linux/net/can/af_can.c
<<
>>
Prefs
   1/*
   2 * af_can.c - Protocol family CAN core module
   3 *            (used by different CAN protocol modules)
   4 *
   5 * Copyright (c) 2002-2017 Volkswagen Group Electronic Research
   6 * All rights reserved.
   7 *
   8 * Redistribution and use in source and binary forms, with or without
   9 * modification, are permitted provided that the following conditions
  10 * are met:
  11 * 1. Redistributions of source code must retain the above copyright
  12 *    notice, this list of conditions and the following disclaimer.
  13 * 2. Redistributions in binary form must reproduce the above copyright
  14 *    notice, this list of conditions and the following disclaimer in the
  15 *    documentation and/or other materials provided with the distribution.
  16 * 3. Neither the name of Volkswagen nor the names of its contributors
  17 *    may be used to endorse or promote products derived from this software
  18 *    without specific prior written permission.
  19 *
  20 * Alternatively, provided that this notice is retained in full, this
  21 * software may be distributed under the terms of the GNU General
  22 * Public License ("GPL") version 2, in which case the provisions of the
  23 * GPL apply INSTEAD OF those given above.
  24 *
  25 * The provided data structures and external interfaces from this code
  26 * are not restricted to be used by modules with a GPL compatible license.
  27 *
  28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
  39 * DAMAGE.
  40 *
  41 */
  42
  43#include <linux/module.h>
  44#include <linux/stddef.h>
  45#include <linux/init.h>
  46#include <linux/kmod.h>
  47#include <linux/slab.h>
  48#include <linux/list.h>
  49#include <linux/spinlock.h>
  50#include <linux/rcupdate.h>
  51#include <linux/uaccess.h>
  52#include <linux/net.h>
  53#include <linux/netdevice.h>
  54#include <linux/socket.h>
  55#include <linux/if_ether.h>
  56#include <linux/if_arp.h>
  57#include <linux/skbuff.h>
  58#include <linux/can.h>
  59#include <linux/can/core.h>
  60#include <linux/can/skb.h>
  61#include <linux/ratelimit.h>
  62#include <net/net_namespace.h>
  63#include <net/sock.h>
  64
  65#include "af_can.h"
  66
  67MODULE_DESCRIPTION("Controller Area Network PF_CAN core");
  68MODULE_LICENSE("Dual BSD/GPL");
  69MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>, "
  70              "Oliver Hartkopp <oliver.hartkopp@volkswagen.de>");
  71
  72MODULE_ALIAS_NETPROTO(PF_CAN);
  73
  74static int stats_timer __read_mostly = 1;
  75module_param(stats_timer, int, 0444);
  76MODULE_PARM_DESC(stats_timer, "enable timer for statistics (default:on)");
  77
  78static struct kmem_cache *rcv_cache __read_mostly;
  79
  80/* table of registered CAN protocols */
  81static const struct can_proto __rcu *proto_tab[CAN_NPROTO] __read_mostly;
  82static DEFINE_MUTEX(proto_tab_lock);
  83
  84static atomic_t skbcounter = ATOMIC_INIT(0);
  85
  86/*
  87 * af_can socket functions
  88 */
  89
  90int can_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
  91{
  92        switch (cmd) {
  93        default:
  94                return -ENOIOCTLCMD;
  95        }
  96}
  97EXPORT_SYMBOL(can_ioctl);
  98
  99static void can_sock_destruct(struct sock *sk)
 100{
 101        skb_queue_purge(&sk->sk_receive_queue);
 102        skb_queue_purge(&sk->sk_error_queue);
 103}
 104
 105static const struct can_proto *can_get_proto(int protocol)
 106{
 107        const struct can_proto *cp;
 108
 109        rcu_read_lock();
 110        cp = rcu_dereference(proto_tab[protocol]);
 111        if (cp && !try_module_get(cp->prot->owner))
 112                cp = NULL;
 113        rcu_read_unlock();
 114
 115        return cp;
 116}
 117
 118static inline void can_put_proto(const struct can_proto *cp)
 119{
 120        module_put(cp->prot->owner);
 121}
 122
 123static int can_create(struct net *net, struct socket *sock, int protocol,
 124                      int kern)
 125{
 126        struct sock *sk;
 127        const struct can_proto *cp;
 128        int err = 0;
 129
 130        sock->state = SS_UNCONNECTED;
 131
 132        if (protocol < 0 || protocol >= CAN_NPROTO)
 133                return -EINVAL;
 134
 135        cp = can_get_proto(protocol);
 136
 137#ifdef CONFIG_MODULES
 138        if (!cp) {
 139                /* try to load protocol module if kernel is modular */
 140
 141                err = request_module("can-proto-%d", protocol);
 142
 143                /*
