956                reset_page(page);
 957                unlock_page(page);
 958                dec_zone_page_state(page, NR_ZSPAGES);
 959                put_page(page);
 960                page = next;
 961        } while (page != NULL);
 962
 963        cache_free_zspage(pool, zspage);
 964
 965        zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
 966        atomic_long_sub(class->pages_per_zspage,
 967                                        &pool->pages_allocated);
 968}
 969
 970static void free_zspage(struct zs_pool *pool, struct size_class *class,
 971                                struct zspage *zspage)
 972{
 973        VM_BUG_ON(get_zspage_inuse(zspage));
 974        VM_BUG_ON(list_empty(&zspage->list));
 975
 976        if (!trylock_zspage(zspage)) {
 977                kick_deferred_free(pool);
 978                return;
 979        }
 980
 981        remove_zspage(class, zspage, ZS_EMPTY);
 982        __free_zspage(pool, class, zspage);
 983}
 984
 985/* Initialize a newly allocated zspage */
 986static void init_zspage(struct size_class *class, struct zspage *zspage)
 987{
 988        unsigned int freeobj = 1;
 989        unsigned long off = 0;
 990        struct page *page = get_first_page(zspage);
 991
 992        while (page) {
 993                struct page *next_page;
 994                struct link_free *link;
 995                void *vaddr;
 996
 997                set_first_obj_offset(page, off);
 998
 999                vaddr = kmap_atomic(page);
1000                link = (struct link_free *)vaddr + off / sizeof(*link);
1001
1002                while ((off += class->size) < PAGE_SIZE) {
1003                        link->next = freeobj++ << OBJ_TAG_BITS;
1004                        link += class->size / sizeof(*link);
1005                }
1006
1007                /*
1008                 * We now come to the last (full or partial) object on this
1009                 * page, which must point to the first object on the next
1010                 * page (if present)
1011                 */
1012                next_page = get_next_page(page);
1013                if (next_page) {
1014                        link->next = freeobj++ << OBJ_TAG_BITS;
1015                } else {
1016                        /*
1017                         * Reset OBJ_TAG_BITS bit to last link to tell
1018                         * whether it's allocated object or not.
1019                         */
1020                        link->next = -1UL << OBJ_TAG_BITS;
1021                }
1022                kunmap_atomic(vaddr);
1023                page = next_page;
1024                off %= PAGE_SIZE;
1025        }
1026
1027        set_freeobj(zspage, 0);
1028}
1029
1030static void create_page_chain(struct size_class *class, struct zspage *zspage,
1031                                struct page *pages[])
1032{
1033        int i;
1034        struct page *page;
1035        struct page *prev_page = NULL;
1036        int nr_pages = class->pages_per_zspage;
1037
1038        /*
1039         * Allocate individual pages and link them together as:
1040         * 1. all pages are linked together using page->freelist
1041         * 2. each sub-page point to zspage using page->private
1042         *
1043         * we set PG_private to identify the first page (i.e. no other sub-page
1044         * has this flag set).
1045         */
1046        for (i = 0; i < nr_pages; i++) {
1047                page = pages[i];
1048                set_page_private(page, (unsigned long)zspage);
1049                page->freelist = NULL;
1050                if (i == 0) {
1051                        zspage->first_page = page;
1052                        SetPagePrivate(page);
1053                        if (unlikely(class->objs_per_zspage == 1 &&
1054                                        class->pages_per_zspage == 1))
1055                                SetPageHugeObject(page);
1056                } else {
1057                        prev_page->freelist = page;
1058                }
1059                prev_page = page;
1060        }
1061}
1062
1063/*
1064 * Allocate a zspage for the given size class
1065 */
1066static struct zspage *alloc_zspage(struct zs_pool *pool,
1067                                        struct size_class *class,
1068                                        gfp_t gfp)
1069{
1070        int i;
1071        struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1072        struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1073
1074        if (!zspage)
1075                return NULL;
1076
1077        memset(zspage, 0, sizeof(struct zspage));
1078        zspage->magic = ZSPAGE_MAGIC;
1079        migrate_lock_init(zspage);
1080
1081        for (i = 0; i < class->pages_per_zspage; i++) {
1082                struct page *page;
1083
1084                page = alloc_page(gfp);
1085                if (!page) {
1086                        while (--i >= 0) {
1087                                dec_zone_page_state(pages[i], NR_ZSPAGES);
1088                                __free_page(pages[i]);
1089                        }
1090                        cache_free_zspage(pool, zspage);
1091                        return NULL;
1092                }
1093
1094                inc_zone_page_state(page, NR_ZSPAGES);
1095                pages[i] = page;
1096        }
1097
1098        create_page_chain(class, zspage, pages);
1099        init_zspage(class, zspage);
1100
1101        return zspage;
1102}
1103
1104static struct zspage *find_get_zspage(struct size_class *class)
1105{
1106        int i;
1107        struct zspage *zspage;
1108
1109        for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1110                zspage = list_first_entry_or_null(&class->fullness_list[i],
1111                                struct zspage, list);
1112                if (zspage)
1113                        break;
1114        }
1115
1116        return zspage;
1117}
1118
1119#ifdef CONFIG_PGTABLE_MAPPING
1120static inline int __zs_cpu_up(struct mapping_area *area)
1121{
1122        /*
1123         * Make sure we don't leak memory if a cpu UP notification
1124         * and zs_init() race and both call zs_cpu_up() on the same cpu
1125         */
1126        if (area->vm)
1127                return 0;
1128        area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1129        if (!area->vm)
1130                return -ENOMEM;
1131        return 0;
1132}
1133
1134static inline void __zs_cpu_down(struct mapping_area *area)
1135{
1136        if (area->vm)
1137                free_vm_area(area->vm);
1138        area->vm = NULL;
1139}
1140
1141static inline void *__zs_map_object(struct mapping_area *area,
1142                                struct page *pages[2], int off, int size)
1143{
1144        BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1145        area->vm_addr = area->vm->addr;
1146        return area->vm_addr + off;
1147}
1148
1149static inline void __zs_unmap_object(struct mapping_area *area,
1150                                struct page *pages[2], int off, int size)
1151{
1152        unsigned long addr = (unsigned long)area->vm_addr;
1153
1154        unmap_kernel_range(addr, PAGE_SIZE * 2);
1155}
1156
1157#else /* CONFIG_PGTABLE_MAPPING */
1158
1159static inline int __zs_cpu_up(struct mapping_area *area)
1160{
1161        /*
1162         * Make sure we don't leak memory if a cpu UP notification
