linux/net/core/dev.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *      NET3    Protocol independent device support routines.
   4 *
   5 *      Derived from the non IP parts of dev.c 1.0.19
   6 *              Authors:        Ross Biro
   7 *                              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   8 *                              Mark Evans, <evansmp@uhura.aston.ac.uk>
   9 *
  10 *      Additional Authors:
  11 *              Florian la Roche <rzsfl@rz.uni-sb.de>
  12 *              Alan Cox <gw4pts@gw4pts.ampr.org>
  13 *              David Hinds <dahinds@users.sourceforge.net>
  14 *              Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  15 *              Adam Sulmicki <adam@cfar.umd.edu>
  16 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
  17 *
  18 *      Changes:
  19 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
  20 *                                      to 2 if register_netdev gets called
  21 *                                      before net_dev_init & also removed a
  22 *                                      few lines of code in the process.
  23 *              Alan Cox        :       device private ioctl copies fields back.
  24 *              Alan Cox        :       Transmit queue code does relevant
  25 *                                      stunts to keep the queue safe.
  26 *              Alan Cox        :       Fixed double lock.
  27 *              Alan Cox        :       Fixed promisc NULL pointer trap
  28 *              ????????        :       Support the full private ioctl range
  29 *              Alan Cox        :       Moved ioctl permission check into
  30 *                                      drivers
  31 *              Tim Kordas      :       SIOCADDMULTI/SIOCDELMULTI
  32 *              Alan Cox        :       100 backlog just doesn't cut it when
  33 *                                      you start doing multicast video 8)
  34 *              Alan Cox        :       Rewrote net_bh and list manager.
  35 *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
  36 *              Alan Cox        :       Took out transmit every packet pass
  37 *                                      Saved a few bytes in the ioctl handler
  38 *              Alan Cox        :       Network driver sets packet type before
  39 *                                      calling netif_rx. Saves a function
  40 *                                      call a packet.
  41 *              Alan Cox        :       Hashed net_bh()
  42 *              Richard Kooijman:       Timestamp fixes.
  43 *              Alan Cox        :       Wrong field in SIOCGIFDSTADDR
  44 *              Alan Cox        :       Device lock protection.
  45 *              Alan Cox        :       Fixed nasty side effect of device close
  46 *                                      changes.
  47 *              Rudi Cilibrasi  :       Pass the right thing to
  48 *                                      set_mac_address()
  49 *              Dave Miller     :       32bit quantity for the device lock to
  50 *                                      make it work out on a Sparc.
  51 *              Bjorn Ekwall    :       Added KERNELD hack.
  52 *              Alan Cox        :       Cleaned up the backlog initialise.
  53 *              Craig Metz      :       SIOCGIFCONF fix if space for under
  54 *                                      1 device.
  55 *          Thomas Bogendoerfer :       Return ENODEV for dev_open, if there
  56 *                                      is no device open function.
  57 *              Andi Kleen      :       Fix error reporting for SIOCGIFCONF
  58 *          Michael Chastain    :       Fix signed/unsigned for SIOCGIFCONF
  59 *              Cyrus Durgin    :       Cleaned for KMOD
  60 *              Adam Sulmicki   :       Bug Fix : Network Device Unload
  61 *                                      A network device unload needs to purge
  62 *                                      the backlog queue.
  63 *      Paul Rusty Russell      :       SIOCSIFNAME
  64 *              Pekka Riikonen  :       Netdev boot-time settings code
  65 *              Andrew Morton   :       Make unregister_netdevice wait
  66 *                                      indefinitely on dev->refcnt
  67 *              J Hadi Salim    :       - Backlog queue sampling
  68 *                                      - netif_rx() feedback
  69 */
  70
  71#include <linux/uaccess.h>
  72#include <linux/bitops.h>
  73#include <linux/capability.h>
  74#include <linux/cpu.h>
  75#include <linux/types.h>
  76#include <linux/kernel.h>
  77#include <linux/hash.h>
  78#include <linux/slab.h>
  79#include <linux/sched.h>
  80#include <linux/sched/mm.h>
  81#include <linux/mutex.h>
  82#include <linux/string.h>
  83#include <linux/mm.h>
  84#include <linux/socket.h>
  85#include <linux/sockios.h>
  86#include <linux/errno.h>
  87#include <linux/interrupt.h>
  88#include <linux/if_ether.h>
  89#include <linux/netdevice.h>
  90#include <linux/etherdevice.h>
  91#include <linux/ethtool.h>
  92#include <linux/skbuff.h>
  93#include <linux/bpf.h>
  94#include <linux/bpf_trace.h>
  95#include <net/net_namespace.h>
  96#include <net/sock.h>
  97#include <net/busy_poll.h>
  98#include <linux/rtnetlink.h>
  99#include <linux/stat.h>
 100#include <net/dst.h>
 101#include <net/dst_metadata.h>
 102#include <net/pkt_sched.h>
 103#include <net/pkt_cls.h>
 104#include <net/checksum.h>
 105#include <net/xfrm.h>
 106#include <linux/highmem.h>
 107#include <linux/init.h>
 108#include <linux/module.h>
 109#include <linux/netpoll.h>
 110#include <linux/rcupdate.h>
 111#include <linux/delay.h>
 112#include <net/iw_handler.h>
 113#include <asm/current.h>
 114#include <linux/audit.h>
 115#include <linux/dmaengine.h>
 116#include <linux/err.h>
 117#include <linux/ctype.h>
 118#include <linux/if_arp.h>
 119#include <linux/if_vlan.h>
 120#include <linux/ip.h>
 121#include <net/ip.h>
 122#include <net/mpls.h>
 123#include <linux/ipv6.h>
 124#include <linux/in.h>
 125#include <linux/jhash.h>
 126#include <linux/random.h>
 127#include <trace/events/napi.h>
 128#include <trace/events/net.h>
 129#include <trace/events/skb.h>
 130#include <linux/inetdevice.h>
 131#include <linux/cpu_rmap.h>
 132#include <linux/static_key.h>
 133#include <linux/hashtable.h>
 134#include <linux/vmalloc.h>
 135#include <linux/if_macvlan.h>
 136#include <linux/errqueue.h>
 137#include <linux/hrtimer.h>
 138#include <linux/netfilter_ingress.h>
 139#include <linux/crash_dump.h>
 140#include <linux/sctp.h>
 141#include <net/udp_tunnel.h>
 142#include <linux/net_namespace.h>
 143#include <linux/indirect_call_wrapper.h>
 144#include <net/devlink.h>
 145
 146#include "net-sysfs.h"
 147
 148#define MAX_GRO_SKBS 8
 149
 150/* This should be increased if a protocol with a bigger head is added. */
 151#define GRO_MAX_HEAD (MAX_HEADER + 128)
 152
 153static DEFINE_SPINLOCK(ptype_lock);
 154static DEFINE_SPINLOCK(offload_lock);
 155struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
 156struct list_head ptype_all __read_mostly;       /* Taps */
 157static struct list_head offload_base __read_mostly;
 158
 159static int netif_rx_internal(struct sk_buff *skb);
 160static int call_netdevice_notifiers_info(unsigned long val,
 161                                         struct netdev_notifier_info *info);
 162static int call_netdevice_notifiers_extack(unsigned long val,
 163                                           struct net_device *dev,
 164                                           struct netlink_ext_ack *extack);
 165static struct napi_struct *napi_by_id(unsigned int napi_id);
 166
 167/*
 168 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
 169 * semaphore.
 170 *
 171 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
 172 *
 173 * Writers must hold the rtnl semaphore while they loop through the
 174 * dev_base_head list, and hold dev_base_lock for writing when they do the
 175 * actual updates.  This allows pure readers to access the list even
 176 * while a writer is preparing to update it.
 177 *
 178 * To put it another way, dev_base_lock is held for writing only to
 179 * protect against pure readers; the rtnl semaphore provides the
 180 * protection against other writers.
 181 *
 182 * See, for example usages, register_netdevice() and
 183 * unregister_netdevice(), which must be called with the rtnl
 184 * semaphore held.
 185 */
 186DEFINE_RWLOCK(dev_base_lock);
 187EXPORT_SYMBOL(dev_base_lock);
 188
 189static DEFINE_MUTEX(ifalias_mutex);
 190
 191/* protects napi_hash addition/deletion and napi_gen_id */
 192static DEFINE_SPINLOCK(napi_hash_lock);
 193
 194static unsigned int napi_gen_id = NR_CPUS;
 195static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
 196
 197static seqcount_t devnet_rename_seq;
 198
 199static inline void dev_base_seq_inc(struct net *net)
 200{
 201        while (++net->dev_base_seq == 0)
 202                ;
 203}
 204
 205static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
 206{
 207        unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
 208
 209        return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
 210}
 211
 212static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
 213{
 214        return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
 215}
 216
 217static inline void rps_lock(struct softnet_data *sd)
 218{
 219#ifdef CONFIG_RPS
 220        spin_lock(&sd->input_pkt_queue.lock);
 221#endif
 222}
 223
 224static inline void rps_unlock(struct softnet_data *sd)
 225{
 226#ifdef CONFIG_RPS
 227        spin_unlock(&sd->input_pkt_queue.lock);
 228#endif
 229}
 230
 231/* Device list insertion */
 232static void list_netdevice(struct net_device *dev)
 233{
 234        struct net *net = dev_net(dev);
 235
 236        ASSERT_RTNL();
 237
 238        write_lock_bh(&dev_base_lock);
 239        list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
 240        hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
 241        hlist_add_head_rcu(&dev->index_hlist,
 242                           dev_index_hash(net, dev->ifindex));
 243        write_unlock_bh(&dev_base_lock);
 244
 245        dev_base_seq_inc(net);
 246}
 247
 248/* Device list removal
 249 * caller must respect a RCU grace period before freeing/reusing dev
 250 */
 251static void unlist_netdevice(struct net_device *dev)
 252{
 253        ASSERT_RTNL();
 254
 255        /* Unlink dev from the device chain */
 256        write_lock_bh(&dev_base_lock);
 257        list_del_rcu(&dev->dev_list);
 258        hlist_del_rcu(&dev->name_hlist);
 259        hlist_del_rcu(&dev->index_hlist);
 260        write_unlock_bh(&dev_base_lock);
 261
 262        dev_base_seq_inc(dev_net(dev));
 263}
 264
 265/*
 266 *      Our notifier list
 267 */
 268
 269static RAW_NOTIFIER_HEAD(netdev_chain);
 270
 271/*
 272 *      Device drivers call our routines to queue packets here. We empty the
 273 *      queue in the local softnet handler.
 274 */
 275
 276DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
 277EXPORT_PER_CPU_SYMBOL(softnet_data);
 278
 279#ifdef CONFIG_LOCKDEP
 280/*
 281 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
 282 * according to dev->type
 283 */
 284static const unsigned short netdev_lock_type[] = {
 285         ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
 286         ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
 287         ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
 288         ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
 289         ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
 290         ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
 291         ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
 292         ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
 293         ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
 294         ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
 295         ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
 296         ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
 297         ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
 298         ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
 299         ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
 300
 301static const char *const netdev_lock_name[] = {
 302        "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
 303        "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
 304        "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
 305        "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
 306        "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
 307        "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
 308        "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
 309        "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
 310        "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
 311        "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
 312        "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
 313        "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
 314        "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
 315        "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
 316        "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
 317
 318static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
 319static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
 320
 321static inline unsigned short netdev_lock_pos(unsigned short dev_type)
 322{
 323        int i;
 324
 325        for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
 326                if (netdev_lock_type[i] == dev_type)
 327                        return i;
 328        /* the last key is used by default */
 329        return ARRAY_SIZE(netdev_lock_type) - 1;
 330}
 331
 332static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 333                                                 unsigned short dev_type)
 334{
 335        int i;
 336
 337        i = netdev_lock_pos(dev_type);
 338        lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
 339                                   netdev_lock_name[i]);
 340}
 341
 342static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 343{
 344        int i;
 345
 346        i = netdev_lock_pos(dev->type);
 347        lockdep_set_class_and_name(&dev->addr_list_lock,
 348                                   &netdev_addr_lock_key[i],
 349                                   netdev_lock_name[i]);
 350}
 351#else
 352static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 353                                                 unsigned short dev_type)
 354{
 355}
 356static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 357{
 358}
 359#endif
 360
 361/*******************************************************************************
 362 *
 363 *              Protocol management and registration routines
 364 *
 365 *******************************************************************************/
 366
 367
 368/*
 369 *      Add a protocol ID to the list. Now that the input handler is
 370 *      smarter we can dispense with all the messy stuff that used to be
 371 *      here.
 372 *
 373 *      BEWARE!!! Protocol handlers, mangling input packets,
 374 *      MUST BE last in hash buckets and checking protocol handlers
 375 *      MUST start from promiscuous ptype_all chain in net_bh.
 376 *      It is true now, do not change it.
 377 *      Explanation follows: if protocol handler, mangling packet, will
 378 *      be the first on list, it is not able to sense, that packet
 379 *      is cloned and should be copied-on-write, so that it will
 380 *      change it and subsequent readers will get broken packet.
 381 *                                                      --ANK (980803)
 382 */
 383
 384static inline struct list_head *ptype_head(const struct packet_type *pt)
 385{
 386        if (pt->type == htons(ETH_P_ALL))
 387                return pt->dev ? &pt->dev->ptype_all : &ptype_all;
 388        else
 389                return pt->dev ? &pt->dev->ptype_specific :
 390                                 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
 391}
 392
 393/**
 394 *      dev_add_pack - add packet handler
 395 *      @pt: packet type declaration
 396 *
 397 *      Add a protocol handler to the networking stack. The passed &packet_type
 398 *      is linked into kernel lists and may not be freed until it has been
 399 *      removed from the kernel lists.
 400 *
 401 *      This call does not sleep therefore it can not
 402 *      guarantee all CPU's that are in middle of receiving packets
 403 *      will see the new packet type (until the next received packet).
 404 */
 405
 406void dev_add_pack(struct packet_type *pt)
 407{
 408        struct list_head *head = ptype_head(pt);
 409
 410        spin_lock(&ptype_lock);
 411        list_add_rcu(&pt->list, head);
 412        spin_unlock(&ptype_lock);
 413}
 414EXPORT_SYMBOL(dev_add_pack);
 415
 416/**
 417 *      __dev_remove_pack        - remove packet handler
 418 *      @pt: packet type declaration
 419 *
 420 *      Remove a protocol handler that was previously added to the kernel
 421 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 422 *      from the kernel lists and can be freed or reused once this function
 423 *      returns.
 424 *
 425 *      The packet type might still be in use by receivers
 426 *      and must not be freed until after all the CPU's have gone
 427 *      through a quiescent state.
 428 */
 429void __dev_remove_pack(struct packet_type *pt)
 430{
 431        struct list_head *head = ptype_head(pt);
 432        struct packet_type *pt1;
 433
 434        spin_lock(&ptype_lock);
 435
 436        list_for_each_entry(pt1, head, list) {
 437                if (pt == pt1) {
 438                        list_del_rcu(&pt->list);
 439                        goto out;
 440                }
 441        }
 442
 443        pr_warn("dev_remove_pack: %p not found\n", pt);
 444out:
 445        spin_unlock(&ptype_lock);
 446}
 447EXPORT_SYMBOL(__dev_remove_pack);
 448
 449/**
 450 *      dev_remove_pack  - remove packet handler
 451 *      @pt: packet type declaration
 452 *
 453 *      Remove a protocol handler that was previously added to the kernel
 454 *      protocol handlers by dev_add_pack(). The passed &packet_type is removed
 455 *      from the kernel lists and can be freed or reused once this function
 456 *      returns.
 457 *
 458 *      This call sleeps to guarantee that no CPU is looking at the packet
 459 *      type after return.
 460 */
 461void dev_remove_pack(struct packet_type *pt)
 462{
 463        __dev_remove_pack(pt);
 464
 465        synchronize_net();
 466}
 467EXPORT_SYMBOL(dev_remove_pack);
 468
 469
 470/**
 471 *      dev_add_offload - register offload handlers
 472 *      @po: protocol offload declaration
 473 *
 474 *      Add protocol offload handlers to the networking stack. The passed
 475 *      &proto_offload is linked into kernel lists and may not be freed until
 476 *      it has been removed from the kernel lists.
 477 *
 478 *      This call does not sleep therefore it can not
 479 *      guarantee all CPU's that are in middle of receiving packets
 480 *      will see the new offload handlers (until the next received packet).
 481 */
 482void dev_add_offload(struct packet_offload *po)
 483{
 484        struct packet_offload *elem;
 485
 486        spin_lock(&offload_lock);
 487        list_for_each_entry(elem, &offload_base, list) {
 488                if (po->priority < elem->priority)
 489                        break;
 490        }
 491        list_add_rcu(&po->list, elem->list.prev);
 492        spin_unlock(&offload_lock);
 493}
 494EXPORT_SYMBOL(dev_add_offload);
 495
 496/**
 497 *      __dev_remove_offload     - remove offload handler
 498 *      @po: packet offload declaration
 499 *
 500 *      Remove a protocol offload handler that was previously added to the
 501 *      kernel offload handlers by dev_add_offload(). The passed &offload_type
 502 *      is removed from the kernel lists and can be freed or reused once this
 503 *      function returns.
 504 *
 505 *      The packet type might still be in use by receivers
 506 *      and must not be freed until after all the CPU's have gone
 507 *      through a quiescent state.
 508 */
 509static void __dev_remove_offload(struct packet_offload *po)
 510{
 511        struct list_head *head = &offload_base;
 512        struct packet_offload *po1;
 513
 514        spin_lock(&offload_lock);
 515
 516        list_for_each_entry(po1, head, list) {
 517                if (po == po1) {
 518                        list_del_rcu(&po->list);
 519                        goto out;
 520                }
 521        }
 522
 523        pr_warn("dev_remove_offload: %p not found\n", po);
 524out:
 525        spin_unlock(&offload_lock);
 526}
 527
 528/**
 529 *      dev_remove_offload       - remove packet offload handler
 530 *      @po: packet offload declaration
 531 *
 532 *      Remove a packet offload handler that was previously added to the kernel
 533 *      offload handlers by dev_add_offload(). The passed &offload_type is
 534 *      removed from the kernel lists and can be freed or reused once this
 535 *      function returns.
 536 *
 537 *      This call sleeps to guarantee that no CPU is looking at the packet
 538 *      type after return.
 539 */
 540void dev_remove_offload(struct packet_offload *po)
 541{
 542        __dev_remove_offload(po);
 543
 544        synchronize_net();
 545}
 546EXPORT_SYMBOL(dev_remove_offload);
 547
 548/******************************************************************************
 549 *
 550 *                    Device Boot-time Settings Routines
 551 *
 552 ******************************************************************************/
 553
 554/* Boot time configuration table */
 555static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
 556
 557/**
 558 *      netdev_boot_setup_add   - add new setup entry
 559 *      @name: name of the device
 560 *      @map: configured settings for the device
 561 *
 562 *      Adds new setup entry to the dev_boot_setup list.  The function
 563 *      returns 0 on error and 1 on success.  This is a generic routine to
 564 *      all netdevices.
 565 */
 566static int netdev_boot_setup_add(char *name, struct ifmap *map)
 567{
 568        struct netdev_boot_setup *s;
 569        int i;
 570
 571        s = dev_boot_setup;
 572        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 573                if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
 574                        memset(s[i].name, 0, sizeof(s[i].name));
 575                        strlcpy(s[i].name, name, IFNAMSIZ);
 576                        memcpy(&s[i].map, map, sizeof(s[i].map));
 577                        break;
 578                }
 579        }
 580
 581        return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
 582}
 583
 584/**
 585 * netdev_boot_setup_check      - check boot time settings
 586 * @dev: the netdevice
 587 *
 588 * Check boot time settings for the device.
 589 * The found settings are set for the device to be used
 590 * later in the device probing.
 591 * Returns 0 if no settings found, 1 if they are.
 592 */
 593int netdev_boot_setup_check(struct net_device *dev)
 594{
 595        struct netdev_boot_setup *s = dev_boot_setup;
 596        int i;
 597
 598        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 599                if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
 600                    !strcmp(dev->name, s[i].name)) {
 601                        dev->irq = s[i].map.irq;
 602                        dev->base_addr = s[i].map.base_addr;
 603                        dev->mem_start = s[i].map.mem_start;
 604                        dev->mem_end = s[i].map.mem_end;
 605                        return 1;
 606                }
 607        }
 608        return 0;
 609}
 610EXPORT_SYMBOL(netdev_boot_setup_check);
 611
 612
 613/**
 614 * netdev_boot_base     - get address from boot time settings
 615 * @prefix: prefix for network device
 616 * @unit: id for network device
 617 *
 618 * Check boot time settings for the base address of device.
 619 * The found settings are set for the device to be used
 620 * later in the device probing.
 621 * Returns 0 if no settings found.
 622 */
 623unsigned long netdev_boot_base(const char *prefix, int unit)
 624{
 625        const struct netdev_boot_setup *s = dev_boot_setup;
 626        char name[IFNAMSIZ];
 627        int i;
 628
 629        sprintf(name, "%s%d", prefix, unit);
 630
 631        /*
 632         * If device already registered then return base of 1
 633         * to indicate not to probe for this interface
 634         */
 635        if (__dev_get_by_name(&init_net, name))
 636                return 1;
 637
 638        for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
 639                if (!strcmp(name, s[i].name))
 640                        return s[i].map.base_addr;
 641        return 0;
 642}
 643
 644/*
 645 * Saves at boot time configured settings for any netdevice.
 646 */
 647int __init netdev_boot_setup(char *str)
 648{
 649        int ints[5];
 650        struct ifmap map;
 651
 652        str = get_options(str, ARRAY_SIZE(ints), ints);
 653        if (!str || !*str)
 654                return 0;
 655
 656        /* Save settings */
 657        memset(&map, 0, sizeof(map));
 658        if (ints[0] > 0)
 659                map.irq = ints[1];
 660        if (ints[0] > 1)
 661                map.base_addr = ints[2];
 662        if (ints[0] > 2)
 663                map.mem_start = ints[3];
 664        if (ints[0] > 3)
 665                map.mem_end = ints[4];
 666
 667        /* Add new entry to the list */
 668        return netdev_boot_setup_add(str, &map);
 669}
 670
 671__setup("netdev=", netdev_boot_setup);
 672
 673/*******************************************************************************
 674 *
 675 *                          Device Interface Subroutines
 676 *
 677 *******************************************************************************/
 678
 679/**
 680 *      dev_get_iflink  - get 'iflink' value of a interface
 681 *      @dev: targeted interface
 682 *
 683 *      Indicates the ifindex the interface is linked to.
 684 *      Physical interfaces have the same 'ifindex' and 'iflink' values.
 685 */
 686
 687int dev_get_iflink(const struct net_device *dev)
 688{
 689        if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
 690                return dev->netdev_ops->ndo_get_iflink(dev);
 691
 692        return dev->ifindex;
 693}
 694EXPORT_SYMBOL(dev_get_iflink);
 695
 696/**
 697 *      dev_fill_metadata_dst - Retrieve tunnel egress information.
 698 *      @dev: targeted interface
 699 *      @skb: The packet.
 700 *
 701 *      For better visibility of tunnel traffic OVS needs to retrieve
 702 *      egress tunnel information for a packet. Following API allows
 703 *      user to get this info.
 704 */
 705int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
 706{
 707        struct ip_tunnel_info *info;
 708
 709        if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
 710                return -EINVAL;
 711
 712        info = skb_tunnel_info_unclone(skb);
 713        if (!info)
 714                return -ENOMEM;
 715        if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
 716                return -EINVAL;
 717
 718        return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
 719}
 720EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
 721
 722/**
 723 *      __dev_get_by_name       - find a device by its name
 724 *      @net: the applicable net namespace
 725 *      @name: name to find
 726 *
 727 *      Find an interface by name. Must be called under RTNL semaphore
 728 *      or @dev_base_lock. If the name is found a pointer to the device
 729 *      is returned. If the name is not found then %NULL is returned. The
 730 *      reference counters are not incremented so the caller must be
 731 *      careful with locks.
 732 */
 733
 734struct net_device *__dev_get_by_name(struct net *net, const char *name)
 735{
 736        struct net_device *dev;
 737        struct hlist_head *head = dev_name_hash(net, name);
 738
 739        hlist_for_each_entry(dev, head, name_hlist)
 740                if (!strncmp(dev->name, name, IFNAMSIZ))
 741                        return dev;
 742
 743        return NULL;
 744}
 745EXPORT_SYMBOL(__dev_get_by_name);
 746
 747/**
 748 * dev_get_by_name_rcu  - find a device by its name
 749 * @net: the applicable net namespace
 750 * @name: name to find
 751 *
 752 * Find an interface by name.
 753 * If the name is found a pointer to the device is returned.
 754 * If the name is not found then %NULL is returned.
 755 * The reference counters are not incremented so the caller must be
 756 * careful with locks. The caller must hold RCU lock.
 757 */
 758
 759struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
 760{
 761        struct net_device *dev;
 762        struct hlist_head *head = dev_name_hash(net, name);
 763
 764        hlist_for_each_entry_rcu(dev, head, name_hlist)
 765                if (!strncmp(dev->name, name, IFNAMSIZ))
 766                        return dev;
 767
 768        return NULL;
 769}
 770EXPORT_SYMBOL(dev_get_by_name_rcu);
 771
 772/**
 773 *      dev_get_by_name         - find a device by its name
 774 *      @net: the applicable net namespace
 775 *      @name: name to find
 776 *
 777 *      Find an interface by name. This can be called from any
 778 *      context and does its own locking. The returned handle has
 779 *      the usage count incremented and the caller must use dev_put() to
 780 *      release it when it is no longer needed. %NULL is returned if no
 781 *      matching device is found.
 782 */
 783
 784struct net_device *dev_get_by_name(struct net *net, const char *name)
 785{
 786        struct net_device *dev;
 787
 788        rcu_read_lock();
 789        dev = dev_get_by_name_rcu(net, name);
 790        if (dev)
 791                dev_hold(dev);
 792        rcu_read_unlock();
 793        return dev;
 794}
 795EXPORT_SYMBOL(dev_get_by_name);
 796
 797/**
 798 *      __dev_get_by_index - find a device by its ifindex
 799 *      @net: the applicable net namespace
 800 *      @ifindex: index of device
 801 *
 802 *      Search for an interface by index. Returns %NULL if the device
 803 *      is not found or a pointer to the device. The device has not
 804 *      had its reference counter increased so the caller must be careful
 805 *      about locking. The caller must hold either the RTNL semaphore
 806 *      or @dev_base_lock.
 807 */
 808
 809struct net_device *__dev_get_by_index(struct net *net, int ifindex)
 810{
 811        struct net_device *dev;
 812        struct hlist_head *head = dev_index_hash(net, ifindex);
 813
 814        hlist_for_each_entry(dev, head, index_hlist)
 815                if (dev->ifindex == ifindex)
 816                        return dev;
 817
 818        return NULL;
 819}
 820EXPORT_SYMBOL(__dev_get_by_index);
 821
 822/**
 823 *      dev_get_by_index_rcu - find a device by its ifindex
 824 *      @net: the applicable net namespace
 825 *      @ifindex: index of device
 826 *
 827 *      Search for an interface by index. Returns %NULL if the device
 828 *      is not found or a pointer to the device. The device has not
 829 *      had its reference counter increased so the caller must be careful
 830 *      about locking. The caller must hold RCU lock.
 831 */
 832
 833struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
 834{
 835        struct net_device *dev;
 836        struct hlist_head *head = dev_index_hash(net, ifindex);
 837
 838        hlist_for_each_entry_rcu(dev, head, index_hlist)
 839                if (dev->ifindex == ifindex)
 840                        return dev;
 841
 842        return NULL;
 843}
 844EXPORT_SYMBOL(dev_get_by_index_rcu);
 845
 846
 847/**
 848 *      dev_get_by_index - find a device by its ifindex
 849 *      @net: the applicable net namespace
 850 *      @ifindex: index of device
 851 *
 852 *      Search for an interface by index. Returns NULL if the device
 853 *      is not found or a pointer to the device. The device returned has
 854 *      had a reference added and the pointer is safe until the user calls
 855 *      dev_put to indicate they have finished with it.
 856 */
 857
 858struct net_device *dev_get_by_index(struct net *net, int ifindex)
 859{
 860        struct net_device *dev;
 861
 862        rcu_read_lock();
 863        dev = dev_get_by_index_rcu(net, ifindex);
 864        if (dev)
 865                dev_hold(dev);
 866        rcu_read_unlock();
 867        return dev;
 868}
 869EXPORT_SYMBOL(dev_get_by_index);
 870
 871/**
 872 *      dev_get_by_napi_id - find a device by napi_id
 873 *      @napi_id: ID of the NAPI struct
 874 *
 875 *      Search for an interface by NAPI ID. Returns %NULL if the device
 876 *      is not found or a pointer to the device. The device has not had
 877 *      its reference counter increased so the caller must be careful
 878 *      about locking. The caller must hold RCU lock.
 879 */
 880
 881struct net_device *dev_get_by_napi_id(unsigned int napi_id)
 882{
 883        struct napi_struct *napi;
 884
 885        WARN_ON_ONCE(!rcu_read_lock_held());
 886
 887        if (napi_id < MIN_NAPI_ID)
 888                return NULL;
 889
 890        napi = napi_by_id(napi_id);
 891
 892        return napi ? napi->dev : NULL;
 893}
 894EXPORT_SYMBOL(dev_get_by_napi_id);
 895
 896/**
 897 *      netdev_get_name - get a netdevice name, knowing its ifindex.
 898 *      @net: network namespace
 899 *      @name: a pointer to the buffer where the name will be stored.
 900 *      @ifindex: the ifindex of the interface to get the name from.
 901 *
 902 *      The use of raw_seqcount_begin() and cond_resched() before
 903 *      retrying is required as we want to give the writers a chance
 904 *      to complete when CONFIG_PREEMPT is not set.
 905 */
 906int netdev_get_name(struct net *net, char *name, int ifindex)
 907{
 908        struct net_device *dev;
 909        unsigned int seq;
 910
 911retry:
 912        seq = raw_seqcount_begin(&devnet_rename_seq);
 913        rcu_read_lock();
 914        dev = dev_get_by_index_rcu(net, ifindex);
 915        if (!dev) {
 916                rcu_read_unlock();
 917                return -ENODEV;
 918        }
 919
 920        strcpy(name, dev->name);
 921        rcu_read_unlock();
 922        if (read_seqcount_retry(&devnet_rename_seq, seq)) {
 923                cond_resched();
 924                goto retry;
 925        }
 926
 927        return 0;
 928}
 929
 930/**
 931 *      dev_getbyhwaddr_rcu - find a device by its hardware address
 932 *      @net: the applicable net namespace
 933 *      @type: media type of device
 934 *      @ha: hardware address
 935 *
 936 *      Search for an interface by MAC address. Returns NULL if the device
 937 *      is not found or a pointer to the device.
 938 *      The caller must hold RCU or RTNL.
 939 *      The returned device has not had its ref count increased
 940 *      and the caller must therefore be careful about locking
 941 *
 942 */
 943
 944struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
 945                                       const char *ha)
 946{
 947        struct net_device *dev;
 948
 949        for_each_netdev_rcu(net, dev)
 950                if (dev->type == type &&
 951                    !memcmp(dev->dev_addr, ha, dev->addr_len))
 952                        return dev;
 953
 954        return NULL;
 955}
 956EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
 957
 958struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
 959{
 960        struct net_device *dev;
 961
 962        ASSERT_RTNL();
 963        for_each_netdev(net, dev)
 964                if (dev->type == type)
 965                        return dev;
 966
 967        return NULL;
 968}
 969EXPORT_SYMBOL(__dev_getfirstbyhwtype);
 970
 971struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
 972{
 973        struct net_device *dev, *ret = NULL;
 974
 975        rcu_read_lock();
 976        for_each_netdev_rcu(net, dev)
 977                if (dev->type == type) {
 978                        dev_hold(dev);
 979                        ret = dev;
 980                        break;
 981                }
 982        rcu_read_unlock();
 983        return ret;
 984}
 985EXPORT_SYMBOL(dev_getfirstbyhwtype);
 986
 987/**
 988 *      __dev_get_by_flags - find any device with given flags
 989 *      @net: the applicable net namespace
 990 *      @if_flags: IFF_* values
 991 *      @mask: bitmask of bits in if_flags to check
 992 *
 993 *      Search for any interface with the given flags. Returns NULL if a device
 994 *      is not found or a pointer to the device. Must be called inside
 995 *      rtnl_lock(), and result refcount is unchanged.
 996 */
 997
 998struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
 999                                      unsigned short mask)
1000{
1001        struct net_device *dev, *ret;
1002
1003        ASSERT_RTNL();
1004
1005        ret = NULL;
1006        for_each_netdev(net, dev) {
1007                if (((dev->flags ^ if_flags) & mask) == 0) {
1008                        ret = dev;
1009                        break;
1010                }
1011        }
1012        return ret;
1013}
1014EXPORT_SYMBOL(__dev_get_by_flags);
1015
1016/**
1017 *      dev_valid_name - check if name is okay for network device
1018 *      @name: name string
1019 *
1020 *      Network device names need to be valid file names to
1021 *      to allow sysfs to work.  We also disallow any kind of
1022 *      whitespace.
1023 */
1024bool dev_valid_name(const char *name)
1025{
1026        if (*name == '\0')
1027                return false;
1028        if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1029                return false;
1030        if (!strcmp(name, ".") || !strcmp(name, ".."))
1031                return false;
1032
1033        while (*name) {
1034                if (*name == '/' || *name == ':' || isspace(*name))
1035                        return false;
1036                name++;
1037        }
1038        return true;
1039}
1040EXPORT_SYMBOL(dev_valid_name);
1041
1042/**
1043 *      __dev_alloc_name - allocate a name for a device
1044 *      @net: network namespace to allocate the device name in
1045 *      @name: name format string
1046 *      @buf:  scratch buffer and result name string
1047 *
1048 *      Passed a format string - eg "lt%d" it will try and find a suitable
1049 *      id. It scans list of devices to build up a free map, then chooses
1050 *      the first empty slot. The caller must hold the dev_base or rtnl lock
1051 *      while allocating the name and adding the device in order to avoid
1052 *      duplicates.
1053 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1054 *      Returns the number of the unit assigned or a negative errno code.
1055 */
1056
1057static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1058{
1059        int i = 0;
1060        const char *p;
1061        const int max_netdevices = 8*PAGE_SIZE;
1062        unsigned long *inuse;
1063        struct net_device *d;
1064
1065        if (!dev_valid_name(name))
1066                return -EINVAL;
1067
1068        p = strchr(name, '%');
1069        if (p) {
1070                /*
1071                 * Verify the string as this thing may have come from
1072                 * the user.  There must be either one "%d" and no other "%"
1073                 * characters.
1074                 */
1075                if (p[1] != 'd' || strchr(p + 2, '%'))
1076                        return -EINVAL;
1077
1078                /* Use one page as a bit array of possible slots */
1079                inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1080                if (!inuse)
1081                        return -ENOMEM;
1082
1083                for_each_netdev(net, d) {
1084                        if (!sscanf(d->name, name, &i))
1085                                continue;
1086                        if (i < 0 || i >= max_netdevices)
1087                                continue;
1088
1089                        /*  avoid cases where sscanf is not exact inverse of printf */
1090                        snprintf(buf, IFNAMSIZ, name, i);
1091                        if (!strncmp(buf, d->name, IFNAMSIZ))
1092                                set_bit(i, inuse);
1093                }
1094
1095                i = find_first_zero_bit(inuse, max_netdevices);
1096                free_page((unsigned long) inuse);
1097        }
1098
1099        snprintf(buf, IFNAMSIZ, name, i);
1100        if (!__dev_get_by_name(net, buf))
1101                return i;
1102
1103        /* It is possible to run out of possible slots
1104         * when the name is long and there isn't enough space left
1105         * for the digits, or if all bits are used.