 144                 * In case of error we only print a message but don't
 145                 * return the error code immediately.  Below we will
 146                 * return -EPROTONOSUPPORT
 147                 */
 148                if (err)
 149                        printk_ratelimited(KERN_ERR "can: request_module "
 150                               "(can-proto-%d) failed.\n", protocol);
 151
 152                cp = can_get_proto(protocol);
 153        }
 154#endif
 155
 156        /* check for available protocol and correct usage */
 157
 158        if (!cp)
 159                return -EPROTONOSUPPORT;
 160
 161        if (cp->type != sock->type) {
 162                err = -EPROTOTYPE;
 163                goto errout;
 164        }
 165
 166        sock->ops = cp->ops;
 167
 168        sk = sk_alloc(net, PF_CAN, GFP_KERNEL, cp->prot, kern);
 169        if (!sk) {
 170                err = -ENOMEM;
 171                goto errout;
 172        }
 173
 174        sock_init_data(sock, sk);
 175        sk->sk_destruct = can_sock_destruct;
 176
 177        if (sk->sk_prot->init)
 178                err = sk->sk_prot->init(sk);
 179
 180        if (err) {
 181                /* release sk on errors */
 182                sock_orphan(sk);
 183                sock_put(sk);
 184        }
 185
 186 errout:
 187        can_put_proto(cp);
 188        return err;
 189}
 190
 191/*
 192 * af_can tx path
 193 */
 194
 195/**
 196 * can_send - transmit a CAN frame (optional with local loopback)
 197 * @skb: pointer to socket buffer with CAN frame in data section
 198 * @loop: loopback for listeners on local CAN sockets (recommended default!)
 199 *
 200 * Due to the loopback this routine must not be called from hardirq context.
 201 *
 202 * Return:
 203 *  0 on success
 204 *  -ENETDOWN when the selected interface is down
 205 *  -ENOBUFS on full driver queue (see net_xmit_errno())
 206 *  -ENOMEM when local loopback failed at calling skb_clone()
 207 *  -EPERM when trying to send on a non-CAN interface
 208 *  -EMSGSIZE CAN frame size is bigger than CAN interface MTU
 209 *  -EINVAL when the skb->data does not contain a valid CAN frame
 210 */
 211int can_send(struct sk_buff *skb, int loop)
 212{
 213        struct sk_buff *newskb = NULL;
 214        struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
 215        struct s_stats *can_stats = dev_net(skb->dev)->can.can_stats;
 216        int err = -EINVAL;
 217
 218        if (skb->len == CAN_MTU) {
 219                skb->protocol = htons(ETH_P_CAN);
 220                if (unlikely(cfd->len > CAN_MAX_DLEN))
 221                        goto inval_skb;
 222        } else if (skb->len == CANFD_MTU) {
 223                skb->protocol = htons(ETH_P_CANFD);
 224                if (unlikely(cfd->len > CANFD_MAX_DLEN))
 225                        goto inval_skb;
 226        } else
 227                goto inval_skb;
 228
 229        /*
 230         * Make sure the CAN frame can pass the selected CAN netdevice.
 231         * As structs can_frame and canfd_frame are similar, we can provide
 232         * CAN FD frames to legacy CAN drivers as long as the length is <= 8
 233         */
 234        if (unlikely(skb->len > skb->dev->mtu && cfd->len > CAN_MAX_DLEN)) {
 235                err = -EMSGSIZE;
 236                goto inval_skb;
 237        }
 238
 239        if (unlikely(skb->dev->type != ARPHRD_CAN)) {
 240                err = -EPERM;
 241                goto inval_skb;
 242        }
 243
 244        if (unlikely(!(skb->dev->flags & IFF_UP))) {
 245                err = -ENETDOWN;
 246                goto inval_skb;
 247        }
 248
 249        skb->ip_summed = CHECKSUM_UNNECESSARY;
 250
 251        skb_reset_mac_header(skb);
 252        skb_reset_network_header(skb);
 253        skb_reset_transport_header(skb);
 254
 255        if (loop) {
 256                /* local loopback of sent CAN frames */
 257
 258                /* indication for the CAN driver: do loopback */
 259                skb->pkt_type = PACKET_LOOPBACK;
 260
 261                /*
 262                 * The reference to the originating sock may be required
 263                 * by the receiving socket to check whether the frame is
 264                 * its own. Example: can_raw sockopt CAN_RAW_RECV_OWN_MSGS
 265                 * Therefore we have to ensure that skb->sk remains the
 266                 * reference to the originating sock by restoring skb->sk
 267                 * after each skb_clone() or skb_orphan() usage.