1163         * and zs_init() race and both call zs_cpu_up() on the same cpu
1164         */
1165        if (area->vm_buf)
1166                return 0;
1167        area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1168        if (!area->vm_buf)
1169                return -ENOMEM;
1170        return 0;
1171}
1172
1173static inline void __zs_cpu_down(struct mapping_area *area)
1174{
1175        kfree(area->vm_buf);
1176        area->vm_buf = NULL;
1177}
1178
1179static void *__zs_map_object(struct mapping_area *area,
1180                        struct page *pages[2], int off, int size)
1181{
1182        int sizes[2];
1183        void *addr;
1184        char *buf = area->vm_buf;
1185
1186        /* disable page faults to match kmap_atomic() return conditions */
1187        pagefault_disable();
1188
1189        /* no read fastpath */
1190        if (area->vm_mm == ZS_MM_WO)
1191                goto out;
1192
1193        sizes[0] = PAGE_SIZE - off;
1194        sizes[1] = size - sizes[0];
1195
1196        /* copy object to per-cpu buffer */
1197        addr = kmap_atomic(pages[0]);
1198        memcpy(buf, addr + off, sizes[0]);
1199        kunmap_atomic(addr);
1200        addr = kmap_atomic(pages[1]);
1201        memcpy(buf + sizes[0], addr, sizes[1]);
1202        kunmap_atomic(addr);
1203out:
1204        return area->vm_buf;
1205}
1206
1207static void __zs_unmap_object(struct mapping_area *area,
1208                        struct page *pages[2], int off, int size)
1209{
1210        int sizes[2];
1211        void *addr;
1212        char *buf;
1213
1214        /* no write fastpath */
1215        if (area->vm_mm == ZS_MM_RO)
1216                goto out;
1217
1218        buf = area->vm_buf;
1219        buf = buf + ZS_HANDLE_SIZE;
1220        size -= ZS_HANDLE_SIZE;
1221        off += ZS_HANDLE_SIZE;
1222
1223        sizes[0] = PAGE_SIZE - off;
1224        sizes[1] = size - sizes[0];
1225
1226        /* copy per-cpu buffer to object */
1227        addr = kmap_atomic(pages[0]);
1228        memcpy(addr + off, buf, sizes[0]);
1229        kunmap_atomic(addr);
1230        addr = kmap_atomic(pages[1]);
1231        memcpy(addr, buf + sizes[0], sizes[1]);
1232        kunmap_atomic(addr);
1233
1234out:
1235        /* enable page faults to match kunmap_atomic() return conditions */
1236        pagefault_enable();
1237}
1238
1239#endif /* CONFIG_PGTABLE_MAPPING */
1240
1241static int zs_cpu_prepare(unsigned int cpu)
1242{
1243        struct mapping_area *area;
1244
1245        area = &per_cpu(zs_map_area, cpu);
1246        return __zs_cpu_up(area);
1247}
1248
1249static int zs_cpu_dead(unsigned int cpu)
1250{
1251        struct mapping_area *area;
1252
1253        area = &per_cpu(zs_map_area, cpu);
1254        __zs_cpu_down(area);
1255        return 0;
1256}
1257
1258static bool can_merge(struct size_class *prev, int pages_per_zspage,
1259                                        int objs_per_zspage)
1260{
1261        if (prev->pages_per_zspage == pages_per_zspage &&
1262                prev->objs_per_zspage == objs_per_zspage)
1263                return true;
1264
1265        return false;
1266}
1267
1268static bool zspage_full(struct size_class *class, struct zspage *zspage)
1269{
1270        return get_zspage_inuse(zspage) == class->objs_per_zspage;
1271}
1272
1273unsigned long zs_get_total_pages(struct zs_pool *pool)
1274{
1275        return atomic_long_read(&pool->pages_allocated);
1276}
1277EXPORT_SYMBOL_GPL(zs_get_total_pages);
1278
1279/**
1280 * zs_map_object - get address of allocated object from handle.
1281 * @pool: pool from which the object was allocated
1282 * @handle: handle returned from zs_malloc
1283 * @mm: maping mode to use
1284 *
1285 * Before using an object allocated from zs_malloc, it must be mapped using
1286 * this function. When done with the object, it must be unmapped using
1287 * zs_unmap_object.
1288 *
1289 * Only one object can be mapped per cpu at a time. There is no protection
1290 * against nested mappings.
1291 *
1292 * This function returns with preemption and page faults disabled.
1293 */
1294void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1295                        enum zs_mapmode mm)
1296{
1297        struct zspage *zspage;
1298        struct page *page;
1299        unsigned long obj, off;
1300        unsigned int obj_idx;
1301
1302        unsigned int class_idx;
1303        enum fullness_group fg;
1304        struct size_class *class;
1305        struct mapping_area *area;
1306        struct page *pages[2];
1307        void *ret;
1308
1309        /*
1310         * Because we use per-cpu mapping areas shared among the
1311         * pools/users, we can't allow mapping in interrupt context
1312         * because it can corrupt another users mappings.
1313         */
1314        BUG_ON(in_interrupt());
1315
1316        /* From now on, migration cannot move the object */
1317        pin_tag(handle);
1318
1319        obj = handle_to_obj(handle);
1320        obj_to_location(obj, &page, &obj_idx);
1321        zspage = get_zspage(page);
1322
1323        /* migration cannot move any subpage in this zspage */
1324        migrate_read_lock(zspage);
1325
1326        get_zspage_mapping(zspage, &class_idx, &fg);
1327        class = pool->size_class[class_idx];
1328        off = (class->size * obj_idx) & ~PAGE_MASK;
1329
1330        area = &get_cpu_var(zs_map_area);
1331        area->vm_mm = mm;
1332        if (off + class->size <= PAGE_SIZE) {
1333                /* this object is contained entirely within a page */
1334                area->vm_addr = kmap_atomic(page);
1335                ret = area->vm_addr + off;
1336                goto out;
1337        }
1338
1339        /* this object spans two pages */
1340        pages[0] = page;
1341        pages[1] = get_next_page(page);
1342        BUG_ON(!pages[1]);
1343
1344        ret = __zs_map_object(area, pages, off, class->size);
1345out:
1346        if (likely(!PageHugeObject(page)))
1347                ret += ZS_HANDLE_SIZE;
1348
1349        return ret;
1350}
1351EXPORT_SYMBOL_GPL(zs_map_object);
1352
1353void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1354{
1355        struct zspage *zspage;
1356        struct page *page;
1357        unsigned long obj, off;
1358        unsigned int obj_idx;
1359
1360        unsigned int class_idx;
1361        enum fullness_group fg;
1362        struct size_class *class;
1363        struct mapping_area *area;
1364
1365        obj = handle_to_obj(handle);
1366        obj_to_location(obj, &page, &obj_idx);
1367        zspage = get_zspage(page);
1368        get_zspage_mapping(zspage, &class_idx, &fg);
1369        class = pool->size_class[class_idx];
1370        off = (class->size * obj_idx) & ~PAGE_MASK;
1371
1372        area = this_cpu_ptr(&zs_map_area);
1373        if (off + class->size <= PAGE_SIZE)
1374                kunmap_atomic(area->vm_addr);
1375        else {
1376                struct page *pages[2];
1377
1378                pages[0] = page;
1379                pages[1] = get_next_page(page);
1380                BUG_ON(!pages[1]);
1381
1382                __zs_unmap_object(area, pages, off, class->size);
1383        }
1384        put_cpu_var(zs_map_area);
1385
1386        migrate_read_unlock(zspage);
1387        unpin_tag(handle);
1388}
1389EXPORT_SYMBOL_GPL(zs_unmap_object);
1390
1391/**
1392 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1393 *                        zsmalloc &size_class.