1106         */
1107        return -ENFILE;
1108}
1109
1110static int dev_alloc_name_ns(struct net *net,
1111                             struct net_device *dev,
1112                             const char *name)
1113{
1114        char buf[IFNAMSIZ];
1115        int ret;
1116
1117        BUG_ON(!net);
1118        ret = __dev_alloc_name(net, name, buf);
1119        if (ret >= 0)
1120                strlcpy(dev->name, buf, IFNAMSIZ);
1121        return ret;
1122}
1123
1124/**
1125 *      dev_alloc_name - allocate a name for a device
1126 *      @dev: device
1127 *      @name: name format string
1128 *
1129 *      Passed a format string - eg "lt%d" it will try and find a suitable
1130 *      id. It scans list of devices to build up a free map, then chooses
1131 *      the first empty slot. The caller must hold the dev_base or rtnl lock
1132 *      while allocating the name and adding the device in order to avoid
1133 *      duplicates.
1134 *      Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1135 *      Returns the number of the unit assigned or a negative errno code.
1136 */
1137
1138int dev_alloc_name(struct net_device *dev, const char *name)
1139{
1140        return dev_alloc_name_ns(dev_net(dev), dev, name);
1141}
1142EXPORT_SYMBOL(dev_alloc_name);
1143
1144int dev_get_valid_name(struct net *net, struct net_device *dev,
1145                       const char *name)
1146{
1147        BUG_ON(!net);
1148
1149        if (!dev_valid_name(name))
1150                return -EINVAL;
1151
1152        if (strchr(name, '%'))
1153                return dev_alloc_name_ns(net, dev, name);
1154        else if (__dev_get_by_name(net, name))
1155                return -EEXIST;
1156        else if (dev->name != name)
1157                strlcpy(dev->name, name, IFNAMSIZ);
1158
1159        return 0;
1160}
1161EXPORT_SYMBOL(dev_get_valid_name);
1162
1163/**
1164 *      dev_change_name - change name of a device
1165 *      @dev: device
1166 *      @newname: name (or format string) must be at least IFNAMSIZ
1167 *
1168 *      Change name of a device, can pass format strings "eth%d".
1169 *      for wildcarding.
1170 */
1171int dev_change_name(struct net_device *dev, const char *newname)
1172{
1173        unsigned char old_assign_type;
1174        char oldname[IFNAMSIZ];
1175        int err = 0;
1176        int ret;
1177        struct net *net;
1178
1179        ASSERT_RTNL();
1180        BUG_ON(!dev_net(dev));
1181
1182        net = dev_net(dev);
1183
1184        /* Some auto-enslaved devices e.g. failover slaves are
1185         * special, as userspace might rename the device after
1186         * the interface had been brought up and running since
1187         * the point kernel initiated auto-enslavement. Allow
1188         * live name change even when these slave devices are
1189         * up and running.
1190         *
1191         * Typically, users of these auto-enslaving devices
1192         * don't actually care about slave name change, as
1193         * they are supposed to operate on master interface
1194         * directly.
1195         */
1196        if (dev->flags & IFF_UP &&
1197            likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1198                return -EBUSY;
1199
1200        write_seqcount_begin(&devnet_rename_seq);
1201
1202        if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1203                write_seqcount_end(&devnet_rename_seq);
1204                return 0;
1205        }
1206
1207        memcpy(oldname, dev->name, IFNAMSIZ);
1208
1209        err = dev_get_valid_name(net, dev, newname);
1210        if (err < 0) {
1211                write_seqcount_end(&devnet_rename_seq);
1212                return err;
1213        }
1214
1215        if (oldname[0] && !strchr(oldname, '%'))
1216                netdev_info(dev, "renamed from %s\n", oldname);
1217
1218        old_assign_type = dev->name_assign_type;
1219        dev->name_assign_type = NET_NAME_RENAMED;
1220
1221rollback:
1222        ret = device_rename(&dev->dev, dev->name);
1223        if (ret) {
1224                memcpy(dev->name, oldname, IFNAMSIZ);
1225                dev->name_assign_type = old_assign_type;
1226                write_seqcount_end(&devnet_rename_seq);
1227                return ret;
1228        }
1229
1230        write_seqcount_end(&devnet_rename_seq);
1231
1232        netdev_adjacent_rename_links(dev, oldname);
1233
1234        write_lock_bh(&dev_base_lock);
1235        hlist_del_rcu(&dev->name_hlist);
1236        write_unlock_bh(&dev_base_lock);
1237
1238        synchronize_rcu();
1239
1240        write_lock_bh(&dev_base_lock);
1241        hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1242        write_unlock_bh(&dev_base_lock);
1243
1244        ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1245        ret = notifier_to_errno(ret);
1246
1247        if (ret) {
1248                /* err >= 0 after dev_alloc_name() or stores the first errno */
1249                if (err >= 0) {
1250                        err = ret;
1251                        write_seqcount_begin(&devnet_rename_seq);
1252                        memcpy(dev->name, oldname, IFNAMSIZ);
1253                        memcpy(oldname, newname, IFNAMSIZ);
1254                        dev->name_assign_type = old_assign_type;
1255                        old_assign_type = NET_NAME_RENAMED;
1256                        goto rollback;
1257                } else {
1258                        pr_err("%s: name change rollback failed: %d\n",
1259                               dev->name, ret);
1260                }
1261        }
1262
1263        return err;
1264}
1265
1266/**
1267 *      dev_set_alias - change ifalias of a device
1268 *      @dev: device
1269 *      @alias: name up to IFALIASZ
1270 *      @len: limit of bytes to copy from info
1271 *
1272 *      Set ifalias for a device,
1273 */
1274int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1275{
1276        struct dev_ifalias *new_alias = NULL;
1277
1278        if (len >= IFALIASZ)
1279                return -EINVAL;
1280
1281        if (len) {
1282                new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1283                if (!new_alias)
1284                        return -ENOMEM;
1285
1286                memcpy(new_alias->ifalias, alias, len);
1287                new_alias->ifalias[len] = 0;
1288        }
1289
1290        mutex_lock(&ifalias_mutex);
1291        rcu_swap_protected(dev->ifalias, new_alias,
1292                           mutex_is_locked(&ifalias_mutex));
1293        mutex_unlock(&ifalias_mutex);
1294
1295        if (new_alias)
1296                kfree_rcu(new_alias, rcuhead);
1297
1298        return len;
1299}
1300EXPORT_SYMBOL(dev_set_alias);
1301
1302/**
1303 *      dev_get_alias - get ifalias of a device
1304 *      @dev: device
1305 *      @name: buffer to store name of ifalias
1306 *      @len: size of buffer
1307 *
1308 *      get ifalias for a device.  Caller must make sure dev cannot go
1309 *      away,  e.g. rcu read lock or own a reference count to device.
1310 */
1311int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1312{
1313        const struct dev_ifalias *alias;
1314        int ret = 0;
1315
1316        rcu_read_lock();
1317        alias = rcu_dereference(dev->ifalias);
1318        if (alias)
1319                ret = snprintf(name, len, "%s", alias->ifalias);
1320        rcu_read_unlock();
1321
1322        return ret;
1323}
1324
1325/**
1326 *      netdev_features_change - device changes features
1327 *      @dev: device to cause notification
1328 *
1329 *      Called to indicate a device has changed features.
1330 */
1331void netdev_features_change(struct net_device *dev)
1332{
1333        call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1334}
1335EXPORT_SYMBOL(netdev_features_change);
1336
1337/**
1338 *      netdev_state_change - device changes state
1339 *      @dev: device to cause notification
1340 *
1341 *      Called to indicate a device has changed state. This function calls
1342 *      the notifier chains for netdev_chain and sends a NEWLINK message
1343 *      to the routing socket.
1344 */
1345void netdev_state_change(struct net_device *dev)
1346{
1347        if (dev->flags & IFF_UP) {
1348                struct netdev_notifier_change_info change_info = {
1349                        .info.dev = dev,
1350                };
1351
1352                call_netdevice_notifiers_info(NETDEV_CHANGE,
1353                                              &change_info.info);
1354                rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1355        }
1356}
1357EXPORT_SYMBOL(netdev_state_change);
1358
1359/**
1360 * netdev_notify_peers - notify network peers about existence of @dev
1361 * @dev: network device
1362 *
1363 * Generate traffic such that interested network peers are aware of
1364 * @dev, such as by generating a gratuitous ARP. This may be used when
1365 * a device wants to inform the rest of the network about some sort of
1366 * reconfiguration such as a failover event or virtual machine
1367 * migration.
1368 */
1369void netdev_notify_peers(struct net_device *dev)
1370{
1371        rtnl_lock();
1372        call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1373        call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1374        rtnl_unlock();
1375}
1376EXPORT_SYMBOL(netdev_notify_peers);
1377
1378static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1379{
1380        const struct net_device_ops *ops = dev->netdev_ops;
1381        int ret;
1382
1383        ASSERT_RTNL();
1384
1385        if (!netif_device_present(dev))
1386                return -ENODEV;
1387
1388        /* Block netpoll from trying to do any rx path servicing.
1389         * If we don't do this there is a chance ndo_poll_controller
1390         * or ndo_poll may be running while we open the device
1391         */
1392        netpoll_poll_disable(dev);
1393
1394        ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1395        ret = notifier_to_errno(ret);
1396        if (ret)
1397                return ret;
1398
1399        set_bit(__LINK_STATE_START, &dev->state);
1400
1401        if (ops->ndo_validate_addr)
1402                ret = ops->ndo_validate_addr(dev);
1403
1404        if (!ret && ops->ndo_open)
1405                ret = ops->ndo_open(dev);
1406
1407        netpoll_poll_enable(dev);
1408
1409        if (ret)
1410                clear_bit(__LINK_STATE_START, &dev->state);
1411        else {
1412                dev->flags |= IFF_UP;
1413                dev_set_rx_mode(dev);
1414                dev_activate(dev);
1415                add_device_randomness(dev->dev_addr, dev->addr_len);
1416        }
1417
1418        return ret;
1419}
1420
1421/**
1422 *      dev_open        - prepare an interface for use.
1423 *      @dev: device to open
1424 *      @extack: netlink extended ack
1425 *
1426 *      Takes a device from down to up state. The device's private open
1427 *      function is invoked and then the multicast lists are loaded. Finally
1428 *      the device is moved into the up state and a %NETDEV_UP message is
1429 *      sent to the netdev notifier chain.
1430 *
1431 *      Calling this function on an active interface is a nop. On a failure
1432 *      a negative errno code is returned.
1433 */
1434int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1435{
1436        int ret;
1437
1438        if (dev->flags & IFF_UP)
1439                return 0;
1440
1441        ret = __dev_open(dev, extack);
1442        if (ret < 0)
1443                return ret;
1444
1445        rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1446        call_netdevice_notifiers(NETDEV_UP, dev);
1447
1448        return ret;
1449}
1450EXPORT_SYMBOL(dev_open);
1451
1452static void __dev_close_many(struct list_head *head)
1453{
1454        struct net_device *dev;
1455
1456        ASSERT_RTNL();
1457        might_sleep();
1458
1459        list_for_each_entry(dev, head, close_list) {
1460                /* Temporarily disable netpoll until the interface is down */
1461                netpoll_poll_disable(dev);
1462
1463                call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1464
1465                clear_bit(__LINK_STATE_START, &dev->state);
1466
1467                /* Synchronize to scheduled poll. We cannot touch poll list, it
1468                 * can be even on different cpu. So just clear netif_running().
1469                 *
1470                 * dev->stop() will invoke napi_disable() on all of it's
1471                 * napi_struct instances on this device.
1472                 */
1473                smp_mb__after_atomic(); /* Commit netif_running(). */
1474        }
1475
1476        dev_deactivate_many(head);
1477
1478        list_for_each_entry(dev, head, close_list) {
1479                const struct net_device_ops *ops = dev->netdev_ops;
1480
1481                /*
1482                 *      Call the device specific close. This cannot fail.
1483                 *      Only if device is UP
1484                 *
1485                 *      We allow it to be called even after a DETACH hot-plug
1486                 *      event.
1487                 */
1488                if (ops->ndo_stop)
1489                        ops->ndo_stop(dev);
1490
1491                dev->flags &= ~IFF_UP;
1492                netpoll_poll_enable(dev);
1493        }
1494}
1495
1496static void __dev_close(struct net_device *dev)
1497{
1498        LIST_HEAD(single);
1499
1500        list_add(&dev->close_list, &single);
1501        __dev_close_many(&single);
1502        list_del(&single);
1503}
1504
1505void dev_close_many(struct list_head *head, bool unlink)
1506{
1507        struct net_device *dev, *tmp;
1508
1509        /* Remove the devices that don't need to be closed */
1510        list_for_each_entry_safe(dev, tmp, head, close_list)
1511                if (!(dev->flags & IFF_UP))
1512                        list_del_init(&dev->close_list);
1513
1514        __dev_close_many(head);
1515
1516        list_for_each_entry_safe(dev, tmp, head, close_list) {
1517                rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1518                call_netdevice_notifiers(NETDEV_DOWN, dev);
1519                if (unlink)
1520                        list_del_init(&dev->close_list);
1521        }
1522}
1523EXPORT_SYMBOL(dev_close_many);
1524
1525/**
1526 *      dev_close - shutdown an interface.
1527 *      @dev: device to shutdown
1528 *
1529 *      This function moves an active device into down state. A
1530 *      %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1531 *      is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1532 *      chain.
1533 */
1534void dev_close(struct net_device *dev)
1535{
1536        if (dev->flags & IFF_UP) {
1537                LIST_HEAD(single);
1538
1539                list_add(&dev->close_list, &single);
1540                dev_close_many(&single, true);
1541                list_del(&single);
1542        }
1543}
1544EXPORT_SYMBOL(dev_close);
1545
1546
1547/**
1548 *      dev_disable_lro - disable Large Receive Offload on a device
1549 *      @dev: device
1550 *
1551 *      Disable Large Receive Offload (LRO) on a net device.  Must be
1552 *      called under RTNL.  This is needed if received packets may be
1553 *      forwarded to another interface.
1554 */
1555void dev_disable_lro(struct net_device *dev)
1556{
1557        struct net_device *lower_dev;
1558        struct list_head *iter;
1559
1560        dev->wanted_features &= ~NETIF_F_LRO;
1561        netdev_update_features(dev);
1562
1563        if (unlikely(dev->features & NETIF_F_LRO))
1564                netdev_WARN(dev, "failed to disable LRO!\n");
1565
1566        netdev_for_each_lower_dev(dev, lower_dev, iter)
1567                dev_disable_lro(lower_dev);
1568}
1569EXPORT_SYMBOL(dev_disable_lro);
1570
1571/**
1572 *      dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1573 *      @dev: device
1574 *
1575 *      Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
1576 *      called under RTNL.  This is needed if Generic XDP is installed on
1577 *      the device.
1578 */
1579static void dev_disable_gro_hw(struct net_device *dev)
1580{
1581        dev->wanted_features &= ~NETIF_F_GRO_HW;
1582        netdev_update_features(dev);
1583
1584        if (unlikely(dev->features & NETIF_F_GRO_HW))
1585                netdev_WARN(dev, "failed to disable GRO_HW!\n");
1586}
1587
1588const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1589{
1590#define N(val)                                          \
1591        case NETDEV_##val:                              \
1592                return "NETDEV_" __stringify(val);
1593        switch (cmd) {
1594        N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1595        N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1596        N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1597        N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1598        N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1599        N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1600        N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1601        N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1602        N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1603        N(PRE_CHANGEADDR)
1604        }
1605#undef N
1606        return "UNKNOWN_NETDEV_EVENT";
1607}
1608EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1609
1610static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1611                                   struct net_device *dev)
1612{
1613        struct netdev_notifier_info info = {
1614                .dev = dev,
1615        };
1616
1617        return nb->notifier_call(nb, val, &info);
1618}
1619
1620static int dev_boot_phase = 1;
1621
1622/**
1623 * register_netdevice_notifier - register a network notifier block
1624 * @nb: notifier
1625 *
1626 * Register a notifier to be called when network device events occur.
1627 * The notifier passed is linked into the kernel structures and must
1628 * not be reused until it has been unregistered. A negative errno code
1629 * is returned on a failure.
1630 *
1631 * When registered all registration and up events are replayed
1632 * to the new notifier to allow device to have a race free
1633 * view of the network device list.
1634 */
1635
1636int register_netdevice_notifier(struct notifier_block *nb)
1637{
1638        struct net_device *dev;
1639        struct net_device *last;
1640        struct net *net;
1641        int err;
1642
1643        /* Close race with setup_net() and cleanup_net() */
1644        down_write(&pernet_ops_rwsem);
1645        rtnl_lock();
1646        err = raw_notifier_chain_register(&netdev_chain, nb);
1647        if (err)
1648                goto unlock;
1649        if (dev_boot_phase)
1650                goto unlock;
1651        for_each_net(net) {
1652                for_each_netdev(net, dev) {
1653                        err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1654                        err = notifier_to_errno(err);
1655                        if (err)
1656                                goto rollback;
1657
1658                        if (!(dev->flags & IFF_UP))
1659                                continue;
1660
1661                        call_netdevice_notifier(nb, NETDEV_UP, dev);
1662                }
1663        }
1664
1665unlock:
1666        rtnl_unlock();
1667        up_write(&pernet_ops_rwsem);
1668        return err;
1669
1670rollback:
1671        last = dev;
1672        for_each_net(net) {
1673                for_each_netdev(net, dev) {
1674                        if (dev == last)
1675                                goto outroll;
1676
1677                        if (dev->flags & IFF_UP) {
1678                                call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1679                                                        dev);
1680                                call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1681                        }
1682                        call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1683                }
1684        }
1685
1686outroll:
1687        raw_notifier_chain_unregister(&netdev_chain, nb);
1688        goto unlock;
1689}
1690EXPORT_SYMBOL(register_netdevice_notifier);
1691
1692/**
1693 * unregister_netdevice_notifier - unregister a network notifier block
1694 * @nb: notifier
1695 *
1696 * Unregister a notifier previously registered by
1697 * register_netdevice_notifier(). The notifier is unlinked into the
1698 * kernel structures and may then be reused. A negative errno code
1699 * is returned on a failure.
1700 *
1701 * After unregistering unregister and down device events are synthesized
1702 * for all devices on the device list to the removed notifier to remove
1703 * the need for special case cleanup code.
1704 */
1705
1706int unregister_netdevice_notifier(struct notifier_block *nb)
1707{
1708        struct net_device *dev;
1709        struct net *net;
1710        int err;
1711
1712        /* Close race with setup_net() and cleanup_net() */
1713        down_write(&pernet_ops_rwsem);
1714        rtnl_lock();
1715        err = raw_notifier_chain_unregister(&netdev_chain, nb);
1716        if (err)
1717                goto unlock;
1718
1719        for_each_net(net) {
1720                for_each_netdev(net, dev) {
1721                        if (dev->flags & IFF_UP) {
1722                                call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1723                                                        dev);
1724                                call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1725                        }
1726                        call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1727                }
1728        }
1729unlock:
1730        rtnl_unlock();
1731        up_write(&pernet_ops_rwsem);
1732        return err;
1733}
1734EXPORT_SYMBOL(unregister_netdevice_notifier);
1735
1736/**
1737 *      call_netdevice_notifiers_info - call all network notifier blocks
1738 *      @val: value passed unmodified to notifier function
1739 *      @info: notifier information data
1740 *
1741 *      Call all network notifier blocks.  Parameters and return value
1742 *      are as for raw_notifier_call_chain().
1743 */
1744
1745static int call_netdevice_notifiers_info(unsigned long val,
1746                                         struct netdev_notifier_info *info)
1747{
1748        ASSERT_RTNL();
1749        return raw_notifier_call_chain(&netdev_chain, val, info);
1750}
1751
1752static int call_netdevice_notifiers_extack(unsigned long val,
1753                                           struct net_device *dev,
1754                                           struct netlink_ext_ack *extack)
1755{
1756        struct netdev_notifier_info info = {
1757                .dev = dev,
1758                .extack = extack,
1759        };
1760
1761        return call_netdevice_notifiers_info(val, &info);
1762}
1763
1764/**
1765 *      call_netdevice_notifiers - call all network notifier blocks
1766 *      @val: value passed unmodified to notifier function
1767 *      @dev: net_device pointer passed unmodified to notifier function
1768 *
1769 *      Call all network notifier blocks.  Parameters and return value
1770 *      are as for raw_notifier_call_chain().
1771 */
1772
1773int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1774{
1775        return call_netdevice_notifiers_extack(val, dev, NULL);
1776}
1777EXPORT_SYMBOL(call_netdevice_notifiers);
1778
1779/**
1780 *      call_netdevice_notifiers_mtu - call all network notifier blocks
1781 *      @val: value passed unmodified to notifier function
1782 *      @dev: net_device pointer passed unmodified to notifier function
1783 *      @arg: additional u32 argument passed to the notifier function
1784 *
1785 *      Call all network notifier blocks.  Parameters and return value
1786 *      are as for raw_notifier_call_chain().
1787 */
1788static int call_netdevice_notifiers_mtu(unsigned long val,
1789                                        struct net_device *dev, u32 arg)
1790{
1791        struct netdev_notifier_info_ext info = {
1792                .info.dev = dev,
1793                .ext.mtu = arg,
1794        };
1795
1796        BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
1797
1798        return call_netdevice_notifiers_info(val, &info.info);
1799}
1800
1801#ifdef CONFIG_NET_INGRESS
1802static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
1803
1804void net_inc_ingress_queue(void)
1805{
1806        static_branch_inc(&ingress_needed_key);
1807}
1808EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1809
1810void net_dec_ingress_queue(void)
1811{
1812        static_branch_dec(&ingress_needed_key);
1813}
1814EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1815#endif
1816
1817#ifdef CONFIG_NET_EGRESS
1818static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
1819
1820void net_inc_egress_queue(void)
1821{
1822        static_branch_inc(&egress_needed_key);
1823}
1824EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1825
1826void net_dec_egress_queue(void)
1827{
1828        static_branch_dec(&egress_needed_key);
1829}
1830EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1831#endif
1832
1833static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
1834#ifdef CONFIG_JUMP_LABEL
1835static atomic_t netstamp_needed_deferred;
1836static atomic_t netstamp_wanted;
1837static void netstamp_clear(struct work_struct *work)
1838{
1839        int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1840        int wanted;
1841
1842        wanted = atomic_add_return(deferred, &netstamp_wanted);
1843        if (wanted > 0)
1844                static_branch_enable(&netstamp_needed_key);
1845        else
1846                static_branch_disable(&netstamp_needed_key);
1847}
1848static DECLARE_WORK(netstamp_work, netstamp_clear);
1849#endif
1850
1851void net_enable_timestamp(void)
1852{
1853#ifdef CONFIG_JUMP_LABEL
1854        int wanted;
1855
1856        while (1) {
1857                wanted = atomic_read(&netstamp_wanted);
1858                if (wanted <= 0)
1859                        break;
1860                if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
1861                        return;
1862        }
1863        atomic_inc(&netstamp_needed_deferred);
1864        schedule_work(&netstamp_work);
1865#else
1866        static_branch_inc(&netstamp_needed_key);
1867#endif
1868}
1869EXPORT_SYMBOL(net_enable_timestamp);
1870
1871void net_disable_timestamp(void)
1872{
1873#ifdef CONFIG_JUMP_LABEL
1874        int wanted;
1875
1876        while (1) {
1877                wanted = atomic_read(&netstamp_wanted);
1878                if (wanted <= 1)
1879                        break;
1880                if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
1881                        return;
1882        }
1883        atomic_dec(&netstamp_needed_deferred);
1884        schedule_work(&netstamp_work);
1885#else
1886        static_branch_dec(&netstamp_needed_key);
1887#endif
1888}
1889EXPORT_SYMBOL(net_disable_timestamp);
1890
1891static inline void net_timestamp_set(struct sk_buff *skb)
1892{
1893        skb->tstamp = 0;
1894        if (static_branch_unlikely(&netstamp_needed_key))
1895                __net_timestamp(skb);
1896}
1897
1898#define net_timestamp_check(COND, SKB)                          \
1899        if (static_branch_unlikely(&netstamp_needed_key)) {     \
1900                if ((COND) && !(SKB)->tstamp)                   \
1901                        __net_timestamp(SKB);                   \
1902        }                                                       \
1903
1904bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
1905{
1906        unsigned int len;
1907
1908        if (!(dev->flags & IFF_UP))
1909                return false;
1910
1911        len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1912        if (skb->len <= len)
1913                return true;
1914
1915        /* if TSO is enabled, we don't care about the length as the packet
1916         * could be forwarded without being segmented before
1917         */
1918        if (skb_is_gso(skb))
1919                return true;
1920
1921        return false;
1922}
1923EXPORT_SYMBOL_GPL(is_skb_forwardable);
1924
1925int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1926{
1927        int ret = ____dev_forward_skb(dev, skb);
1928
1929        if (likely(!ret)) {
1930                skb->protocol = eth_type_trans(skb, dev);
1931                skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1932        }
1933
1934        return ret;
1935}
1936EXPORT_SYMBOL_GPL(__dev_forward_skb);
1937
1938/**
1939 * dev_forward_skb - loopback an skb to another netif
1940 *
1941 * @dev: destination network device
1942 * @skb: buffer to forward
1943 *
1944 * return values:
1945 *      NET_RX_SUCCESS  (no congestion)
1946 *      NET_RX_DROP     (packet was dropped, but freed)
1947 *
1948 * dev_forward_skb can be used for injecting an skb from the
1949 * start_xmit function of one device into the receive queue
1950 * of another device.
1951 *
1952 * The receiving device may be in another namespace, so
1953 * we have to clear all information in the skb that could
1954 * impact namespace isolation.
1955 */
1956int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1957{
1958        return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1959}
1960EXPORT_SYMBOL_GPL(dev_forward_skb);
1961
1962static inline int deliver_skb(struct sk_buff *skb,
1963                              struct packet_type *pt_prev,
1964                              struct net_device *orig_dev)
1965{
1966        if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
1967                return -ENOMEM;
1968        refcount_inc(&skb->users);
1969        return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1970}
1971
1972static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1973                                          struct packet_type **pt,
1974                                          struct net_device *orig_dev,
1975                                          __be16 type,
1976                                          struct list_head *ptype_list)
1977{
1978        struct packet_type *ptype, *pt_prev = *pt;
1979
1980        list_for_each_entry_rcu(ptype, ptype_list, list) {
1981                if (ptype->type != type)
1982                        continue;
1983                if (pt_prev)
1984                        deliver_skb(skb, pt_prev, orig_dev);
1985                pt_prev = ptype;
1986        }
1987        *pt = pt_prev;
1988}
1989
1990static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1991{
1992        if (!ptype->af_packet_priv || !skb->sk)
1993                return false;
1994
1995        if (ptype->id_match)
1996                return ptype->id_match(ptype, skb->sk);
1997        else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1998                return true;
1999
2000        return false;
2001}
2002
2003/**
2004 * dev_nit_active - return true if any network interface taps are in use
2005 *
2006 * @dev: network device to check for the presence of taps
2007 */
2008bool dev_nit_active(struct net_device *dev)
2009{
2010        return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2011}
2012EXPORT_SYMBOL_GPL(dev_nit_active);
2013
2014/*
2015 *      Support routine. Sends outgoing frames to any network
2016 *      taps currently in use.
2017 */
2018
2019void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2020{
2021        struct packet_type *ptype;
2022        struct sk_buff *skb2 = NULL;
2023        struct packet_type *pt_prev = NULL;
2024        struct list_head *ptype_list = &ptype_all;
2025
2026        rcu_read_lock();
2027again:
2028        list_for_each_entry_rcu(ptype, ptype_list, list) {
2029                if (ptype->ignore_outgoing)
2030                        continue;
2031
2032                /* Never send packets back to the socket
2033                 * they originated from - MvS (miquels@drinkel.ow.org)
2034                 */
2035                if (skb_loop_sk(ptype, skb))
2036                        continue;
2037
2038                if (pt_prev) {
2039                        deliver_skb(skb2, pt_prev, skb->dev);
2040                        pt_prev = ptype;
2041                        continue;
2042                }
2043
2044                /* need to clone skb, done only once */
2045                skb2 = skb_clone(skb, GFP_ATOMIC);
2046                if (!skb2)
2047                        goto out_unlock;
2048
2049                net_timestamp_set(skb2);
2050
2051                /* skb->nh should be correctly
2052                 * set by sender, so that the second statement is
2053                 * just protection against buggy protocols.
2054                 */
2055                skb_reset_mac_header(skb2);
2056
2057                if (skb_network_header(skb2) < skb2->data ||
2058                    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2059                        net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2060                                             ntohs(skb2->protocol),
2061                                             dev->name);
2062                        skb_reset_network_header(skb2);
2063                }
2064
2065                skb2->transport_header = skb2->network_header;
2066                skb2->pkt_type = PACKET_OUTGOING;
2067                pt_prev = ptype;
2068        }
2069
2070        if (ptype_list == &ptype_all) {
2071                ptype_list = &dev->ptype_all;
2072                goto again;
2073        }
2074out_unlock:
2075        if (pt_prev) {
2076                if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2077                        pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2078                else
2079                        kfree_skb(skb2);
2080        }
2081        rcu_read_unlock();
2082}
2083EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2084
2085/**
2086 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2087 * @dev: Network device
2088 * @txq: number of queues available
2089 *
2090 * If real_num_tx_queues is changed the tc mappings may no longer be
2091 * valid. To resolve this verify the tc mapping remains valid and if
2092 * not NULL the mapping. With no priorities mapping to this
2093 * offset/count pair it will no longer be used. In the worst case TC0
2094 * is invalid nothing can be done so disable priority mappings. If is
2095 * expected that drivers will fix this mapping if they can before
2096 * calling netif_set_real_num_tx_queues.
2097 */
2098static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2099{
2100        int i;
2101        struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2102
2103        /* If TC0 is invalidated disable TC mapping */
2104        if (tc->offset + tc->count > txq) {
2105                pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2106                dev->num_tc = 0;
2107                return;
2108        }
2109
2110        /* Invalidated prio to tc mappings set to TC0 */
2111        for (i = 1; i < TC_BITMASK + 1; i++) {
2112                int q = netdev_get_prio_tc_map(dev, i);
2113
2114                tc = &dev->tc_to_txq[q];
2115                if (tc->offset + tc->count > txq) {
2116                        pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2117                                i, q);
2118                        netdev_set_prio_tc_map(dev, i, 0);
2119                }
2120        }
2121}
2122
2123int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2124{
2125        if (dev->num_tc) {
2126                struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2127                int i;
2128
2129                /* walk through the TCs and see if it falls into any of them */
2130                for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2131                        if ((txq - tc->offset) < tc->count)
2132                                return i;
2133                }
2134
2135                /* didn't find it, just return -1 to indicate no match */
2136                return -1;
2137        }
2138
2139        return 0;
2140}
2141EXPORT_SYMBOL(netdev_txq_to_tc);
2142
2143#ifdef CONFIG_XPS
2144struct static_key xps_needed __read_mostly;
2145EXPORT_SYMBOL(xps_needed);
2146struct static_key xps_rxqs_needed __read_mostly;
2147EXPORT_SYMBOL(xps_rxqs_needed);
2148static DEFINE_MUTEX(xps_map_mutex);
2149#define xmap_dereference(P)             \
2150        rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2151
2152static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2153                             int tci, u16 index)
2154{
2155        struct xps_map *map = NULL;
2156        int pos;
2157
2158        if (dev_maps)
2159                map = xmap_dereference(dev_maps->attr_map[tci]);
2160        if (!map)
2161                return false;
2162
2163        for (pos = map->len; pos--;) {
2164                if (map->queues[pos] != index)
2165                        continue;
2166
2167                if (map->len > 1) {
2168                        map->queues[pos] = map->queues[--map->len];
2169                        break;
2170                }
2171
2172                RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2173                kfree_rcu(map, rcu);
2174                return false;
2175        }
2176
2177        return true;
2178}
2179
2180static bool remove_xps_queue_cpu(struct net_device *dev,
2181                                 struct xps_dev_maps *dev_maps,
2182                                 int cpu, u16 offset, u16 count)
2183{
2184        int num_tc = dev->num_tc ? : 1;
2185        bool active = false;
2186        int tci;
2187
2188        for (tci = cpu * num_tc; num_tc--; tci++) {
2189                int i, j;
2190
2191                for (i = count, j = offset; i--; j++) {
2192                        if (!remove_xps_queue(dev_maps, tci, j))
2193                                break;
2194                }
2195
2196                active |= i < 0;
2197        }
2198
2199        return active;
2200}
2201
2202static void reset_xps_maps(struct net_device *dev,
2203                           struct xps_dev_maps *dev_maps,
2204                           bool is_rxqs_map)
2205{
2206        if (is_rxqs_map) {
2207                static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2208                RCU_INIT_POINTER(dev->xps_rxqs_map, NULL);
2209        } else {
2210                RCU_INIT_POINTER(dev->xps_cpus_map, NULL);
2211        }
2212        static_key_slow_dec_cpuslocked(&xps_needed);
2213        kfree_rcu(dev_maps, rcu);
2214}
2215
2216static void clean_xps_maps(struct net_device *dev, const unsigned long *mask,
2217                           struct xps_dev_maps *dev_maps, unsigned int nr_ids,
2218                           u16 offset, u16 count, bool is_rxqs_map)
2219{
2220        bool active = false;
2221        int i, j;
2222
2223        for (j = -1; j = netif_attrmask_next(j, mask, nr_ids),
2224             j < nr_ids;)
2225                active |= remove_xps_queue_cpu(dev, dev_maps, j, offset,
2226                                               count);
2227        if (!active)
2228                reset_xps_maps(dev, dev_maps, is_rxqs_map);
2229
2230        if (!is_rxqs_map) {
2231                for (i = offset + (count - 1); count--; i--) {
2232                        netdev_queue_numa_node_write(
2233                                netdev_get_tx_queue(dev, i),
2234                                NUMA_NO_NODE);
2235                }
2236        }
2237}
2238
2239static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2240                                   u16 count)
2241{
2242        const unsigned long *possible_mask = NULL;
2243        struct xps_dev_maps *dev_maps;
2244        unsigned int nr_ids;
2245
2246        if (!static_key_false(&xps_needed))
2247                return;
2248
2249        cpus_read_lock();
2250        mutex_lock(&xps_map_mutex);
2251
2252        if (static_key_false(&xps_rxqs_needed)) {
2253                dev_maps = xmap_dereference(dev->xps_rxqs_map);
2254                if (dev_maps) {
2255                        nr_ids = dev->num_rx_queues;
2256                        clean_xps_maps(dev, possible_mask, dev_maps, nr_ids,
2257                                       offset, count, true);
2258                }
2259        }
2260
2261        dev_maps = xmap_dereference(dev->xps_cpus_map);
2262        if (!dev_maps)
2263                goto out_no_maps;
2264
2265        if (num_possible_cpus() > 1)
2266                possible_mask = cpumask_bits(cpu_possible_mask);
2267        nr_ids = nr_cpu_ids;
2268        clean_xps_maps(dev, possible_mask, dev_maps, nr_ids, offset, count,
2269                       false);
2270
2271out_no_maps:
2272        mutex_unlock(&xps_map_mutex);
2273        cpus_read_unlock();
2274}
2275
2276static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2277{
2278        netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2279}
2280
2281static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2282                                      u16 index, bool is_rxqs_map)
2283{
2284        struct xps_map *new_map;
2285        int alloc_len = XPS_MIN_MAP_ALLOC;
2286        int i, pos;
2287
2288        for (pos = 0; map && pos < map->len; pos++) {
2289                if (map->queues[pos] != index)
2290                        continue;
2291                return map;
2292        }
2293
2294        /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2295        if (map) {
2296                if (pos < map->alloc_len)
2297                        return map;
2298
2299                alloc_len = map->alloc_len * 2;
2300        }
2301
2302        /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2303         *  map
2304         */
2305        if (is_rxqs_map)
2306                new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2307        else
2308                new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2309                                       cpu_to_node(attr_index));
2310        if (!new_map)
2311                return NULL;
2312
2313        for (i = 0; i < pos; i++)
2314                new_map->queues[i] = map->queues[i];
2315        new_map->alloc_len = alloc_len;
2316        new_map->len = pos;
2317
2318        return new_map;
2319}
2320
2321/* Must be called under cpus_read_lock */
2322int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2323                          u16 index, bool is_rxqs_map)
2324{
2325        const unsigned long *online_mask = NULL, *possible_mask = NULL;
2326        struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
2327        int i, j, tci, numa_node_id = -2;
2328        int maps_sz, num_tc = 1, tc = 0;
2329        struct xps_map *map, *new_map;
2330        bool active = false;
2331        unsigned int nr_ids;
2332
2333        if (dev->num_tc) {
2334                /* Do not allow XPS on subordinate device directly */
2335                num_tc = dev->num_tc;
2336                if (num_tc < 0)
2337                        return -EINVAL;
2338
2339                /* If queue belongs to subordinate dev use its map */
2340                dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2341
2342                tc = netdev_txq_to_tc(dev, index);
2343                if (tc < 0)
2344                        return -EINVAL;
2345        }
2346
2347        mutex_lock(&xps_map_mutex);
2348        if (is_rxqs_map) {
2349                maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2350                dev_maps = xmap_dereference(dev->xps_rxqs_map);
2351                nr_ids = dev->num_rx_queues;
2352        } else {
2353                maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2354                if (num_possible_cpus() > 1) {
2355                        online_mask = cpumask_bits(cpu_online_mask);
2356                        possible_mask = cpumask_bits(cpu_possible_mask);
2357                }
2358                dev_maps = xmap_dereference(dev->xps_cpus_map);
2359                nr_ids = nr_cpu_ids;
2360        }
2361
2362        if (maps_sz < L1_CACHE_BYTES)
2363                maps_sz = L1_CACHE_BYTES;
2364
2365        /* allocate memory for queue storage */
2366        for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2367             j < nr_ids;) {
2368                if (!new_dev_maps)
2369                        new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2370                if (!new_dev_maps) {
2371                        mutex_unlock(&xps_map_mutex);
2372                        return -ENOMEM;
2373                }
2374
2375                tci = j * num_tc + tc;
2376                map = dev_maps ? xmap_dereference(dev_maps->attr_map[tci]) :
2377                                 NULL;
2378
2379                map = expand_xps_map(map, j, index, is_rxqs_map);
2380                if (!map)
2381                        goto error;
2382
2383                RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2384        }
2385
2386        if (!new_dev_maps)
2387                goto out_no_new_maps;
2388
2389        if (!dev_maps) {
2390                /* Increment static keys at most once per type */
2391                static_key_slow_inc_cpuslocked(&xps_needed);
2392                if (is_rxqs_map)
2393                        static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2394        }
2395
2396        for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2397             j < nr_ids;) {
2398                /* copy maps belonging to foreign traffic classes */
2399                for (i = tc, tci = j * num_tc; dev_maps && i--; tci++) {
2400                        /* fill in the new device map from the old device map */
2401                        map = xmap_dereference(dev_maps->attr_map[tci]);
2402                        RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2403                }
2404
2405                /* We need to explicitly update tci as prevous loop
2406                 * could break out early if dev_maps is NULL.