 268                 */
 269
 270                if (!(skb->dev->flags & IFF_ECHO)) {
 271                        /*
 272                         * If the interface is not capable to do loopback
 273                         * itself, we do it here.
 274                         */
 275                        newskb = skb_clone(skb, GFP_ATOMIC);
 276                        if (!newskb) {
 277                                kfree_skb(skb);
 278                                return -ENOMEM;
 279                        }
 280
 281                        can_skb_set_owner(newskb, skb->sk);
 282                        newskb->ip_summed = CHECKSUM_UNNECESSARY;
 283                        newskb->pkt_type = PACKET_BROADCAST;
 284                }
 285        } else {
 286                /* indication for the CAN driver: no loopback required */
 287                skb->pkt_type = PACKET_HOST;
 288        }
 289
 290        /* send to netdevice */
 291        err = dev_queue_xmit(skb);
 292        if (err > 0)
 293                err = net_xmit_errno(err);
 294
 295        if (err) {
 296                kfree_skb(newskb);
 297                return err;
 298        }
 299
 300        if (newskb)
 301                netif_rx_ni(newskb);
 302
 303        /* update statistics */
 304        can_stats->tx_frames++;
 305        can_stats->tx_frames_delta++;
 306
 307        return 0;
 308
 309inval_skb:
 310        kfree_skb(skb);
 311        return err;
 312}
 313EXPORT_SYMBOL(can_send);
 314
 315/*
 316 * af_can rx path
 317 */
 318
 319static struct can_dev_rcv_lists *find_dev_rcv_lists(struct net *net,
 320                                                struct net_device *dev)
 321{
 322        if (!dev)
 323                return net->can.can_rx_alldev_list;
 324        else
 325                return (struct can_dev_rcv_lists *)dev->ml_priv;
 326}
 327
 328/**
 329 * effhash - hash function for 29 bit CAN identifier reduction
 330 * @can_id: 29 bit CAN identifier
 331 *
 332 * Description:
 333 *  To reduce the linear traversal in one linked list of _single_ EFF CAN
 334 *  frame subscriptions the 29 bit identifier is mapped to 10 bits.
 335 *  (see CAN_EFF_RCV_HASH_BITS definition)
 336 *
 337 * Return:
 338 *  Hash value from 0x000 - 0x3FF ( enforced by CAN_EFF_RCV_HASH_BITS mask )
 339 */
 340static unsigned int effhash(canid_t can_id)
 341{
 342        unsigned int hash;
 343
 344        hash = can_id;
 345        hash ^= can_id >> CAN_EFF_RCV_HASH_BITS;
 346        hash ^= can_id >> (2 * CAN_EFF_RCV_HASH_BITS);
 347
 348        return hash & ((1 << CAN_EFF_RCV_HASH_BITS) - 1);
 349}
 350
 351/**
 352 * find_rcv_list - determine optimal filterlist inside device filter struct
 353 * @can_id: pointer to CAN identifier of a given can_filter
 354 * @mask: pointer to CAN mask of a given can_filter
 355 * @d: pointer to the device filter struct
 356 *
 357 * Description:
 358 *  Returns the optimal filterlist to reduce the filter handling in the
 359 *  receive path. This function is called by service functions that need
 360 *  to register or unregister a can_filter in the filter lists.
 361 *
 362 *  A filter matches in general, when
 363 *
 364 *          <received_can_id> & mask == can_id & mask
 365 *
 366 *  so every bit set in the mask (even CAN_EFF_FLAG, CAN_RTR_FLAG) describe
 367 *  relevant bits for the filter.
 368 *
 369 *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
 370 *  filter for error messages (CAN_ERR_FLAG bit set in mask). For error msg
 371 *  frames there is a special filterlist and a special rx path filter handling.
 372 *
 373 * Return:
 374 *  Pointer to optimal filterlist for the given can_id/mask pair.
 375 *  Constistency checked mask.
 376 *  Reduced can_id to have a preprocessed filter compare value.