1394 * @pool: zsmalloc pool to use
1395 *
1396 * The function returns the size of the first huge class - any object of equal
1397 * or bigger size will be stored in zspage consisting of a single physical
1398 * page.
1399 *
1400 * Context: Any context.
1401 *
1402 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1403 */
1404size_t zs_huge_class_size(struct zs_pool *pool)
1405{
1406        return huge_class_size;
1407}
1408EXPORT_SYMBOL_GPL(zs_huge_class_size);
1409
1410static unsigned long obj_malloc(struct size_class *class,
1411                                struct zspage *zspage, unsigned long handle)
1412{
1413        int i, nr_page, offset;
1414        unsigned long obj;
1415        struct link_free *link;
1416
1417        struct page *m_page;
1418        unsigned long m_offset;
1419        void *vaddr;
1420
1421        handle |= OBJ_ALLOCATED_TAG;
1422        obj = get_freeobj(zspage);
1423
1424        offset = obj * class->size;
1425        nr_page = offset >> PAGE_SHIFT;
1426        m_offset = offset & ~PAGE_MASK;
1427        m_page = get_first_page(zspage);
1428
1429        for (i = 0; i < nr_page; i++)
1430                m_page = get_next_page(m_page);
1431
1432        vaddr = kmap_atomic(m_page);
1433        link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1434        set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1435        if (likely(!PageHugeObject(m_page)))
1436                /* record handle in the header of allocated chunk */
1437                link->handle = handle;
1438        else
1439                /* record handle to page->index */
1440                zspage->first_page->index = handle;
1441
1442        kunmap_atomic(vaddr);
1443        mod_zspage_inuse(zspage, 1);
1444        zs_stat_inc(class, OBJ_USED, 1);
1445
1446        obj = location_to_obj(m_page, obj);
1447
1448        return obj;
1449}
1450
1451
1452/**
1453 * zs_malloc - Allocate block of given size from pool.
1454 * @pool: pool to allocate from
1455 * @size: size of block to allocate
1456 * @gfp: gfp flags when allocating object
1457 *
1458 * On success, handle to the allocated object is returned,
1459 * otherwise 0.
1460 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1461 */
1462unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1463{
1464        unsigned long handle, obj;
1465        struct size_class *class;
1466        enum fullness_group newfg;
1467        struct zspage *zspage;
1468
1469        if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1470                return 0;
1471
1472        handle = cache_alloc_handle(pool, gfp);
1473        if (!handle)
1474                return 0;
1475
1476        /* extra space in chunk to keep the handle */
1477        size += ZS_HANDLE_SIZE;
1478        class = pool->size_class[get_size_class_index(size)];
1479
1480        spin_lock(&class->lock);
1481        zspage = find_get_zspage(class);
1482        if (likely(zspage)) {
1483                obj = obj_malloc(class, zspage, handle);
1484                /* Now move the zspage to another fullness group, if required */
1485                fix_fullness_group(class, zspage);
1486                record_obj(handle, obj);
1487                spin_unlock(&class->lock);
1488
1489                return handle;
1490        }
1491
1492        spin_unlock(&class->lock);
1493
1494        zspage = alloc_zspage(pool, class, gfp);
1495        if (!zspage) {
1496                cache_free_handle(pool, handle);
1497                return 0;
1498        }
1499
1500        spin_lock(&class->lock);
1501        obj = obj_malloc(class, zspage, handle);
1502        newfg = get_fullness_group(class, zspage);
1503        insert_zspage(class, zspage, newfg);
1504        set_zspage_mapping(zspage, class->index, newfg);
1505        record_obj(handle, obj);
1506        atomic_long_add(class->pages_per_zspage,
1507                                &pool->pages_allocated);
1508        zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1509
1510        /* We completely set up zspage so mark them as movable */
1511        SetZsPageMovable(pool, zspage);
1512        spin_unlock(&class->lock);
1513
1514        return handle;
1515}
1516EXPORT_SYMBOL_GPL(zs_malloc);
1517
1518static void obj_free(struct size_class *class, unsigned long obj)
1519{
1520        struct link_free *link;
1521        struct zspage *zspage;
1522        struct page *f_page;
1523        unsigned long f_offset;
1524        unsigned int f_objidx;
1525        void *vaddr;
1526
1527        obj &= ~OBJ_ALLOCATED_TAG;
1528        obj_to_location(obj, &f_page, &f_objidx);
1529        f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1530        zspage = get_zspage(f_page);
1531
1532        vaddr = kmap_atomic(f_page);
1533
1534        /* Insert this object in containing zspage's freelist */
1535        link = (struct link_free *)(vaddr + f_offset);
1536        link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1537        kunmap_atomic(vaddr);
1538        set_freeobj(zspage, f_objidx);
1539        mod_zspage_inuse(zspage, -1);
1540        zs_stat_dec(class, OBJ_USED, 1);
1541}
1542
1543void zs_free(struct zs_pool *pool, unsigned long handle)
1544{
1545        struct zspage *zspage;
1546        struct page *f_page;
1547        unsigned long obj;
1548        unsigned int f_objidx;
1549        int class_idx;
1550        struct size_class *class;
1551        enum fullness_group fullness;
1552        bool isolated;
1553
1554        if (unlikely(!handle))
1555                return;
1556
1557        pin_tag(handle);
1558        obj = handle_to_obj(handle);
1559        obj_to_location(obj, &f_page, &f_objidx);
1560        zspage = get_zspage(f_page);
1561
1562        migrate_read_lock(zspage);
1563
1564        get_zspage_mapping(zspage, &class_idx, &fullness);
1565        class = pool->size_class[class_idx];
1566
1567        spin_lock(&class->lock);
1568        obj_free(class, obj);