2407                 */
2408                tci = j * num_tc + tc;
2409
2410                if (netif_attr_test_mask(j, mask, nr_ids) &&
2411                    netif_attr_test_online(j, online_mask, nr_ids)) {
2412                        /* add tx-queue to CPU/rx-queue maps */
2413                        int pos = 0;
2414
2415                        map = xmap_dereference(new_dev_maps->attr_map[tci]);
2416                        while ((pos < map->len) && (map->queues[pos] != index))
2417                                pos++;
2418
2419                        if (pos == map->len)
2420                                map->queues[map->len++] = index;
2421#ifdef CONFIG_NUMA
2422                        if (!is_rxqs_map) {
2423                                if (numa_node_id == -2)
2424                                        numa_node_id = cpu_to_node(j);
2425                                else if (numa_node_id != cpu_to_node(j))
2426                                        numa_node_id = -1;
2427                        }
2428#endif
2429                } else if (dev_maps) {
2430                        /* fill in the new device map from the old device map */
2431                        map = xmap_dereference(dev_maps->attr_map[tci]);
2432                        RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2433                }
2434
2435                /* copy maps belonging to foreign traffic classes */
2436                for (i = num_tc - tc, tci++; dev_maps && --i; tci++) {
2437                        /* fill in the new device map from the old device map */
2438                        map = xmap_dereference(dev_maps->attr_map[tci]);
2439                        RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2440                }
2441        }
2442
2443        if (is_rxqs_map)
2444                rcu_assign_pointer(dev->xps_rxqs_map, new_dev_maps);
2445        else
2446                rcu_assign_pointer(dev->xps_cpus_map, new_dev_maps);
2447
2448        /* Cleanup old maps */
2449        if (!dev_maps)
2450                goto out_no_old_maps;
2451
2452        for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2453             j < nr_ids;) {
2454                for (i = num_tc, tci = j * num_tc; i--; tci++) {
2455                        new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2456                        map = xmap_dereference(dev_maps->attr_map[tci]);
2457                        if (map && map != new_map)
2458                                kfree_rcu(map, rcu);
2459                }
2460        }
2461
2462        kfree_rcu(dev_maps, rcu);
2463
2464out_no_old_maps:
2465        dev_maps = new_dev_maps;
2466        active = true;
2467
2468out_no_new_maps:
2469        if (!is_rxqs_map) {
2470                /* update Tx queue numa node */
2471                netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2472                                             (numa_node_id >= 0) ?
2473                                             numa_node_id : NUMA_NO_NODE);
2474        }
2475
2476        if (!dev_maps)
2477                goto out_no_maps;
2478
2479        /* removes tx-queue from unused CPUs/rx-queues */
2480        for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2481             j < nr_ids;) {
2482                for (i = tc, tci = j * num_tc; i--; tci++)
2483                        active |= remove_xps_queue(dev_maps, tci, index);
2484                if (!netif_attr_test_mask(j, mask, nr_ids) ||
2485                    !netif_attr_test_online(j, online_mask, nr_ids))
2486                        active |= remove_xps_queue(dev_maps, tci, index);
2487                for (i = num_tc - tc, tci++; --i; tci++)
2488                        active |= remove_xps_queue(dev_maps, tci, index);
2489        }
2490
2491        /* free map if not active */
2492        if (!active)
2493                reset_xps_maps(dev, dev_maps, is_rxqs_map);
2494
2495out_no_maps:
2496        mutex_unlock(&xps_map_mutex);
2497
2498        return 0;
2499error:
2500        /* remove any maps that we added */
2501        for (j = -1; j = netif_attrmask_next(j, possible_mask, nr_ids),
2502             j < nr_ids;) {
2503                for (i = num_tc, tci = j * num_tc; i--; tci++) {
2504                        new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2505                        map = dev_maps ?
2506                              xmap_dereference(dev_maps->attr_map[tci]) :
2507                              NULL;
2508                        if (new_map && new_map != map)
2509                                kfree(new_map);
2510                }
2511        }
2512
2513        mutex_unlock(&xps_map_mutex);
2514
2515        kfree(new_dev_maps);
2516        return -ENOMEM;
2517}
2518EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2519
2520int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2521                        u16 index)
2522{
2523        int ret;
2524
2525        cpus_read_lock();
2526        ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, false);
2527        cpus_read_unlock();
2528
2529        return ret;
2530}
2531EXPORT_SYMBOL(netif_set_xps_queue);
2532
2533#endif
2534static void netdev_unbind_all_sb_channels(struct net_device *dev)
2535{
2536        struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2537
2538        /* Unbind any subordinate channels */
2539        while (txq-- != &dev->_tx[0]) {
2540                if (txq->sb_dev)
2541                        netdev_unbind_sb_channel(dev, txq->sb_dev);
2542        }
2543}
2544
2545void netdev_reset_tc(struct net_device *dev)
2546{
2547#ifdef CONFIG_XPS
2548        netif_reset_xps_queues_gt(dev, 0);
2549#endif
2550        netdev_unbind_all_sb_channels(dev);
2551
2552        /* Reset TC configuration of device */
2553        dev->num_tc = 0;
2554        memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2555        memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2556}
2557EXPORT_SYMBOL(netdev_reset_tc);
2558
2559int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2560{
2561        if (tc >= dev->num_tc)
2562                return -EINVAL;
2563
2564#ifdef CONFIG_XPS
2565        netif_reset_xps_queues(dev, offset, count);
2566#endif
2567        dev->tc_to_txq[tc].count = count;
2568        dev->tc_to_txq[tc].offset = offset;
2569        return 0;
2570}
2571EXPORT_SYMBOL(netdev_set_tc_queue);
2572
2573int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2574{
2575        if (num_tc > TC_MAX_QUEUE)
2576                return -EINVAL;
2577
2578#ifdef CONFIG_XPS
2579        netif_reset_xps_queues_gt(dev, 0);
2580#endif
2581        netdev_unbind_all_sb_channels(dev);
2582
2583        dev->num_tc = num_tc;
2584        return 0;
2585}
2586EXPORT_SYMBOL(netdev_set_num_tc);
2587
2588void netdev_unbind_sb_channel(struct net_device *dev,
2589                              struct net_device *sb_dev)
2590{
2591        struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2592
2593#ifdef CONFIG_XPS
2594        netif_reset_xps_queues_gt(sb_dev, 0);
2595#endif
2596        memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2597        memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2598
2599        while (txq-- != &dev->_tx[0]) {
2600                if (txq->sb_dev == sb_dev)
2601                        txq->sb_dev = NULL;
2602        }
2603}
2604EXPORT_SYMBOL(netdev_unbind_sb_channel);
2605
2606int netdev_bind_sb_channel_queue(struct net_device *dev,
2607                                 struct net_device *sb_dev,
2608                                 u8 tc, u16 count, u16 offset)
2609{
2610        /* Make certain the sb_dev and dev are already configured */
2611        if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2612                return -EINVAL;
2613
2614        /* We cannot hand out queues we don't have */
2615        if ((offset + count) > dev->real_num_tx_queues)
2616                return -EINVAL;
2617
2618        /* Record the mapping */
2619        sb_dev->tc_to_txq[tc].count = count;
2620        sb_dev->tc_to_txq[tc].offset = offset;
2621
2622        /* Provide a way for Tx queue to find the tc_to_txq map or
2623         * XPS map for itself.
2624         */
2625        while (count--)
2626                netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2627
2628        return 0;
2629}
2630EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2631
2632int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2633{
2634        /* Do not use a multiqueue device to represent a subordinate channel */
2635        if (netif_is_multiqueue(dev))
2636                return -ENODEV;
2637
2638        /* We allow channels 1 - 32767 to be used for subordinate channels.
2639         * Channel 0 is meant to be "native" mode and used only to represent
2640         * the main root device. We allow writing 0 to reset the device back
2641         * to normal mode after being used as a subordinate channel.
2642         */
2643        if (channel > S16_MAX)
2644                return -EINVAL;
2645
2646        dev->num_tc = -channel;
2647
2648        return 0;
2649}
2650EXPORT_SYMBOL(netdev_set_sb_channel);
2651
2652/*
2653 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2654 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2655 */
2656int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2657{
2658        bool disabling;
2659        int rc;
2660
2661        disabling = txq < dev->real_num_tx_queues;
2662
2663        if (txq < 1 || txq > dev->num_tx_queues)
2664                return -EINVAL;
2665
2666        if (dev->reg_state == NETREG_REGISTERED ||
2667            dev->reg_state == NETREG_UNREGISTERING) {
2668                ASSERT_RTNL();
2669
2670                rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2671                                                  txq);
2672                if (rc)
2673                        return rc;
2674
2675                if (dev->num_tc)
2676                        netif_setup_tc(dev, txq);
2677
2678                dev->real_num_tx_queues = txq;
2679
2680                if (disabling) {
2681                        synchronize_net();
2682                        qdisc_reset_all_tx_gt(dev, txq);
2683#ifdef CONFIG_XPS
2684                        netif_reset_xps_queues_gt(dev, txq);
2685#endif
2686                }
2687        } else {
2688                dev->real_num_tx_queues = txq;
2689        }
2690
2691        return 0;
2692}
2693EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2694
2695#ifdef CONFIG_SYSFS
2696/**
2697 *      netif_set_real_num_rx_queues - set actual number of RX queues used
2698 *      @dev: Network device
2699 *      @rxq: Actual number of RX queues
2700 *
2701 *      This must be called either with the rtnl_lock held or before
2702 *      registration of the net device.  Returns 0 on success, or a
2703 *      negative error code.  If called before registration, it always
2704 *      succeeds.
2705 */
2706int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2707{
2708        int rc;
2709
2710        if (rxq < 1 || rxq > dev->num_rx_queues)
2711                return -EINVAL;
2712
2713        if (dev->reg_state == NETREG_REGISTERED) {
2714                ASSERT_RTNL();
2715
2716                rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2717                                                  rxq);
2718                if (rc)
2719                        return rc;
2720        }
2721
2722        dev->real_num_rx_queues = rxq;
2723        return 0;
2724}
2725EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2726#endif
2727
2728/**
2729 * netif_get_num_default_rss_queues - default number of RSS queues
2730 *
2731 * This routine should set an upper limit on the number of RSS queues
2732 * used by default by multiqueue devices.
2733 */
2734int netif_get_num_default_rss_queues(void)
2735{
2736        return is_kdump_kernel() ?
2737                1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
2738}
2739EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2740
2741static void __netif_reschedule(struct Qdisc *q)
2742{
2743        struct softnet_data *sd;
2744        unsigned long flags;
2745
2746        local_irq_save(flags);
2747        sd = this_cpu_ptr(&softnet_data);
2748        q->next_sched = NULL;
2749        *sd->output_queue_tailp = q;
2750        sd->output_queue_tailp = &q->next_sched;
2751        raise_softirq_irqoff(NET_TX_SOFTIRQ);
2752        local_irq_restore(flags);
2753}
2754
2755void __netif_schedule(struct Qdisc *q)
2756{
2757        if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2758                __netif_reschedule(q);
2759}
2760EXPORT_SYMBOL(__netif_schedule);
2761
2762struct dev_kfree_skb_cb {
2763        enum skb_free_reason reason;
2764};
2765
2766static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2767{
2768        return (struct dev_kfree_skb_cb *)skb->cb;
2769}
2770
2771void netif_schedule_queue(struct netdev_queue *txq)
2772{
2773        rcu_read_lock();
2774        if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2775                struct Qdisc *q = rcu_dereference(txq->qdisc);
2776
2777                __netif_schedule(q);
2778        }
2779        rcu_read_unlock();
2780}
2781EXPORT_SYMBOL(netif_schedule_queue);
2782
2783void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2784{
2785        if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2786                struct Qdisc *q;
2787
2788                rcu_read_lock();
2789                q = rcu_dereference(dev_queue->qdisc);
2790                __netif_schedule(q);
2791                rcu_read_unlock();
2792        }
2793}
2794EXPORT_SYMBOL(netif_tx_wake_queue);
2795
2796void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2797{
2798        unsigned long flags;
2799
2800        if (unlikely(!skb))
2801                return;
2802
2803        if (likely(refcount_read(&skb->users) == 1)) {
2804                smp_rmb();
2805                refcount_set(&skb->users, 0);
2806        } else if (likely(!refcount_dec_and_test(&skb->users))) {
2807                return;
2808        }
2809        get_kfree_skb_cb(skb)->reason = reason;
2810        local_irq_save(flags);
2811        skb->next = __this_cpu_read(softnet_data.completion_queue);
2812        __this_cpu_write(softnet_data.completion_queue, skb);
2813        raise_softirq_irqoff(NET_TX_SOFTIRQ);
2814        local_irq_restore(flags);
2815}
2816EXPORT_SYMBOL(__dev_kfree_skb_irq);
2817
2818void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2819{
2820        if (in_irq() || irqs_disabled())
2821                __dev_kfree_skb_irq(skb, reason);
2822        else
2823                dev_kfree_skb(skb);
2824}
2825EXPORT_SYMBOL(__dev_kfree_skb_any);
2826
2827
2828/**
2829 * netif_device_detach - mark device as removed
2830 * @dev: network device
2831 *
2832 * Mark device as removed from system and therefore no longer available.
2833 */
2834void netif_device_detach(struct net_device *dev)
2835{
2836        if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2837            netif_running(dev)) {
2838                netif_tx_stop_all_queues(dev);
2839        }
2840}
2841EXPORT_SYMBOL(netif_device_detach);
2842
2843/**
2844 * netif_device_attach - mark device as attached
2845 * @dev: network device
2846 *
2847 * Mark device as attached from system and restart if needed.
2848 */
2849void netif_device_attach(struct net_device *dev)
2850{
2851        if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2852            netif_running(dev)) {
2853                netif_tx_wake_all_queues(dev);
2854                __netdev_watchdog_up(dev);
2855        }
2856}
2857EXPORT_SYMBOL(netif_device_attach);
2858
2859/*
2860 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2861 * to be used as a distribution range.
2862 */
2863static u16 skb_tx_hash(const struct net_device *dev,
2864                       const struct net_device *sb_dev,
2865                       struct sk_buff *skb)
2866{
2867        u32 hash;
2868        u16 qoffset = 0;
2869        u16 qcount = dev->real_num_tx_queues;
2870
2871        if (dev->num_tc) {
2872                u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2873
2874                qoffset = sb_dev->tc_to_txq[tc].offset;
2875                qcount = sb_dev->tc_to_txq[tc].count;
2876        }
2877
2878        if (skb_rx_queue_recorded(skb)) {
2879                hash = skb_get_rx_queue(skb);
2880                while (unlikely(hash >= qcount))
2881                        hash -= qcount;
2882                return hash + qoffset;
2883        }
2884
2885        return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2886}
2887
2888static void skb_warn_bad_offload(const struct sk_buff *skb)
2889{
2890        static const netdev_features_t null_features;
2891        struct net_device *dev = skb->dev;
2892        const char *name = "";
2893
2894        if (!net_ratelimit())
2895                return;
2896
2897        if (dev) {
2898                if (dev->dev.parent)
2899                        name = dev_driver_string(dev->dev.parent);
2900                else
2901                        name = netdev_name(dev);
2902        }
2903        skb_dump(KERN_WARNING, skb, false);
2904        WARN(1, "%s: caps=(%pNF, %pNF)\n",
2905             name, dev ? &dev->features : &null_features,
2906             skb->sk ? &skb->sk->sk_route_caps : &null_features);
2907}
2908
2909/*
2910 * Invalidate hardware checksum when packet is to be mangled, and
2911 * complete checksum manually on outgoing path.
2912 */
2913int skb_checksum_help(struct sk_buff *skb)
2914{
2915        __wsum csum;
2916        int ret = 0, offset;
2917
2918        if (skb->ip_summed == CHECKSUM_COMPLETE)
2919                goto out_set_summed;
2920
2921        if (unlikely(skb_shinfo(skb)->gso_size)) {
2922                skb_warn_bad_offload(skb);
2923                return -EINVAL;
2924        }
2925
2926        /* Before computing a checksum, we should make sure no frag could
2927         * be modified by an external entity : checksum could be wrong.
2928         */
2929        if (skb_has_shared_frag(skb)) {
2930                ret = __skb_linearize(skb);
2931                if (ret)
2932                        goto out;
2933        }
2934
2935        offset = skb_checksum_start_offset(skb);
2936        BUG_ON(offset >= skb_headlen(skb));
2937        csum = skb_checksum(skb, offset, skb->len - offset, 0);
2938
2939        offset += skb->csum_offset;
2940        BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2941
2942        if (skb_cloned(skb) &&
2943            !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2944                ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2945                if (ret)
2946                        goto out;
2947        }
2948
2949        *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
2950out_set_summed:
2951        skb->ip_summed = CHECKSUM_NONE;
2952out:
2953        return ret;
2954}
2955EXPORT_SYMBOL(skb_checksum_help);
2956
2957int skb_crc32c_csum_help(struct sk_buff *skb)
2958{
2959        __le32 crc32c_csum;
2960        int ret = 0, offset, start;
2961
2962        if (skb->ip_summed != CHECKSUM_PARTIAL)
2963                goto out;
2964
2965        if (unlikely(skb_is_gso(skb)))
2966                goto out;
2967
2968        /* Before computing a checksum, we should make sure no frag could
2969         * be modified by an external entity : checksum could be wrong.
2970         */
2971        if (unlikely(skb_has_shared_frag(skb))) {
2972                ret = __skb_linearize(skb);
2973                if (ret)
2974                        goto out;
2975        }
2976        start = skb_checksum_start_offset(skb);
2977        offset = start + offsetof(struct sctphdr, checksum);
2978        if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
2979                ret = -EINVAL;
2980                goto out;
2981        }
2982        if (skb_cloned(skb) &&
2983            !skb_clone_writable(skb, offset + sizeof(__le32))) {
2984                ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2985                if (ret)
2986                        goto out;
2987        }
2988        crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
2989                                                  skb->len - start, ~(__u32)0,
2990                                                  crc32c_csum_stub));
2991        *(__le32 *)(skb->data + offset) = crc32c_csum;
2992        skb->ip_summed = CHECKSUM_NONE;
2993        skb->csum_not_inet = 0;
2994out:
2995        return ret;
2996}
2997
2998__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2999{
3000        __be16 type = skb->protocol;
3001
3002        /* Tunnel gso handlers can set protocol to ethernet. */
3003        if (type == htons(ETH_P_TEB)) {
3004                struct ethhdr *eth;
3005
3006                if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3007                        return 0;
3008
3009                eth = (struct ethhdr *)skb->data;
3010                type = eth->h_proto;
3011        }
3012
3013        return __vlan_get_protocol(skb, type, depth);
3014}
3015
3016/**
3017 *      skb_mac_gso_segment - mac layer segmentation handler.
3018 *      @skb: buffer to segment
3019 *      @features: features for the output path (see dev->features)
3020 */
3021struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3022                                    netdev_features_t features)
3023{
3024        struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3025        struct packet_offload *ptype;
3026        int vlan_depth = skb->mac_len;
3027        __be16 type = skb_network_protocol(skb, &vlan_depth);
3028
3029        if (unlikely(!type))
3030                return ERR_PTR(-EINVAL);
3031
3032        __skb_pull(skb, vlan_depth);
3033
3034        rcu_read_lock();
3035        list_for_each_entry_rcu(ptype, &offload_base, list) {
3036                if (ptype->type == type && ptype->callbacks.gso_segment) {
3037                        segs = ptype->callbacks.gso_segment(skb, features);
3038                        break;
3039                }
3040        }
3041        rcu_read_unlock();
3042
3043        __skb_push(skb, skb->data - skb_mac_header(skb));
3044
3045        return segs;
3046}
3047EXPORT_SYMBOL(skb_mac_gso_segment);
3048
3049
3050/* openvswitch calls this on rx path, so we need a different check.
3051 */
3052static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3053{
3054        if (tx_path)
3055                return skb->ip_summed != CHECKSUM_PARTIAL &&
3056                       skb->ip_summed != CHECKSUM_UNNECESSARY;
3057
3058        return skb->ip_summed == CHECKSUM_NONE;
3059}
3060
3061/**
3062 *      __skb_gso_segment - Perform segmentation on skb.
3063 *      @skb: buffer to segment
3064 *      @features: features for the output path (see dev->features)
3065 *      @tx_path: whether it is called in TX path
3066 *
3067 *      This function segments the given skb and returns a list of segments.
3068 *
3069 *      It may return NULL if the skb requires no segmentation.  This is
3070 *      only possible when GSO is used for verifying header integrity.
3071 *
3072 *      Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
3073 */
3074struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3075                                  netdev_features_t features, bool tx_path)
3076{
3077        struct sk_buff *segs;
3078
3079        if (unlikely(skb_needs_check(skb, tx_path))) {
3080                int err;
3081
3082                /* We're going to init ->check field in TCP or UDP header */
3083                err = skb_cow_head(skb, 0);
3084                if (err < 0)
3085                        return ERR_PTR(err);
3086        }
3087
3088        /* Only report GSO partial support if it will enable us to
3089         * support segmentation on this frame without needing additional
3090         * work.
3091         */
3092        if (features & NETIF_F_GSO_PARTIAL) {
3093                netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3094                struct net_device *dev = skb->dev;
3095
3096                partial_features |= dev->features & dev->gso_partial_features;
3097                if (!skb_gso_ok(skb, features | partial_features))
3098                        features &= ~NETIF_F_GSO_PARTIAL;
3099        }
3100
3101        BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
3102                     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3103
3104        SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3105        SKB_GSO_CB(skb)->encap_level = 0;
3106
3107        skb_reset_mac_header(skb);
3108        skb_reset_mac_len(skb);
3109
3110        segs = skb_mac_gso_segment(skb, features);
3111
3112        if (unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3113                skb_warn_bad_offload(skb);
3114
3115        return segs;
3116}
3117EXPORT_SYMBOL(__skb_gso_segment);
3118
3119/* Take action when hardware reception checksum errors are detected. */
3120#ifdef CONFIG_BUG
3121void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3122{
3123        if (net_ratelimit()) {
3124                pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3125                skb_dump(KERN_ERR, skb, true);
3126                dump_stack();
3127        }
3128}
3129EXPORT_SYMBOL(netdev_rx_csum_fault);
3130#endif
3131
3132/* XXX: check that highmem exists at all on the given machine. */
3133static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3134{
3135#ifdef CONFIG_HIGHMEM
3136        int i;
3137
3138        if (!(dev->features & NETIF_F_HIGHDMA)) {
3139                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3140                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3141
3142                        if (PageHighMem(skb_frag_page(frag)))
3143                                return 1;
3144                }
3145        }
3146#endif
3147        return 0;
3148}
3149
3150/* If MPLS offload request, verify we are testing hardware MPLS features
3151 * instead of standard features for the netdev.
3152 */
3153#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3154static netdev_features_t net_mpls_features(struct sk_buff *skb,
3155                                           netdev_features_t features,
3156                                           __be16 type)
3157{
3158        if (eth_p_mpls(type))
3159                features &= skb->dev->mpls_features;
3160
3161        return features;
3162}
3163#else
3164static netdev_features_t net_mpls_features(struct sk_buff *skb,
3165                                           netdev_features_t features,
3166                                           __be16 type)
3167{
3168        return features;
3169}
3170#endif
3171
3172static netdev_features_t harmonize_features(struct sk_buff *skb,
3173        netdev_features_t features)
3174{
3175        int tmp;
3176        __be16 type;
3177
3178        type = skb_network_protocol(skb, &tmp);
3179        features = net_mpls_features(skb, features, type);
3180
3181        if (skb->ip_summed != CHECKSUM_NONE &&
3182            !can_checksum_protocol(features, type)) {
3183                features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3184        }
3185        if (illegal_highdma(skb->dev, skb))
3186                features &= ~NETIF_F_SG;
3187
3188        return features;
3189}
3190
3191netdev_features_t passthru_features_check(struct sk_buff *skb,
3192                                          struct net_device *dev,
3193                                          netdev_features_t features)
3194{
3195        return features;
3196}
3197EXPORT_SYMBOL(passthru_features_check);
3198
3199static netdev_features_t dflt_features_check(struct sk_buff *skb,
3200                                             struct net_device *dev,
3201                                             netdev_features_t features)
3202{
3203        return vlan_features_check(skb, features);
3204}
3205
3206static netdev_features_t gso_features_check(const struct sk_buff *skb,
3207                                            struct net_device *dev,
3208                                            netdev_features_t features)
3209{
3210        u16 gso_segs = skb_shinfo(skb)->gso_segs;
3211
3212        if (gso_segs > dev->gso_max_segs)
3213                return features & ~NETIF_F_GSO_MASK;
3214
3215        /* Support for GSO partial features requires software
3216         * intervention before we can actually process the packets
3217         * so we need to strip support for any partial features now
3218         * and we can pull them back in after we have partially
3219         * segmented the frame.
3220         */
3221        if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3222                features &= ~dev->gso_partial_features;
3223
3224        /* Make sure to clear the IPv4 ID mangling feature if the
3225         * IPv4 header has the potential to be fragmented.
3226         */
3227        if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3228                struct iphdr *iph = skb->encapsulation ?
3229                                    inner_ip_hdr(skb) : ip_hdr(skb);
3230
3231                if (!(iph->frag_off & htons(IP_DF)))
3232                        features &= ~NETIF_F_TSO_MANGLEID;
3233        }
3234
3235        return features;
3236}
3237
3238netdev_features_t netif_skb_features(struct sk_buff *skb)
3239{
3240        struct net_device *dev = skb->dev;
3241        netdev_features_t features = dev->features;
3242
3243        if (skb_is_gso(skb))
3244                features = gso_features_check(skb, dev, features);
3245
3246        /* If encapsulation offload request, verify we are testing
3247         * hardware encapsulation features instead of standard
3248         * features for the netdev
3249         */
3250        if (skb->encapsulation)
3251                features &= dev->hw_enc_features;
3252
3253        if (skb_vlan_tagged(skb))
3254                features = netdev_intersect_features(features,
3255                                                     dev->vlan_features |
3256                                                     NETIF_F_HW_VLAN_CTAG_TX |
3257                                                     NETIF_F_HW_VLAN_STAG_TX);
3258
3259        if (dev->netdev_ops->ndo_features_check)
3260                features &= dev->netdev_ops->ndo_features_check(skb, dev,
3261                                                                features);
3262        else
3263                features &= dflt_features_check(skb, dev, features);
3264
3265        return harmonize_features(skb, features);
3266}
3267EXPORT_SYMBOL(netif_skb_features);
3268
3269static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3270                    struct netdev_queue *txq, bool more)
3271{
3272        unsigned int len;
3273        int rc;
3274
3275        if (dev_nit_active(dev))
3276                dev_queue_xmit_nit(skb, dev);
3277
3278        len = skb->len;
3279        trace_net_dev_start_xmit(skb, dev);
3280        rc = netdev_start_xmit(skb, dev, txq, more);
3281        trace_net_dev_xmit(skb, rc, dev, len);
3282
3283        return rc;
3284}
3285
3286struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3287                                    struct netdev_queue *txq, int *ret)
3288{
3289        struct sk_buff *skb = first;
3290        int rc = NETDEV_TX_OK;
3291
3292        while (skb) {
3293                struct sk_buff *next = skb->next;
3294
3295                skb_mark_not_on_list(skb);
3296                rc = xmit_one(skb, dev, txq, next != NULL);
3297                if (unlikely(!dev_xmit_complete(rc))) {
3298                        skb->next = next;
3299                        goto out;
3300                }
3301
3302                skb = next;
3303                if (netif_tx_queue_stopped(txq) && skb) {
3304                        rc = NETDEV_TX_BUSY;
3305                        break;
3306                }
3307        }
3308
3309out:
3310        *ret = rc;
3311        return skb;
3312}
3313
3314static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3315                                          netdev_features_t features)
3316{
3317        if (skb_vlan_tag_present(skb) &&
3318            !vlan_hw_offload_capable(features, skb->vlan_proto))
3319                skb = __vlan_hwaccel_push_inside(skb);
3320        return skb;
3321}
3322
3323int skb_csum_hwoffload_help(struct sk_buff *skb,
3324                            const netdev_features_t features)
3325{
3326        if (unlikely(skb->csum_not_inet))
3327                return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3328                        skb_crc32c_csum_help(skb);
3329
3330        return !!(features & NETIF_F_CSUM_MASK) ? 0 : skb_checksum_help(skb);
3331}
3332EXPORT_SYMBOL(skb_csum_hwoffload_help);
3333
3334static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3335{
3336        netdev_features_t features;
3337
3338        features = netif_skb_features(skb);
3339        skb = validate_xmit_vlan(skb, features);
3340        if (unlikely(!skb))
3341                goto out_null;
3342
3343        skb = sk_validate_xmit_skb(skb, dev);
3344        if (unlikely(!skb))
3345                goto out_null;
3346
3347        if (netif_needs_gso(skb, features)) {
3348                struct sk_buff *segs;
3349
3350                segs = skb_gso_segment(skb, features);
3351                if (IS_ERR(segs)) {
3352                        goto out_kfree_skb;
3353                } else if (segs) {
3354                        consume_skb(skb);
3355                        skb = segs;
3356                }
3357        } else {
3358                if (skb_needs_linearize(skb, features) &&
3359                    __skb_linearize(skb))
3360                        goto out_kfree_skb;
3361
3362                /* If packet is not checksummed and device does not
3363                 * support checksumming for this protocol, complete
3364                 * checksumming here.
3365                 */
3366                if (skb->ip_summed == CHECKSUM_PARTIAL) {
3367                        if (skb->encapsulation)
3368                                skb_set_inner_transport_header(skb,
3369                                                               skb_checksum_start_offset(skb));
3370                        else
3371                                skb_set_transport_header(skb,
3372                                                         skb_checksum_start_offset(skb));
3373                        if (skb_csum_hwoffload_help(skb, features))
3374                                goto out_kfree_skb;
3375                }
3376        }
3377
3378        skb = validate_xmit_xfrm(skb, features, again);
3379
3380        return skb;
3381
3382out_kfree_skb:
3383        kfree_skb(skb);
3384out_null:
3385        atomic_long_inc(&dev->tx_dropped);
3386        return NULL;
3387}
3388
3389struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3390{
3391        struct sk_buff *next, *head = NULL, *tail;
3392
3393        for (; skb != NULL; skb = next) {
3394                next = skb->next;
3395                skb_mark_not_on_list(skb);
3396
3397                /* in case skb wont be segmented, point to itself */
3398                skb->prev = skb;
3399
3400                skb = validate_xmit_skb(skb, dev, again);
3401                if (!skb)
3402                        continue;
3403
3404                if (!head)
3405                        head = skb;
3406                else
3407                        tail->next = skb;
3408                /* If skb was segmented, skb->prev points to
3409                 * the last segment. If not, it still contains skb.
3410                 */
3411                tail = skb->prev;
3412        }
3413        return head;
3414}
3415EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3416
3417static void qdisc_pkt_len_init(struct sk_buff *skb)
3418{
3419        const struct skb_shared_info *shinfo = skb_shinfo(skb);
3420
3421        qdisc_skb_cb(skb)->pkt_len = skb->len;
3422
3423        /* To get more precise estimation of bytes sent on wire,
3424         * we add to pkt_len the headers size of all segments
3425         */
3426        if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3427                unsigned int hdr_len;
3428                u16 gso_segs = shinfo->gso_segs;
3429
3430                /* mac layer + network layer */
3431                hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3432
3433                /* + transport layer */
3434                if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3435                        const struct tcphdr *th;
3436                        struct tcphdr _tcphdr;
3437
3438                        th = skb_header_pointer(skb, skb_transport_offset(skb),
3439                                                sizeof(_tcphdr), &_tcphdr);
3440                        if (likely(th))
3441                                hdr_len += __tcp_hdrlen(th);
3442                } else {
3443                        struct udphdr _udphdr;
3444
3445                        if (skb_header_pointer(skb, skb_transport_offset(skb),
3446                                               sizeof(_udphdr), &_udphdr))
3447                                hdr_len += sizeof(struct udphdr);
3448                }
3449
3450                if (shinfo->gso_type & SKB_GSO_DODGY)
3451                        gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3452                                                shinfo->gso_size);
3453
3454                qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3455        }
3456}
3457
3458static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3459                                 struct net_device *dev,
3460                                 struct netdev_queue *txq)
3461{
3462        spinlock_t *root_lock = qdisc_lock(q);
3463        struct sk_buff *to_free = NULL;
3464        bool contended;
3465        int rc;
3466
3467        qdisc_calculate_pkt_len(skb, q);
3468
3469        if (q->flags & TCQ_F_NOLOCK) {
3470                if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3471                        __qdisc_drop(skb, &to_free);
3472                        rc = NET_XMIT_DROP;
3473                } else if ((q->flags & TCQ_F_CAN_BYPASS) && q->empty &&
3474                           qdisc_run_begin(q)) {
3475                        qdisc_bstats_cpu_update(q, skb);
3476
3477                        if (sch_direct_xmit(skb, q, dev, txq, NULL, true))
3478                                __qdisc_run(q);
3479
3480                        qdisc_run_end(q);
3481                        rc = NET_XMIT_SUCCESS;
3482                } else {
3483                        rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3484                        qdisc_run(q);
3485                }
3486
3487                if (unlikely(to_free))
3488                        kfree_skb_list(to_free);
3489                return rc;
3490        }
3491
3492        /*
3493         * Heuristic to force contended enqueues to serialize on a
3494         * separate lock before trying to get qdisc main lock.