 377 */
 378static struct hlist_head *find_rcv_list(canid_t *can_id, canid_t *mask,
 379                                        struct can_dev_rcv_lists *d)
 380{
 381        canid_t inv = *can_id & CAN_INV_FILTER; /* save flag before masking */
 382
 383        /* filter for error message frames in extra filterlist */
 384        if (*mask & CAN_ERR_FLAG) {
 385                /* clear CAN_ERR_FLAG in filter entry */
 386                *mask &= CAN_ERR_MASK;
 387                return &d->rx[RX_ERR];
 388        }
 389
 390        /* with cleared CAN_ERR_FLAG we have a simple mask/value filterpair */
 391
 392#define CAN_EFF_RTR_FLAGS (CAN_EFF_FLAG | CAN_RTR_FLAG)
 393
 394        /* ensure valid values in can_mask for 'SFF only' frame filtering */
 395        if ((*mask & CAN_EFF_FLAG) && !(*can_id & CAN_EFF_FLAG))
 396                *mask &= (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS);
 397
 398        /* reduce condition testing at receive time */
 399        *can_id &= *mask;
 400
 401        /* inverse can_id/can_mask filter */
 402        if (inv)
 403                return &d->rx[RX_INV];
 404
 405        /* mask == 0 => no condition testing at receive time */
 406        if (!(*mask))
 407                return &d->rx[RX_ALL];
 408
 409        /* extra filterlists for the subscription of a single non-RTR can_id */
 410        if (((*mask & CAN_EFF_RTR_FLAGS) == CAN_EFF_RTR_FLAGS) &&
 411            !(*can_id & CAN_RTR_FLAG)) {
 412
 413                if (*can_id & CAN_EFF_FLAG) {
 414                        if (*mask == (CAN_EFF_MASK | CAN_EFF_RTR_FLAGS))
 415                                return &d->rx_eff[effhash(*can_id)];
 416                } else {
 417                        if (*mask == (CAN_SFF_MASK | CAN_EFF_RTR_FLAGS))
 418                                return &d->rx_sff[*can_id];
 419                }
 420        }
 421
 422        /* default: filter via can_id/can_mask */
 423        return &d->rx[RX_FIL];
 424}
 425
 426/**
 427 * can_rx_register - subscribe CAN frames from a specific interface
 428 * @dev: pointer to netdevice (NULL => subcribe from 'all' CAN devices list)
 429 * @can_id: CAN identifier (see description)
 430 * @mask: CAN mask (see description)
 431 * @func: callback function on filter match
 432 * @data: returned parameter for callback function
 433 * @ident: string for calling module identification
 434 * @sk: socket pointer (might be NULL)
 435 *
 436 * Description:
 437 *  Invokes the callback function with the received sk_buff and the given
 438 *  parameter 'data' on a matching receive filter. A filter matches, when
 439 *
 440 *          <received_can_id> & mask == can_id & mask
 441 *
 442 *  The filter can be inverted (CAN_INV_FILTER bit set in can_id) or it can
 443 *  filter for error message frames (CAN_ERR_FLAG bit set in mask).
 444 *
 445 *  The provided pointer to the sk_buff is guaranteed to be valid as long as
 446 *  the callback function is running. The callback function must *not* free
 447 *  the given sk_buff while processing it's task. When the given sk_buff is
 448 *  needed after the end of the callback function it must be cloned inside
 449 *  the callback function with skb_clone().
 450 *
 451 * Return:
 452 *  0 on success
 453 *  -ENOMEM on missing cache mem to create subscription entry
 454 *  -ENODEV unknown device
 455 */
 456int can_rx_register(struct net *net, struct net_device *dev, canid_t can_id,
 457                    canid_t mask, void (*func)(struct sk_buff *, void *),
 458                    void *data, char *ident, struct sock *sk)
 459{
 460        struct receiver *r;
 461        struct hlist_head *rl;
 462        struct can_dev_rcv_lists *d;
 463        struct s_pstats *can_pstats = net->can.can_pstats;
 464        int err = 0;
 465
 466        /* insert new receiver  (dev,canid,mask) -> (func,data) */
 467
 468        if (dev && dev->type != ARPHRD_CAN)
 469                return -ENODEV;
 470
 471        if (dev && !net_eq(net, dev_net(dev)))
 472                return -ENODEV;
 473
 474        r = kmem_cache_alloc(rcv_cache, GFP_KERNEL);
 475        if (!r)
 476                return -ENOMEM;
 477
 478        spin_lock(&net->can.can_rcvlists_lock);
 479
 480        d = find_dev_rcv_lists(net, dev);
 481        if (d) {
 482                rl = find_rcv_list(&can_id, &mask, d);
 483
 484                r->can_id  = can_id;
 485                r->mask    = mask;
 486                r->matches = 0;
 487                r->func    = func;
 488                r->data    = data;
 489                r->ident   = ident;
 490                r->sk      = sk;
 491
 492                hlist_add_head_rcu(&r->list, rl);
 493                d->entries++;
 494
 495                can_pstats->rcv_entries++;
 496                if (can_pstats->rcv_entries_max < can_pstats->rcv_entries)
 497                        can_pstats->rcv_entries_max = can_pstats->rcv_entries;
 498        } else {
 499                kmem_cache_free(rcv_cache, r);
 500                err = -ENODEV;
 501        }
 502
 503        spin_unlock(&net->can.can_rcvlists_lock);
 504
 505        return err;
 506}
 507EXPORT_SYMBOL(can_rx_register);
 508
 509/*
 510 * can_rx_delete_receiver - rcu callback for single receiver entry removal
 511 */
 512static void can_rx_delete_receiver(struct rcu_head *rp)
 513{
 514        struct receiver *r = container_of(rp, struct receiver, rcu);
 515        struct sock *sk = r->sk;
 516
 517        kmem_cache_free(rcv_cache, r);
 518        if (sk)
 519                sock_put(sk);
 520}
 521
 522/**
 523 * can_rx_unregister - unsubscribe CAN frames from a specific interface
 524 * @dev: pointer to netdevice (NULL => unsubscribe from 'all' CAN devices list)
 525 * @can_id: CAN identifier
 526 * @mask: CAN mask
 527 * @func: callback function on filter match
 528 * @data: returned parameter for callback function
 529 *
 530 * Description:
 531 *  Removes subscription entry depending on given (subscription) values.