1569        fullness = fix_fullness_group(class, zspage);
1570        if (fullness != ZS_EMPTY) {
1571                migrate_read_unlock(zspage);
1572                goto out;
1573        }
1574
1575        isolated = is_zspage_isolated(zspage);
1576        migrate_read_unlock(zspage);
1577        /* If zspage is isolated, zs_page_putback will free the zspage */
1578        if (likely(!isolated))
1579                free_zspage(pool, class, zspage);
1580out:
1581
1582        spin_unlock(&class->lock);
1583        unpin_tag(handle);
1584        cache_free_handle(pool, handle);
1585}
1586EXPORT_SYMBOL_GPL(zs_free);
1587
1588static void zs_object_copy(struct size_class *class, unsigned long dst,
1589                                unsigned long src)
1590{
1591        struct page *s_page, *d_page;
1592        unsigned int s_objidx, d_objidx;
1593        unsigned long s_off, d_off;
1594        void *s_addr, *d_addr;
1595        int s_size, d_size, size;
1596        int written = 0;
1597
1598        s_size = d_size = class->size;
1599
1600        obj_to_location(src, &s_page, &s_objidx);
1601        obj_to_location(dst, &d_page, &d_objidx);
1602
1603        s_off = (class->size * s_objidx) & ~PAGE_MASK;
1604        d_off = (class->size * d_objidx) & ~PAGE_MASK;
1605
1606        if (s_off + class->size > PAGE_SIZE)
1607                s_size = PAGE_SIZE - s_off;
1608
1609        if (d_off + class->size > PAGE_SIZE)
1610                d_size = PAGE_SIZE - d_off;
1611
1612        s_addr = kmap_atomic(s_page);
1613        d_addr = kmap_atomic(d_page);
1614
1615        while (1) {
1616                size = min(s_size, d_size);
1617                memcpy(d_addr + d_off, s_addr + s_off, size);
1618                written += size;
1619
1620                if (written == class->size)
1621                        break;
1622
1623                s_off += size;
1624                s_size -= size;
1625                d_off += size;
1626                d_size -= size;
1627
1628                if (s_off >= PAGE_SIZE) {
1629                        kunmap_atomic(d_addr);
1630                        kunmap_atomic(s_addr);
1631                        s_page = get_next_page(s_page);
1632                        s_addr = kmap_atomic(s_page);
1633                        d_addr = kmap_atomic(d_page);
1634                        s_size = class->size - written;
1635                        s_off = 0;
1636                }
1637
1638                if (d_off >= PAGE_SIZE) {
1639                        kunmap_atomic(d_addr);
1640                        d_page = get_next_page(d_page);
1641                        d_addr = kmap_atomic(d_page);
1642                        d_size = class->size - written;
1643                        d_off = 0;
1644                }
1645        }
1646
1647        kunmap_atomic(d_addr);
1648        kunmap_atomic(s_addr);
1649}
1650
1651/*
1652 * Find alloced object in zspage from index object and
1653 * return handle.
1654 */
1655static unsigned long find_alloced_obj(struct size_class *class,
1656                                        struct page *page, int *obj_idx)
1657{
1658        unsigned long head;
1659        int offset = 0;
1660        int index = *obj_idx;
1661        unsigned long handle = 0;
1662        void *addr = kmap_atomic(page);
1663
1664        offset = get_first_obj_offset(page);
1665        offset += class->size * index;
1666
1667        while (offset < PAGE_SIZE) {
1668                head = obj_to_head(page, addr + offset);
1669                if (head & OBJ_ALLOCATED_TAG) {
1670                        handle = head & ~OBJ_ALLOCATED_TAG;
1671                        if (trypin_tag(handle))
1672                                break;
1673                        handle = 0;
1674                }
1675
1676                offset += class->size;
1677                index++;
1678        }
1679
1680        kunmap_atomic(addr);
1681
1682        *obj_idx = index;
1683
1684        return handle;
1685}
1686
1687struct zs_compact_control {
1688        /* Source spage for migration which could be a subpage of zspage */
1689        struct page *s_page;
1690        /* Destination page for migration which should be a first page
1691         * of zspage. */
1692        struct page *d_page;
1693         /* Starting object index within @s_page which used for live object
1694          * in the subpage. */
1695        int obj_idx;
1696};
1697
1698static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1699                                struct zs_compact_control *cc)
1700{
1701        unsigned long used_obj, free_obj;
1702        unsigned long handle;
1703        struct page *s_page = cc->s_page;
1704        struct page *d_page = cc->d_page;
1705        int obj_idx = cc->obj_idx;
1706        int ret = 0;
1707
1708        while (1) {
1709                handle = find_alloced_obj(class, s_page, &obj_idx);
1710                if (!handle) {
1711                        s_page = get_next_page(s_page);
1712                        if (!s_page)
1713                                break;
1714                        obj_idx = 0;
1715                        continue;
1716                }
1717
1718                /* Stop if there is no more space */
1719                if (zspage_full(class, get_zspage(d_page))) {
1720                        unpin_tag(handle);
1721                        ret = -ENOMEM;
1722                        break;
1723                }
1724
1725                used_obj = handle_to_obj(handle);
1726                free_obj = obj_malloc(class, get_zspage(d_page), handle);
1727                zs_object_copy(class, free_obj, used_obj);
1728                obj_idx++;
1729                /*
1730                 * record_obj updates handle's value to free_obj and it will
1731                 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1732                 * breaks synchronization using pin_tag(e,g, zs_free) so
1733                 * let's keep the lock bit.