3495         * This permits qdisc->running owner to get the lock more
3496         * often and dequeue packets faster.
3497         */
3498        contended = qdisc_is_running(q);
3499        if (unlikely(contended))
3500                spin_lock(&q->busylock);
3501
3502        spin_lock(root_lock);
3503        if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3504                __qdisc_drop(skb, &to_free);
3505                rc = NET_XMIT_DROP;
3506        } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3507                   qdisc_run_begin(q)) {
3508                /*
3509                 * This is a work-conserving queue; there are no old skbs
3510                 * waiting to be sent out; and the qdisc is not running -
3511                 * xmit the skb directly.
3512                 */
3513
3514                qdisc_bstats_update(q, skb);
3515
3516                if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3517                        if (unlikely(contended)) {
3518                                spin_unlock(&q->busylock);
3519                                contended = false;
3520                        }
3521                        __qdisc_run(q);
3522                }
3523
3524                qdisc_run_end(q);
3525                rc = NET_XMIT_SUCCESS;
3526        } else {
3527                rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3528                if (qdisc_run_begin(q)) {
3529                        if (unlikely(contended)) {
3530                                spin_unlock(&q->busylock);
3531                                contended = false;
3532                        }
3533                        __qdisc_run(q);
3534                        qdisc_run_end(q);
3535                }
3536        }
3537        spin_unlock(root_lock);
3538        if (unlikely(to_free))
3539                kfree_skb_list(to_free);
3540        if (unlikely(contended))
3541                spin_unlock(&q->busylock);
3542        return rc;
3543}
3544
3545#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3546static void skb_update_prio(struct sk_buff *skb)
3547{
3548        const struct netprio_map *map;
3549        const struct sock *sk;
3550        unsigned int prioidx;
3551
3552        if (skb->priority)
3553                return;
3554        map = rcu_dereference_bh(skb->dev->priomap);
3555        if (!map)
3556                return;
3557        sk = skb_to_full_sk(skb);
3558        if (!sk)
3559                return;
3560
3561        prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3562
3563        if (prioidx < map->priomap_len)
3564                skb->priority = map->priomap[prioidx];
3565}
3566#else
3567#define skb_update_prio(skb)
3568#endif
3569
3570/**
3571 *      dev_loopback_xmit - loop back @skb
3572 *      @net: network namespace this loopback is happening in
3573 *      @sk:  sk needed to be a netfilter okfn
3574 *      @skb: buffer to transmit
3575 */
3576int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3577{
3578        skb_reset_mac_header(skb);
3579        __skb_pull(skb, skb_network_offset(skb));
3580        skb->pkt_type = PACKET_LOOPBACK;
3581        skb->ip_summed = CHECKSUM_UNNECESSARY;
3582        WARN_ON(!skb_dst(skb));
3583        skb_dst_force(skb);
3584        netif_rx_ni(skb);
3585        return 0;
3586}
3587EXPORT_SYMBOL(dev_loopback_xmit);
3588
3589#ifdef CONFIG_NET_EGRESS
3590static struct sk_buff *
3591sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3592{
3593        struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3594        struct tcf_result cl_res;
3595
3596        if (!miniq)
3597                return skb;
3598
3599        /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3600        mini_qdisc_bstats_cpu_update(miniq, skb);
3601
3602        switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3603        case TC_ACT_OK:
3604        case TC_ACT_RECLASSIFY:
3605                skb->tc_index = TC_H_MIN(cl_res.classid);
3606                break;
3607        case TC_ACT_SHOT:
3608                mini_qdisc_qstats_cpu_drop(miniq);
3609                *ret = NET_XMIT_DROP;
3610                kfree_skb(skb);
3611                return NULL;
3612        case TC_ACT_STOLEN:
3613        case TC_ACT_QUEUED:
3614        case TC_ACT_TRAP:
3615                *ret = NET_XMIT_SUCCESS;
3616                consume_skb(skb);
3617                return NULL;
3618        case TC_ACT_REDIRECT:
3619                /* No need to push/pop skb's mac_header here on egress! */
3620                skb_do_redirect(skb);
3621                *ret = NET_XMIT_SUCCESS;
3622                return NULL;
3623        default:
3624                break;
3625        }
3626
3627        return skb;
3628}
3629#endif /* CONFIG_NET_EGRESS */
3630
3631#ifdef CONFIG_XPS
3632static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3633                               struct xps_dev_maps *dev_maps, unsigned int tci)
3634{
3635        struct xps_map *map;
3636        int queue_index = -1;
3637
3638        if (dev->num_tc) {
3639                tci *= dev->num_tc;
3640                tci += netdev_get_prio_tc_map(dev, skb->priority);
3641        }
3642
3643        map = rcu_dereference(dev_maps->attr_map[tci]);
3644        if (map) {
3645                if (map->len == 1)
3646                        queue_index = map->queues[0];
3647                else
3648                        queue_index = map->queues[reciprocal_scale(
3649                                                skb_get_hash(skb), map->len)];
3650                if (unlikely(queue_index >= dev->real_num_tx_queues))
3651                        queue_index = -1;
3652        }
3653        return queue_index;
3654}
3655#endif
3656
3657static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3658                         struct sk_buff *skb)
3659{
3660#ifdef CONFIG_XPS
3661        struct xps_dev_maps *dev_maps;
3662        struct sock *sk = skb->sk;
3663        int queue_index = -1;
3664
3665        if (!static_key_false(&xps_needed))
3666                return -1;
3667
3668        rcu_read_lock();
3669        if (!static_key_false(&xps_rxqs_needed))
3670                goto get_cpus_map;
3671
3672        dev_maps = rcu_dereference(sb_dev->xps_rxqs_map);
3673        if (dev_maps) {
3674                int tci = sk_rx_queue_get(sk);
3675
3676                if (tci >= 0 && tci < dev->num_rx_queues)
3677                        queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3678                                                          tci);
3679        }
3680
3681get_cpus_map:
3682        if (queue_index < 0) {
3683                dev_maps = rcu_dereference(sb_dev->xps_cpus_map);
3684                if (dev_maps) {
3685                        unsigned int tci = skb->sender_cpu - 1;
3686
3687                        queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
3688                                                          tci);
3689                }
3690        }
3691        rcu_read_unlock();
3692
3693        return queue_index;
3694#else
3695        return -1;
3696#endif
3697}
3698
3699u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3700                     struct net_device *sb_dev)
3701{
3702        return 0;
3703}
3704EXPORT_SYMBOL(dev_pick_tx_zero);
3705
3706u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3707                       struct net_device *sb_dev)
3708{
3709        return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
3710}
3711EXPORT_SYMBOL(dev_pick_tx_cpu_id);
3712
3713u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
3714                     struct net_device *sb_dev)
3715{
3716        struct sock *sk = skb->sk;
3717        int queue_index = sk_tx_queue_get(sk);
3718
3719        sb_dev = sb_dev ? : dev;
3720
3721        if (queue_index < 0 || skb->ooo_okay ||
3722            queue_index >= dev->real_num_tx_queues) {
3723                int new_index = get_xps_queue(dev, sb_dev, skb);
3724
3725                if (new_index < 0)
3726                        new_index = skb_tx_hash(dev, sb_dev, skb);
3727
3728                if (queue_index != new_index && sk &&
3729                    sk_fullsock(sk) &&
3730                    rcu_access_pointer(sk->sk_dst_cache))
3731                        sk_tx_queue_set(sk, new_index);
3732
3733                queue_index = new_index;
3734        }
3735
3736        return queue_index;
3737}
3738EXPORT_SYMBOL(netdev_pick_tx);
3739
3740struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
3741                                         struct sk_buff *skb,
3742                                         struct net_device *sb_dev)
3743{
3744        int queue_index = 0;
3745
3746#ifdef CONFIG_XPS
3747        u32 sender_cpu = skb->sender_cpu - 1;
3748
3749        if (sender_cpu >= (u32)NR_CPUS)
3750                skb->sender_cpu = raw_smp_processor_id() + 1;
3751#endif
3752
3753        if (dev->real_num_tx_queues != 1) {
3754                const struct net_device_ops *ops = dev->netdev_ops;
3755
3756                if (ops->ndo_select_queue)
3757                        queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
3758                else
3759                        queue_index = netdev_pick_tx(dev, skb, sb_dev);
3760
3761                queue_index = netdev_cap_txqueue(dev, queue_index);
3762        }
3763
3764        skb_set_queue_mapping(skb, queue_index);
3765        return netdev_get_tx_queue(dev, queue_index);
3766}
3767
3768/**
3769 *      __dev_queue_xmit - transmit a buffer
3770 *      @skb: buffer to transmit
3771 *      @sb_dev: suboordinate device used for L2 forwarding offload
3772 *
3773 *      Queue a buffer for transmission to a network device. The caller must
3774 *      have set the device and priority and built the buffer before calling
3775 *      this function. The function can be called from an interrupt.
3776 *
3777 *      A negative errno code is returned on a failure. A success does not
3778 *      guarantee the frame will be transmitted as it may be dropped due
3779 *      to congestion or traffic shaping.
3780 *
3781 * -----------------------------------------------------------------------------------
3782 *      I notice this method can also return errors from the queue disciplines,
3783 *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3784 *      be positive.
3785 *
3786 *      Regardless of the return value, the skb is consumed, so it is currently
3787 *      difficult to retry a send to this method.  (You can bump the ref count
3788 *      before sending to hold a reference for retry if you are careful.)
3789 *
3790 *      When calling this method, interrupts MUST be enabled.  This is because
3791 *      the BH enable code must have IRQs enabled so that it will not deadlock.
3792 *          --BLG
3793 */
3794static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
3795{
3796        struct net_device *dev = skb->dev;
3797        struct netdev_queue *txq;
3798        struct Qdisc *q;
3799        int rc = -ENOMEM;
3800        bool again = false;
3801
3802        skb_reset_mac_header(skb);
3803
3804        if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3805                __skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3806
3807        /* Disable soft irqs for various locks below. Also
3808         * stops preemption for RCU.
3809         */
3810        rcu_read_lock_bh();
3811
3812        skb_update_prio(skb);
3813
3814        qdisc_pkt_len_init(skb);
3815#ifdef CONFIG_NET_CLS_ACT
3816        skb->tc_at_ingress = 0;
3817# ifdef CONFIG_NET_EGRESS
3818        if (static_branch_unlikely(&egress_needed_key)) {
3819                skb = sch_handle_egress(skb, &rc, dev);
3820                if (!skb)
3821                        goto out;
3822        }
3823# endif
3824#endif
3825        /* If device/qdisc don't need skb->dst, release it right now while
3826         * its hot in this cpu cache.
3827         */
3828        if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3829                skb_dst_drop(skb);
3830        else
3831                skb_dst_force(skb);
3832
3833        txq = netdev_core_pick_tx(dev, skb, sb_dev);
3834        q = rcu_dereference_bh(txq->qdisc);
3835
3836        trace_net_dev_queue(skb);
3837        if (q->enqueue) {
3838                rc = __dev_xmit_skb(skb, q, dev, txq);
3839                goto out;
3840        }
3841
3842        /* The device has no queue. Common case for software devices:
3843         * loopback, all the sorts of tunnels...
3844
3845         * Really, it is unlikely that netif_tx_lock protection is necessary
3846         * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3847         * counters.)
3848         * However, it is possible, that they rely on protection
3849         * made by us here.
3850
3851         * Check this and shot the lock. It is not prone from deadlocks.
3852         *Either shot noqueue qdisc, it is even simpler 8)
3853         */
3854        if (dev->flags & IFF_UP) {
3855                int cpu = smp_processor_id(); /* ok because BHs are off */
3856
3857                if (txq->xmit_lock_owner != cpu) {
3858                        if (dev_xmit_recursion())
3859                                goto recursion_alert;
3860
3861                        skb = validate_xmit_skb(skb, dev, &again);
3862                        if (!skb)
3863                                goto out;
3864
3865                        HARD_TX_LOCK(dev, txq, cpu);
3866
3867                        if (!netif_xmit_stopped(txq)) {
3868                                dev_xmit_recursion_inc();
3869                                skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3870                                dev_xmit_recursion_dec();
3871                                if (dev_xmit_complete(rc)) {
3872                                        HARD_TX_UNLOCK(dev, txq);
3873                                        goto out;
3874                                }
3875                        }
3876                        HARD_TX_UNLOCK(dev, txq);
3877                        net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3878                                             dev->name);
3879                } else {
3880                        /* Recursion is detected! It is possible,
3881                         * unfortunately
3882                         */
3883recursion_alert:
3884                        net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3885                                             dev->name);
3886                }
3887        }
3888
3889        rc = -ENETDOWN;
3890        rcu_read_unlock_bh();
3891
3892        atomic_long_inc(&dev->tx_dropped);
3893        kfree_skb_list(skb);
3894        return rc;
3895out:
3896        rcu_read_unlock_bh();
3897        return rc;
3898}
3899
3900int dev_queue_xmit(struct sk_buff *skb)
3901{
3902        return __dev_queue_xmit(skb, NULL);
3903}
3904EXPORT_SYMBOL(dev_queue_xmit);
3905
3906int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
3907{
3908        return __dev_queue_xmit(skb, sb_dev);
3909}
3910EXPORT_SYMBOL(dev_queue_xmit_accel);
3911
3912int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3913{
3914        struct net_device *dev = skb->dev;
3915        struct sk_buff *orig_skb = skb;
3916        struct netdev_queue *txq;
3917        int ret = NETDEV_TX_BUSY;
3918        bool again = false;
3919
3920        if (unlikely(!netif_running(dev) ||
3921                     !netif_carrier_ok(dev)))
3922                goto drop;
3923
3924        skb = validate_xmit_skb_list(skb, dev, &again);
3925        if (skb != orig_skb)
3926                goto drop;
3927
3928        skb_set_queue_mapping(skb, queue_id);
3929        txq = skb_get_tx_queue(dev, skb);
3930
3931        local_bh_disable();
3932
3933        HARD_TX_LOCK(dev, txq, smp_processor_id());
3934        if (!netif_xmit_frozen_or_drv_stopped(txq))
3935                ret = netdev_start_xmit(skb, dev, txq, false);
3936        HARD_TX_UNLOCK(dev, txq);
3937
3938        local_bh_enable();
3939
3940        if (!dev_xmit_complete(ret))
3941                kfree_skb(skb);
3942
3943        return ret;
3944drop:
3945        atomic_long_inc(&dev->tx_dropped);
3946        kfree_skb_list(skb);
3947        return NET_XMIT_DROP;
3948}
3949EXPORT_SYMBOL(dev_direct_xmit);
3950
3951/*************************************************************************
3952 *                      Receiver routines
3953 *************************************************************************/
3954
3955int netdev_max_backlog __read_mostly = 1000;
3956EXPORT_SYMBOL(netdev_max_backlog);
3957
3958int netdev_tstamp_prequeue __read_mostly = 1;
3959int netdev_budget __read_mostly = 300;
3960unsigned int __read_mostly netdev_budget_usecs = 2000;
3961int weight_p __read_mostly = 64;           /* old backlog weight */
3962int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
3963int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
3964int dev_rx_weight __read_mostly = 64;
3965int dev_tx_weight __read_mostly = 64;
3966
3967/* Called with irq disabled */
3968static inline void ____napi_schedule(struct softnet_data *sd,
3969                                     struct napi_struct *napi)
3970{
3971        list_add_tail(&napi->poll_list, &sd->poll_list);
3972        __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3973}
3974
3975#ifdef CONFIG_RPS
3976
3977/* One global table that all flow-based protocols share. */
3978struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3979EXPORT_SYMBOL(rps_sock_flow_table);
3980u32 rps_cpu_mask __read_mostly;
3981EXPORT_SYMBOL(rps_cpu_mask);
3982
3983struct static_key_false rps_needed __read_mostly;
3984EXPORT_SYMBOL(rps_needed);
3985struct static_key_false rfs_needed __read_mostly;
3986EXPORT_SYMBOL(rfs_needed);
3987
3988static struct rps_dev_flow *
3989set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3990            struct rps_dev_flow *rflow, u16 next_cpu)
3991{
3992        if (next_cpu < nr_cpu_ids) {
3993#ifdef CONFIG_RFS_ACCEL
3994                struct netdev_rx_queue *rxqueue;
3995                struct rps_dev_flow_table *flow_table;
3996                struct rps_dev_flow *old_rflow;
3997                u32 flow_id;
3998                u16 rxq_index;
3999                int rc;
4000
4001                /* Should we steer this flow to a different hardware queue? */
4002                if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4003                    !(dev->features & NETIF_F_NTUPLE))
4004                        goto out;
4005                rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4006                if (rxq_index == skb_get_rx_queue(skb))
4007                        goto out;
4008
4009                rxqueue = dev->_rx + rxq_index;
4010                flow_table = rcu_dereference(rxqueue->rps_flow_table);
4011                if (!flow_table)
4012                        goto out;
4013                flow_id = skb_get_hash(skb) & flow_table->mask;
4014                rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4015                                                        rxq_index, flow_id);
4016                if (rc < 0)
4017                        goto out;
4018                old_rflow = rflow;
4019                rflow = &flow_table->flows[flow_id];
4020                rflow->filter = rc;
4021                if (old_rflow->filter == rflow->filter)
4022                        old_rflow->filter = RPS_NO_FILTER;
4023        out:
4024#endif
4025                rflow->last_qtail =
4026                        per_cpu(softnet_data, next_cpu).input_queue_head;
4027        }
4028
4029        rflow->cpu = next_cpu;
4030        return rflow;
4031}
4032
4033/*
4034 * get_rps_cpu is called from netif_receive_skb and returns the target
4035 * CPU from the RPS map of the receiving queue for a given skb.
4036 * rcu_read_lock must be held on entry.
4037 */
4038static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4039                       struct rps_dev_flow **rflowp)
4040{
4041        const struct rps_sock_flow_table *sock_flow_table;
4042        struct netdev_rx_queue *rxqueue = dev->_rx;
4043        struct rps_dev_flow_table *flow_table;
4044        struct rps_map *map;
4045        int cpu = -1;
4046        u32 tcpu;
4047        u32 hash;
4048
4049        if (skb_rx_queue_recorded(skb)) {
4050                u16 index = skb_get_rx_queue(skb);
4051
4052                if (unlikely(index >= dev->real_num_rx_queues)) {
4053                        WARN_ONCE(dev->real_num_rx_queues > 1,
4054                                  "%s received packet on queue %u, but number "
4055                                  "of RX queues is %u\n",
4056                                  dev->name, index, dev->real_num_rx_queues);
4057                        goto done;
4058                }
4059                rxqueue += index;
4060        }
4061
4062        /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4063
4064        flow_table = rcu_dereference(rxqueue->rps_flow_table);
4065        map = rcu_dereference(rxqueue->rps_map);
4066        if (!flow_table && !map)
4067                goto done;
4068
4069        skb_reset_network_header(skb);
4070        hash = skb_get_hash(skb);
4071        if (!hash)
4072                goto done;
4073
4074        sock_flow_table = rcu_dereference(rps_sock_flow_table);
4075        if (flow_table && sock_flow_table) {
4076                struct rps_dev_flow *rflow;
4077                u32 next_cpu;
4078                u32 ident;
4079
4080                /* First check into global flow table if there is a match */
4081                ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4082                if ((ident ^ hash) & ~rps_cpu_mask)
4083                        goto try_rps;
4084
4085                next_cpu = ident & rps_cpu_mask;
4086
4087                /* OK, now we know there is a match,
4088                 * we can look at the local (per receive queue) flow table
4089                 */
4090                rflow = &flow_table->flows[hash & flow_table->mask];
4091                tcpu = rflow->cpu;
4092
4093                /*
4094                 * If the desired CPU (where last recvmsg was done) is
4095                 * different from current CPU (one in the rx-queue flow
4096                 * table entry), switch if one of the following holds:
4097                 *   - Current CPU is unset (>= nr_cpu_ids).
4098                 *   - Current CPU is offline.
4099                 *   - The current CPU's queue tail has advanced beyond the
4100                 *     last packet that was enqueued using this table entry.
4101                 *     This guarantees that all previous packets for the flow
4102                 *     have been dequeued, thus preserving in order delivery.
4103                 */
4104                if (unlikely(tcpu != next_cpu) &&
4105                    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4106                     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4107                      rflow->last_qtail)) >= 0)) {
4108                        tcpu = next_cpu;
4109                        rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4110                }
4111
4112                if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4113                        *rflowp = rflow;
4114                        cpu = tcpu;
4115                        goto done;
4116                }
4117        }
4118
4119try_rps:
4120
4121        if (map) {
4122                tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4123                if (cpu_online(tcpu)) {
4124                        cpu = tcpu;
4125                        goto done;
4126                }
4127        }
4128
4129done:
4130        return cpu;
4131}
4132
4133#ifdef CONFIG_RFS_ACCEL
4134
4135/**
4136 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4137 * @dev: Device on which the filter was set
4138 * @rxq_index: RX queue index
4139 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4140 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4141 *
4142 * Drivers that implement ndo_rx_flow_steer() should periodically call
4143 * this function for each installed filter and remove the filters for
4144 * which it returns %true.
4145 */
4146bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4147                         u32 flow_id, u16 filter_id)
4148{
4149        struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4150        struct rps_dev_flow_table *flow_table;
4151        struct rps_dev_flow *rflow;
4152        bool expire = true;
4153        unsigned int cpu;
4154
4155        rcu_read_lock();
4156        flow_table = rcu_dereference(rxqueue->rps_flow_table);
4157        if (flow_table && flow_id <= flow_table->mask) {
4158                rflow = &flow_table->flows[flow_id];
4159                cpu = READ_ONCE(rflow->cpu);
4160                if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4161                    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4162                           rflow->last_qtail) <
4163                     (int)(10 * flow_table->mask)))
4164                        expire = false;
4165        }
4166        rcu_read_unlock();
4167        return expire;
4168}
4169EXPORT_SYMBOL(rps_may_expire_flow);
4170
4171#endif /* CONFIG_RFS_ACCEL */
4172
4173/* Called from hardirq (IPI) context */
4174static void rps_trigger_softirq(void *data)
4175{
4176        struct softnet_data *sd = data;
4177
4178        ____napi_schedule(sd, &sd->backlog);
4179        sd->received_rps++;
4180}
4181
4182#endif /* CONFIG_RPS */
4183
4184/*
4185 * Check if this softnet_data structure is another cpu one
4186 * If yes, queue it to our IPI list and return 1
4187 * If no, return 0
4188 */
4189static int rps_ipi_queued(struct softnet_data *sd)
4190{
4191#ifdef CONFIG_RPS
4192        struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4193
4194        if (sd != mysd) {
4195                sd->rps_ipi_next = mysd->rps_ipi_list;
4196                mysd->rps_ipi_list = sd;
4197
4198                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4199                return 1;
4200        }
4201#endif /* CONFIG_RPS */
4202        return 0;
4203}
4204
4205#ifdef CONFIG_NET_FLOW_LIMIT
4206int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4207#endif
4208
4209static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4210{
4211#ifdef CONFIG_NET_FLOW_LIMIT
4212        struct sd_flow_limit *fl;
4213        struct softnet_data *sd;
4214        unsigned int old_flow, new_flow;
4215
4216        if (qlen < (netdev_max_backlog >> 1))
4217                return false;
4218
4219        sd = this_cpu_ptr(&softnet_data);
4220
4221        rcu_read_lock();
4222        fl = rcu_dereference(sd->flow_limit);
4223        if (fl) {
4224                new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4225                old_flow = fl->history[fl->history_head];
4226                fl->history[fl->history_head] = new_flow;
4227
4228                fl->history_head++;
4229                fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4230
4231                if (likely(fl->buckets[old_flow]))
4232                        fl->buckets[old_flow]--;
4233
4234                if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4235                        fl->count++;
4236                        rcu_read_unlock();
4237                        return true;
4238                }
4239        }
4240        rcu_read_unlock();
4241#endif
4242        return false;
4243}
4244
4245/*
4246 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4247 * queue (may be a remote CPU queue).
4248 */
4249static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4250                              unsigned int *qtail)
4251{
4252        struct softnet_data *sd;
4253        unsigned long flags;
4254        unsigned int qlen;
4255
4256        sd = &per_cpu(softnet_data, cpu);
4257
4258        local_irq_save(flags);
4259
4260        rps_lock(sd);
4261        if (!netif_running(skb->dev))
4262                goto drop;
4263        qlen = skb_queue_len(&sd->input_pkt_queue);
4264        if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4265                if (qlen) {
4266enqueue:
4267                        __skb_queue_tail(&sd->input_pkt_queue, skb);
4268                        input_queue_tail_incr_save(sd, qtail);
4269                        rps_unlock(sd);
4270                        local_irq_restore(flags);
4271                        return NET_RX_SUCCESS;
4272                }
4273
4274                /* Schedule NAPI for backlog device
4275                 * We can use non atomic operation since we own the queue lock
4276                 */
4277                if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4278                        if (!rps_ipi_queued(sd))
4279                                ____napi_schedule(sd, &sd->backlog);
4280                }
4281                goto enqueue;
4282        }
4283
4284drop:
4285        sd->dropped++;
4286        rps_unlock(sd);
4287
4288        local_irq_restore(flags);
4289
4290        atomic_long_inc(&skb->dev->rx_dropped);
4291        kfree_skb(skb);
4292        return NET_RX_DROP;
4293}
4294
4295static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4296{
4297        struct net_device *dev = skb->dev;
4298        struct netdev_rx_queue *rxqueue;
4299
4300        rxqueue = dev->_rx;
4301
4302        if (skb_rx_queue_recorded(skb)) {
4303                u16 index = skb_get_rx_queue(skb);
4304
4305                if (unlikely(index >= dev->real_num_rx_queues)) {
4306                        WARN_ONCE(dev->real_num_rx_queues > 1,
4307                                  "%s received packet on queue %u, but number "
4308                                  "of RX queues is %u\n",
4309                                  dev->name, index, dev->real_num_rx_queues);
4310
4311                        return rxqueue; /* Return first rxqueue */
4312                }
4313                rxqueue += index;
4314        }
4315        return rxqueue;
4316}
4317
4318static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4319                                     struct xdp_buff *xdp,
4320                                     struct bpf_prog *xdp_prog)
4321{
4322        struct netdev_rx_queue *rxqueue;
4323        void *orig_data, *orig_data_end;
4324        u32 metalen, act = XDP_DROP;
4325        __be16 orig_eth_type;
4326        struct ethhdr *eth;
4327        bool orig_bcast;
4328        int hlen, off;
4329        u32 mac_len;
4330
4331        /* Reinjected packets coming from act_mirred or similar should
4332         * not get XDP generic processing.
4333         */
4334        if (skb_cloned(skb) || skb_is_tc_redirected(skb))
4335                return XDP_PASS;
4336
4337        /* XDP packets must be linear and must have sufficient headroom
4338         * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4339         * native XDP provides, thus we need to do it here as well.
4340         */
4341        if (skb_is_nonlinear(skb) ||
4342            skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4343                int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4344                int troom = skb->tail + skb->data_len - skb->end;
4345
4346                /* In case we have to go down the path and also linearize,
4347                 * then lets do the pskb_expand_head() work just once here.
4348                 */
4349                if (pskb_expand_head(skb,
4350                                     hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4351                                     troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4352                        goto do_drop;
4353                if (skb_linearize(skb))
4354                        goto do_drop;
4355        }
4356
4357        /* The XDP program wants to see the packet starting at the MAC
4358         * header.
4359         */
4360        mac_len = skb->data - skb_mac_header(skb);
4361        hlen = skb_headlen(skb) + mac_len;
4362        xdp->data = skb->data - mac_len;
4363        xdp->data_meta = xdp->data;
4364        xdp->data_end = xdp->data + hlen;
4365        xdp->data_hard_start = skb->data - skb_headroom(skb);
4366        orig_data_end = xdp->data_end;
4367        orig_data = xdp->data;
4368        eth = (struct ethhdr *)xdp->data;
4369        orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4370        orig_eth_type = eth->h_proto;
4371
4372        rxqueue = netif_get_rxqueue(skb);
4373        xdp->rxq = &rxqueue->xdp_rxq;
4374
4375        act = bpf_prog_run_xdp(xdp_prog, xdp);
4376
4377        /* check if bpf_xdp_adjust_head was used */
4378        off = xdp->data - orig_data;
4379        if (off) {
4380                if (off > 0)
4381                        __skb_pull(skb, off);
4382                else if (off < 0)
4383                        __skb_push(skb, -off);
4384
4385                skb->mac_header += off;
4386                skb_reset_network_header(skb);
4387        }
4388
4389        /* check if bpf_xdp_adjust_tail was used. it can only "shrink"
4390         * pckt.
4391         */
4392        off = orig_data_end - xdp->data_end;
4393        if (off != 0) {
4394                skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4395                skb->len -= off;
4396
4397        }
4398
4399        /* check if XDP changed eth hdr such SKB needs update */
4400        eth = (struct ethhdr *)xdp->data;
4401        if ((orig_eth_type != eth->h_proto) ||
4402            (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4403                __skb_push(skb, ETH_HLEN);
4404                skb->protocol = eth_type_trans(skb, skb->dev);
4405        }
4406
4407        switch (act) {
4408        case XDP_REDIRECT:
4409        case XDP_TX:
4410                __skb_push(skb, mac_len);
4411                break;
4412        case XDP_PASS:
4413                metalen = xdp->data - xdp->data_meta;
4414                if (metalen)
4415                        skb_metadata_set(skb, metalen);
4416                break;
4417        default:
4418                bpf_warn_invalid_xdp_action(act);
4419                /* fall through */
4420        case XDP_ABORTED:
4421                trace_xdp_exception(skb->dev, xdp_prog, act);
4422                /* fall through */
4423        case XDP_DROP:
4424        do_drop:
4425                kfree_skb(skb);
4426                break;
4427        }
4428
4429        return act;
4430}
4431
4432/* When doing generic XDP we have to bypass the qdisc layer and the
4433 * network taps in order to match in-driver-XDP behavior.
4434 */
4435void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4436{
4437        struct net_device *dev = skb->dev;
4438        struct netdev_queue *txq;
4439        bool free_skb = true;
4440        int cpu, rc;
4441
4442        txq = netdev_core_pick_tx(dev, skb, NULL);
4443        cpu = smp_processor_id();
4444        HARD_TX_LOCK(dev, txq, cpu);
4445        if (!netif_xmit_stopped(txq)) {
4446                rc = netdev_start_xmit(skb, dev, txq, 0);
4447                if (dev_xmit_complete(rc))
4448                        free_skb = false;
4449        }
4450        HARD_TX_UNLOCK(dev, txq);
4451        if (free_skb) {
4452                trace_xdp_exception(dev, xdp_prog, XDP_TX);
4453                kfree_skb(skb);
4454        }
4455}
4456EXPORT_SYMBOL_GPL(generic_xdp_tx);
4457
4458static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4459
4460int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4461{
4462        if (xdp_prog) {
4463                struct xdp_buff xdp;
4464                u32 act;
4465                int err;
4466
4467                act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4468                if (act != XDP_PASS) {
4469                        switch (act) {
4470                        case XDP_REDIRECT:
4471                                err = xdp_do_generic_redirect(skb->dev, skb,
4472                                                              &xdp, xdp_prog);
4473                                if (err)
4474                                        goto out_redir;
4475                                break;
4476                        case XDP_TX:
4477                                generic_xdp_tx(skb, xdp_prog);
4478                                break;
4479                        }
4480                        return XDP_DROP;
4481                }
4482        }
4483        return XDP_PASS;
4484out_redir:
4485        kfree_skb(skb);
4486        return XDP_DROP;
4487}
4488EXPORT_SYMBOL_GPL(do_xdp_generic);
4489
4490static int netif_rx_internal(struct sk_buff *skb)
4491{
4492        int ret;
4493
4494        net_timestamp_check(netdev_tstamp_prequeue, skb);
4495
4496        trace_netif_rx(skb);
4497
4498#ifdef CONFIG_RPS
4499        if (static_branch_unlikely(&rps_needed)) {
4500                struct rps_dev_flow voidflow, *rflow = &voidflow;
4501                int cpu;
4502
4503                preempt_disable();
4504                rcu_read_lock();
4505
4506                cpu = get_rps_cpu(skb->dev, skb, &rflow);
4507                if (cpu < 0)
4508                        cpu = smp_processor_id();
4509
4510                ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4511
4512                rcu_read_unlock();
4513                preempt_enable();
4514        } else
4515#endif
4516        {
4517                unsigned int qtail;
4518
4519                ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4520                put_cpu();
4521        }
4522        return ret;
4523}
4524
4525/**
4526 *      netif_rx        -       post buffer to the network code
4527 *      @skb: buffer to post
4528 *
4529 *      This function receives a packet from a device driver and queues it for
4530 *      the upper (protocol) levels to process.  It always succeeds. The buffer
4531 *      may be dropped during processing for congestion control or by the
4532 *      protocol layers.
4533 *
4534 *      return values:
4535 *      NET_RX_SUCCESS  (no congestion)
4536 *      NET_RX_DROP     (packet was dropped)
4537 *
4538 */
4539
4540int netif_rx(struct sk_buff *skb)
4541{
4542        int ret;
4543
4544        trace_netif_rx_entry(skb);
4545
4546        ret = netif_rx_internal(skb);
4547        trace_netif_rx_exit(ret);
4548
4549        return ret;
4550}
4551EXPORT_SYMBOL(netif_rx);
4552
4553int netif_rx_ni(struct sk_buff *skb)
4554{
4555        int err;
4556
4557        trace_netif_rx_ni_entry(skb);
4558
4559        preempt_disable();
4560        err = netif_rx_internal(skb);
4561        if (local_softirq_pending())
4562                do_softirq();
4563        preempt_enable();
4564        trace_netif_rx_ni_exit(err);
4565
4566        return err;
4567}
4568EXPORT_SYMBOL(netif_rx_ni);
4569
4570static __latent_entropy void net_tx_action(struct softirq_action *h)
4571{
4572        struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4573
4574        if (sd->completion_queue) {
4575                struct sk_buff *clist;
4576
4577                local_irq_disable();
4578                clist = sd->completion_queue;
4579                sd->completion_queue = NULL;
4580                local_irq_enable();
4581
4582                while (clist) {
4583                        struct sk_buff *skb = clist;
4584
4585                        clist = clist->next;
4586
4587                        WARN_ON(refcount_read(&skb->users));
4588                        if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4589                                trace_consume_skb(skb);
4590                        else
4591                                trace_kfree_skb(skb, net_tx_action);
4592
4593                        if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4594                                __kfree_skb(skb);
4595                        else
4596                                __kfree_skb_defer(skb);
4597                }
4598
4599                __kfree_skb_flush();
4600        }
4601
4602        if (sd->output_queue) {
4603                struct Qdisc *head;
4604
4605                local_irq_disable();
4606                head = sd->output_queue;
4607                sd->output_queue = NULL;
4608                sd->output_queue_tailp = &sd->output_queue;
4609                local_irq_enable();
4610
4611                while (head) {
4612                        struct Qdisc *q = head;
4613                        spinlock_t *root_lock = NULL;
4614
4615                        head = head->next_sched;
4616
4617                        if (!(q->flags & TCQ_F_NOLOCK)) {
4618                                root_lock = qdisc_lock(q);
4619                                spin_lock(root_lock);
4620                        }
4621                        /* We need to make sure head->next_sched is read
4622                         * before clearing __QDISC_STATE_SCHED
4623                         */
4624                        smp_mb__before_atomic();
4625                        clear_bit(__QDISC_STATE_SCHED, &q->state);
4626                        qdisc_run(q);
4627                        if (root_lock)
4628                                spin_unlock(root_lock);
4629                }
4630        }
4631
4632        xfrm_dev_backlog(sd);
4633}
4634
4635#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
4636/* This hook is defined here for ATM LANE */
4637int (*br_fdb_test_addr_hook)(struct net_device *dev,
4638                             unsigned char *addr) __read_mostly;
4639EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
4640#endif
4641
4642static inline struct sk_buff *
4643sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4644                   struct net_device *orig_dev)
4645{
4646#ifdef CONFIG_NET_CLS_ACT
4647        struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
4648        struct tcf_result cl_res;
4649
4650        /* If there's at least one ingress present somewhere (so
4651         * we get here via enabled static key), remaining devices
4652         * that are not configured with an ingress qdisc will bail
4653         * out here.