 532 */
 533void can_rx_unregister(struct net *net, struct net_device *dev, canid_t can_id,
 534                       canid_t mask, void (*func)(struct sk_buff *, void *),
 535                       void *data)
 536{
 537        struct receiver *r = NULL;
 538        struct hlist_head *rl;
 539        struct s_pstats *can_pstats = net->can.can_pstats;
 540        struct can_dev_rcv_lists *d;
 541
 542        if (dev && dev->type != ARPHRD_CAN)
 543                return;
 544
 545        if (dev && !net_eq(net, dev_net(dev)))
 546                return;
 547
 548        spin_lock(&net->can.can_rcvlists_lock);
 549
 550        d = find_dev_rcv_lists(net, dev);
 551        if (!d) {
 552                pr_err("BUG: receive list not found for "
 553                       "dev %s, id %03X, mask %03X\n",
 554                       DNAME(dev), can_id, mask);
 555                goto out;
 556        }
 557
 558        rl = find_rcv_list(&can_id, &mask, d);
 559
 560        /*
 561         * Search the receiver list for the item to delete.  This should
 562         * exist, since no receiver may be unregistered that hasn't
 563         * been registered before.
 564         */
 565
 566        hlist_for_each_entry_rcu(r, rl, list) {
 567                if (r->can_id == can_id && r->mask == mask &&
 568                    r->func == func && r->data == data)
 569                        break;
 570        }
 571
 572        /*
 573         * Check for bugs in CAN protocol implementations using af_can.c:
 574         * 'r' will be NULL if no matching list item was found for removal.
 575         */
 576
 577        if (!r) {
 578                WARN(1, "BUG: receive list entry not found for dev %s, "
 579                     "id %03X, mask %03X\n", DNAME(dev), can_id, mask);
 580                goto out;
 581        }
 582
 583        hlist_del_rcu(&r->list);
 584        d->entries--;
 585
 586        if (can_pstats->rcv_entries > 0)
 587                can_pstats->rcv_entries--;
 588
 589        /* remove device structure requested by NETDEV_UNREGISTER */
 590        if (d->remove_on_zero_entries && !d->entries) {
 591                kfree(d);
 592                dev->ml_priv = NULL;
 593        }
 594
 595 out:
 596        spin_unlock(&net->can.can_rcvlists_lock);
 597
 598        /* schedule the receiver item for deletion */
 599        if (r) {
 600                if (r->sk)
 601                        sock_hold(r->sk);
 602                call_rcu(&r->rcu, can_rx_delete_receiver);
 603        }
 604}
 605EXPORT_SYMBOL(can_rx_unregister);
 606
 607static inline void deliver(struct sk_buff *skb, struct receiver *r)
 608{
 609        r->func(skb, r->data);
 610        r->matches++;
 611}
 612
 613static int can_rcv_filter(struct can_dev_rcv_lists *d, struct sk_buff *skb)
 614{
 615        struct receiver *r;
 616        int matches = 0;
 617        struct can_frame *cf = (struct can_frame *)skb->data;
 618        canid_t can_id = cf->can_id;
 619
 620        if (d->entries == 0)
 621                return 0;
 622
 623        if (can_id & CAN_ERR_FLAG) {
 624                /* check for error message frame entries only */
 625                hlist_for_each_entry_rcu(r, &d->rx[RX_ERR], list) {
 626                        if (can_id & r->mask) {
 627                                deliver(skb, r);
 628                                matches++;
 629                        }
 630                }
 631                return matches;
 632        }
 633
 634        /* check for unfiltered entries */
 635        hlist_for_each_entry_rcu(r, &d->rx[RX_ALL], list) {
 636                deliver(skb, r);
 637                matches++;
 638        }
 639
 640        /* check for can_id/mask entries */
 641        hlist_for_each_entry_rcu(r, &d->rx[RX_FIL], list) {
 642                if ((can_id & r->mask) == r->can_id) {
 643                        deliver(skb, r);
 644                        matches++;
 645                }
 646        }
 647
 648        /* check for inverted can_id/mask entries */