1734                 */
1735                free_obj |= BIT(HANDLE_PIN_BIT);
1736                record_obj(handle, free_obj);
1737                unpin_tag(handle);
1738                obj_free(class, used_obj);
1739        }
1740
1741        /* Remember last position in this iteration */
1742        cc->s_page = s_page;
1743        cc->obj_idx = obj_idx;
1744
1745        return ret;
1746}
1747
1748static struct zspage *isolate_zspage(struct size_class *class, bool source)
1749{
1750        int i;
1751        struct zspage *zspage;
1752        enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1753
1754        if (!source) {
1755                fg[0] = ZS_ALMOST_FULL;
1756                fg[1] = ZS_ALMOST_EMPTY;
1757        }
1758
1759        for (i = 0; i < 2; i++) {
1760                zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1761                                                        struct zspage, list);
1762                if (zspage) {
1763                        VM_BUG_ON(is_zspage_isolated(zspage));
1764                        remove_zspage(class, zspage, fg[i]);
1765                        return zspage;
1766                }
1767        }
1768
1769        return zspage;
1770}
1771
1772/*
1773 * putback_zspage - add @zspage into right class's fullness list
1774 * @class: destination class
1775 * @zspage: target page
1776 *
1777 * Return @zspage's fullness_group
1778 */
1779static enum fullness_group putback_zspage(struct size_class *class,
1780                        struct zspage *zspage)
1781{
1782        enum fullness_group fullness;
1783
1784        VM_BUG_ON(is_zspage_isolated(zspage));
1785
1786        fullness = get_fullness_group(class, zspage);
1787        insert_zspage(class, zspage, fullness);
1788        set_zspage_mapping(zspage, class->index, fullness);
1789
1790        return fullness;
1791}
1792
1793#ifdef CONFIG_COMPACTION
1794/*
1795 * To prevent zspage destroy during migration, zspage freeing should
1796 * hold locks of all pages in the zspage.
1797 */
1798static void lock_zspage(struct zspage *zspage)
1799{
1800        struct page *page = get_first_page(zspage);
1801
1802        do {
1803                lock_page(page);
1804        } while ((page = get_next_page(page)) != NULL);
1805}
1806
1807static int zs_init_fs_context(struct fs_context *fc)
1808{
1809        return init_pseudo(fc, ZSMALLOC_MAGIC) ? 0 : -ENOMEM;
1810}
1811
1812static struct file_system_type zsmalloc_fs = {
1813        .name           = "zsmalloc",
1814        .init_fs_context = zs_init_fs_context,
1815        .kill_sb        = kill_anon_super,
1816};
1817
1818static int zsmalloc_mount(void)
1819{
1820        int ret = 0;
1821
1822        zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1823        if (IS_ERR(zsmalloc_mnt))
1824                ret = PTR_ERR(zsmalloc_mnt);
1825
1826        return ret;
1827}
1828
1829static void zsmalloc_unmount(void)
1830{
1831        kern_unmount(zsmalloc_mnt);
1832}
1833
1834static void migrate_lock_init(struct zspage *zspage)
1835{
1836        rwlock_init(&zspage->lock);
1837}
1838
1839static void migrate_read_lock(struct zspage *zspage)
1840{
1841        read_lock(&zspage->lock);
1842}
1843
1844static void migrate_read_unlock(struct zspage *zspage)
1845{
1846        read_unlock(&zspage->lock);
1847}
1848
1849static void migrate_write_lock(struct zspage *zspage)
1850{
1851        write_lock(&zspage->lock);
1852}
1853
1854static void migrate_write_unlock(struct zspage *zspage)
1855{
1856        write_unlock(&zspage->lock);
1857}
1858
1859/* Number of isolated subpage for *page migration* in this zspage */
1860static void inc_zspage_isolation(struct zspage *zspage)
1861{
1862        zspage->isolated++;
1863}
1864
1865static void dec_zspage_isolation(struct zspage *zspage)
1866{
1867        zspage->isolated--;
1868}
1869
1870static void putback_zspage_deferred(struct zs_pool *pool,
1871                                    struct size_class *class,
1872                                    struct zspage *zspage)
1873{
1874        enum fullness_group fg;
1875
1876        fg = putback_zspage(class, zspage);
1877        if (fg == ZS_EMPTY)
1878                schedule_work(&pool->free_work);
1879
1880}
1881
1882static inline void zs_pool_dec_isolated(struct zs_pool *pool)
1883{
1884        VM_BUG_ON(atomic_long_read(&pool->isolated_pages) <= 0);
1885        atomic_long_dec(&pool->isolated_pages);
1886        /*
1887         * There's no possibility of racing, since wait_for_isolated_drain()
1888         * checks the isolated count under &class->lock after enqueuing
1889         * on migration_wait.
1890         */
1891        if (atomic_long_read(&pool->isolated_pages) == 0 && pool->destroying)
1892                wake_up_all(&pool->migration_wait);
1893}
1894
1895static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1896                                struct page *newpage, struct page *oldpage)
1897{
1898        struct page *page;
1899        struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1900        int idx = 0;
1901
1902        page = get_first_page(zspage);
1903        do {
1904                if (page == oldpage)
1905                        pages[idx] = newpage;
1906                else
1907                        pages[idx] = page;
1908                idx++;
1909        } while ((page = get_next_page(page)) != NULL);
1910
1911        create_page_chain(class, zspage, pages);
1912        set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1913        if (unlikely(PageHugeObject(oldpage)))
1914                newpage->index = oldpage->index;
1915        __SetPageMovable(newpage, page_mapping(oldpage));
1916}
1917
1918static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1919{
1920        struct zs_pool *pool;
1921        struct size_class *class;
1922        int class_idx;
1923        enum fullness_group fullness;
1924        struct zspage *zspage;
1925        struct address_space *mapping;
1926
1927        /*
1928         * Page is locked so zspage couldn't be destroyed. For detail, look at
1929         * lock_zspage in free_zspage.
1930         */
1931        VM_BUG_ON_PAGE(!PageMovable(page), page);
1932        VM_BUG_ON_PAGE(PageIsolated(page), page);
1933
1934        zspage = get_zspage(page);
1935
1936        /*
1937         * Without class lock, fullness could be stale while class_idx is okay
1938         * because class_idx is constant unless page is freed so we should get
1939         * fullness again under class lock.
1940         */
1941        get_zspage_mapping(zspage, &class_idx, &fullness);
1942        mapping = page_mapping(page);
1943        pool = mapping->private_data;
1944        class = pool->size_class[class_idx];
1945
1946        spin_lock(&class->lock);
1947        if (get_zspage_inuse(zspage) == 0) {
1948                spin_unlock(&class->lock);
1949                return false;
1950        }
1951
1952        /* zspage is isolated for object migration */
1953        if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1954                spin_unlock(&class->lock);
1955                return false;
1956        }
1957
1958        /*
1959         * If this is first time isolation for the zspage, isolate zspage from
1960         * size_class to prevent further object allocation from the zspage.