4654         */
4655        if (!miniq)
4656                return skb;
4657
4658        if (*pt_prev) {
4659                *ret = deliver_skb(skb, *pt_prev, orig_dev);
4660                *pt_prev = NULL;
4661        }
4662
4663        qdisc_skb_cb(skb)->pkt_len = skb->len;
4664        skb->tc_at_ingress = 1;
4665        mini_qdisc_bstats_cpu_update(miniq, skb);
4666
4667        switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
4668        case TC_ACT_OK:
4669        case TC_ACT_RECLASSIFY:
4670                skb->tc_index = TC_H_MIN(cl_res.classid);
4671                break;
4672        case TC_ACT_SHOT:
4673                mini_qdisc_qstats_cpu_drop(miniq);
4674                kfree_skb(skb);
4675                return NULL;
4676        case TC_ACT_STOLEN:
4677        case TC_ACT_QUEUED:
4678        case TC_ACT_TRAP:
4679                consume_skb(skb);
4680                return NULL;
4681        case TC_ACT_REDIRECT:
4682                /* skb_mac_header check was done by cls/act_bpf, so
4683                 * we can safely push the L2 header back before
4684                 * redirecting to another netdev
4685                 */
4686                __skb_push(skb, skb->mac_len);
4687                skb_do_redirect(skb);
4688                return NULL;
4689        case TC_ACT_CONSUMED:
4690                return NULL;
4691        default:
4692                break;
4693        }
4694#endif /* CONFIG_NET_CLS_ACT */
4695        return skb;
4696}
4697
4698/**
4699 *      netdev_is_rx_handler_busy - check if receive handler is registered
4700 *      @dev: device to check
4701 *
4702 *      Check if a receive handler is already registered for a given device.
4703 *      Return true if there one.
4704 *
4705 *      The caller must hold the rtnl_mutex.
4706 */
4707bool netdev_is_rx_handler_busy(struct net_device *dev)
4708{
4709        ASSERT_RTNL();
4710        return dev && rtnl_dereference(dev->rx_handler);
4711}
4712EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
4713
4714/**
4715 *      netdev_rx_handler_register - register receive handler
4716 *      @dev: device to register a handler for
4717 *      @rx_handler: receive handler to register
4718 *      @rx_handler_data: data pointer that is used by rx handler
4719 *
4720 *      Register a receive handler for a device. This handler will then be
4721 *      called from __netif_receive_skb. A negative errno code is returned
4722 *      on a failure.
4723 *
4724 *      The caller must hold the rtnl_mutex.
4725 *
4726 *      For a general description of rx_handler, see enum rx_handler_result.
4727 */
4728int netdev_rx_handler_register(struct net_device *dev,
4729                               rx_handler_func_t *rx_handler,
4730                               void *rx_handler_data)
4731{
4732        if (netdev_is_rx_handler_busy(dev))
4733                return -EBUSY;
4734
4735        if (dev->priv_flags & IFF_NO_RX_HANDLER)
4736                return -EINVAL;
4737
4738        /* Note: rx_handler_data must be set before rx_handler */
4739        rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
4740        rcu_assign_pointer(dev->rx_handler, rx_handler);
4741
4742        return 0;
4743}
4744EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
4745
4746/**
4747 *      netdev_rx_handler_unregister - unregister receive handler
4748 *      @dev: device to unregister a handler from
4749 *
4750 *      Unregister a receive handler from a device.
4751 *
4752 *      The caller must hold the rtnl_mutex.
4753 */
4754void netdev_rx_handler_unregister(struct net_device *dev)
4755{
4756
4757        ASSERT_RTNL();
4758        RCU_INIT_POINTER(dev->rx_handler, NULL);
4759        /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
4760         * section has a guarantee to see a non NULL rx_handler_data
4761         * as well.
4762         */
4763        synchronize_net();
4764        RCU_INIT_POINTER(dev->rx_handler_data, NULL);
4765}
4766EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
4767
4768/*
4769 * Limit the use of PFMEMALLOC reserves to those protocols that implement
4770 * the special handling of PFMEMALLOC skbs.
4771 */
4772static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
4773{
4774        switch (skb->protocol) {
4775        case htons(ETH_P_ARP):
4776        case htons(ETH_P_IP):
4777        case htons(ETH_P_IPV6):
4778        case htons(ETH_P_8021Q):
4779        case htons(ETH_P_8021AD):
4780                return true;
4781        default:
4782                return false;
4783        }
4784}
4785
4786static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4787                             int *ret, struct net_device *orig_dev)
4788{
4789#ifdef CONFIG_NETFILTER_INGRESS
4790        if (nf_hook_ingress_active(skb)) {
4791                int ingress_retval;
4792
4793                if (*pt_prev) {
4794                        *ret = deliver_skb(skb, *pt_prev, orig_dev);
4795                        *pt_prev = NULL;
4796                }
4797
4798                rcu_read_lock();
4799                ingress_retval = nf_hook_ingress(skb);
4800                rcu_read_unlock();
4801                return ingress_retval;
4802        }
4803#endif /* CONFIG_NETFILTER_INGRESS */
4804        return 0;
4805}
4806
4807static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc,
4808                                    struct packet_type **ppt_prev)
4809{
4810        struct packet_type *ptype, *pt_prev;
4811        rx_handler_func_t *rx_handler;
4812        struct net_device *orig_dev;
4813        bool deliver_exact = false;
4814        int ret = NET_RX_DROP;
4815        __be16 type;
4816
4817        net_timestamp_check(!netdev_tstamp_prequeue, skb);
4818
4819        trace_netif_receive_skb(skb);
4820
4821        orig_dev = skb->dev;
4822
4823        skb_reset_network_header(skb);
4824        if (!skb_transport_header_was_set(skb))
4825                skb_reset_transport_header(skb);
4826        skb_reset_mac_len(skb);
4827
4828        pt_prev = NULL;
4829
4830another_round:
4831        skb->skb_iif = skb->dev->ifindex;
4832
4833        __this_cpu_inc(softnet_data.processed);
4834
4835        if (static_branch_unlikely(&generic_xdp_needed_key)) {
4836                int ret2;
4837
4838                preempt_disable();
4839                ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
4840                preempt_enable();
4841
4842                if (ret2 != XDP_PASS)
4843                        return NET_RX_DROP;
4844                skb_reset_mac_len(skb);
4845        }
4846
4847        if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4848            skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4849                skb = skb_vlan_untag(skb);
4850                if (unlikely(!skb))
4851                        goto out;
4852        }
4853
4854        if (skb_skip_tc_classify(skb))
4855                goto skip_classify;
4856
4857        if (pfmemalloc)
4858                goto skip_taps;
4859
4860        list_for_each_entry_rcu(ptype, &ptype_all, list) {
4861                if (pt_prev)
4862                        ret = deliver_skb(skb, pt_prev, orig_dev);
4863                pt_prev = ptype;
4864        }
4865
4866        list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4867                if (pt_prev)
4868                        ret = deliver_skb(skb, pt_prev, orig_dev);
4869                pt_prev = ptype;
4870        }
4871
4872skip_taps:
4873#ifdef CONFIG_NET_INGRESS
4874        if (static_branch_unlikely(&ingress_needed_key)) {
4875                skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
4876                if (!skb)
4877                        goto out;
4878
4879                if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4880                        goto out;
4881        }
4882#endif
4883        skb_reset_tc(skb);
4884skip_classify:
4885        if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4886                goto drop;
4887
4888        if (skb_vlan_tag_present(skb)) {
4889                if (pt_prev) {
4890                        ret = deliver_skb(skb, pt_prev, orig_dev);
4891                        pt_prev = NULL;
4892                }
4893                if (vlan_do_receive(&skb))
4894                        goto another_round;
4895                else if (unlikely(!skb))
4896                        goto out;
4897        }
4898
4899        rx_handler = rcu_dereference(skb->dev->rx_handler);
4900        if (rx_handler) {
4901                if (pt_prev) {
4902                        ret = deliver_skb(skb, pt_prev, orig_dev);
4903                        pt_prev = NULL;
4904                }
4905                switch (rx_handler(&skb)) {
4906                case RX_HANDLER_CONSUMED:
4907                        ret = NET_RX_SUCCESS;
4908                        goto out;
4909                case RX_HANDLER_ANOTHER:
4910                        goto another_round;
4911                case RX_HANDLER_EXACT:
4912                        deliver_exact = true;
4913                case RX_HANDLER_PASS:
4914                        break;
4915                default:
4916                        BUG();
4917                }
4918        }
4919
4920        if (unlikely(skb_vlan_tag_present(skb))) {
4921check_vlan_id:
4922                if (skb_vlan_tag_get_id(skb)) {
4923                        /* Vlan id is non 0 and vlan_do_receive() above couldn't
4924                         * find vlan device.
4925                         */
4926                        skb->pkt_type = PACKET_OTHERHOST;
4927                } else if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4928                           skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
4929                        /* Outer header is 802.1P with vlan 0, inner header is
4930                         * 802.1Q or 802.1AD and vlan_do_receive() above could
4931                         * not find vlan dev for vlan id 0.
4932                         */
4933                        __vlan_hwaccel_clear_tag(skb);
4934                        skb = skb_vlan_untag(skb);
4935                        if (unlikely(!skb))
4936                                goto out;
4937                        if (vlan_do_receive(&skb))
4938                                /* After stripping off 802.1P header with vlan 0
4939                                 * vlan dev is found for inner header.
4940                                 */
4941                                goto another_round;
4942                        else if (unlikely(!skb))
4943                                goto out;
4944                        else
4945                                /* We have stripped outer 802.1P vlan 0 header.
4946                                 * But could not find vlan dev.
4947                                 * check again for vlan id to set OTHERHOST.
4948                                 */
4949                                goto check_vlan_id;
4950                }
4951                /* Note: we might in the future use prio bits
4952                 * and set skb->priority like in vlan_do_receive()
4953                 * For the time being, just ignore Priority Code Point
4954                 */
4955                __vlan_hwaccel_clear_tag(skb);
4956        }
4957
4958        type = skb->protocol;
4959
4960        /* deliver only exact match when indicated */
4961        if (likely(!deliver_exact)) {
4962                deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4963                                       &ptype_base[ntohs(type) &
4964                                                   PTYPE_HASH_MASK]);
4965        }
4966
4967        deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4968                               &orig_dev->ptype_specific);
4969
4970        if (unlikely(skb->dev != orig_dev)) {
4971                deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4972                                       &skb->dev->ptype_specific);
4973        }
4974
4975        if (pt_prev) {
4976                if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
4977                        goto drop;
4978                *ppt_prev = pt_prev;
4979        } else {
4980drop:
4981                if (!deliver_exact)
4982                        atomic_long_inc(&skb->dev->rx_dropped);
4983                else
4984                        atomic_long_inc(&skb->dev->rx_nohandler);
4985                kfree_skb(skb);
4986                /* Jamal, now you will not able to escape explaining
4987                 * me how you were going to use this. :-)
4988                 */
4989                ret = NET_RX_DROP;
4990        }
4991
4992out:
4993        return ret;
4994}
4995
4996static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
4997{
4998        struct net_device *orig_dev = skb->dev;
4999        struct packet_type *pt_prev = NULL;
5000        int ret;
5001
5002        ret = __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5003        if (pt_prev)
5004                ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5005                                         skb->dev, pt_prev, orig_dev);
5006        return ret;
5007}
5008
5009/**
5010 *      netif_receive_skb_core - special purpose version of netif_receive_skb
5011 *      @skb: buffer to process
5012 *
5013 *      More direct receive version of netif_receive_skb().  It should
5014 *      only be used by callers that have a need to skip RPS and Generic XDP.
5015 *      Caller must also take care of handling if (page_is_)pfmemalloc.
5016 *
5017 *      This function may only be called from softirq context and interrupts
5018 *      should be enabled.
5019 *
5020 *      Return values (usually ignored):
5021 *      NET_RX_SUCCESS: no congestion
5022 *      NET_RX_DROP: packet was dropped
5023 */
5024int netif_receive_skb_core(struct sk_buff *skb)
5025{
5026        int ret;
5027
5028        rcu_read_lock();
5029        ret = __netif_receive_skb_one_core(skb, false);
5030        rcu_read_unlock();
5031
5032        return ret;
5033}
5034EXPORT_SYMBOL(netif_receive_skb_core);
5035
5036static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5037                                                  struct packet_type *pt_prev,
5038                                                  struct net_device *orig_dev)
5039{
5040        struct sk_buff *skb, *next;
5041
5042        if (!pt_prev)
5043                return;
5044        if (list_empty(head))
5045                return;
5046        if (pt_prev->list_func != NULL)
5047                INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5048                                   ip_list_rcv, head, pt_prev, orig_dev);
5049        else
5050                list_for_each_entry_safe(skb, next, head, list) {
5051                        skb_list_del_init(skb);
5052                        pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5053                }
5054}
5055
5056static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5057{
5058        /* Fast-path assumptions:
5059         * - There is no RX handler.
5060         * - Only one packet_type matches.
5061         * If either of these fails, we will end up doing some per-packet
5062         * processing in-line, then handling the 'last ptype' for the whole
5063         * sublist.  This can't cause out-of-order delivery to any single ptype,
5064         * because the 'last ptype' must be constant across the sublist, and all
5065         * other ptypes are handled per-packet.
5066         */
5067        /* Current (common) ptype of sublist */
5068        struct packet_type *pt_curr = NULL;
5069        /* Current (common) orig_dev of sublist */
5070        struct net_device *od_curr = NULL;
5071        struct list_head sublist;
5072        struct sk_buff *skb, *next;
5073
5074        INIT_LIST_HEAD(&sublist);
5075        list_for_each_entry_safe(skb, next, head, list) {
5076                struct net_device *orig_dev = skb->dev;
5077                struct packet_type *pt_prev = NULL;
5078
5079                skb_list_del_init(skb);
5080                __netif_receive_skb_core(skb, pfmemalloc, &pt_prev);
5081                if (!pt_prev)
5082                        continue;
5083                if (pt_curr != pt_prev || od_curr != orig_dev) {
5084                        /* dispatch old sublist */
5085                        __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5086                        /* start new sublist */
5087                        INIT_LIST_HEAD(&sublist);
5088                        pt_curr = pt_prev;
5089                        od_curr = orig_dev;
5090                }
5091                list_add_tail(&skb->list, &sublist);
5092        }
5093
5094        /* dispatch final sublist */
5095        __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5096}
5097
5098static int __netif_receive_skb(struct sk_buff *skb)
5099{
5100        int ret;
5101
5102        if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5103                unsigned int noreclaim_flag;
5104
5105                /*
5106                 * PFMEMALLOC skbs are special, they should
5107                 * - be delivered to SOCK_MEMALLOC sockets only
5108                 * - stay away from userspace
5109                 * - have bounded memory usage
5110                 *
5111                 * Use PF_MEMALLOC as this saves us from propagating the allocation
5112                 * context down to all allocation sites.
5113                 */
5114                noreclaim_flag = memalloc_noreclaim_save();
5115                ret = __netif_receive_skb_one_core(skb, true);
5116                memalloc_noreclaim_restore(noreclaim_flag);
5117        } else
5118                ret = __netif_receive_skb_one_core(skb, false);
5119
5120        return ret;
5121}
5122
5123static void __netif_receive_skb_list(struct list_head *head)
5124{
5125        unsigned long noreclaim_flag = 0;
5126        struct sk_buff *skb, *next;
5127        bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5128
5129        list_for_each_entry_safe(skb, next, head, list) {
5130                if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5131                        struct list_head sublist;
5132
5133                        /* Handle the previous sublist */
5134                        list_cut_before(&sublist, head, &skb->list);
5135                        if (!list_empty(&sublist))
5136                                __netif_receive_skb_list_core(&sublist, pfmemalloc);
5137                        pfmemalloc = !pfmemalloc;
5138                        /* See comments in __netif_receive_skb */
5139                        if (pfmemalloc)
5140                                noreclaim_flag = memalloc_noreclaim_save();
5141                        else
5142                                memalloc_noreclaim_restore(noreclaim_flag);
5143                }
5144        }
5145        /* Handle the remaining sublist */
5146        if (!list_empty(head))
5147                __netif_receive_skb_list_core(head, pfmemalloc);
5148        /* Restore pflags */
5149        if (pfmemalloc)
5150                memalloc_noreclaim_restore(noreclaim_flag);
5151}
5152
5153static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5154{
5155        struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5156        struct bpf_prog *new = xdp->prog;
5157        int ret = 0;
5158
5159        switch (xdp->command) {
5160        case XDP_SETUP_PROG:
5161                rcu_assign_pointer(dev->xdp_prog, new);
5162                if (old)
5163                        bpf_prog_put(old);
5164
5165                if (old && !new) {
5166                        static_branch_dec(&generic_xdp_needed_key);
5167                } else if (new && !old) {
5168                        static_branch_inc(&generic_xdp_needed_key);
5169                        dev_disable_lro(dev);
5170                        dev_disable_gro_hw(dev);
5171                }
5172                break;
5173
5174        case XDP_QUERY_PROG:
5175                xdp->prog_id = old ? old->aux->id : 0;
5176                break;
5177
5178        default:
5179                ret = -EINVAL;
5180                break;
5181        }
5182
5183        return ret;
5184}
5185
5186static int netif_receive_skb_internal(struct sk_buff *skb)
5187{
5188        int ret;
5189
5190        net_timestamp_check(netdev_tstamp_prequeue, skb);
5191
5192        if (skb_defer_rx_timestamp(skb))
5193                return NET_RX_SUCCESS;
5194
5195        rcu_read_lock();
5196#ifdef CONFIG_RPS
5197        if (static_branch_unlikely(&rps_needed)) {
5198                struct rps_dev_flow voidflow, *rflow = &voidflow;
5199                int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5200
5201                if (cpu >= 0) {
5202                        ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5203                        rcu_read_unlock();
5204                        return ret;
5205                }
5206        }
5207#endif
5208        ret = __netif_receive_skb(skb);
5209        rcu_read_unlock();
5210        return ret;
5211}
5212
5213static void netif_receive_skb_list_internal(struct list_head *head)
5214{
5215        struct sk_buff *skb, *next;
5216        struct list_head sublist;
5217
5218        INIT_LIST_HEAD(&sublist);
5219        list_for_each_entry_safe(skb, next, head, list) {
5220                net_timestamp_check(netdev_tstamp_prequeue, skb);
5221                skb_list_del_init(skb);
5222                if (!skb_defer_rx_timestamp(skb))
5223                        list_add_tail(&skb->list, &sublist);
5224        }
5225        list_splice_init(&sublist, head);
5226
5227        rcu_read_lock();
5228#ifdef CONFIG_RPS
5229        if (static_branch_unlikely(&rps_needed)) {
5230                list_for_each_entry_safe(skb, next, head, list) {
5231                        struct rps_dev_flow voidflow, *rflow = &voidflow;
5232                        int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5233
5234                        if (cpu >= 0) {
5235                                /* Will be handled, remove from list */
5236                                skb_list_del_init(skb);
5237                                enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5238                        }
5239                }
5240        }
5241#endif
5242        __netif_receive_skb_list(head);
5243        rcu_read_unlock();
5244}
5245
5246/**
5247 *      netif_receive_skb - process receive buffer from network
5248 *      @skb: buffer to process
5249 *
5250 *      netif_receive_skb() is the main receive data processing function.
5251 *      It always succeeds. The buffer may be dropped during processing
5252 *      for congestion control or by the protocol layers.
5253 *
5254 *      This function may only be called from softirq context and interrupts
5255 *      should be enabled.
5256 *
5257 *      Return values (usually ignored):
5258 *      NET_RX_SUCCESS: no congestion
5259 *      NET_RX_DROP: packet was dropped
5260 */
5261int netif_receive_skb(struct sk_buff *skb)
5262{
5263        int ret;
5264
5265        trace_netif_receive_skb_entry(skb);
5266
5267        ret = netif_receive_skb_internal(skb);
5268        trace_netif_receive_skb_exit(ret);
5269
5270        return ret;
5271}
5272EXPORT_SYMBOL(netif_receive_skb);
5273
5274/**
5275 *      netif_receive_skb_list - process many receive buffers from network
5276 *      @head: list of skbs to process.
5277 *
5278 *      Since return value of netif_receive_skb() is normally ignored, and
5279 *      wouldn't be meaningful for a list, this function returns void.
5280 *
5281 *      This function may only be called from softirq context and interrupts
5282 *      should be enabled.
5283 */
5284void netif_receive_skb_list(struct list_head *head)
5285{
5286        struct sk_buff *skb;
5287
5288        if (list_empty(head))
5289                return;
5290        if (trace_netif_receive_skb_list_entry_enabled()) {
5291                list_for_each_entry(skb, head, list)
5292                        trace_netif_receive_skb_list_entry(skb);
5293        }
5294        netif_receive_skb_list_internal(head);
5295        trace_netif_receive_skb_list_exit(0);
5296}
5297EXPORT_SYMBOL(netif_receive_skb_list);
5298
5299DEFINE_PER_CPU(struct work_struct, flush_works);
5300
5301/* Network device is going away, flush any packets still pending */
5302static void flush_backlog(struct work_struct *work)
5303{
5304        struct sk_buff *skb, *tmp;
5305        struct softnet_data *sd;
5306
5307        local_bh_disable();
5308        sd = this_cpu_ptr(&softnet_data);
5309
5310        local_irq_disable();
5311        rps_lock(sd);
5312        skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5313                if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5314                        __skb_unlink(skb, &sd->input_pkt_queue);
5315                        kfree_skb(skb);
5316                        input_queue_head_incr(sd);
5317                }
5318        }
5319        rps_unlock(sd);
5320        local_irq_enable();
5321
5322        skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5323                if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5324                        __skb_unlink(skb, &sd->process_queue);
5325                        kfree_skb(skb);
5326                        input_queue_head_incr(sd);
5327                }
5328        }
5329        local_bh_enable();
5330}
5331
5332static void flush_all_backlogs(void)
5333{
5334        unsigned int cpu;
5335
5336        get_online_cpus();
5337
5338        for_each_online_cpu(cpu)
5339                queue_work_on(cpu, system_highpri_wq,
5340                              per_cpu_ptr(&flush_works, cpu));
5341
5342        for_each_online_cpu(cpu)
5343                flush_work(per_cpu_ptr(&flush_works, cpu));
5344
5345        put_online_cpus();
5346}
5347
5348INDIRECT_CALLABLE_DECLARE(int inet_gro_complete(struct sk_buff *, int));
5349INDIRECT_CALLABLE_DECLARE(int ipv6_gro_complete(struct sk_buff *, int));
5350static int napi_gro_complete(struct sk_buff *skb)
5351{
5352        struct packet_offload *ptype;
5353        __be16 type = skb->protocol;
5354        struct list_head *head = &offload_base;
5355        int err = -ENOENT;
5356
5357        BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5358
5359        if (NAPI_GRO_CB(skb)->count == 1) {
5360                skb_shinfo(skb)->gso_size = 0;
5361                goto out;
5362        }
5363
5364        rcu_read_lock();
5365        list_for_each_entry_rcu(ptype, head, list) {
5366                if (ptype->type != type || !ptype->callbacks.gro_complete)
5367                        continue;
5368
5369                err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5370                                         ipv6_gro_complete, inet_gro_complete,
5371                                         skb, 0);
5372                break;
5373        }
5374        rcu_read_unlock();
5375
5376        if (err) {
5377                WARN_ON(&ptype->list == head);
5378                kfree_skb(skb);
5379                return NET_RX_SUCCESS;
5380        }
5381
5382out:
5383        return netif_receive_skb_internal(skb);
5384}
5385
5386static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5387                                   bool flush_old)
5388{
5389        struct list_head *head = &napi->gro_hash[index].list;
5390        struct sk_buff *skb, *p;
5391
5392        list_for_each_entry_safe_reverse(skb, p, head, list) {
5393                if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5394                        return;
5395                skb_list_del_init(skb);
5396                napi_gro_complete(skb);
5397                napi->gro_hash[index].count--;
5398        }
5399
5400        if (!napi->gro_hash[index].count)
5401                __clear_bit(index, &napi->gro_bitmask);
5402}
5403
5404/* napi->gro_hash[].list contains packets ordered by age.
5405 * youngest packets at the head of it.
5406 * Complete skbs in reverse order to reduce latencies.
5407 */
5408void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5409{
5410        unsigned long bitmask = napi->gro_bitmask;
5411        unsigned int i, base = ~0U;
5412
5413        while ((i = ffs(bitmask)) != 0) {
5414                bitmask >>= i;
5415                base += i;
5416                __napi_gro_flush_chain(napi, base, flush_old);
5417        }
5418}
5419EXPORT_SYMBOL(napi_gro_flush);
5420
5421static struct list_head *gro_list_prepare(struct napi_struct *napi,
5422                                          struct sk_buff *skb)
5423{
5424        unsigned int maclen = skb->dev->hard_header_len;
5425        u32 hash = skb_get_hash_raw(skb);
5426        struct list_head *head;
5427        struct sk_buff *p;
5428
5429        head = &napi->gro_hash[hash & (GRO_HASH_BUCKETS - 1)].list;
5430        list_for_each_entry(p, head, list) {
5431                unsigned long diffs;
5432
5433                NAPI_GRO_CB(p)->flush = 0;
5434
5435                if (hash != skb_get_hash_raw(p)) {
5436                        NAPI_GRO_CB(p)->same_flow = 0;
5437                        continue;
5438                }
5439
5440                diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5441                diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5442                if (skb_vlan_tag_present(p))
5443                        diffs |= p->vlan_tci ^ skb->vlan_tci;
5444                diffs |= skb_metadata_dst_cmp(p, skb);
5445                diffs |= skb_metadata_differs(p, skb);
5446                if (maclen == ETH_HLEN)
5447                        diffs |= compare_ether_header(skb_mac_header(p),
5448                                                      skb_mac_header(skb));
5449                else if (!diffs)
5450                        diffs = memcmp(skb_mac_header(p),
5451                                       skb_mac_header(skb),
5452                                       maclen);
5453                NAPI_GRO_CB(p)->same_flow = !diffs;
5454        }
5455
5456        return head;
5457}
5458
5459static void skb_gro_reset_offset(struct sk_buff *skb)
5460{
5461        const struct skb_shared_info *pinfo = skb_shinfo(skb);
5462        const skb_frag_t *frag0 = &pinfo->frags[0];
5463
5464        NAPI_GRO_CB(skb)->data_offset = 0;
5465        NAPI_GRO_CB(skb)->frag0 = NULL;
5466        NAPI_GRO_CB(skb)->frag0_len = 0;
5467
5468        if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
5469            pinfo->nr_frags &&
5470            !PageHighMem(skb_frag_page(frag0))) {
5471                NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5472                NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5473                                                    skb_frag_size(frag0),
5474                                                    skb->end - skb->tail);
5475        }
5476}
5477
5478static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5479{
5480        struct skb_shared_info *pinfo = skb_shinfo(skb);
5481
5482        BUG_ON(skb->end - skb->tail < grow);
5483
5484        memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5485
5486        skb->data_len -= grow;
5487        skb->tail += grow;
5488
5489        pinfo->frags[0].page_offset += grow;
5490        skb_frag_size_sub(&pinfo->frags[0], grow);
5491
5492        if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
5493                skb_frag_unref(skb, 0);
5494                memmove(pinfo->frags, pinfo->frags + 1,
5495                        --pinfo->nr_frags * sizeof(pinfo->frags[0]));
5496        }
5497}
5498
5499static void gro_flush_oldest(struct list_head *head)
5500{
5501        struct sk_buff *oldest;
5502
5503        oldest = list_last_entry(head, struct sk_buff, list);
5504
5505        /* We are called with head length >= MAX_GRO_SKBS, so this is
5506         * impossible.
5507         */
5508        if (WARN_ON_ONCE(!oldest))
5509                return;
5510
5511        /* Do not adjust napi->gro_hash[].count, caller is adding a new
5512         * SKB to the chain.
5513         */
5514        skb_list_del_init(oldest);
5515        napi_gro_complete(oldest);
5516}
5517
5518INDIRECT_CALLABLE_DECLARE(struct sk_buff *inet_gro_receive(struct list_head *,
5519                                                           struct sk_buff *));
5520INDIRECT_CALLABLE_DECLARE(struct sk_buff *ipv6_gro_receive(struct list_head *,
5521                                                           struct sk_buff *));
5522static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5523{
5524        u32 hash = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
5525        struct list_head *head = &offload_base;
5526        struct packet_offload *ptype;
5527        __be16 type = skb->protocol;
5528        struct list_head *gro_head;
5529        struct sk_buff *pp = NULL;
5530        enum gro_result ret;
5531        int same_flow;
5532        int grow;
5533
5534        if (netif_elide_gro(skb->dev))
5535                goto normal;
5536
5537        gro_head = gro_list_prepare(napi, skb);
5538
5539        rcu_read_lock();
5540        list_for_each_entry_rcu(ptype, head, list) {
5541                if (ptype->type != type || !ptype->callbacks.gro_receive)
5542                        continue;
5543
5544                skb_set_network_header(skb, skb_gro_offset(skb));
5545                skb_reset_mac_len(skb);
5546                NAPI_GRO_CB(skb)->same_flow = 0;
5547                NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
5548                NAPI_GRO_CB(skb)->free = 0;
5549                NAPI_GRO_CB(skb)->encap_mark = 0;
5550                NAPI_GRO_CB(skb)->recursion_counter = 0;
5551                NAPI_GRO_CB(skb)->is_fou = 0;
5552                NAPI_GRO_CB(skb)->is_atomic = 1;
5553                NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
5554
5555                /* Setup for GRO checksum validation */
5556                switch (skb->ip_summed) {
5557                case CHECKSUM_COMPLETE:
5558                        NAPI_GRO_CB(skb)->csum = skb->csum;
5559                        NAPI_GRO_CB(skb)->csum_valid = 1;
5560                        NAPI_GRO_CB(skb)->csum_cnt = 0;
5561                        break;
5562                case CHECKSUM_UNNECESSARY:
5563                        NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
5564                        NAPI_GRO_CB(skb)->csum_valid = 0;
5565                        break;
5566                default:
5567                        NAPI_GRO_CB(skb)->csum_cnt = 0;
5568                        NAPI_GRO_CB(skb)->csum_valid = 0;
5569                }
5570
5571                pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
5572                                        ipv6_gro_receive, inet_gro_receive,
5573                                        gro_head, skb);
5574                break;
5575        }
5576        rcu_read_unlock();
5577
5578        if (&ptype->list == head)
5579                goto normal;
5580
5581        if (IS_ERR(pp) && PTR_ERR(pp) == -EINPROGRESS) {
5582                ret = GRO_CONSUMED;
5583                goto ok;
5584        }
5585
5586        same_flow = NAPI_GRO_CB(skb)->same_flow;
5587        ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
5588
5589        if (pp) {
5590                skb_list_del_init(pp);
5591                napi_gro_complete(pp);
5592                napi->gro_hash[hash].count--;
5593        }
5594
5595        if (same_flow)
5596                goto ok;
5597
5598        if (NAPI_GRO_CB(skb)->flush)
5599                goto normal;
5600
5601        if (unlikely(napi->gro_hash[hash].count >= MAX_GRO_SKBS)) {
5602                gro_flush_oldest(gro_head);
5603        } else {
5604                napi->gro_hash[hash].count++;
5605        }
5606        NAPI_GRO_CB(skb)->count = 1;
5607        NAPI_GRO_CB(skb)->age = jiffies;
5608        NAPI_GRO_CB(skb)->last = skb;
5609        skb_shinfo(skb)->gso_size = skb_gro_len(skb);
5610        list_add(&skb->list, gro_head);
5611        ret = GRO_HELD;
5612
5613pull:
5614        grow = skb_gro_offset(skb) - skb_headlen(skb);
5615        if (grow > 0)
5616                gro_pull_from_frag0(skb, grow);
5617ok:
5618        if (napi->gro_hash[hash].count) {
5619                if (!test_bit(hash, &napi->gro_bitmask))
5620                        __set_bit(hash, &napi->gro_bitmask);
5621        } else if (test_bit(hash, &napi->gro_bitmask)) {
5622                __clear_bit(hash, &napi->gro_bitmask);
5623        }
5624
5625        return ret;
5626
5627normal:
5628        ret = GRO_NORMAL;
5629        goto pull;
5630}
5631
5632struct packet_offload *gro_find_receive_by_type(__be16 type)
5633{
5634        struct list_head *offload_head = &offload_base;
5635        struct packet_offload *ptype;
5636
5637        list_for_each_entry_rcu(ptype, offload_head, list) {
5638                if (ptype->type != type || !ptype->callbacks.gro_receive)
5639                        continue;
5640                return ptype;
5641        }
5642        return NULL;
5643}
5644EXPORT_SYMBOL(gro_find_receive_by_type);
5645
5646struct packet_offload *gro_find_complete_by_type(__be16 type)
5647{
5648        struct list_head *offload_head = &offload_base;
5649        struct packet_offload *ptype;
5650
5651        list_for_each_entry_rcu(ptype, offload_head, list) {
5652                if (ptype->type != type || !ptype->callbacks.gro_complete)
5653                        continue;
5654                return ptype;
5655        }
5656        return NULL;
5657}
5658EXPORT_SYMBOL(gro_find_complete_by_type);
5659
5660static void napi_skb_free_stolen_head(struct sk_buff *skb)
5661{
5662        skb_dst_drop(skb);
5663        secpath_reset(skb);
5664        kmem_cache_free(skbuff_head_cache, skb);
5665}
5666
5667static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5668{
5669        switch (ret) {
5670        case GRO_NORMAL:
5671                if (netif_receive_skb_internal(skb))
5672                        ret = GRO_DROP;
5673                break;
5674
5675        case GRO_DROP:
5676                kfree_skb(skb);
5677                break;
5678
5679        case GRO_MERGED_FREE:
5680                if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5681                        napi_skb_free_stolen_head(skb);
5682                else
5683                        __kfree_skb(skb);
5684                break;
5685
5686        case GRO_HELD:
5687        case GRO_MERGED:
5688        case GRO_CONSUMED:
5689                break;
5690        }
5691
5692        return ret;
5693}
5694
5695gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5696{
5697        gro_result_t ret;
5698
5699        skb_mark_napi_id(skb, napi);
5700        trace_napi_gro_receive_entry(skb);
5701
5702        skb_gro_reset_offset(skb);
5703
5704        ret = napi_skb_finish(dev_gro_receive(napi, skb), skb);
5705        trace_napi_gro_receive_exit(ret);
5706
5707        return ret;
5708}
5709EXPORT_SYMBOL(napi_gro_receive);
5710
5711static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
5712{
5713        if (unlikely(skb->pfmemalloc)) {
5714                consume_skb(skb);
5715                return;
5716        }
5717        __skb_pull(skb, skb_headlen(skb));
5718        /* restore the reserve we had after netdev_alloc_skb_ip_align() */
5719        skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
5720        __vlan_hwaccel_clear_tag(skb);
5721        skb->dev = napi->dev;
5722        skb->skb_iif = 0;
5723
5724        /* eth_type_trans() assumes pkt_type is PACKET_HOST */
5725        skb->pkt_type = PACKET_HOST;
5726
5727        skb->encapsulation = 0;
5728        skb_shinfo(skb)->gso_type = 0;
5729        skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
5730        secpath_reset(skb);
5731
5732        napi->skb = skb;
5733}
5734
5735struct sk_buff *napi_get_frags(struct napi_struct *napi)
5736{
5737        struct sk_buff *skb = napi->skb;
5738
5739        if (!skb) {
5740                skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
5741                if (skb) {
5742                        napi->skb = skb;
5743                        skb_mark_napi_id(skb, napi);
5744                }
5745        }
5746        return skb;
5747}
5748EXPORT_SYMBOL(napi_get_frags);
5749
5750static gro_result_t napi_frags_finish(struct napi_struct *napi,
5751                                      struct sk_buff *skb,
5752                                      gro_result_t ret)
5753{
5754        switch (ret) {
5755        case GRO_NORMAL:
5756        case GRO_HELD:
5757                __skb_push(skb, ETH_HLEN);
5758                skb->protocol = eth_type_trans(skb, skb->dev);
5759                if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
5760                        ret = GRO_DROP;
5761                break;
5762
5763        case GRO_DROP:
5764                napi_reuse_skb(napi, skb);
5765                break;
5766
5767        case GRO_MERGED_FREE:
5768                if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
5769                        napi_skb_free_stolen_head(skb);
5770                else
5771                        napi_reuse_skb(napi, skb);
5772                break;
5773
5774        case GRO_MERGED:
5775        case GRO_CONSUMED:
5776                break;
5777        }
5778
5779        return ret;
5780}
5781
5782/* Upper GRO stack assumes network header starts at gro_offset=0
5783 * Drivers could call both napi_gro_frags() and napi_gro_receive()
5784 * We copy ethernet header into skb->data to have a common layout.