 649        hlist_for_each_entry_rcu(r, &d->rx[RX_INV], list) {
 650                if ((can_id & r->mask) != r->can_id) {
 651                        deliver(skb, r);
 652                        matches++;
 653                }
 654        }
 655
 656        /* check filterlists for single non-RTR can_ids */
 657        if (can_id & CAN_RTR_FLAG)
 658                return matches;
 659
 660        if (can_id & CAN_EFF_FLAG) {
 661                hlist_for_each_entry_rcu(r, &d->rx_eff[effhash(can_id)], list) {
 662                        if (r->can_id == can_id) {
 663                                deliver(skb, r);
 664                                matches++;
 665                        }
 666                }
 667        } else {
 668                can_id &= CAN_SFF_MASK;
 669                hlist_for_each_entry_rcu(r, &d->rx_sff[can_id], list) {
 670                        deliver(skb, r);
 671                        matches++;
 672                }
 673        }
 674
 675        return matches;
 676}
 677
 678static void can_receive(struct sk_buff *skb, struct net_device *dev)
 679{
 680        struct can_dev_rcv_lists *d;
 681        struct net *net = dev_net(dev);
 682        struct s_stats *can_stats = net->can.can_stats;
 683        int matches;
 684
 685        /* update statistics */
 686        can_stats->rx_frames++;
 687        can_stats->rx_frames_delta++;
 688
 689        /* create non-zero unique skb identifier together with *skb */
 690        while (!(can_skb_prv(skb)->skbcnt))
 691                can_skb_prv(skb)->skbcnt = atomic_inc_return(&skbcounter);
 692
 693        rcu_read_lock();
 694
 695        /* deliver the packet to sockets listening on all devices */
 696        matches = can_rcv_filter(net->can.can_rx_alldev_list, skb);
 697
 698        /* find receive list for this device */
 699        d = find_dev_rcv_lists(net, dev);
 700        if (d)
 701                matches += can_rcv_filter(d, skb);
 702
 703        rcu_read_unlock();
 704
 705        /* consume the skbuff allocated by the netdevice driver */
 706        consume_skb(skb);
 707
 708        if (matches > 0) {
 709                can_stats->matches++;
 710                can_stats->matches_delta++;
 711        }
 712}
 713
 714static int can_rcv(struct sk_buff *skb, struct net_device *dev,
 715                   struct packet_type *pt, struct net_device *orig_dev)
 716{
 717        struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
 718
 719        if (unlikely(dev->type != ARPHRD_CAN || skb->len != CAN_MTU ||
 720                     cfd->len > CAN_MAX_DLEN)) {
 721                pr_warn_once("PF_CAN: dropped non conform CAN skbuf: dev type %d, len %d, datalen %d\n",
 722                             dev->type, skb->len, cfd->len);
 723                kfree_skb(skb);
 724                return NET_RX_DROP;
 725        }
 726
 727        can_receive(skb, dev);
 728        return NET_RX_SUCCESS;
 729}
 730
 731static int canfd_rcv(struct sk_buff *skb, struct net_device *dev,
 732                   struct packet_type *pt, struct net_device *orig_dev)
 733{
 734        struct canfd_frame *cfd = (struct canfd_frame *)skb->data;
 735
 736        if (unlikely(dev->type != ARPHRD_CAN || skb->len != CANFD_MTU ||
 737                     cfd->len > CANFD_MAX_DLEN)) {
 738                pr_warn_once("PF_CAN: dropped non conform CAN FD skbuf: dev type %d, len %d, datalen %d\n",
 739                             dev->type, skb->len, cfd->len);
 740                kfree_skb(skb);
 741                return NET_RX_DROP;
 742        }
 743
 744        can_receive(skb, dev);
 745        return NET_RX_SUCCESS;
 746}
 747
 748/*
 749 * af_can protocol functions
 750 */
 751
 752/**
 753 * can_proto_register - register CAN transport protocol
 754 * @cp: pointer to CAN protocol structure
 755 *
 756 * Return:
 757 *  0 on success
 758 *  -EINVAL invalid (out of range) protocol number
 759 *  -EBUSY  protocol already in use
 760 *  -ENOBUF if proto_register() fails
 761 */
 762int can_proto_register(const struct can_proto *cp)
 763{
 764        int proto = cp->protocol;