1961         */
1962        if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1963                get_zspage_mapping(zspage, &class_idx, &fullness);
1964                atomic_long_inc(&pool->isolated_pages);
1965                remove_zspage(class, zspage, fullness);
1966        }
1967
1968        inc_zspage_isolation(zspage);
1969        spin_unlock(&class->lock);
1970
1971        return true;
1972}
1973
1974static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1975                struct page *page, enum migrate_mode mode)
1976{
1977        struct zs_pool *pool;
1978        struct size_class *class;
1979        int class_idx;
1980        enum fullness_group fullness;
1981        struct zspage *zspage;
1982        struct page *dummy;
1983        void *s_addr, *d_addr, *addr;
1984        int offset, pos;
1985        unsigned long handle, head;
1986        unsigned long old_obj, new_obj;
1987        unsigned int obj_idx;
1988        int ret = -EAGAIN;
1989
1990        /*
1991         * We cannot support the _NO_COPY case here, because copy needs to
1992         * happen under the zs lock, which does not work with
1993         * MIGRATE_SYNC_NO_COPY workflow.
1994         */
1995        if (mode == MIGRATE_SYNC_NO_COPY)
1996                return -EINVAL;
1997
1998        VM_BUG_ON_PAGE(!PageMovable(page), page);
1999        VM_BUG_ON_PAGE(!PageIsolated(page), page);
2000
2001        zspage = get_zspage(page);
2002
2003        /* Concurrent compactor cannot migrate any subpage in zspage */
2004        migrate_write_lock(zspage);
2005        get_zspage_mapping(zspage, &class_idx, &fullness);
2006        pool = mapping->private_data;
2007        class = pool->size_class[class_idx];
2008        offset = get_first_obj_offset(page);
2009
2010        spin_lock(&class->lock);
2011        if (!get_zspage_inuse(zspage)) {
2012                /*
2013                 * Set "offset" to end of the page so that every loops
2014                 * skips unnecessary object scanning.
2015                 */
2016                offset = PAGE_SIZE;
2017        }
2018
2019        pos = offset;
2020        s_addr = kmap_atomic(page);
2021        while (pos < PAGE_SIZE) {
2022                head = obj_to_head(page, s_addr + pos);
2023                if (head & OBJ_ALLOCATED_TAG) {
2024                        handle = head & ~OBJ_ALLOCATED_TAG;
2025                        if (!trypin_tag(handle))
2026                                goto unpin_objects;
2027                }
2028                pos += class->size;
2029        }
2030
2031        /*
2032         * Here, any user cannot access all objects in the zspage so let's move.
2033         */
2034        d_addr = kmap_atomic(newpage);
2035        memcpy(d_addr, s_addr, PAGE_SIZE);
2036        kunmap_atomic(d_addr);
2037
2038        for (addr = s_addr + offset; addr < s_addr + pos;
2039                                        addr += class->size) {
2040                head = obj_to_head(page, addr);
2041                if (head & OBJ_ALLOCATED_TAG) {
2042                        handle = head & ~OBJ_ALLOCATED_TAG;
2043                        if (!testpin_tag(handle))
2044                                BUG();
2045
2046                        old_obj = handle_to_obj(handle);
2047                        obj_to_location(old_obj, &dummy, &obj_idx);
2048                        new_obj = (unsigned long)location_to_obj(newpage,
2049                                                                obj_idx);
2050                        new_obj |= BIT(HANDLE_PIN_BIT);
2051                        record_obj(handle, new_obj);
2052                }
2053        }
2054
2055        replace_sub_page(class, zspage, newpage, page);
2056        get_page(newpage);
2057
2058        dec_zspage_isolation(zspage);
2059
2060        /*
2061         * Page migration is done so let's putback isolated zspage to
2062         * the list if @page is final isolated subpage in the zspage.
2063         */
2064        if (!is_zspage_isolated(zspage)) {
2065                /*
2066                 * We cannot race with zs_destroy_pool() here because we wait
2067                 * for isolation to hit zero before we start destroying.
2068                 * Also, we ensure that everyone can see pool->destroying before
2069                 * we start waiting.
2070                 */
2071                putback_zspage_deferred(pool, class, zspage);
2072                zs_pool_dec_isolated(pool);
2073        }
2074
2075        reset_page(page);
2076        put_page(page);
2077        page = newpage;
2078
2079        ret = MIGRATEPAGE_SUCCESS;
2080unpin_objects:
2081        for (addr = s_addr + offset; addr < s_addr + pos;
2082                                                addr += class->size) {
2083                head = obj_to_head(page, addr);
2084                if (head & OBJ_ALLOCATED_TAG) {
2085                        handle = head & ~OBJ_ALLOCATED_TAG;
2086                        if (!testpin_tag(handle))
2087                                BUG();
2088                        unpin_tag(handle);
2089                }
2090        }
2091        kunmap_atomic(s_addr);
2092        spin_unlock(&class->lock);
2093        migrate_write_unlock(zspage);
2094
2095        return ret;
2096}
2097
2098static void zs_page_putback(struct page *page)
2099{
2100        struct zs_pool *pool;
2101        struct size_class *class;
2102        int class_idx;
2103        enum fullness_group fg;
2104        struct address_space *mapping;
2105        struct zspage *zspage;
2106
2107        VM_BUG_ON_PAGE(!PageMovable(page), page);
2108        VM_BUG_ON_PAGE(!PageIsolated(page), page);
2109
2110        zspage = get_zspage(page);
2111        get_zspage_mapping(zspage, &class_idx, &fg);
2112        mapping = page_mapping(page);
2113        pool = mapping->private_data;
2114        class = pool->size_class[class_idx];
2115
2116        spin_lock(&class->lock);
2117        dec_zspage_isolation(zspage);
2118        if (!is_zspage_isolated(zspage)) {
2119                /*
2120                 * Due to page_lock, we cannot free zspage immediately
2121                 * so let's defer.
2122                 */
2123                putback_zspage_deferred(pool, class, zspage);
2124                zs_pool_dec_isolated(pool);
2125        }
2126        spin_unlock(&class->lock);
2127}
2128
2129static const struct address_space_operations zsmalloc_aops = {
2130        .isolate_page = zs_page_isolate,
2131        .migratepage = zs_page_migrate,
2132        .putback_page = zs_page_putback,
2133};
2134
2135static int zs_register_migration(struct zs_pool *pool)
2136{
2137        pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2138        if (IS_ERR(pool->inode)) {
2139                pool->inode = NULL;
2140                return 1;
2141        }
2142
2143        pool->inode->i_mapping->private_data = pool;
2144        pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2145        return 0;
2146}
2147
2148static bool pool_isolated_are_drained(struct zs_pool *pool)
2149{
2150        return atomic_long_read(&pool->isolated_pages) == 0;
2151}
2152
2153/* Function for resolving migration */
2154static void wait_for_isolated_drain(struct zs_pool *pool)
2155{
2156
2157        /*
2158         * We're in the process of destroying the pool, so there are no
2159         * active allocations. zs_page_isolate() fails for completely free
2160         * zspages, so we need only wait for the zs_pool's isolated
2161         * count to hit zero.