5785 */
5786static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
5787{
5788        struct sk_buff *skb = napi->skb;
5789        const struct ethhdr *eth;
5790        unsigned int hlen = sizeof(*eth);
5791
5792        napi->skb = NULL;
5793
5794        skb_reset_mac_header(skb);
5795        skb_gro_reset_offset(skb);
5796
5797        if (unlikely(skb_gro_header_hard(skb, hlen))) {
5798                eth = skb_gro_header_slow(skb, hlen, 0);
5799                if (unlikely(!eth)) {
5800                        net_warn_ratelimited("%s: dropping impossible skb from %s\n",
5801                                             __func__, napi->dev->name);
5802                        napi_reuse_skb(napi, skb);
5803                        return NULL;
5804                }
5805        } else {
5806                eth = (const struct ethhdr *)skb->data;
5807                gro_pull_from_frag0(skb, hlen);
5808                NAPI_GRO_CB(skb)->frag0 += hlen;
5809                NAPI_GRO_CB(skb)->frag0_len -= hlen;
5810        }
5811        __skb_pull(skb, hlen);
5812
5813        /*
5814         * This works because the only protocols we care about don't require
5815         * special handling.
5816         * We'll fix it up properly in napi_frags_finish()
5817         */
5818        skb->protocol = eth->h_proto;
5819
5820        return skb;
5821}
5822
5823gro_result_t napi_gro_frags(struct napi_struct *napi)
5824{
5825        gro_result_t ret;
5826        struct sk_buff *skb = napi_frags_skb(napi);
5827
5828        if (!skb)
5829                return GRO_DROP;
5830
5831        trace_napi_gro_frags_entry(skb);
5832
5833        ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
5834        trace_napi_gro_frags_exit(ret);
5835
5836        return ret;
5837}
5838EXPORT_SYMBOL(napi_gro_frags);
5839
5840/* Compute the checksum from gro_offset and return the folded value
5841 * after adding in any pseudo checksum.
5842 */
5843__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
5844{
5845        __wsum wsum;
5846        __sum16 sum;
5847
5848        wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
5849
5850        /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
5851        sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
5852        /* See comments in __skb_checksum_complete(). */
5853        if (likely(!sum)) {
5854                if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
5855                    !skb->csum_complete_sw)
5856                        netdev_rx_csum_fault(skb->dev, skb);
5857        }
5858
5859        NAPI_GRO_CB(skb)->csum = wsum;
5860        NAPI_GRO_CB(skb)->csum_valid = 1;
5861
5862        return sum;
5863}
5864EXPORT_SYMBOL(__skb_gro_checksum_complete);
5865
5866static void net_rps_send_ipi(struct softnet_data *remsd)
5867{
5868#ifdef CONFIG_RPS
5869        while (remsd) {
5870                struct softnet_data *next = remsd->rps_ipi_next;
5871
5872                if (cpu_online(remsd->cpu))
5873                        smp_call_function_single_async(remsd->cpu, &remsd->csd);
5874                remsd = next;
5875        }
5876#endif
5877}
5878
5879/*
5880 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5881 * Note: called with local irq disabled, but exits with local irq enabled.
5882 */
5883static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5884{
5885#ifdef CONFIG_RPS
5886        struct softnet_data *remsd = sd->rps_ipi_list;
5887
5888        if (remsd) {
5889                sd->rps_ipi_list = NULL;
5890
5891                local_irq_enable();
5892
5893                /* Send pending IPI's to kick RPS processing on remote cpus. */
5894                net_rps_send_ipi(remsd);
5895        } else
5896#endif
5897                local_irq_enable();
5898}
5899
5900static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5901{
5902#ifdef CONFIG_RPS
5903        return sd->rps_ipi_list != NULL;
5904#else
5905        return false;
5906#endif
5907}
5908
5909static int process_backlog(struct napi_struct *napi, int quota)
5910{
5911        struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5912        bool again = true;
5913        int work = 0;
5914
5915        /* Check if we have pending ipi, its better to send them now,
5916         * not waiting net_rx_action() end.
5917         */
5918        if (sd_has_rps_ipi_waiting(sd)) {
5919                local_irq_disable();
5920                net_rps_action_and_irq_enable(sd);
5921        }
5922
5923        napi->weight = dev_rx_weight;
5924        while (again) {
5925                struct sk_buff *skb;
5926
5927                while ((skb = __skb_dequeue(&sd->process_queue))) {
5928                        rcu_read_lock();
5929                        __netif_receive_skb(skb);
5930                        rcu_read_unlock();
5931                        input_queue_head_incr(sd);
5932                        if (++work >= quota)
5933                                return work;
5934
5935                }
5936
5937                local_irq_disable();
5938                rps_lock(sd);
5939                if (skb_queue_empty(&sd->input_pkt_queue)) {
5940                        /*
5941                         * Inline a custom version of __napi_complete().
5942                         * only current cpu owns and manipulates this napi,
5943                         * and NAPI_STATE_SCHED is the only possible flag set
5944                         * on backlog.
5945                         * We can use a plain write instead of clear_bit(),
5946                         * and we dont need an smp_mb() memory barrier.
5947                         */
5948                        napi->state = 0;
5949                        again = false;
5950                } else {
5951                        skb_queue_splice_tail_init(&sd->input_pkt_queue,
5952                                                   &sd->process_queue);
5953                }
5954                rps_unlock(sd);
5955                local_irq_enable();
5956        }
5957
5958        return work;
5959}
5960
5961/**
5962 * __napi_schedule - schedule for receive
5963 * @n: entry to schedule
5964 *
5965 * The entry's receive function will be scheduled to run.
5966 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5967 */
5968void __napi_schedule(struct napi_struct *n)
5969{
5970        unsigned long flags;
5971
5972        local_irq_save(flags);
5973        ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5974        local_irq_restore(flags);
5975}
5976EXPORT_SYMBOL(__napi_schedule);
5977
5978/**
5979 *      napi_schedule_prep - check if napi can be scheduled
5980 *      @n: napi context
5981 *
5982 * Test if NAPI routine is already running, and if not mark
5983 * it as running.  This is used as a condition variable
5984 * insure only one NAPI poll instance runs.  We also make
5985 * sure there is no pending NAPI disable.
5986 */
5987bool napi_schedule_prep(struct napi_struct *n)
5988{
5989        unsigned long val, new;
5990
5991        do {
5992                val = READ_ONCE(n->state);
5993                if (unlikely(val & NAPIF_STATE_DISABLE))
5994                        return false;
5995                new = val | NAPIF_STATE_SCHED;
5996
5997                /* Sets STATE_MISSED bit if STATE_SCHED was already set
5998                 * This was suggested by Alexander Duyck, as compiler
5999                 * emits better code than :
6000                 * if (val & NAPIF_STATE_SCHED)
6001                 *     new |= NAPIF_STATE_MISSED;
6002                 */
6003                new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6004                                                   NAPIF_STATE_MISSED;
6005        } while (cmpxchg(&n->state, val, new) != val);
6006
6007        return !(val & NAPIF_STATE_SCHED);
6008}
6009EXPORT_SYMBOL(napi_schedule_prep);
6010
6011/**
6012 * __napi_schedule_irqoff - schedule for receive
6013 * @n: entry to schedule
6014 *
6015 * Variant of __napi_schedule() assuming hard irqs are masked
6016 */
6017void __napi_schedule_irqoff(struct napi_struct *n)
6018{
6019        ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6020}
6021EXPORT_SYMBOL(__napi_schedule_irqoff);
6022
6023bool napi_complete_done(struct napi_struct *n, int work_done)
6024{
6025        unsigned long flags, val, new;
6026
6027        /*
6028         * 1) Don't let napi dequeue from the cpu poll list
6029         *    just in case its running on a different cpu.
6030         * 2) If we are busy polling, do nothing here, we have
6031         *    the guarantee we will be called later.
6032         */
6033        if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6034                                 NAPIF_STATE_IN_BUSY_POLL)))
6035                return false;
6036
6037        if (n->gro_bitmask) {
6038                unsigned long timeout = 0;
6039
6040                if (work_done)
6041                        timeout = n->dev->gro_flush_timeout;
6042
6043                /* When the NAPI instance uses a timeout and keeps postponing
6044                 * it, we need to bound somehow the time packets are kept in
6045                 * the GRO layer
6046                 */
6047                napi_gro_flush(n, !!timeout);
6048                if (timeout)
6049                        hrtimer_start(&n->timer, ns_to_ktime(timeout),
6050                                      HRTIMER_MODE_REL_PINNED);
6051        }
6052        if (unlikely(!list_empty(&n->poll_list))) {
6053                /* If n->poll_list is not empty, we need to mask irqs */
6054                local_irq_save(flags);
6055                list_del_init(&n->poll_list);
6056                local_irq_restore(flags);
6057        }
6058
6059        do {
6060                val = READ_ONCE(n->state);
6061
6062                WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6063
6064                new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED);
6065
6066                /* If STATE_MISSED was set, leave STATE_SCHED set,
6067                 * because we will call napi->poll() one more time.
6068                 * This C code was suggested by Alexander Duyck to help gcc.
6069                 */
6070                new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6071                                                    NAPIF_STATE_SCHED;
6072        } while (cmpxchg(&n->state, val, new) != val);
6073
6074        if (unlikely(val & NAPIF_STATE_MISSED)) {
6075                __napi_schedule(n);
6076                return false;
6077        }
6078
6079        return true;
6080}
6081EXPORT_SYMBOL(napi_complete_done);
6082
6083/* must be called under rcu_read_lock(), as we dont take a reference */
6084static struct napi_struct *napi_by_id(unsigned int napi_id)
6085{
6086        unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6087        struct napi_struct *napi;
6088
6089        hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6090                if (napi->napi_id == napi_id)
6091                        return napi;
6092
6093        return NULL;
6094}
6095
6096#if defined(CONFIG_NET_RX_BUSY_POLL)
6097
6098#define BUSY_POLL_BUDGET 8
6099
6100static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock)
6101{
6102        int rc;
6103
6104        /* Busy polling means there is a high chance device driver hard irq
6105         * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6106         * set in napi_schedule_prep().
6107         * Since we are about to call napi->poll() once more, we can safely
6108         * clear NAPI_STATE_MISSED.
6109         *
6110         * Note: x86 could use a single "lock and ..." instruction
6111         * to perform these two clear_bit()
6112         */
6113        clear_bit(NAPI_STATE_MISSED, &napi->state);
6114        clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6115
6116        local_bh_disable();
6117
6118        /* All we really want here is to re-enable device interrupts.
6119         * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6120         */
6121        rc = napi->poll(napi, BUSY_POLL_BUDGET);
6122        trace_napi_poll(napi, rc, BUSY_POLL_BUDGET);
6123        netpoll_poll_unlock(have_poll_lock);
6124        if (rc == BUSY_POLL_BUDGET)
6125                __napi_schedule(napi);
6126        local_bh_enable();
6127}
6128
6129void napi_busy_loop(unsigned int napi_id,
6130                    bool (*loop_end)(void *, unsigned long),
6131                    void *loop_end_arg)
6132{
6133        unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6134        int (*napi_poll)(struct napi_struct *napi, int budget);
6135        void *have_poll_lock = NULL;
6136        struct napi_struct *napi;
6137
6138restart:
6139        napi_poll = NULL;
6140
6141        rcu_read_lock();
6142
6143        napi = napi_by_id(napi_id);
6144        if (!napi)
6145                goto out;
6146
6147        preempt_disable();
6148        for (;;) {
6149                int work = 0;
6150
6151                local_bh_disable();
6152                if (!napi_poll) {
6153                        unsigned long val = READ_ONCE(napi->state);
6154
6155                        /* If multiple threads are competing for this napi,
6156                         * we avoid dirtying napi->state as much as we can.
6157                         */
6158                        if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6159                                   NAPIF_STATE_IN_BUSY_POLL))
6160                                goto count;
6161                        if (cmpxchg(&napi->state, val,
6162                                    val | NAPIF_STATE_IN_BUSY_POLL |
6163                                          NAPIF_STATE_SCHED) != val)
6164                                goto count;
6165                        have_poll_lock = netpoll_poll_lock(napi);
6166                        napi_poll = napi->poll;
6167                }
6168                work = napi_poll(napi, BUSY_POLL_BUDGET);
6169                trace_napi_poll(napi, work, BUSY_POLL_BUDGET);
6170count:
6171                if (work > 0)
6172                        __NET_ADD_STATS(dev_net(napi->dev),
6173                                        LINUX_MIB_BUSYPOLLRXPACKETS, work);
6174                local_bh_enable();
6175
6176                if (!loop_end || loop_end(loop_end_arg, start_time))
6177                        break;
6178
6179                if (unlikely(need_resched())) {
6180                        if (napi_poll)
6181                                busy_poll_stop(napi, have_poll_lock);
6182                        preempt_enable();
6183                        rcu_read_unlock();
6184                        cond_resched();
6185                        if (loop_end(loop_end_arg, start_time))
6186                                return;
6187                        goto restart;
6188                }
6189                cpu_relax();
6190        }
6191        if (napi_poll)
6192                busy_poll_stop(napi, have_poll_lock);
6193        preempt_enable();
6194out:
6195        rcu_read_unlock();
6196}
6197EXPORT_SYMBOL(napi_busy_loop);
6198
6199#endif /* CONFIG_NET_RX_BUSY_POLL */
6200
6201static void napi_hash_add(struct napi_struct *napi)
6202{
6203        if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
6204            test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
6205                return;
6206
6207        spin_lock(&napi_hash_lock);
6208
6209        /* 0..NR_CPUS range is reserved for sender_cpu use */
6210        do {
6211                if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6212                        napi_gen_id = MIN_NAPI_ID;
6213        } while (napi_by_id(napi_gen_id));
6214        napi->napi_id = napi_gen_id;
6215
6216        hlist_add_head_rcu(&napi->napi_hash_node,
6217                           &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6218
6219        spin_unlock(&napi_hash_lock);
6220}
6221
6222/* Warning : caller is responsible to make sure rcu grace period
6223 * is respected before freeing memory containing @napi
6224 */
6225bool napi_hash_del(struct napi_struct *napi)
6226{
6227        bool rcu_sync_needed = false;
6228
6229        spin_lock(&napi_hash_lock);
6230
6231        if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
6232                rcu_sync_needed = true;
6233                hlist_del_rcu(&napi->napi_hash_node);
6234        }
6235        spin_unlock(&napi_hash_lock);
6236        return rcu_sync_needed;
6237}
6238EXPORT_SYMBOL_GPL(napi_hash_del);
6239
6240static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6241{
6242        struct napi_struct *napi;
6243
6244        napi = container_of(timer, struct napi_struct, timer);
6245
6246        /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6247         * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6248         */
6249        if (napi->gro_bitmask && !napi_disable_pending(napi) &&
6250            !test_and_set_bit(NAPI_STATE_SCHED, &napi->state))
6251                __napi_schedule_irqoff(napi);
6252
6253        return HRTIMER_NORESTART;
6254}
6255
6256static void init_gro_hash(struct napi_struct *napi)
6257{
6258        int i;
6259
6260        for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6261                INIT_LIST_HEAD(&napi->gro_hash[i].list);
6262                napi->gro_hash[i].count = 0;
6263        }
6264        napi->gro_bitmask = 0;
6265}
6266
6267void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6268                    int (*poll)(struct napi_struct *, int), int weight)
6269{
6270        INIT_LIST_HEAD(&napi->poll_list);
6271        hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6272        napi->timer.function = napi_watchdog;
6273        init_gro_hash(napi);
6274        napi->skb = NULL;
6275        napi->poll = poll;
6276        if (weight > NAPI_POLL_WEIGHT)
6277                netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6278                                weight);
6279        napi->weight = weight;
6280        list_add(&napi->dev_list, &dev->napi_list);
6281        napi->dev = dev;
6282#ifdef CONFIG_NETPOLL
6283        napi->poll_owner = -1;
6284#endif
6285        set_bit(NAPI_STATE_SCHED, &napi->state);
6286        napi_hash_add(napi);
6287}
6288EXPORT_SYMBOL(netif_napi_add);
6289
6290void napi_disable(struct napi_struct *n)
6291{
6292        might_sleep();
6293        set_bit(NAPI_STATE_DISABLE, &n->state);
6294
6295        while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6296                msleep(1);
6297        while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6298                msleep(1);
6299
6300        hrtimer_cancel(&n->timer);
6301
6302        clear_bit(NAPI_STATE_DISABLE, &n->state);
6303}
6304EXPORT_SYMBOL(napi_disable);
6305
6306static void flush_gro_hash(struct napi_struct *napi)
6307{
6308        int i;
6309
6310        for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6311                struct sk_buff *skb, *n;
6312
6313                list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6314                        kfree_skb(skb);
6315                napi->gro_hash[i].count = 0;
6316        }
6317}
6318
6319/* Must be called in process context */
6320void netif_napi_del(struct napi_struct *napi)
6321{
6322        might_sleep();
6323        if (napi_hash_del(napi))
6324                synchronize_net();
6325        list_del_init(&napi->dev_list);
6326        napi_free_frags(napi);
6327
6328        flush_gro_hash(napi);
6329        napi->gro_bitmask = 0;
6330}
6331EXPORT_SYMBOL(netif_napi_del);
6332
6333static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6334{
6335        void *have;
6336        int work, weight;
6337
6338        list_del_init(&n->poll_list);
6339
6340        have = netpoll_poll_lock(n);
6341
6342        weight = n->weight;
6343
6344        /* This NAPI_STATE_SCHED test is for avoiding a race
6345         * with netpoll's poll_napi().  Only the entity which
6346         * obtains the lock and sees NAPI_STATE_SCHED set will
6347         * actually make the ->poll() call.  Therefore we avoid
6348         * accidentally calling ->poll() when NAPI is not scheduled.
6349         */
6350        work = 0;
6351        if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6352                work = n->poll(n, weight);
6353                trace_napi_poll(n, work, weight);
6354        }
6355
6356        WARN_ON_ONCE(work > weight);
6357
6358        if (likely(work < weight))
6359                goto out_unlock;
6360
6361        /* Drivers must not modify the NAPI state if they
6362         * consume the entire weight.  In such cases this code
6363         * still "owns" the NAPI instance and therefore can
6364         * move the instance around on the list at-will.
6365         */
6366        if (unlikely(napi_disable_pending(n))) {
6367                napi_complete(n);
6368                goto out_unlock;
6369        }
6370
6371        if (n->gro_bitmask) {
6372                /* flush too old packets
6373                 * If HZ < 1000, flush all packets.
6374                 */
6375                napi_gro_flush(n, HZ >= 1000);
6376        }
6377
6378        /* Some drivers may have called napi_schedule
6379         * prior to exhausting their budget.
6380         */
6381        if (unlikely(!list_empty(&n->poll_list))) {
6382                pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6383                             n->dev ? n->dev->name : "backlog");
6384                goto out_unlock;
6385        }
6386
6387        list_add_tail(&n->poll_list, repoll);
6388
6389out_unlock:
6390        netpoll_poll_unlock(have);
6391
6392        return work;
6393}
6394
6395static __latent_entropy void net_rx_action(struct softirq_action *h)
6396{
6397        struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6398        unsigned long time_limit = jiffies +
6399                usecs_to_jiffies(netdev_budget_usecs);
6400        int budget = netdev_budget;
6401        LIST_HEAD(list);
6402        LIST_HEAD(repoll);
6403
6404        local_irq_disable();
6405        list_splice_init(&sd->poll_list, &list);
6406        local_irq_enable();
6407
6408        for (;;) {
6409                struct napi_struct *n;
6410
6411                if (list_empty(&list)) {
6412                        if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
6413                                goto out;
6414                        break;
6415                }
6416
6417                n = list_first_entry(&list, struct napi_struct, poll_list);
6418                budget -= napi_poll(n, &repoll);
6419
6420                /* If softirq window is exhausted then punt.
6421                 * Allow this to run for 2 jiffies since which will allow
6422                 * an average latency of 1.5/HZ.
6423                 */
6424                if (unlikely(budget <= 0 ||
6425                             time_after_eq(jiffies, time_limit))) {
6426                        sd->time_squeeze++;
6427                        break;
6428                }
6429        }
6430
6431        local_irq_disable();
6432
6433        list_splice_tail_init(&sd->poll_list, &list);
6434        list_splice_tail(&repoll, &list);
6435        list_splice(&list, &sd->poll_list);
6436        if (!list_empty(&sd->poll_list))
6437                __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6438
6439        net_rps_action_and_irq_enable(sd);
6440out:
6441        __kfree_skb_flush();
6442}
6443
6444struct netdev_adjacent {
6445        struct net_device *dev;
6446
6447        /* upper master flag, there can only be one master device per list */
6448        bool master;
6449
6450        /* counter for the number of times this device was added to us */
6451        u16 ref_nr;
6452
6453        /* private field for the users */
6454        void *private;
6455
6456        struct list_head list;
6457        struct rcu_head rcu;
6458};
6459
6460static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6461                                                 struct list_head *adj_list)
6462{
6463        struct netdev_adjacent *adj;
6464
6465        list_for_each_entry(adj, adj_list, list) {
6466                if (adj->dev == adj_dev)
6467                        return adj;
6468        }
6469        return NULL;
6470}
6471
6472static int __netdev_has_upper_dev(struct net_device *upper_dev, void *data)
6473{
6474        struct net_device *dev = data;
6475
6476        return upper_dev == dev;
6477}
6478
6479/**
6480 * netdev_has_upper_dev - Check if device is linked to an upper device
6481 * @dev: device
6482 * @upper_dev: upper device to check
6483 *
6484 * Find out if a device is linked to specified upper device and return true
6485 * in case it is. Note that this checks only immediate upper device,
6486 * not through a complete stack of devices. The caller must hold the RTNL lock.
6487 */
6488bool netdev_has_upper_dev(struct net_device *dev,
6489                          struct net_device *upper_dev)
6490{
6491        ASSERT_RTNL();
6492
6493        return netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6494                                             upper_dev);
6495}
6496EXPORT_SYMBOL(netdev_has_upper_dev);
6497
6498/**
6499 * netdev_has_upper_dev_all - Check if device is linked to an upper device
6500 * @dev: device
6501 * @upper_dev: upper device to check
6502 *
6503 * Find out if a device is linked to specified upper device and return true
6504 * in case it is. Note that this checks the entire upper device chain.
6505 * The caller must hold rcu lock.
6506 */
6507
6508bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6509                                  struct net_device *upper_dev)
6510{
6511        return !!netdev_walk_all_upper_dev_rcu(dev, __netdev_has_upper_dev,
6512                                               upper_dev);
6513}
6514EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6515
6516/**
6517 * netdev_has_any_upper_dev - Check if device is linked to some device
6518 * @dev: device
6519 *
6520 * Find out if a device is linked to an upper device and return true in case
6521 * it is. The caller must hold the RTNL lock.
6522 */
6523bool netdev_has_any_upper_dev(struct net_device *dev)
6524{
6525        ASSERT_RTNL();
6526
6527        return !list_empty(&dev->adj_list.upper);
6528}
6529EXPORT_SYMBOL(netdev_has_any_upper_dev);
6530
6531/**
6532 * netdev_master_upper_dev_get - Get master upper device
6533 * @dev: device
6534 *
6535 * Find a master upper device and return pointer to it or NULL in case
6536 * it's not there. The caller must hold the RTNL lock.
6537 */
6538struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6539{
6540        struct netdev_adjacent *upper;
6541
6542        ASSERT_RTNL();
6543
6544        if (list_empty(&dev->adj_list.upper))
6545                return NULL;
6546
6547        upper = list_first_entry(&dev->adj_list.upper,
6548                                 struct netdev_adjacent, list);
6549        if (likely(upper->master))
6550                return upper->dev;
6551        return NULL;
6552}
6553EXPORT_SYMBOL(netdev_master_upper_dev_get);
6554
6555/**
6556 * netdev_has_any_lower_dev - Check if device is linked to some device
6557 * @dev: device
6558 *
6559 * Find out if a device is linked to a lower device and return true in case
6560 * it is. The caller must hold the RTNL lock.
6561 */
6562static bool netdev_has_any_lower_dev(struct net_device *dev)
6563{
6564        ASSERT_RTNL();
6565
6566        return !list_empty(&dev->adj_list.lower);
6567}
6568
6569void *netdev_adjacent_get_private(struct list_head *adj_list)
6570{
6571        struct netdev_adjacent *adj;
6572
6573        adj = list_entry(adj_list, struct netdev_adjacent, list);
6574
6575        return adj->private;
6576}
6577EXPORT_SYMBOL(netdev_adjacent_get_private);
6578
6579/**
6580 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6581 * @dev: device
6582 * @iter: list_head ** of the current position
6583 *
6584 * Gets the next device from the dev's upper list, starting from iter
6585 * position. The caller must hold RCU read lock.
6586 */
6587struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6588                                                 struct list_head **iter)
6589{
6590        struct netdev_adjacent *upper;
6591
6592        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6593
6594        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6595
6596        if (&upper->list == &dev->adj_list.upper)
6597                return NULL;
6598
6599        *iter = &upper->list;
6600
6601        return upper->dev;
6602}
6603EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6604
6605static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6606                                                    struct list_head **iter)
6607{
6608        struct netdev_adjacent *upper;
6609
6610        WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6611
6612        upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6613
6614        if (&upper->list == &dev->adj_list.upper)
6615                return NULL;
6616
6617        *iter = &upper->list;
6618
6619        return upper->dev;
6620}
6621
6622int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6623                                  int (*fn)(struct net_device *dev,
6624                                            void *data),
6625                                  void *data)
6626{
6627        struct net_device *udev;
6628        struct list_head *iter;
6629        int ret;
6630
6631        for (iter = &dev->adj_list.upper,
6632             udev = netdev_next_upper_dev_rcu(dev, &iter);
6633             udev;
6634             udev = netdev_next_upper_dev_rcu(dev, &iter)) {
6635                /* first is the upper device itself */
6636                ret = fn(udev, data);
6637                if (ret)
6638                        return ret;
6639
6640                /* then look at all of its upper devices */
6641                ret = netdev_walk_all_upper_dev_rcu(udev, fn, data);
6642                if (ret)
6643                        return ret;
6644        }
6645
6646        return 0;
6647}
6648EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
6649
6650/**
6651 * netdev_lower_get_next_private - Get the next ->private from the
6652 *                                 lower neighbour list
6653 * @dev: device
6654 * @iter: list_head ** of the current position
6655 *
6656 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6657 * list, starting from iter position. The caller must hold either hold the
6658 * RTNL lock or its own locking that guarantees that the neighbour lower
6659 * list will remain unchanged.
6660 */
6661void *netdev_lower_get_next_private(struct net_device *dev,
6662                                    struct list_head **iter)
6663{
6664        struct netdev_adjacent *lower;
6665
6666        lower = list_entry(*iter, struct netdev_adjacent, list);
6667
6668        if (&lower->list == &dev->adj_list.lower)
6669                return NULL;
6670
6671        *iter = lower->list.next;
6672
6673        return lower->private;
6674}
6675EXPORT_SYMBOL(netdev_lower_get_next_private);
6676
6677/**
6678 * netdev_lower_get_next_private_rcu - Get the next ->private from the
6679 *                                     lower neighbour list, RCU
6680 *                                     variant
6681 * @dev: device
6682 * @iter: list_head ** of the current position
6683 *
6684 * Gets the next netdev_adjacent->private from the dev's lower neighbour
6685 * list, starting from iter position. The caller must hold RCU read lock.
6686 */
6687void *netdev_lower_get_next_private_rcu(struct net_device *dev,
6688                                        struct list_head **iter)
6689{
6690        struct netdev_adjacent *lower;
6691
6692        WARN_ON_ONCE(!rcu_read_lock_held());
6693
6694        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6695
6696        if (&lower->list == &dev->adj_list.lower)
6697                return NULL;
6698
6699        *iter = &lower->list;
6700
6701        return lower->private;
6702}
6703EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
6704
6705/**
6706 * netdev_lower_get_next - Get the next device from the lower neighbour
6707 *                         list
6708 * @dev: device
6709 * @iter: list_head ** of the current position
6710 *
6711 * Gets the next netdev_adjacent from the dev's lower neighbour
6712 * list, starting from iter position. The caller must hold RTNL lock or
6713 * its own locking that guarantees that the neighbour lower
6714 * list will remain unchanged.
6715 */
6716void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
6717{
6718        struct netdev_adjacent *lower;
6719
6720        lower = list_entry(*iter, struct netdev_adjacent, list);
6721
6722        if (&lower->list == &dev->adj_list.lower)
6723                return NULL;
6724
6725        *iter = lower->list.next;
6726
6727        return lower->dev;
6728}
6729EXPORT_SYMBOL(netdev_lower_get_next);
6730
6731static struct net_device *netdev_next_lower_dev(struct net_device *dev,
6732                                                struct list_head **iter)
6733{
6734        struct netdev_adjacent *lower;
6735
6736        lower = list_entry((*iter)->next, struct netdev_adjacent, list);
6737
6738        if (&lower->list == &dev->adj_list.lower)
6739                return NULL;
6740
6741        *iter = &lower->list;
6742
6743        return lower->dev;
6744}
6745
6746int netdev_walk_all_lower_dev(struct net_device *dev,
6747                              int (*fn)(struct net_device *dev,
6748                                        void *data),
6749                              void *data)
6750{
6751        struct net_device *ldev;
6752        struct list_head *iter;
6753        int ret;
6754
6755        for (iter = &dev->adj_list.lower,
6756             ldev = netdev_next_lower_dev(dev, &iter);
6757             ldev;
6758             ldev = netdev_next_lower_dev(dev, &iter)) {
6759                /* first is the lower device itself */
6760                ret = fn(ldev, data);
6761                if (ret)
6762                        return ret;
6763
6764                /* then look at all of its lower devices */
6765                ret = netdev_walk_all_lower_dev(ldev, fn, data);
6766                if (ret)
6767                        return ret;
6768        }
6769
6770        return 0;
6771}
6772EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
6773
6774static struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
6775                                                    struct list_head **iter)
6776{
6777        struct netdev_adjacent *lower;
6778
6779        lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6780        if (&lower->list == &dev->adj_list.lower)
6781                return NULL;
6782
6783        *iter = &lower->list;
6784
6785        return lower->dev;
6786}
6787
6788int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
6789                                  int (*fn)(struct net_device *dev,
6790                                            void *data),
6791                                  void *data)
6792{
6793        struct net_device *ldev;
6794        struct list_head *iter;
6795        int ret;
6796
6797        for (iter = &dev->adj_list.lower,
6798             ldev = netdev_next_lower_dev_rcu(dev, &iter);
6799             ldev;
6800             ldev = netdev_next_lower_dev_rcu(dev, &iter)) {
6801                /* first is the lower device itself */
6802                ret = fn(ldev, data);
6803                if (ret)
6804                        return ret;
6805
6806                /* then look at all of its lower devices */
6807                ret = netdev_walk_all_lower_dev_rcu(ldev, fn, data);
6808                if (ret)
6809                        return ret;
6810        }
6811
6812        return 0;
6813}
6814EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
6815
6816/**
6817 * netdev_lower_get_first_private_rcu - Get the first ->private from the
6818 *                                     lower neighbour list, RCU
6819 *                                     variant
6820 * @dev: device
6821 *
6822 * Gets the first netdev_adjacent->private from the dev's lower neighbour
6823 * list. The caller must hold RCU read lock.
6824 */
6825void *netdev_lower_get_first_private_rcu(struct net_device *dev)
6826{
6827        struct netdev_adjacent *lower;
6828
6829        lower = list_first_or_null_rcu(&dev->adj_list.lower,
6830                        struct netdev_adjacent, list);
6831        if (lower)
6832                return lower->private;
6833        return NULL;
6834}
6835EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
6836
6837/**
6838 * netdev_master_upper_dev_get_rcu - Get master upper device
6839 * @dev: device
6840 *
6841 * Find a master upper device and return pointer to it or NULL in case
6842 * it's not there. The caller must hold the RCU read lock.
6843 */
6844struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
6845{
6846        struct netdev_adjacent *upper;
6847
6848        upper = list_first_or_null_rcu(&dev->adj_list.upper,
6849                                       struct netdev_adjacent, list);
6850        if (upper && likely(upper->master))
6851                return upper->dev;
6852        return NULL;
6853}
6854EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
6855
6856static int netdev_adjacent_sysfs_add(struct net_device *dev,
6857                              struct net_device *adj_dev,
6858                              struct list_head *dev_list)
6859{
6860        char linkname[IFNAMSIZ+7];
6861
6862        sprintf(linkname, dev_list == &dev->adj_list.upper ?
6863                "upper_%s" : "lower_%s", adj_dev->name);
6864        return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
6865                                 linkname);
6866}
6867static void netdev_adjacent_sysfs_del(struct net_device *dev,
6868                               char *name,
6869                               struct list_head *dev_list)
6870{
6871        char linkname[IFNAMSIZ+7];
6872
6873        sprintf(linkname, dev_list == &dev->adj_list.upper ?