 765        int err = 0;
 766
 767        if (proto < 0 || proto >= CAN_NPROTO) {
 768                pr_err("can: protocol number %d out of range\n", proto);
 769                return -EINVAL;
 770        }
 771
 772        err = proto_register(cp->prot, 0);
 773        if (err < 0)
 774                return err;
 775
 776        mutex_lock(&proto_tab_lock);
 777
 778        if (rcu_access_pointer(proto_tab[proto])) {
 779                pr_err("can: protocol %d already registered\n", proto);
 780                err = -EBUSY;
 781        } else
 782                RCU_INIT_POINTER(proto_tab[proto], cp);
 783
 784        mutex_unlock(&proto_tab_lock);
 785
 786        if (err < 0)
 787                proto_unregister(cp->prot);
 788
 789        return err;
 790}
 791EXPORT_SYMBOL(can_proto_register);
 792
 793/**
 794 * can_proto_unregister - unregister CAN transport protocol
 795 * @cp: pointer to CAN protocol structure
 796 */
 797void can_proto_unregister(const struct can_proto *cp)
 798{
 799        int proto = cp->protocol;
 800
 801        mutex_lock(&proto_tab_lock);
 802        BUG_ON(rcu_access_pointer(proto_tab[proto]) != cp);
 803        RCU_INIT_POINTER(proto_tab[proto], NULL);
 804        mutex_unlock(&proto_tab_lock);
 805
 806        synchronize_rcu();
 807
 808        proto_unregister(cp->prot);
 809}
 810EXPORT_SYMBOL(can_proto_unregister);
 811
 812/*
 813 * af_can notifier to create/remove CAN netdevice specific structs
 814 */
 815static int can_notifier(struct notifier_block *nb, unsigned long msg,
 816                        void *ptr)
 817{
 818        struct net_device *dev = netdev_notifier_info_to_dev(ptr);
 819        struct can_dev_rcv_lists *d;
 820
 821        if (dev->type != ARPHRD_CAN)
 822                return NOTIFY_DONE;
 823
 824        switch (msg) {
 825
 826        case NETDEV_REGISTER:
 827
 828                /* create new dev_rcv_lists for this device */
 829                d = kzalloc(sizeof(*d), GFP_KERNEL);
 830                if (!d)
 831                        return NOTIFY_DONE;
 832                BUG_ON(dev->ml_priv);
 833                dev->ml_priv = d;
 834
 835                break;
 836
 837        case NETDEV_UNREGISTER:
 838                spin_lock(&dev_net(dev)->can.can_rcvlists_lock);
 839
 840                d = dev->ml_priv;
 841                if (d) {
 842                        if (d->entries)
 843                                d->remove_on_zero_entries = 1;
 844                        else {
 845                                kfree(d);
 846                                dev->ml_priv = NULL;
 847                        }
 848                } else
 849                        pr_err("can: notifier: receive list not found for dev "
 850                               "%s\n", dev->name);
 851
 852                spin_unlock(&dev_net(dev)->can.can_rcvlists_lock);
 853
 854                break;
 855        }
 856
 857        return NOTIFY_DONE;
 858}
 859
 860static int can_pernet_init(struct net *net)
 861{
 862        spin_lock_init(&net->can.can_rcvlists_lock);
 863        net->can.can_rx_alldev_list =
 864                kzalloc(sizeof(struct can_dev_rcv_lists), GFP_KERNEL);
 865        if (!net->can.can_rx_alldev_list)
 866                goto out;
 867        net->can.can_stats = kzalloc(sizeof(struct s_stats), GFP_KERNEL);
 868        if (!net->can.can_stats)
 869                goto out_free_alldev_list;
 870        net->can.can_pstats = kzalloc(sizeof(struct s_pstats), GFP_KERNEL);
 871        if (!net->can.can_pstats)
 872                goto out_free_can_stats;
 873
 874        if (IS_ENABLED(CONFIG_PROC_FS)) {
 875                /* the statistics are updated every second (timer triggered) */
 876                if (stats_timer) {
 877                        timer_setup(&net->can.can_stattimer, can_stat_update,
 878                                    0);
 879                        mod_timer(&net->can.can_stattimer,
 880                                  round_jiffies(jiffies + HZ));
 881                }