2162         */
2163        wait_event(pool->migration_wait,
2164                   pool_isolated_are_drained(pool));
2165}
2166
2167static void zs_unregister_migration(struct zs_pool *pool)
2168{
2169        pool->destroying = true;
2170        /*
2171         * We need a memory barrier here to ensure global visibility of
2172         * pool->destroying. Thus pool->isolated pages will either be 0 in which
2173         * case we don't care, or it will be > 0 and pool->destroying will
2174         * ensure that we wake up once isolation hits 0.
2175         */
2176        smp_mb();
2177        wait_for_isolated_drain(pool); /* This can block */
2178        flush_work(&pool->free_work);
2179        iput(pool->inode);
2180}
2181
2182/*
2183 * Caller should hold page_lock of all pages in the zspage
2184 * In here, we cannot use zspage meta data.
2185 */
2186static void async_free_zspage(struct work_struct *work)
2187{
2188        int i;
2189        struct size_class *class;
2190        unsigned int class_idx;
2191        enum fullness_group fullness;
2192        struct zspage *zspage, *tmp;
2193        LIST_HEAD(free_pages);
2194        struct zs_pool *pool = container_of(work, struct zs_pool,
2195                                        free_work);
2196
2197        for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2198                class = pool->size_class[i];
2199                if (class->index != i)
2200                        continue;
2201
2202                spin_lock(&class->lock);
2203                list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2204                spin_unlock(&class->lock);
2205        }
2206
2207
2208        list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2209                list_del(&zspage->list);
2210                lock_zspage(zspage);
2211
2212                get_zspage_mapping(zspage, &class_idx, &fullness);
2213                VM_BUG_ON(fullness != ZS_EMPTY);
2214                class = pool->size_class[class_idx];
2215                spin_lock(&class->lock);
2216                __free_zspage(pool, pool->size_class[class_idx], zspage);
2217                spin_unlock(&class->lock);
2218        }
2219};
2220
2221static void kick_deferred_free(struct zs_pool *pool)
2222{
2223        schedule_work(&pool->free_work);
2224}
2225
2226static void init_deferred_free(struct zs_pool *pool)
2227{
2228        INIT_WORK(&pool->free_work, async_free_zspage);
2229}
2230
2231static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2232{
2233        struct page *page = get_first_page(zspage);
2234
2235        do {
2236                WARN_ON(!trylock_page(page));
2237                __SetPageMovable(page, pool->inode->i_mapping);
2238                unlock_page(page);
2239        } while ((page = get_next_page(page)) != NULL);
2240}
2241#endif
2242
2243/*
2244 *
2245 * Based on the number of unused allocated objects calculate
2246 * and return the number of pages that we can free.
2247 */
2248static unsigned long zs_can_compact(struct size_class *class)
2249{
2250        unsigned long obj_wasted;
2251        unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2252        unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2253
2254        if (obj_allocated <= obj_used)
2255                return 0;
2256
2257        obj_wasted = obj_allocated - obj_used;
2258        obj_wasted /= class->objs_per_zspage;
2259
2260        return obj_wasted * class->pages_per_zspage;
2261}
2262
2263static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2264{
2265        struct zs_compact_control cc;
2266        struct zspage *src_zspage;
2267        struct zspage *dst_zspage = NULL;
2268
2269        spin_lock(&class->lock);
2270        while ((src_zspage = isolate_zspage(class, true))) {
2271
2272                if (!zs_can_compact(class))
2273                        break;
2274
2275                cc.obj_idx = 0;
2276                cc.s_page = get_first_page(src_zspage);
2277
2278                while ((dst_zspage = isolate_zspage(class, false))) {
2279                        cc.d_page = get_first_page(dst_zspage);
2280                        /*
2281                         * If there is no more space in dst_page, resched
2282                         * and see if anyone had allocated another zspage.
2283                         */
2284                        if (!migrate_zspage(pool, class, &cc))
2285                                break;
2286
2287                        putback_zspage(class, dst_zspage);
2288                }
2289
2290                /* Stop if we couldn't find slot */
2291                if (dst_zspage == NULL)
2292                        break;
2293
2294                putback_zspage(class, dst_zspage);
2295                if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2296                        free_zspage(pool, class, src_zspage);
2297                        pool->stats.pages_compacted += class->pages_per_zspage;
2298                }
2299                spin_unlock(&class->lock);
2300                cond_resched();
2301                spin_lock(&class->lock);
2302        }
2303
2304        if (src_zspage)
2305                putback_zspage(class, src_zspage);
2306
2307        spin_unlock(&class->lock);
2308}
2309
2310unsigned long zs_compact(struct zs_pool *pool)
2311{
2312        int i;
2313        struct size_class *class;
2314
2315        for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2316                class = pool->size_class[i];
2317                if (!class)
2318                        continue;
2319                if (class->index != i)
2320                        continue;
2321                __zs_compact(pool, class);
2322        }
2323
2324        return pool->stats.pages_compacted;
2325}
2326EXPORT_SYMBOL_GPL(zs_compact);
2327
2328void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2329{
2330        memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2331}
2332EXPORT_SYMBOL_GPL(zs_pool_stats);
2333
2334static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2335                struct shrink_control *sc)
2336{
2337        unsigned long pages_freed;
2338        struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2339                        shrinker);
2340
2341        pages_freed = pool->stats.pages_compacted;
2342        /*
2343         * Compact classes and calculate compaction delta.
2344         * Can run concurrently with a manually triggered
2345         * (by user) compaction.