6874                "upper_%s" : "lower_%s", name);
6875        sysfs_remove_link(&(dev->dev.kobj), linkname);
6876}
6877
6878static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
6879                                                 struct net_device *adj_dev,
6880                                                 struct list_head *dev_list)
6881{
6882        return (dev_list == &dev->adj_list.upper ||
6883                dev_list == &dev->adj_list.lower) &&
6884                net_eq(dev_net(dev), dev_net(adj_dev));
6885}
6886
6887static int __netdev_adjacent_dev_insert(struct net_device *dev,
6888                                        struct net_device *adj_dev,
6889                                        struct list_head *dev_list,
6890                                        void *private, bool master)
6891{
6892        struct netdev_adjacent *adj;
6893        int ret;
6894
6895        adj = __netdev_find_adj(adj_dev, dev_list);
6896
6897        if (adj) {
6898                adj->ref_nr += 1;
6899                pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
6900                         dev->name, adj_dev->name, adj->ref_nr);
6901
6902                return 0;
6903        }
6904
6905        adj = kmalloc(sizeof(*adj), GFP_KERNEL);
6906        if (!adj)
6907                return -ENOMEM;
6908
6909        adj->dev = adj_dev;
6910        adj->master = master;
6911        adj->ref_nr = 1;
6912        adj->private = private;
6913        dev_hold(adj_dev);
6914
6915        pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
6916                 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
6917
6918        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
6919                ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
6920                if (ret)
6921                        goto free_adj;
6922        }
6923
6924        /* Ensure that master link is always the first item in list. */
6925        if (master) {
6926                ret = sysfs_create_link(&(dev->dev.kobj),
6927                                        &(adj_dev->dev.kobj), "master");
6928                if (ret)
6929                        goto remove_symlinks;
6930
6931                list_add_rcu(&adj->list, dev_list);
6932        } else {
6933                list_add_tail_rcu(&adj->list, dev_list);
6934        }
6935
6936        return 0;
6937
6938remove_symlinks:
6939        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6940                netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6941free_adj:
6942        kfree(adj);
6943        dev_put(adj_dev);
6944
6945        return ret;
6946}
6947
6948static void __netdev_adjacent_dev_remove(struct net_device *dev,
6949                                         struct net_device *adj_dev,
6950                                         u16 ref_nr,
6951                                         struct list_head *dev_list)
6952{
6953        struct netdev_adjacent *adj;
6954
6955        pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
6956                 dev->name, adj_dev->name, ref_nr);
6957
6958        adj = __netdev_find_adj(adj_dev, dev_list);
6959
6960        if (!adj) {
6961                pr_err("Adjacency does not exist for device %s from %s\n",
6962                       dev->name, adj_dev->name);
6963                WARN_ON(1);
6964                return;
6965        }
6966
6967        if (adj->ref_nr > ref_nr) {
6968                pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
6969                         dev->name, adj_dev->name, ref_nr,
6970                         adj->ref_nr - ref_nr);
6971                adj->ref_nr -= ref_nr;
6972                return;
6973        }
6974
6975        if (adj->master)
6976                sysfs_remove_link(&(dev->dev.kobj), "master");
6977
6978        if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
6979                netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
6980
6981        list_del_rcu(&adj->list);
6982        pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
6983                 adj_dev->name, dev->name, adj_dev->name);
6984        dev_put(adj_dev);
6985        kfree_rcu(adj, rcu);
6986}
6987
6988static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
6989                                            struct net_device *upper_dev,
6990                                            struct list_head *up_list,
6991                                            struct list_head *down_list,
6992                                            void *private, bool master)
6993{
6994        int ret;
6995
6996        ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
6997                                           private, master);
6998        if (ret)
6999                return ret;
7000
7001        ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7002                                           private, false);
7003        if (ret) {
7004                __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7005                return ret;
7006        }
7007
7008        return 0;
7009}
7010
7011static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7012                                               struct net_device *upper_dev,
7013                                               u16 ref_nr,
7014                                               struct list_head *up_list,
7015                                               struct list_head *down_list)
7016{
7017        __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7018        __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7019}
7020
7021static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7022                                                struct net_device *upper_dev,
7023                                                void *private, bool master)
7024{
7025        return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7026                                                &dev->adj_list.upper,
7027                                                &upper_dev->adj_list.lower,
7028                                                private, master);
7029}
7030
7031static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7032                                                   struct net_device *upper_dev)
7033{
7034        __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7035                                           &dev->adj_list.upper,
7036                                           &upper_dev->adj_list.lower);
7037}
7038
7039static int __netdev_upper_dev_link(struct net_device *dev,
7040                                   struct net_device *upper_dev, bool master,
7041                                   void *upper_priv, void *upper_info,
7042                                   struct netlink_ext_ack *extack)
7043{
7044        struct netdev_notifier_changeupper_info changeupper_info = {
7045                .info = {
7046                        .dev = dev,
7047                        .extack = extack,
7048                },
7049                .upper_dev = upper_dev,
7050                .master = master,
7051                .linking = true,
7052                .upper_info = upper_info,
7053        };
7054        struct net_device *master_dev;
7055        int ret = 0;
7056
7057        ASSERT_RTNL();
7058
7059        if (dev == upper_dev)
7060                return -EBUSY;
7061
7062        /* To prevent loops, check if dev is not upper device to upper_dev. */
7063        if (netdev_has_upper_dev(upper_dev, dev))
7064                return -EBUSY;
7065
7066        if (!master) {
7067                if (netdev_has_upper_dev(dev, upper_dev))
7068                        return -EEXIST;
7069        } else {
7070                master_dev = netdev_master_upper_dev_get(dev);
7071                if (master_dev)
7072                        return master_dev == upper_dev ? -EEXIST : -EBUSY;
7073        }
7074
7075        ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7076                                            &changeupper_info.info);
7077        ret = notifier_to_errno(ret);
7078        if (ret)
7079                return ret;
7080
7081        ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7082                                                   master);
7083        if (ret)
7084                return ret;
7085
7086        ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7087                                            &changeupper_info.info);
7088        ret = notifier_to_errno(ret);
7089        if (ret)
7090                goto rollback;
7091
7092        return 0;
7093
7094rollback:
7095        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7096
7097        return ret;
7098}
7099
7100/**
7101 * netdev_upper_dev_link - Add a link to the upper device
7102 * @dev: device
7103 * @upper_dev: new upper device
7104 * @extack: netlink extended ack
7105 *
7106 * Adds a link to device which is upper to this one. The caller must hold
7107 * the RTNL lock. On a failure a negative errno code is returned.
7108 * On success the reference counts are adjusted and the function
7109 * returns zero.
7110 */
7111int netdev_upper_dev_link(struct net_device *dev,
7112                          struct net_device *upper_dev,
7113                          struct netlink_ext_ack *extack)
7114{
7115        return __netdev_upper_dev_link(dev, upper_dev, false,
7116                                       NULL, NULL, extack);
7117}
7118EXPORT_SYMBOL(netdev_upper_dev_link);
7119
7120/**
7121 * netdev_master_upper_dev_link - Add a master link to the upper device
7122 * @dev: device
7123 * @upper_dev: new upper device
7124 * @upper_priv: upper device private
7125 * @upper_info: upper info to be passed down via notifier
7126 * @extack: netlink extended ack
7127 *
7128 * Adds a link to device which is upper to this one. In this case, only
7129 * one master upper device can be linked, although other non-master devices
7130 * might be linked as well. The caller must hold the RTNL lock.
7131 * On a failure a negative errno code is returned. On success the reference
7132 * counts are adjusted and the function returns zero.
7133 */
7134int netdev_master_upper_dev_link(struct net_device *dev,
7135                                 struct net_device *upper_dev,
7136                                 void *upper_priv, void *upper_info,
7137                                 struct netlink_ext_ack *extack)
7138{
7139        return __netdev_upper_dev_link(dev, upper_dev, true,
7140                                       upper_priv, upper_info, extack);
7141}
7142EXPORT_SYMBOL(netdev_master_upper_dev_link);
7143
7144/**
7145 * netdev_upper_dev_unlink - Removes a link to upper device
7146 * @dev: device
7147 * @upper_dev: new upper device
7148 *
7149 * Removes a link to device which is upper to this one. The caller must hold
7150 * the RTNL lock.
7151 */
7152void netdev_upper_dev_unlink(struct net_device *dev,
7153                             struct net_device *upper_dev)
7154{
7155        struct netdev_notifier_changeupper_info changeupper_info = {
7156                .info = {
7157                        .dev = dev,
7158                },
7159                .upper_dev = upper_dev,
7160                .linking = false,
7161        };
7162
7163        ASSERT_RTNL();
7164
7165        changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7166
7167        call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7168                                      &changeupper_info.info);
7169
7170        __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7171
7172        call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7173                                      &changeupper_info.info);
7174}
7175EXPORT_SYMBOL(netdev_upper_dev_unlink);
7176
7177/**
7178 * netdev_bonding_info_change - Dispatch event about slave change
7179 * @dev: device
7180 * @bonding_info: info to dispatch
7181 *
7182 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7183 * The caller must hold the RTNL lock.
7184 */
7185void netdev_bonding_info_change(struct net_device *dev,
7186                                struct netdev_bonding_info *bonding_info)
7187{
7188        struct netdev_notifier_bonding_info info = {
7189                .info.dev = dev,
7190        };
7191
7192        memcpy(&info.bonding_info, bonding_info,
7193               sizeof(struct netdev_bonding_info));
7194        call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7195                                      &info.info);
7196}
7197EXPORT_SYMBOL(netdev_bonding_info_change);
7198
7199static void netdev_adjacent_add_links(struct net_device *dev)
7200{
7201        struct netdev_adjacent *iter;
7202
7203        struct net *net = dev_net(dev);
7204
7205        list_for_each_entry(iter, &dev->adj_list.upper, list) {
7206                if (!net_eq(net, dev_net(iter->dev)))
7207                        continue;
7208                netdev_adjacent_sysfs_add(iter->dev, dev,
7209                                          &iter->dev->adj_list.lower);
7210                netdev_adjacent_sysfs_add(dev, iter->dev,
7211                                          &dev->adj_list.upper);
7212        }
7213
7214        list_for_each_entry(iter, &dev->adj_list.lower, list) {
7215                if (!net_eq(net, dev_net(iter->dev)))
7216                        continue;
7217                netdev_adjacent_sysfs_add(iter->dev, dev,
7218                                          &iter->dev->adj_list.upper);
7219                netdev_adjacent_sysfs_add(dev, iter->dev,
7220                                          &dev->adj_list.lower);
7221        }
7222}
7223
7224static void netdev_adjacent_del_links(struct net_device *dev)
7225{
7226        struct netdev_adjacent *iter;
7227
7228        struct net *net = dev_net(dev);
7229
7230        list_for_each_entry(iter, &dev->adj_list.upper, list) {
7231                if (!net_eq(net, dev_net(iter->dev)))
7232                        continue;
7233                netdev_adjacent_sysfs_del(iter->dev, dev->name,
7234                                          &iter->dev->adj_list.lower);
7235                netdev_adjacent_sysfs_del(dev, iter->dev->name,
7236                                          &dev->adj_list.upper);
7237        }
7238
7239        list_for_each_entry(iter, &dev->adj_list.lower, list) {
7240                if (!net_eq(net, dev_net(iter->dev)))
7241                        continue;
7242                netdev_adjacent_sysfs_del(iter->dev, dev->name,
7243                                          &iter->dev->adj_list.upper);
7244                netdev_adjacent_sysfs_del(dev, iter->dev->name,
7245                                          &dev->adj_list.lower);
7246        }
7247}
7248
7249void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
7250{
7251        struct netdev_adjacent *iter;
7252
7253        struct net *net = dev_net(dev);
7254
7255        list_for_each_entry(iter, &dev->adj_list.upper, list) {
7256                if (!net_eq(net, dev_net(iter->dev)))
7257                        continue;
7258                netdev_adjacent_sysfs_del(iter->dev, oldname,
7259                                          &iter->dev->adj_list.lower);
7260                netdev_adjacent_sysfs_add(iter->dev, dev,
7261                                          &iter->dev->adj_list.lower);
7262        }
7263
7264        list_for_each_entry(iter, &dev->adj_list.lower, list) {
7265                if (!net_eq(net, dev_net(iter->dev)))
7266                        continue;
7267                netdev_adjacent_sysfs_del(iter->dev, oldname,
7268                                          &iter->dev->adj_list.upper);
7269                netdev_adjacent_sysfs_add(iter->dev, dev,
7270                                          &iter->dev->adj_list.upper);
7271        }
7272}
7273
7274void *netdev_lower_dev_get_private(struct net_device *dev,
7275                                   struct net_device *lower_dev)
7276{
7277        struct netdev_adjacent *lower;
7278
7279        if (!lower_dev)
7280                return NULL;
7281        lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
7282        if (!lower)
7283                return NULL;
7284
7285        return lower->private;
7286}
7287EXPORT_SYMBOL(netdev_lower_dev_get_private);
7288
7289
7290int dev_get_nest_level(struct net_device *dev)
7291{
7292        struct net_device *lower = NULL;
7293        struct list_head *iter;
7294        int max_nest = -1;
7295        int nest;
7296
7297        ASSERT_RTNL();
7298
7299        netdev_for_each_lower_dev(dev, lower, iter) {
7300                nest = dev_get_nest_level(lower);
7301                if (max_nest < nest)
7302                        max_nest = nest;
7303        }
7304
7305        return max_nest + 1;
7306}
7307EXPORT_SYMBOL(dev_get_nest_level);
7308
7309/**
7310 * netdev_lower_change - Dispatch event about lower device state change
7311 * @lower_dev: device
7312 * @lower_state_info: state to dispatch
7313 *
7314 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
7315 * The caller must hold the RTNL lock.
7316 */
7317void netdev_lower_state_changed(struct net_device *lower_dev,
7318                                void *lower_state_info)
7319{
7320        struct netdev_notifier_changelowerstate_info changelowerstate_info = {
7321                .info.dev = lower_dev,
7322        };
7323
7324        ASSERT_RTNL();
7325        changelowerstate_info.lower_state_info = lower_state_info;
7326        call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
7327                                      &changelowerstate_info.info);
7328}
7329EXPORT_SYMBOL(netdev_lower_state_changed);
7330
7331static void dev_change_rx_flags(struct net_device *dev, int flags)
7332{
7333        const struct net_device_ops *ops = dev->netdev_ops;
7334
7335        if (ops->ndo_change_rx_flags)
7336                ops->ndo_change_rx_flags(dev, flags);
7337}
7338
7339static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
7340{
7341        unsigned int old_flags = dev->flags;
7342        kuid_t uid;
7343        kgid_t gid;
7344
7345        ASSERT_RTNL();
7346
7347        dev->flags |= IFF_PROMISC;
7348        dev->promiscuity += inc;
7349        if (dev->promiscuity == 0) {
7350                /*
7351                 * Avoid overflow.
7352                 * If inc causes overflow, untouch promisc and return error.
7353                 */
7354                if (inc < 0)
7355                        dev->flags &= ~IFF_PROMISC;
7356                else {
7357                        dev->promiscuity -= inc;
7358                        pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
7359                                dev->name);
7360                        return -EOVERFLOW;
7361                }
7362        }
7363        if (dev->flags != old_flags) {
7364                pr_info("device %s %s promiscuous mode\n",
7365                        dev->name,
7366                        dev->flags & IFF_PROMISC ? "entered" : "left");
7367                if (audit_enabled) {
7368                        current_uid_gid(&uid, &gid);
7369                        audit_log(audit_context(), GFP_ATOMIC,
7370                                  AUDIT_ANOM_PROMISCUOUS,
7371                                  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
7372                                  dev->name, (dev->flags & IFF_PROMISC),
7373                                  (old_flags & IFF_PROMISC),
7374                                  from_kuid(&init_user_ns, audit_get_loginuid(current)),
7375                                  from_kuid(&init_user_ns, uid),
7376                                  from_kgid(&init_user_ns, gid),
7377                                  audit_get_sessionid(current));
7378                }
7379
7380                dev_change_rx_flags(dev, IFF_PROMISC);
7381        }
7382        if (notify)
7383                __dev_notify_flags(dev, old_flags, IFF_PROMISC);
7384        return 0;
7385}
7386
7387/**
7388 *      dev_set_promiscuity     - update promiscuity count on a device
7389 *      @dev: device
7390 *      @inc: modifier
7391 *
7392 *      Add or remove promiscuity from a device. While the count in the device
7393 *      remains above zero the interface remains promiscuous. Once it hits zero
7394 *      the device reverts back to normal filtering operation. A negative inc
7395 *      value is used to drop promiscuity on the device.
7396 *      Return 0 if successful or a negative errno code on error.
7397 */
7398int dev_set_promiscuity(struct net_device *dev, int inc)
7399{
7400        unsigned int old_flags = dev->flags;
7401        int err;
7402
7403        err = __dev_set_promiscuity(dev, inc, true);
7404        if (err < 0)
7405                return err;
7406        if (dev->flags != old_flags)
7407                dev_set_rx_mode(dev);
7408        return err;
7409}
7410EXPORT_SYMBOL(dev_set_promiscuity);
7411
7412static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
7413{
7414        unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
7415
7416        ASSERT_RTNL();
7417
7418        dev->flags |= IFF_ALLMULTI;
7419        dev->allmulti += inc;
7420        if (dev->allmulti == 0) {
7421                /*
7422                 * Avoid overflow.
7423                 * If inc causes overflow, untouch allmulti and return error.
7424                 */
7425                if (inc < 0)
7426                        dev->flags &= ~IFF_ALLMULTI;
7427                else {
7428                        dev->allmulti -= inc;
7429                        pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
7430                                dev->name);
7431                        return -EOVERFLOW;
7432                }
7433        }
7434        if (dev->flags ^ old_flags) {
7435                dev_change_rx_flags(dev, IFF_ALLMULTI);
7436                dev_set_rx_mode(dev);
7437                if (notify)
7438                        __dev_notify_flags(dev, old_flags,
7439                                           dev->gflags ^ old_gflags);
7440        }
7441        return 0;
7442}
7443
7444/**
7445 *      dev_set_allmulti        - update allmulti count on a device
7446 *      @dev: device
7447 *      @inc: modifier
7448 *
7449 *      Add or remove reception of all multicast frames to a device. While the
7450 *      count in the device remains above zero the interface remains listening
7451 *      to all interfaces. Once it hits zero the device reverts back to normal
7452 *      filtering operation. A negative @inc value is used to drop the counter
7453 *      when releasing a resource needing all multicasts.
7454 *      Return 0 if successful or a negative errno code on error.
7455 */
7456
7457int dev_set_allmulti(struct net_device *dev, int inc)
7458{
7459        return __dev_set_allmulti(dev, inc, true);
7460}
7461EXPORT_SYMBOL(dev_set_allmulti);
7462
7463/*
7464 *      Upload unicast and multicast address lists to device and
7465 *      configure RX filtering. When the device doesn't support unicast
7466 *      filtering it is put in promiscuous mode while unicast addresses
7467 *      are present.
7468 */
7469void __dev_set_rx_mode(struct net_device *dev)
7470{
7471        const struct net_device_ops *ops = dev->netdev_ops;
7472
7473        /* dev_open will call this function so the list will stay sane. */
7474        if (!(dev->flags&IFF_UP))
7475                return;
7476
7477        if (!netif_device_present(dev))
7478                return;
7479
7480        if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
7481                /* Unicast addresses changes may only happen under the rtnl,
7482                 * therefore calling __dev_set_promiscuity here is safe.
7483                 */
7484                if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
7485                        __dev_set_promiscuity(dev, 1, false);
7486                        dev->uc_promisc = true;
7487                } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
7488                        __dev_set_promiscuity(dev, -1, false);
7489                        dev->uc_promisc = false;
7490                }
7491        }
7492
7493        if (ops->ndo_set_rx_mode)
7494                ops->ndo_set_rx_mode(dev);
7495}
7496
7497void dev_set_rx_mode(struct net_device *dev)
7498{
7499        netif_addr_lock_bh(dev);
7500        __dev_set_rx_mode(dev);
7501        netif_addr_unlock_bh(dev);
7502}
7503
7504/**
7505 *      dev_get_flags - get flags reported to userspace
7506 *      @dev: device
7507 *
7508 *      Get the combination of flag bits exported through APIs to userspace.
7509 */
7510unsigned int dev_get_flags(const struct net_device *dev)
7511{
7512        unsigned int flags;
7513
7514        flags = (dev->flags & ~(IFF_PROMISC |
7515                                IFF_ALLMULTI |
7516                                IFF_RUNNING |
7517                                IFF_LOWER_UP |
7518                                IFF_DORMANT)) |
7519                (dev->gflags & (IFF_PROMISC |
7520                                IFF_ALLMULTI));
7521
7522        if (netif_running(dev)) {
7523                if (netif_oper_up(dev))
7524                        flags |= IFF_RUNNING;
7525                if (netif_carrier_ok(dev))
7526                        flags |= IFF_LOWER_UP;
7527                if (netif_dormant(dev))
7528                        flags |= IFF_DORMANT;
7529        }
7530
7531        return flags;
7532}
7533EXPORT_SYMBOL(dev_get_flags);
7534
7535int __dev_change_flags(struct net_device *dev, unsigned int flags,
7536                       struct netlink_ext_ack *extack)
7537{
7538        unsigned int old_flags = dev->flags;
7539        int ret;
7540
7541        ASSERT_RTNL();
7542
7543        /*
7544         *      Set the flags on our device.
7545         */
7546
7547        dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
7548                               IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
7549                               IFF_AUTOMEDIA)) |
7550                     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
7551                                    IFF_ALLMULTI));
7552
7553        /*
7554         *      Load in the correct multicast list now the flags have changed.
7555         */
7556
7557        if ((old_flags ^ flags) & IFF_MULTICAST)
7558                dev_change_rx_flags(dev, IFF_MULTICAST);
7559
7560        dev_set_rx_mode(dev);
7561
7562        /*
7563         *      Have we downed the interface. We handle IFF_UP ourselves
7564         *      according to user attempts to set it, rather than blindly
7565         *      setting it.
7566         */
7567
7568        ret = 0;
7569        if ((old_flags ^ flags) & IFF_UP) {
7570                if (old_flags & IFF_UP)
7571                        __dev_close(dev);
7572                else
7573                        ret = __dev_open(dev, extack);
7574        }
7575
7576        if ((flags ^ dev->gflags) & IFF_PROMISC) {
7577                int inc = (flags & IFF_PROMISC) ? 1 : -1;
7578                unsigned int old_flags = dev->flags;
7579
7580                dev->gflags ^= IFF_PROMISC;
7581
7582                if (__dev_set_promiscuity(dev, inc, false) >= 0)
7583                        if (dev->flags != old_flags)
7584                                dev_set_rx_mode(dev);
7585        }
7586
7587        /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
7588         * is important. Some (broken) drivers set IFF_PROMISC, when
7589         * IFF_ALLMULTI is requested not asking us and not reporting.
7590         */
7591        if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
7592                int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
7593
7594                dev->gflags ^= IFF_ALLMULTI;
7595                __dev_set_allmulti(dev, inc, false);
7596        }
7597
7598        return ret;
7599}
7600
7601void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
7602                        unsigned int gchanges)
7603{
7604        unsigned int changes = dev->flags ^ old_flags;
7605
7606        if (gchanges)
7607                rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
7608
7609        if (changes & IFF_UP) {
7610                if (dev->flags & IFF_UP)
7611                        call_netdevice_notifiers(NETDEV_UP, dev);
7612                else
7613                        call_netdevice_notifiers(NETDEV_DOWN, dev);
7614        }
7615
7616        if (dev->flags & IFF_UP &&
7617            (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
7618                struct netdev_notifier_change_info change_info = {
7619                        .info = {
7620                                .dev = dev,
7621                        },
7622                        .flags_changed = changes,
7623                };
7624
7625                call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
7626        }
7627}
7628
7629/**
7630 *      dev_change_flags - change device settings
7631 *      @dev: device
7632 *      @flags: device state flags
7633 *      @extack: netlink extended ack
7634 *
7635 *      Change settings on device based state flags. The flags are
7636 *      in the userspace exported format.
7637 */
7638int dev_change_flags(struct net_device *dev, unsigned int flags,
7639                     struct netlink_ext_ack *extack)
7640{
7641        int ret;
7642        unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
7643
7644        ret = __dev_change_flags(dev, flags, extack);
7645        if (ret < 0)
7646                return ret;
7647
7648        changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
7649        __dev_notify_flags(dev, old_flags, changes);
7650        return ret;
7651}
7652EXPORT_SYMBOL(dev_change_flags);
7653
7654int __dev_set_mtu(struct net_device *dev, int new_mtu)
7655{
7656        const struct net_device_ops *ops = dev->netdev_ops;
7657
7658        if (ops->ndo_change_mtu)
7659                return ops->ndo_change_mtu(dev, new_mtu);
7660
7661        dev->mtu = new_mtu;
7662        return 0;
7663}
7664EXPORT_SYMBOL(__dev_set_mtu);
7665
7666/**
7667 *      dev_set_mtu_ext - Change maximum transfer unit
7668 *      @dev: device
7669 *      @new_mtu: new transfer unit
7670 *      @extack: netlink extended ack
7671 *
7672 *      Change the maximum transfer size of the network device.
7673 */
7674int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
7675                    struct netlink_ext_ack *extack)
7676{
7677        int err, orig_mtu;
7678
7679        if (new_mtu == dev->mtu)
7680                return 0;
7681
7682        /* MTU must be positive, and in range */
7683        if (new_mtu < 0 || new_mtu < dev->min_mtu) {
7684                NL_SET_ERR_MSG(extack, "mtu less than device minimum");
7685                return -EINVAL;
7686        }
7687
7688        if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
7689                NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
7690                return -EINVAL;
7691        }
7692
7693        if (!netif_device_present(dev))
7694                return -ENODEV;
7695
7696        err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
7697        err = notifier_to_errno(err);
7698        if (err)
7699                return err;
7700
7701        orig_mtu = dev->mtu;
7702        err = __dev_set_mtu(dev, new_mtu);
7703
7704        if (!err) {
7705                err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7706                                                   orig_mtu);
7707                err = notifier_to_errno(err);
7708                if (err) {
7709                        /* setting mtu back and notifying everyone again,
7710                         * so that they have a chance to revert changes.
7711                         */
7712                        __dev_set_mtu(dev, orig_mtu);
7713                        call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
7714                                                     new_mtu);
7715                }
7716        }
7717        return err;
7718}
7719
7720int dev_set_mtu(struct net_device *dev, int new_mtu)
7721{
7722        struct netlink_ext_ack extack;
7723        int err;
7724
7725        memset(&extack, 0, sizeof(extack));
7726        err = dev_set_mtu_ext(dev, new_mtu, &extack);
7727        if (err && extack._msg)
7728                net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
7729        return err;
7730}
7731EXPORT_SYMBOL(dev_set_mtu);
7732
7733/**
7734 *      dev_change_tx_queue_len - Change TX queue length of a netdevice
7735 *      @dev: device
7736 *      @new_len: new tx queue length
7737 */
7738int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
7739{
7740        unsigned int orig_len = dev->tx_queue_len;
7741        int res;
7742
7743        if (new_len != (unsigned int)new_len)
7744                return -ERANGE;
7745
7746        if (new_len != orig_len) {
7747                dev->tx_queue_len = new_len;
7748                res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
7749                res = notifier_to_errno(res);
7750                if (res)
7751                        goto err_rollback;
7752                res = dev_qdisc_change_tx_queue_len(dev);
7753                if (res)
7754                        goto err_rollback;
7755        }
7756
7757        return 0;
7758
7759err_rollback:
7760        netdev_err(dev, "refused to change device tx_queue_len\n");
7761        dev->tx_queue_len = orig_len;
7762        return res;
7763}
7764
7765/**
7766 *      dev_set_group - Change group this device belongs to
7767 *      @dev: device
7768 *      @new_group: group this device should belong to
7769 */
7770void dev_set_group(struct net_device *dev, int new_group)
7771{
7772        dev->group = new_group;
7773}
7774EXPORT_SYMBOL(dev_set_group);
7775
7776/**
7777 *      dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
7778 *      @dev: device
7779 *      @addr: new address
7780 *      @extack: netlink extended ack
7781 */
7782int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
7783                              struct netlink_ext_ack *extack)
7784{
7785        struct netdev_notifier_pre_changeaddr_info info = {
7786                .info.dev = dev,
7787                .info.extack = extack,
7788                .dev_addr = addr,
7789        };
7790        int rc;
7791
7792        rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
7793        return notifier_to_errno(rc);
7794}
7795EXPORT_SYMBOL(dev_pre_changeaddr_notify);
7796
7797/**
7798 *      dev_set_mac_address - Change Media Access Control Address
7799 *      @dev: device
7800 *      @sa: new address
7801 *      @extack: netlink extended ack
7802 *
7803 *      Change the hardware (MAC) address of the device
7804 */
7805int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
7806                        struct netlink_ext_ack *extack)
7807{
7808        const struct net_device_ops *ops = dev->netdev_ops;
7809        int err;
7810
7811        if (!ops->ndo_set_mac_address)
7812                return -EOPNOTSUPP;
7813        if (sa->sa_family != dev->type)
7814                return -EINVAL;
7815        if (!netif_device_present(dev))
7816                return -ENODEV;
7817        err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
7818        if (err)
7819                return err;
7820        err = ops->ndo_set_mac_address(dev, sa);
7821        if (err)
7822                return err;
7823        dev->addr_assign_type = NET_ADDR_SET;
7824        call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
7825        add_device_randomness(dev->dev_addr, dev->addr_len);
7826        return 0;
7827}
7828EXPORT_SYMBOL(dev_set_mac_address);
7829
7830/**
7831 *      dev_change_carrier - Change device carrier
7832 *      @dev: device
7833 *      @new_carrier: new value
7834 *
7835 *      Change device carrier
7836 */
7837int dev_change_carrier(struct net_device *dev, bool new_carrier)
7838{
7839        const struct net_device_ops *ops = dev->netdev_ops;
7840
7841        if (!ops->ndo_change_carrier)
7842                return -EOPNOTSUPP;
7843        if (!netif_device_present(dev))
7844                return -ENODEV;
7845        return ops->ndo_change_carrier(dev, new_carrier);
7846}
7847EXPORT_SYMBOL(dev_change_carrier);
7848
7849/**
7850 *      dev_get_phys_port_id - Get device physical port ID
7851 *      @dev: device
7852 *      @ppid: port ID
7853 *
7854 *      Get device physical port ID
7855 */
7856int dev_get_phys_port_id(struct net_device *dev,
7857                         struct netdev_phys_item_id *ppid)
7858{
7859        const struct net_device_ops *ops = dev->netdev_ops;
7860
7861        if (!ops->ndo_get_phys_port_id)
7862                return -EOPNOTSUPP;
7863        return ops->ndo_get_phys_port_id(dev, ppid);
7864}
7865EXPORT_SYMBOL(dev_get_phys_port_id);
7866
7867/**
7868 *      dev_get_phys_port_name - Get device physical port name
7869 *      @dev: device
7870 *      @name: port name
7871 *      @len: limit of bytes to copy to name
7872 *
7873 *      Get device physical port name
7874 */
7875int dev_get_phys_port_name(struct net_device *dev,
7876                           char *name, size_t len)
7877{
7878        const struct net_device_ops *ops = dev->netdev_ops;
7879        int err;
7880
7881        if (ops->ndo_get_phys_port_name) {
7882                err = ops->ndo_get_phys_port_name(dev, name, len);
7883                if (err != -EOPNOTSUPP)
7884                        return err;
7885        }
7886        return devlink_compat_phys_port_name_get(dev, name, len);
7887}
7888EXPORT_SYMBOL(dev_get_phys_port_name);
7889
7890/**
7891 *      dev_get_port_parent_id - Get the device's port parent identifier
7892 *      @dev: network device
7893 *      @ppid: pointer to a storage for the port's parent identifier
7894 *      @recurse: allow/disallow recursion to lower devices
7895 *
7896 *      Get the devices's port parent identifier
7897 */
7898int dev_get_port_parent_id(struct net_device *dev,
7899                           struct netdev_phys_item_id *ppid,
7900                           bool recurse)
7901{
7902        const struct net_device_ops *ops = dev->netdev_ops;
7903        struct netdev_phys_item_id first = { };
7904        struct net_device *lower_dev;
7905        struct list_head *iter;
7906        int err;
7907
7908        if (ops->ndo_get_port_parent_id) {
7909                err = ops->ndo_get_port_parent_id(dev, ppid);
7910                if (err != -EOPNOTSUPP)
7911                        return err;
7912        }
7913
7914        err = devlink_compat_switch_id_get(dev, ppid);
7915        if (!err || err != -EOPNOTSUPP)
7916                return err;
7917
7918        if (!recurse)
7919                return -EOPNOTSUPP;
7920
7921        netdev_for_each_lower_dev(dev, lower_dev, iter) {
7922                err = dev_get_port_parent_id(lower_dev, ppid, recurse);
7923                if (err)
7924                        break;
7925                if (!first.id_len)
7926                        first = *ppid;
7927                else if (memcmp(&first, ppid, sizeof(*ppid)))
7928                        return -ENODATA;
7929        }
7930
7931        return err;
7932}
7933EXPORT_SYMBOL(dev_get_port_parent_id);
7934
7935/**
7936 *      netdev_port_same_parent_id - Indicate if two network devices have
7937 *      the same port parent identifier
7938 *      @a: first network device
7939 *      @b: second network device
7940 */
7941bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
7942{
7943        struct netdev_phys_item_id a_id = { };
7944        struct netdev_phys_item_id b_id = { };
7945
7946        if (dev_get_port_parent_id(a, &a_id, true) ||
7947            dev_get_port_parent_id(b, &b_id, true))
7948                return false;
7949
7950        return netdev_phys_item_id_same(&a_id, &b_id);
7951}
7952EXPORT_SYMBOL(netdev_port_same_parent_id);
7953
7954/**
7955 *      dev_change_proto_down - update protocol port state information
7956 *      @dev: device
7957 *      @proto_down: new value
7958 *
7959 *      This info can be used by switch drivers to set the phys state of the
7960 *      port.
7961 */
7962int dev_change_proto_down(struct net_device *dev, bool proto_down)
7963{
7964        const struct net_device_ops *ops = dev->netdev_ops;
7965
7966        if (!ops->ndo_change_proto_down)
7967                return -EOPNOTSUPP;
7968        if (!netif_device_present(dev))
7969                return -ENODEV;
7970        return ops->ndo_change_proto_down(dev, proto_down);
7971}
7972EXPORT_SYMBOL(dev_change_proto_down);
7973
7974/**
7975 *      dev_change_proto_down_generic - generic implementation for
7976 *      ndo_change_proto_down that sets carrier according to
7977 *      proto_down.