 882                net->can.can_stats->jiffies_init = jiffies;
 883                can_init_proc(net);
 884        }
 885
 886        return 0;
 887
 888 out_free_can_stats:
 889        kfree(net->can.can_stats);
 890 out_free_alldev_list:
 891        kfree(net->can.can_rx_alldev_list);
 892 out:
 893        return -ENOMEM;
 894}
 895
 896static void can_pernet_exit(struct net *net)
 897{
 898        struct net_device *dev;
 899
 900        if (IS_ENABLED(CONFIG_PROC_FS)) {
 901                can_remove_proc(net);
 902                if (stats_timer)
 903                        del_timer_sync(&net->can.can_stattimer);
 904        }
 905
 906        /* remove created dev_rcv_lists from still registered CAN devices */
 907        rcu_read_lock();
 908        for_each_netdev_rcu(net, dev) {
 909                if (dev->type == ARPHRD_CAN && dev->ml_priv) {
 910                        struct can_dev_rcv_lists *d = dev->ml_priv;
 911
 912                        BUG_ON(d->entries);
 913                        kfree(d);
 914                        dev->ml_priv = NULL;
 915                }
 916        }
 917        rcu_read_unlock();
 918
 919        kfree(net->can.can_rx_alldev_list);
 920        kfree(net->can.can_stats);
 921        kfree(net->can.can_pstats);
 922}
 923
 924/*
 925 * af_can module init/exit functions
 926 */
 927
 928static struct packet_type can_packet __read_mostly = {
 929        .type = cpu_to_be16(ETH_P_CAN),
 930        .func = can_rcv,
 931};
 932
 933static struct packet_type canfd_packet __read_mostly = {
 934        .type = cpu_to_be16(ETH_P_CANFD),
 935        .func = canfd_rcv,
 936};
 937
 938static const struct net_proto_family can_family_ops = {
 939        .family = PF_CAN,
 940        .create = can_create,
 941        .owner  = THIS_MODULE,
 942};
 943
 944/* notifier block for netdevice event */
 945static struct notifier_block can_netdev_notifier __read_mostly = {
 946        .notifier_call = can_notifier,
 947};
 948
 949static struct pernet_operations can_pernet_ops __read_mostly = {
 950        .init = can_pernet_init,
 951        .exit = can_pernet_exit,
 952};
 953
 954static __init int can_init(void)
 955{
 956        int err;
 957
 958        /* check for correct padding to be able to use the structs similarly */
 959        BUILD_BUG_ON(offsetof(struct can_frame, can_dlc) !=
 960                     offsetof(struct canfd_frame, len) ||
 961                     offsetof(struct can_frame, data) !=
 962                     offsetof(struct canfd_frame, data));
 963
 964        pr_info("can: controller area network core (" CAN_VERSION_STRING ")\n");
 965
 966        rcv_cache = kmem_cache_create("can_receiver", sizeof(struct receiver),
 967                                      0, 0, NULL);
 968        if (!rcv_cache)
 969                return -ENOMEM;
 970
 971        err = register_pernet_subsys(&can_pernet_ops);
 972        if (err)
 973                goto out_pernet;
 974
 975        /* protocol register */
 976        err = sock_register(&can_family_ops);
 977        if (err)
 978                goto out_sock;
 979        err = register_netdevice_notifier(&can_netdev_notifier);
 980        if (err)
 981                goto out_notifier;
 982
 983        dev_add_pack(&can_packet);
 984        dev_add_pack(&canfd_packet);
 985
 986        return 0;
 987
 988out_notifier:
 989        sock_unregister(PF_CAN);
 990out_sock:
 991        unregister_pernet_subsys(&can_pernet_ops);
 992out_pernet:
 993        kmem_cache_destroy(rcv_cache);
 994
 995        return err;
 996}
 997
 998static __exit void can_exit(void)
 999{
1000        /* protocol unregister */
1001        dev_remove_pack(&canfd_packet);
1002        dev_remove_pack(&can_packet);
1003        unregister_netdevice_notifier(&can_netdev_notifier);
1004        sock_unregister(PF_CAN);
1005
1006        unregister_pernet_subsys(&can_pernet_ops);
1007
1008        rcu_barrier(); /* Wait for completion of call_rcu()'s */
1009
1010        kmem_cache_destroy(rcv_cache);
1011}
1012
1013module_init(can_init);
1014module_exit(can_exit);
1015