2346         */
2347        pages_freed = zs_compact(pool) - pages_freed;
2348
2349        return pages_freed ? pages_freed : SHRINK_STOP;
2350}
2351
2352static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2353                struct shrink_control *sc)
2354{
2355        int i;
2356        struct size_class *class;
2357        unsigned long pages_to_free = 0;
2358        struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2359                        shrinker);
2360
2361        for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2362                class = pool->size_class[i];
2363                if (!class)
2364                        continue;
2365                if (class->index != i)
2366                        continue;
2367
2368                pages_to_free += zs_can_compact(class);
2369        }
2370
2371        return pages_to_free;
2372}
2373
2374static void zs_unregister_shrinker(struct zs_pool *pool)
2375{
2376        unregister_shrinker(&pool->shrinker);
2377}
2378
2379static int zs_register_shrinker(struct zs_pool *pool)
2380{
2381        pool->shrinker.scan_objects = zs_shrinker_scan;
2382        pool->shrinker.count_objects = zs_shrinker_count;
2383        pool->shrinker.batch = 0;
2384        pool->shrinker.seeks = DEFAULT_SEEKS;
2385
2386        return register_shrinker(&pool->shrinker);
2387}
2388
2389/**
2390 * zs_create_pool - Creates an allocation pool to work from.
2391 * @name: pool name to be created
2392 *
2393 * This function must be called before anything when using
2394 * the zsmalloc allocator.
2395 *
2396 * On success, a pointer to the newly created pool is returned,
2397 * otherwise NULL.
2398 */
2399struct zs_pool *zs_create_pool(const char *name)
2400{
2401        int i;
2402        struct zs_pool *pool;
2403        struct size_class *prev_class = NULL;
2404
2405        pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2406        if (!pool)
2407                return NULL;
2408
2409        init_deferred_free(pool);
2410
2411        pool->name = kstrdup(name, GFP_KERNEL);
2412        if (!pool->name)
2413                goto err;
2414
2415#ifdef CONFIG_COMPACTION
2416        init_waitqueue_head(&pool->migration_wait);
2417#endif
2418
2419        if (create_cache(pool))
2420                goto err;
2421
2422        /*
2423         * Iterate reversely, because, size of size_class that we want to use
2424         * for merging should be larger or equal to current size.
2425         */
2426        for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2427                int size;
2428                int pages_per_zspage;
2429                int objs_per_zspage;
2430                struct size_class *class;
2431                int fullness = 0;
2432
2433                size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2434                if (size > ZS_MAX_ALLOC_SIZE)
2435                        size = ZS_MAX_ALLOC_SIZE;
2436                pages_per_zspage = get_pages_per_zspage(size);
2437                objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2438
2439                /*
2440                 * We iterate from biggest down to smallest classes,
2441                 * so huge_class_size holds the size of the first huge
2442                 * class. Any object bigger than or equal to that will
2443                 * endup in the huge class.
2444                 */
2445                if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2446                                !huge_class_size) {
2447                        huge_class_size = size;
2448                        /*
2449                         * The object uses ZS_HANDLE_SIZE bytes to store the
2450                         * handle. We need to subtract it, because zs_malloc()
2451                         * unconditionally adds handle size before it performs
2452                         * size class search - so object may be smaller than
2453                         * huge class size, yet it still can end up in the huge
2454                         * class because it grows by ZS_HANDLE_SIZE extra bytes
2455                         * right before class lookup.
2456                         */
2457                        huge_class_size -= (ZS_HANDLE_SIZE - 1);
2458                }
2459
2460                /*
2461                 * size_class is used for normal zsmalloc operation such
2462                 * as alloc/free for that size. Although it is natural that we
2463                 * have one size_class for each size, there is a chance that we
2464                 * can get more memory utilization if we use one size_class for
2465                 * many different sizes whose size_class have same
2466                 * characteristics. So, we makes size_class point to
2467                 * previous size_class if possible.
2468                 */
2469                if (prev_class) {
2470                        if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2471                                pool->size_class[i] = prev_class;
2472                                continue;
2473                        }
2474                }
2475
2476                class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2477                if (!class)
2478                        goto err;
2479
2480                class->size = size;
2481                class->index = i;
2482                class->pages_per_zspage = pages_per_zspage;
2483                class->objs_per_zspage = objs_per_zspage;
2484                spin_lock_init(&class->lock);
2485                pool->size_class[i] = class;
2486                for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2487                                                        fullness++)
2488                        INIT_LIST_HEAD(&class->fullness_list[fullness]);
2489
2490                prev_class = class;
2491        }
2492
2493        /* debug only, don't abort if it fails */
2494        zs_pool_stat_create(pool, name);
2495
2496        if (zs_register_migration(pool))
2497                goto err;
2498
2499        /*
2500         * Not critical since shrinker is only used to trigger internal
2501         * defragmentation of the pool which is pretty optional thing.  If
2502         * registration fails we still can use the pool normally and user can
2503         * trigger compaction manually. Thus, ignore return code.
2504         */
2505        zs_register_shrinker(pool);
2506
2507        return pool;
2508
2509err:
2510        zs_destroy_pool(pool);
2511        return NULL;
2512}
2513EXPORT_SYMBOL_GPL(zs_create_pool);
2514
2515void zs_destroy_pool(struct zs_pool *pool)
2516{
2517        int i;
2518
2519        zs_unregister_shrinker(pool);
2520        zs_unregister_migration(pool);
2521        zs_pool_stat_destroy(pool);
2522
2523        for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2524                int fg;
2525                struct size_class *class = pool->size_class[i];
2526
2527                if (!class)
2528                        continue;
2529
2530                if (class->index != i)
2531                        continue;
2532
2533                for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2534                        if (!list_empty(&class->fullness_list[fg])) {
2535                                pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2536                                        class->size, fg);
2537                        }
2538                }
2539                kfree(class);
2540        }
2541
2542        destroy_cache(pool);
2543        kfree(pool->name);
2544        kfree(pool);
2545}
2546EXPORT_SYMBOL_GPL(zs_destroy_pool);
2547
2548static int __init zs_init(void)
2549{
2550        int ret;
2551
2552        ret = zsmalloc_mount();
2553        if (ret)
2554                goto out;
2555
2556        ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2557                                zs_cpu_prepare, zs_cpu_dead);
2558        if (ret)
2559                goto hp_setup_fail;
2560
2561#ifdef CONFIG_ZPOOL
2562        zpool_register_driver(&zs_zpool_driver);
2563#endif
2564
2565        zs_stat_init();
2566
2567        return 0;
2568
2569hp_setup_fail:
2570        zsmalloc_unmount();
2571out:
2572        return ret;
2573}
2574
2575static void __exit zs_exit(void)
2576{
2577#ifdef CONFIG_ZPOOL
2578        zpool_unregister_driver(&zs_zpool_driver);
2579#endif
2580        zsmalloc_unmount();
2581        cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2582
2583        zs_stat_exit();
2584}
2585
2586module_init(zs_init);
2587module_exit(zs_exit);
2588
2589MODULE_LICENSE("Dual BSD/GPL");
2590MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2591