7978 *
7979 *      @dev: device
7980 *      @proto_down: new value
7981 */
7982int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
7983{
7984        if (proto_down)
7985                netif_carrier_off(dev);
7986        else
7987                netif_carrier_on(dev);
7988        dev->proto_down = proto_down;
7989        return 0;
7990}
7991EXPORT_SYMBOL(dev_change_proto_down_generic);
7992
7993u32 __dev_xdp_query(struct net_device *dev, bpf_op_t bpf_op,
7994                    enum bpf_netdev_command cmd)
7995{
7996        struct netdev_bpf xdp;
7997
7998        if (!bpf_op)
7999                return 0;
8000
8001        memset(&xdp, 0, sizeof(xdp));
8002        xdp.command = cmd;
8003
8004        /* Query must always succeed. */
8005        WARN_ON(bpf_op(dev, &xdp) < 0 && cmd == XDP_QUERY_PROG);
8006
8007        return xdp.prog_id;
8008}
8009
8010static int dev_xdp_install(struct net_device *dev, bpf_op_t bpf_op,
8011                           struct netlink_ext_ack *extack, u32 flags,
8012                           struct bpf_prog *prog)
8013{
8014        struct netdev_bpf xdp;
8015
8016        memset(&xdp, 0, sizeof(xdp));
8017        if (flags & XDP_FLAGS_HW_MODE)
8018                xdp.command = XDP_SETUP_PROG_HW;
8019        else
8020                xdp.command = XDP_SETUP_PROG;
8021        xdp.extack = extack;
8022        xdp.flags = flags;
8023        xdp.prog = prog;
8024
8025        return bpf_op(dev, &xdp);
8026}
8027
8028static void dev_xdp_uninstall(struct net_device *dev)
8029{
8030        struct netdev_bpf xdp;
8031        bpf_op_t ndo_bpf;
8032
8033        /* Remove generic XDP */
8034        WARN_ON(dev_xdp_install(dev, generic_xdp_install, NULL, 0, NULL));
8035
8036        /* Remove from the driver */
8037        ndo_bpf = dev->netdev_ops->ndo_bpf;
8038        if (!ndo_bpf)
8039                return;
8040
8041        memset(&xdp, 0, sizeof(xdp));
8042        xdp.command = XDP_QUERY_PROG;
8043        WARN_ON(ndo_bpf(dev, &xdp));
8044        if (xdp.prog_id)
8045                WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8046                                        NULL));
8047
8048        /* Remove HW offload */
8049        memset(&xdp, 0, sizeof(xdp));
8050        xdp.command = XDP_QUERY_PROG_HW;
8051        if (!ndo_bpf(dev, &xdp) && xdp.prog_id)
8052                WARN_ON(dev_xdp_install(dev, ndo_bpf, NULL, xdp.prog_flags,
8053                                        NULL));
8054}
8055
8056/**
8057 *      dev_change_xdp_fd - set or clear a bpf program for a device rx path
8058 *      @dev: device
8059 *      @extack: netlink extended ack
8060 *      @fd: new program fd or negative value to clear
8061 *      @flags: xdp-related flags
8062 *
8063 *      Set or clear a bpf program for a device
8064 */
8065int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
8066                      int fd, u32 flags)
8067{
8068        const struct net_device_ops *ops = dev->netdev_ops;
8069        enum bpf_netdev_command query;
8070        struct bpf_prog *prog = NULL;
8071        bpf_op_t bpf_op, bpf_chk;
8072        bool offload;
8073        int err;
8074
8075        ASSERT_RTNL();
8076
8077        offload = flags & XDP_FLAGS_HW_MODE;
8078        query = offload ? XDP_QUERY_PROG_HW : XDP_QUERY_PROG;
8079
8080        bpf_op = bpf_chk = ops->ndo_bpf;
8081        if (!bpf_op && (flags & (XDP_FLAGS_DRV_MODE | XDP_FLAGS_HW_MODE))) {
8082                NL_SET_ERR_MSG(extack, "underlying driver does not support XDP in native mode");
8083                return -EOPNOTSUPP;
8084        }
8085        if (!bpf_op || (flags & XDP_FLAGS_SKB_MODE))
8086                bpf_op = generic_xdp_install;
8087        if (bpf_op == bpf_chk)
8088                bpf_chk = generic_xdp_install;
8089
8090        if (fd >= 0) {
8091                if (!offload && __dev_xdp_query(dev, bpf_chk, XDP_QUERY_PROG)) {
8092                        NL_SET_ERR_MSG(extack, "native and generic XDP can't be active at the same time");
8093                        return -EEXIST;
8094                }
8095                if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) &&
8096                    __dev_xdp_query(dev, bpf_op, query)) {
8097                        NL_SET_ERR_MSG(extack, "XDP program already attached");
8098                        return -EBUSY;
8099                }
8100
8101                prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
8102                                             bpf_op == ops->ndo_bpf);
8103                if (IS_ERR(prog))
8104                        return PTR_ERR(prog);
8105
8106                if (!offload && bpf_prog_is_dev_bound(prog->aux)) {
8107                        NL_SET_ERR_MSG(extack, "using device-bound program without HW_MODE flag is not supported");
8108                        bpf_prog_put(prog);
8109                        return -EINVAL;
8110                }
8111        }
8112
8113        err = dev_xdp_install(dev, bpf_op, extack, flags, prog);
8114        if (err < 0 && prog)
8115                bpf_prog_put(prog);
8116
8117        return err;
8118}
8119
8120/**
8121 *      dev_new_index   -       allocate an ifindex
8122 *      @net: the applicable net namespace
8123 *
8124 *      Returns a suitable unique value for a new device interface
8125 *      number.  The caller must hold the rtnl semaphore or the
8126 *      dev_base_lock to be sure it remains unique.
8127 */
8128static int dev_new_index(struct net *net)
8129{
8130        int ifindex = net->ifindex;
8131
8132        for (;;) {
8133                if (++ifindex <= 0)
8134                        ifindex = 1;
8135                if (!__dev_get_by_index(net, ifindex))
8136                        return net->ifindex = ifindex;
8137        }
8138}
8139
8140/* Delayed registration/unregisteration */
8141static LIST_HEAD(net_todo_list);
8142DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
8143
8144static void net_set_todo(struct net_device *dev)
8145{
8146        list_add_tail(&dev->todo_list, &net_todo_list);
8147        dev_net(dev)->dev_unreg_count++;
8148}
8149
8150static void rollback_registered_many(struct list_head *head)
8151{
8152        struct net_device *dev, *tmp;
8153        LIST_HEAD(close_head);
8154
8155        BUG_ON(dev_boot_phase);
8156        ASSERT_RTNL();
8157
8158        list_for_each_entry_safe(dev, tmp, head, unreg_list) {
8159                /* Some devices call without registering
8160                 * for initialization unwind. Remove those
8161                 * devices and proceed with the remaining.
8162                 */
8163                if (dev->reg_state == NETREG_UNINITIALIZED) {
8164                        pr_debug("unregister_netdevice: device %s/%p never was registered\n",
8165                                 dev->name, dev);
8166
8167                        WARN_ON(1);
8168                        list_del(&dev->unreg_list);
8169                        continue;
8170                }
8171                dev->dismantle = true;
8172                BUG_ON(dev->reg_state != NETREG_REGISTERED);
8173        }
8174
8175        /* If device is running, close it first. */
8176        list_for_each_entry(dev, head, unreg_list)
8177                list_add_tail(&dev->close_list, &close_head);
8178        dev_close_many(&close_head, true);
8179
8180        list_for_each_entry(dev, head, unreg_list) {
8181                /* And unlink it from device chain. */
8182                unlist_netdevice(dev);
8183
8184                dev->reg_state = NETREG_UNREGISTERING;
8185        }
8186        flush_all_backlogs();
8187
8188        synchronize_net();
8189
8190        list_for_each_entry(dev, head, unreg_list) {
8191                struct sk_buff *skb = NULL;
8192
8193                /* Shutdown queueing discipline. */
8194                dev_shutdown(dev);
8195
8196                dev_xdp_uninstall(dev);
8197
8198                /* Notify protocols, that we are about to destroy
8199                 * this device. They should clean all the things.
8200                 */
8201                call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8202
8203                if (!dev->rtnl_link_ops ||
8204                    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8205                        skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
8206                                                     GFP_KERNEL, NULL, 0);
8207
8208                /*
8209                 *      Flush the unicast and multicast chains
8210                 */
8211                dev_uc_flush(dev);
8212                dev_mc_flush(dev);
8213
8214                if (dev->netdev_ops->ndo_uninit)
8215                        dev->netdev_ops->ndo_uninit(dev);
8216
8217                if (skb)
8218                        rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
8219
8220                /* Notifier chain MUST detach us all upper devices. */
8221                WARN_ON(netdev_has_any_upper_dev(dev));
8222                WARN_ON(netdev_has_any_lower_dev(dev));
8223
8224                /* Remove entries from kobject tree */
8225                netdev_unregister_kobject(dev);
8226#ifdef CONFIG_XPS
8227                /* Remove XPS queueing entries */
8228                netif_reset_xps_queues_gt(dev, 0);
8229#endif
8230        }
8231
8232        synchronize_net();
8233
8234        list_for_each_entry(dev, head, unreg_list)
8235                dev_put(dev);
8236}
8237
8238static void rollback_registered(struct net_device *dev)
8239{
8240        LIST_HEAD(single);
8241
8242        list_add(&dev->unreg_list, &single);
8243        rollback_registered_many(&single);
8244        list_del(&single);
8245}
8246
8247static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
8248        struct net_device *upper, netdev_features_t features)
8249{
8250        netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8251        netdev_features_t feature;
8252        int feature_bit;
8253
8254        for_each_netdev_feature(upper_disables, feature_bit) {
8255                feature = __NETIF_F_BIT(feature_bit);
8256                if (!(upper->wanted_features & feature)
8257                    && (features & feature)) {
8258                        netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
8259                                   &feature, upper->name);
8260                        features &= ~feature;
8261                }
8262        }
8263
8264        return features;
8265}
8266
8267static void netdev_sync_lower_features(struct net_device *upper,
8268        struct net_device *lower, netdev_features_t features)
8269{
8270        netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
8271        netdev_features_t feature;
8272        int feature_bit;
8273
8274        for_each_netdev_feature(upper_disables, feature_bit) {
8275                feature = __NETIF_F_BIT(feature_bit);
8276                if (!(features & feature) && (lower->features & feature)) {
8277                        netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
8278                                   &feature, lower->name);
8279                        lower->wanted_features &= ~feature;
8280                        netdev_update_features(lower);
8281
8282                        if (unlikely(lower->features & feature))
8283                                netdev_WARN(upper, "failed to disable %pNF on %s!\n",
8284                                            &feature, lower->name);
8285                }
8286        }
8287}
8288
8289static netdev_features_t netdev_fix_features(struct net_device *dev,
8290        netdev_features_t features)
8291{
8292        /* Fix illegal checksum combinations */
8293        if ((features & NETIF_F_HW_CSUM) &&
8294            (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
8295                netdev_warn(dev, "mixed HW and IP checksum settings.\n");
8296                features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
8297        }
8298
8299        /* TSO requires that SG is present as well. */
8300        if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
8301                netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
8302                features &= ~NETIF_F_ALL_TSO;
8303        }
8304
8305        if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
8306                                        !(features & NETIF_F_IP_CSUM)) {
8307                netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
8308                features &= ~NETIF_F_TSO;
8309                features &= ~NETIF_F_TSO_ECN;
8310        }
8311
8312        if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
8313                                         !(features & NETIF_F_IPV6_CSUM)) {
8314                netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
8315                features &= ~NETIF_F_TSO6;
8316        }
8317
8318        /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
8319        if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
8320                features &= ~NETIF_F_TSO_MANGLEID;
8321
8322        /* TSO ECN requires that TSO is present as well. */
8323        if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
8324                features &= ~NETIF_F_TSO_ECN;
8325
8326        /* Software GSO depends on SG. */
8327        if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
8328                netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
8329                features &= ~NETIF_F_GSO;
8330        }
8331
8332        /* GSO partial features require GSO partial be set */
8333        if ((features & dev->gso_partial_features) &&
8334            !(features & NETIF_F_GSO_PARTIAL)) {
8335                netdev_dbg(dev,
8336                           "Dropping partially supported GSO features since no GSO partial.\n");
8337                features &= ~dev->gso_partial_features;
8338        }
8339
8340        if (!(features & NETIF_F_RXCSUM)) {
8341                /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
8342                 * successfully merged by hardware must also have the
8343                 * checksum verified by hardware.  If the user does not
8344                 * want to enable RXCSUM, logically, we should disable GRO_HW.
8345                 */
8346                if (features & NETIF_F_GRO_HW) {
8347                        netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
8348                        features &= ~NETIF_F_GRO_HW;
8349                }
8350        }
8351
8352        /* LRO/HW-GRO features cannot be combined with RX-FCS */
8353        if (features & NETIF_F_RXFCS) {
8354                if (features & NETIF_F_LRO) {
8355                        netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
8356                        features &= ~NETIF_F_LRO;
8357                }
8358
8359                if (features & NETIF_F_GRO_HW) {
8360                        netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
8361                        features &= ~NETIF_F_GRO_HW;
8362                }
8363        }
8364
8365        return features;
8366}
8367
8368int __netdev_update_features(struct net_device *dev)
8369{
8370        struct net_device *upper, *lower;
8371        netdev_features_t features;
8372        struct list_head *iter;
8373        int err = -1;
8374
8375        ASSERT_RTNL();
8376
8377        features = netdev_get_wanted_features(dev);
8378
8379        if (dev->netdev_ops->ndo_fix_features)
8380                features = dev->netdev_ops->ndo_fix_features(dev, features);
8381
8382        /* driver might be less strict about feature dependencies */
8383        features = netdev_fix_features(dev, features);
8384
8385        /* some features can't be enabled if they're off an an upper device */
8386        netdev_for_each_upper_dev_rcu(dev, upper, iter)
8387                features = netdev_sync_upper_features(dev, upper, features);
8388
8389        if (dev->features == features)
8390                goto sync_lower;
8391
8392        netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
8393                &dev->features, &features);
8394
8395        if (dev->netdev_ops->ndo_set_features)
8396                err = dev->netdev_ops->ndo_set_features(dev, features);
8397        else
8398                err = 0;
8399
8400        if (unlikely(err < 0)) {
8401                netdev_err(dev,
8402                        "set_features() failed (%d); wanted %pNF, left %pNF\n",
8403                        err, &features, &dev->features);
8404                /* return non-0 since some features might have changed and
8405                 * it's better to fire a spurious notification than miss it
8406                 */
8407                return -1;
8408        }
8409
8410sync_lower:
8411        /* some features must be disabled on lower devices when disabled
8412         * on an upper device (think: bonding master or bridge)
8413         */
8414        netdev_for_each_lower_dev(dev, lower, iter)
8415                netdev_sync_lower_features(dev, lower, features);
8416
8417        if (!err) {
8418                netdev_features_t diff = features ^ dev->features;
8419
8420                if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
8421                        /* udp_tunnel_{get,drop}_rx_info both need
8422                         * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
8423                         * device, or they won't do anything.
8424                         * Thus we need to update dev->features
8425                         * *before* calling udp_tunnel_get_rx_info,
8426                         * but *after* calling udp_tunnel_drop_rx_info.
8427                         */
8428                        if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
8429                                dev->features = features;
8430                                udp_tunnel_get_rx_info(dev);
8431                        } else {
8432                                udp_tunnel_drop_rx_info(dev);
8433                        }
8434                }
8435
8436                if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
8437                        if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
8438                                dev->features = features;
8439                                err |= vlan_get_rx_ctag_filter_info(dev);
8440                        } else {
8441                                vlan_drop_rx_ctag_filter_info(dev);
8442                        }
8443                }
8444
8445                if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
8446                        if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
8447                                dev->features = features;
8448                                err |= vlan_get_rx_stag_filter_info(dev);
8449                        } else {
8450                                vlan_drop_rx_stag_filter_info(dev);
8451                        }
8452                }
8453
8454                dev->features = features;
8455        }
8456
8457        return err < 0 ? 0 : 1;
8458}
8459
8460/**
8461 *      netdev_update_features - recalculate device features
8462 *      @dev: the device to check
8463 *
8464 *      Recalculate dev->features set and send notifications if it
8465 *      has changed. Should be called after driver or hardware dependent
8466 *      conditions might have changed that influence the features.
8467 */
8468void netdev_update_features(struct net_device *dev)
8469{
8470        if (__netdev_update_features(dev))
8471                netdev_features_change(dev);
8472}
8473EXPORT_SYMBOL(netdev_update_features);
8474
8475/**
8476 *      netdev_change_features - recalculate device features
8477 *      @dev: the device to check
8478 *
8479 *      Recalculate dev->features set and send notifications even
8480 *      if they have not changed. Should be called instead of
8481 *      netdev_update_features() if also dev->vlan_features might
8482 *      have changed to allow the changes to be propagated to stacked
8483 *      VLAN devices.
8484 */
8485void netdev_change_features(struct net_device *dev)
8486{
8487        __netdev_update_features(dev);
8488        netdev_features_change(dev);
8489}
8490EXPORT_SYMBOL(netdev_change_features);
8491
8492/**
8493 *      netif_stacked_transfer_operstate -      transfer operstate
8494 *      @rootdev: the root or lower level device to transfer state from
8495 *      @dev: the device to transfer operstate to
8496 *
8497 *      Transfer operational state from root to device. This is normally
8498 *      called when a stacking relationship exists between the root
8499 *      device and the device(a leaf device).
8500 */
8501void netif_stacked_transfer_operstate(const struct net_device *rootdev,
8502                                        struct net_device *dev)
8503{
8504        if (rootdev->operstate == IF_OPER_DORMANT)
8505                netif_dormant_on(dev);
8506        else
8507                netif_dormant_off(dev);
8508
8509        if (netif_carrier_ok(rootdev))
8510                netif_carrier_on(dev);
8511        else
8512                netif_carrier_off(dev);
8513}
8514EXPORT_SYMBOL(netif_stacked_transfer_operstate);
8515
8516static int netif_alloc_rx_queues(struct net_device *dev)
8517{
8518        unsigned int i, count = dev->num_rx_queues;
8519        struct netdev_rx_queue *rx;
8520        size_t sz = count * sizeof(*rx);
8521        int err = 0;
8522
8523        BUG_ON(count < 1);
8524
8525        rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8526        if (!rx)
8527                return -ENOMEM;
8528
8529        dev->_rx = rx;
8530
8531        for (i = 0; i < count; i++) {
8532                rx[i].dev = dev;
8533
8534                /* XDP RX-queue setup */
8535                err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i);
8536                if (err < 0)
8537                        goto err_rxq_info;
8538        }
8539        return 0;
8540
8541err_rxq_info:
8542        /* Rollback successful reg's and free other resources */
8543        while (i--)
8544                xdp_rxq_info_unreg(&rx[i].xdp_rxq);
8545        kvfree(dev->_rx);
8546        dev->_rx = NULL;
8547        return err;
8548}
8549
8550static void netif_free_rx_queues(struct net_device *dev)
8551{
8552        unsigned int i, count = dev->num_rx_queues;
8553
8554        /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
8555        if (!dev->_rx)
8556                return;
8557
8558        for (i = 0; i < count; i++)
8559                xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
8560
8561        kvfree(dev->_rx);
8562}
8563
8564static void netdev_init_one_queue(struct net_device *dev,
8565                                  struct netdev_queue *queue, void *_unused)
8566{
8567        /* Initialize queue lock */
8568        spin_lock_init(&queue->_xmit_lock);
8569        netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
8570        queue->xmit_lock_owner = -1;
8571        netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
8572        queue->dev = dev;
8573#ifdef CONFIG_BQL
8574        dql_init(&queue->dql, HZ);
8575#endif
8576}
8577
8578static void netif_free_tx_queues(struct net_device *dev)
8579{
8580        kvfree(dev->_tx);
8581}
8582
8583static int netif_alloc_netdev_queues(struct net_device *dev)
8584{
8585        unsigned int count = dev->num_tx_queues;
8586        struct netdev_queue *tx;
8587        size_t sz = count * sizeof(*tx);
8588
8589        if (count < 1 || count > 0xffff)
8590                return -EINVAL;
8591
8592        tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
8593        if (!tx)
8594                return -ENOMEM;
8595
8596        dev->_tx = tx;
8597
8598        netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
8599        spin_lock_init(&dev->tx_global_lock);
8600
8601        return 0;
8602}
8603
8604void netif_tx_stop_all_queues(struct net_device *dev)
8605{
8606        unsigned int i;
8607
8608        for (i = 0; i < dev->num_tx_queues; i++) {
8609                struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
8610
8611                netif_tx_stop_queue(txq);
8612        }
8613}
8614EXPORT_SYMBOL(netif_tx_stop_all_queues);
8615
8616/**
8617 *      register_netdevice      - register a network device
8618 *      @dev: device to register
8619 *
8620 *      Take a completed network device structure and add it to the kernel
8621 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8622 *      chain. 0 is returned on success. A negative errno code is returned
8623 *      on a failure to set up the device, or if the name is a duplicate.
8624 *
8625 *      Callers must hold the rtnl semaphore. You may want
8626 *      register_netdev() instead of this.
8627 *
8628 *      BUGS:
8629 *      The locking appears insufficient to guarantee two parallel registers
8630 *      will not get the same name.
8631 */
8632
8633int register_netdevice(struct net_device *dev)
8634{
8635        int ret;
8636        struct net *net = dev_net(dev);
8637
8638        BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
8639                     NETDEV_FEATURE_COUNT);
8640        BUG_ON(dev_boot_phase);
8641        ASSERT_RTNL();
8642
8643        might_sleep();
8644
8645        /* When net_device's are persistent, this will be fatal. */
8646        BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
8647        BUG_ON(!net);
8648
8649        spin_lock_init(&dev->addr_list_lock);
8650        netdev_set_addr_lockdep_class(dev);
8651
8652        ret = dev_get_valid_name(net, dev, dev->name);
8653        if (ret < 0)
8654                goto out;
8655
8656        /* Init, if this function is available */
8657        if (dev->netdev_ops->ndo_init) {
8658                ret = dev->netdev_ops->ndo_init(dev);
8659                if (ret) {
8660                        if (ret > 0)
8661                                ret = -EIO;
8662                        goto out;
8663                }
8664        }
8665
8666        if (((dev->hw_features | dev->features) &
8667             NETIF_F_HW_VLAN_CTAG_FILTER) &&
8668            (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
8669             !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
8670                netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
8671                ret = -EINVAL;
8672                goto err_uninit;
8673        }
8674
8675        ret = -EBUSY;
8676        if (!dev->ifindex)
8677                dev->ifindex = dev_new_index(net);
8678        else if (__dev_get_by_index(net, dev->ifindex))
8679                goto err_uninit;
8680
8681        /* Transfer changeable features to wanted_features and enable
8682         * software offloads (GSO and GRO).
8683         */
8684        dev->hw_features |= NETIF_F_SOFT_FEATURES;
8685        dev->features |= NETIF_F_SOFT_FEATURES;
8686
8687        if (dev->netdev_ops->ndo_udp_tunnel_add) {
8688                dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8689                dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
8690        }
8691
8692        dev->wanted_features = dev->features & dev->hw_features;
8693
8694        if (!(dev->flags & IFF_LOOPBACK))
8695                dev->hw_features |= NETIF_F_NOCACHE_COPY;
8696
8697        /* If IPv4 TCP segmentation offload is supported we should also
8698         * allow the device to enable segmenting the frame with the option
8699         * of ignoring a static IP ID value.  This doesn't enable the
8700         * feature itself but allows the user to enable it later.
8701         */
8702        if (dev->hw_features & NETIF_F_TSO)
8703                dev->hw_features |= NETIF_F_TSO_MANGLEID;
8704        if (dev->vlan_features & NETIF_F_TSO)
8705                dev->vlan_features |= NETIF_F_TSO_MANGLEID;
8706        if (dev->mpls_features & NETIF_F_TSO)
8707                dev->mpls_features |= NETIF_F_TSO_MANGLEID;
8708        if (dev->hw_enc_features & NETIF_F_TSO)
8709                dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
8710
8711        /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
8712         */
8713        dev->vlan_features |= NETIF_F_HIGHDMA;
8714
8715        /* Make NETIF_F_SG inheritable to tunnel devices.
8716         */
8717        dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
8718
8719        /* Make NETIF_F_SG inheritable to MPLS.
8720         */
8721        dev->mpls_features |= NETIF_F_SG;
8722
8723        ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
8724        ret = notifier_to_errno(ret);
8725        if (ret)
8726                goto err_uninit;
8727
8728        ret = netdev_register_kobject(dev);
8729        if (ret)
8730                goto err_uninit;
8731        dev->reg_state = NETREG_REGISTERED;
8732
8733        __netdev_update_features(dev);
8734
8735        /*
8736         *      Default initial state at registry is that the
8737         *      device is present.
8738         */
8739
8740        set_bit(__LINK_STATE_PRESENT, &dev->state);
8741
8742        linkwatch_init_dev(dev);
8743
8744        dev_init_scheduler(dev);
8745        dev_hold(dev);
8746        list_netdevice(dev);
8747        add_device_randomness(dev->dev_addr, dev->addr_len);
8748
8749        /* If the device has permanent device address, driver should
8750         * set dev_addr and also addr_assign_type should be set to
8751         * NET_ADDR_PERM (default value).
8752         */
8753        if (dev->addr_assign_type == NET_ADDR_PERM)
8754                memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
8755
8756        /* Notify protocols, that a new device appeared. */
8757        ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
8758        ret = notifier_to_errno(ret);
8759        if (ret) {
8760                rollback_registered(dev);
8761                rcu_barrier();
8762
8763                dev->reg_state = NETREG_UNREGISTERED;
8764        }
8765        /*
8766         *      Prevent userspace races by waiting until the network
8767         *      device is fully setup before sending notifications.
8768         */
8769        if (!dev->rtnl_link_ops ||
8770            dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
8771                rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
8772
8773out:
8774        return ret;
8775
8776err_uninit:
8777        if (dev->netdev_ops->ndo_uninit)
8778                dev->netdev_ops->ndo_uninit(dev);
8779        if (dev->priv_destructor)
8780                dev->priv_destructor(dev);
8781        goto out;
8782}
8783EXPORT_SYMBOL(register_netdevice);
8784
8785/**
8786 *      init_dummy_netdev       - init a dummy network device for NAPI
8787 *      @dev: device to init
8788 *
8789 *      This takes a network device structure and initialize the minimum
8790 *      amount of fields so it can be used to schedule NAPI polls without
8791 *      registering a full blown interface. This is to be used by drivers
8792 *      that need to tie several hardware interfaces to a single NAPI
8793 *      poll scheduler due to HW limitations.
8794 */
8795int init_dummy_netdev(struct net_device *dev)
8796{
8797        /* Clear everything. Note we don't initialize spinlocks
8798         * are they aren't supposed to be taken by any of the
8799         * NAPI code and this dummy netdev is supposed to be
8800         * only ever used for NAPI polls
8801         */
8802        memset(dev, 0, sizeof(struct net_device));
8803
8804        /* make sure we BUG if trying to hit standard
8805         * register/unregister code path
8806         */
8807        dev->reg_state = NETREG_DUMMY;
8808
8809        /* NAPI wants this */
8810        INIT_LIST_HEAD(&dev->napi_list);
8811
8812        /* a dummy interface is started by default */
8813        set_bit(__LINK_STATE_PRESENT, &dev->state);
8814        set_bit(__LINK_STATE_START, &dev->state);
8815
8816        /* napi_busy_loop stats accounting wants this */
8817        dev_net_set(dev, &init_net);
8818
8819        /* Note : We dont allocate pcpu_refcnt for dummy devices,
8820         * because users of this 'device' dont need to change
8821         * its refcount.
8822         */
8823
8824        return 0;
8825}
8826EXPORT_SYMBOL_GPL(init_dummy_netdev);
8827
8828
8829/**
8830 *      register_netdev - register a network device
8831 *      @dev: device to register
8832 *
8833 *      Take a completed network device structure and add it to the kernel
8834 *      interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
8835 *      chain. 0 is returned on success. A negative errno code is returned
8836 *      on a failure to set up the device, or if the name is a duplicate.
8837 *
8838 *      This is a wrapper around register_netdevice that takes the rtnl semaphore
8839 *      and expands the device name if you passed a format string to
8840 *      alloc_netdev.
8841 */
8842int register_netdev(struct net_device *dev)
8843{
8844        int err;
8845
8846        if (rtnl_lock_killable())
8847                return -EINTR;
8848        err = register_netdevice(dev);
8849        rtnl_unlock();
8850        return err;
8851}
8852EXPORT_SYMBOL(register_netdev);
8853
8854int netdev_refcnt_read(const struct net_device *dev)
8855{
8856        int i, refcnt = 0;
8857
8858        for_each_possible_cpu(i)
8859                refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
8860        return refcnt;
8861}
8862EXPORT_SYMBOL(netdev_refcnt_read);
8863
8864/**
8865 * netdev_wait_allrefs - wait until all references are gone.
8866 * @dev: target net_device
8867 *
8868 * This is called when unregistering network devices.
8869 *
8870 * Any protocol or device that holds a reference should register
8871 * for netdevice notification, and cleanup and put back the
8872 * reference if they receive an UNREGISTER event.
8873 * We can get stuck here if buggy protocols don't correctly
8874 * call dev_put.
8875 */
8876static void netdev_wait_allrefs(struct net_device *dev)
8877{
8878        unsigned long rebroadcast_time, warning_time;
8879        int refcnt;
8880
8881        linkwatch_forget_dev(dev);
8882
8883        rebroadcast_time = warning_time = jiffies;
8884        refcnt = netdev_refcnt_read(dev);
8885
8886        while (refcnt != 0) {
8887                if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
8888                        rtnl_lock();
8889
8890                        /* Rebroadcast unregister notification */
8891                        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
8892
8893                        __rtnl_unlock();
8894                        rcu_barrier();
8895                        rtnl_lock();
8896
8897                        if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
8898                                     &dev->state)) {
8899                                /* We must not have linkwatch events
8900                                 * pending on unregister. If this
8901                                 * happens, we simply run the queue
8902                                 * unscheduled, resulting in a noop
8903                                 * for this device.
8904                                 */
8905                                linkwatch_run_queue();
8906                        }
8907
8908                        __rtnl_unlock();
8909
8910                        rebroadcast_time = jiffies;
8911                }
8912
8913                msleep(250);
8914
8915                refcnt = netdev_refcnt_read(dev);
8916
8917                if (refcnt && time_after(jiffies, warning_time + 10 * HZ)) {
8918                        pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
8919                                 dev->name, refcnt);
8920                        warning_time = jiffies;
8921                }
8922        }
8923}
8924
8925/* The sequence is:
8926 *
8927 *      rtnl_lock();
8928 *      ...
8929 *      register_netdevice(x1);
8930 *      register_netdevice(x2);
8931 *      ...
8932 *      unregister_netdevice(y1);
8933 *      unregister_netdevice(y2);
8934 *      ...
8935 *      rtnl_unlock();
8936 *      free_netdev(y1);
8937 *      free_netdev(y2);
8938 *
8939 * We are invoked by rtnl_unlock().
8940 * This allows us to deal with problems:
8941 * 1) We can delete sysfs objects which invoke hotplug
8942 *    without deadlocking with linkwatch via keventd.
8943 * 2) Since we run with the RTNL semaphore not held, we can sleep
8944 *    safely in order to wait for the netdev refcnt to drop to zero.
8945 *
8946 * We must not return until all unregister events added during
8947 * the interval the lock was held have been completed.
8948 */
8949void netdev_run_todo(void)
8950{
8951        struct list_head list;
8952
8953        /* Snapshot list, allow later requests */
8954        list_replace_init(&net_todo_list, &list);
8955
8956        __rtnl_unlock();
8957
8958
8959        /* Wait for rcu callbacks to finish before next phase */
8960        if (!list_empty(&list))
8961                rcu_barrier();
8962
8963        while (!list_empty(&list)) {
8964                struct net_device *dev
8965                        = list_first_entry(&list, struct net_device, todo_list);
8966                list_del(&dev->todo_list);
8967
8968                if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
8969                        pr_err("network todo '%s' but state %d\n",
8970                               dev->name, dev->reg_state);
8971                        dump_stack();
8972                        continue;
8973                }
8974
8975                dev->reg_state = NETREG_UNREGISTERED;
8976
8977                netdev_wait_allrefs(dev);
8978
8979                /* paranoia */
8980                BUG_ON(netdev_refcnt_read(dev));
8981                BUG_ON(!list_empty(&dev->ptype_all));
8982                BUG_ON(!list_empty(&dev->ptype_specific));
8983                WARN_ON(rcu_access_pointer(dev->ip_ptr));
8984                WARN_ON(rcu_access_pointer(dev->ip6_ptr));
8985#if IS_ENABLED(CONFIG_DECNET)
8986                WARN_ON(dev->dn_ptr);
8987#endif
8988                if (dev->priv_destructor)
8989                        dev->priv_destructor(dev);
8990                if (dev->needs_free_netdev)
8991                        free_netdev(dev);
8992
8993                /* Report a network device has been unregistered */
8994                rtnl_lock();
8995                dev_net(dev)->dev_unreg_count--;
8996                __rtnl_unlock();
8997                wake_up(&netdev_unregistering_wq);
8998
8999                /* Free network device */
9000                kobject_put(&dev->dev.kobj);
9001        }
9002}
9003
9004/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
9005 * all the same fields in the same order as net_device_stats, with only
9006 * the type differing, but rtnl_link_stats64 may have additional fields
9007 * at the end for newer counters.
9008 */
9009void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
9010                             const struct net_device_stats *netdev_stats)
9011{
9012#if BITS_PER_LONG == 64
9013        BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
9014        memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
9015        /* zero out counters that only exist in rtnl_link_stats64 */
9016        memset((char *)stats64 + sizeof(*netdev_stats), 0,
9017               sizeof(*stats64) - sizeof(*netdev_stats));
9018#else
9019        size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
9020        const unsigned long *src = (const unsigned long *)netdev_stats;
9021        u64 *dst = (u64 *)stats64;
9022
9023        BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
9024        for (i = 0; i < n; i++)
9025                dst[i] = src[i];
9026        /* zero out counters that only exist in rtnl_link_stats64 */
9027        memset((char *)stats64 + n * sizeof(u64), 0,
9028               sizeof(*stats64) - n * sizeof(u64));
9029#endif
9030}
9031EXPORT_SYMBOL(netdev_stats_to_stats64);
9032
9033/**
9034 *      dev_get_stats   - get network device statistics
9035 *      @dev: device to get statistics from
9036 *      @storage: place to store stats
9037 *
9038 *      Get network statistics from device. Return @storage.
9039 *      The device driver may provide its own method by setting
9040 *      dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
9041 *      otherwise the internal statistics structure is used.
9042 */
9043struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
9044                                        struct rtnl_link_stats64 *storage)
9045{
9046        const struct net_device_ops *ops = dev->netdev_ops;
9047
9048        if (ops->ndo_get_stats64) {
9049                memset(storage, 0, sizeof(*storage));
9050                ops->ndo_get_stats64(dev, storage);
9051        } else if (ops->ndo_get_stats) {
9052                netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
9053        } else {
9054                netdev_stats_to_stats64(storage, &dev->stats);
9055        }
9056        storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
9057        storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
9058        storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
9059        return storage;
9060}
9061EXPORT_SYMBOL(dev_get_stats);
9062
9063struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
9064{
9065        struct netdev_queue *queue = dev_ingress_queue(dev);
9066
9067#ifdef CONFIG_NET_CLS_ACT
9068        if (queue)
9069                return queue;
9070        queue = kzalloc(sizeof(*queue), GFP_KERNEL);
9071        if (!queue)
9072                return NULL;
9073        netdev_init_one_queue(dev, queue, NULL);
9074        RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
9075        queue->qdisc_sleeping = &noop_qdisc;
9076        rcu_assign_pointer(dev->ingress_queue, queue);
9077#endif
9078        return queue;
9079}
9080
9081static const struct ethtool_ops default_ethtool_ops;
9082
9083void netdev_set_default_ethtool_ops(struct net_device *dev,
9084                                    const struct ethtool_ops *ops)
9085{
9086        if (dev->ethtool_ops == &default_ethtool_ops)
9087                dev->ethtool_ops = ops;
9088}
9089EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
9090
9091void netdev_freemem(struct net_device *dev)
9092{
9093        char *addr = (char *)dev - dev->padded;
9094
9095        kvfree(addr);
9096}
9097
9098/**
9099 * alloc_netdev_mqs - allocate network device
9100 * @sizeof_priv: size of private data to allocate space for
9101 * @name: device name format string
9102 * @name_assign_type: origin of device name
9103 * @setup: callback to initialize device
9104 * @txqs: the number of TX subqueues to allocate
9105 * @rxqs: the number of RX subqueues to allocate
9106 *
9107 * Allocates a struct net_device with private data area for driver use
9108 * and performs basic initialization.  Also allocates subqueue structs
9109 * for each queue on the device.
9110 */
9111struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
9112                unsigned char name_assign_type,
9113                void (*setup)(struct net_device *),
9114                unsigned int txqs, unsigned int rxqs)
9115{
9116        struct net_device *dev;
9117        unsigned int alloc_size;
9118        struct net_device *p;
9119
9120        BUG_ON(strlen(name) >= sizeof(dev->name));
9121
9122        if (txqs < 1) {
9123                pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
9124                return NULL;
9125        }
9126
9127        if (rxqs < 1) {
9128                pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
9129                return NULL;
9130        }
9131
9132        alloc_size = sizeof(struct net_device);
9133        if (sizeof_priv) {
9134                /* ensure 32-byte alignment of private area */
9135                alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
9136                alloc_size += sizeof_priv;
9137        }
9138        /* ensure 32-byte alignment of whole construct */
9139        alloc_size += NETDEV_ALIGN - 1;
9140
9141        p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
9142        if (!p)
9143                return NULL;
9144
9145        dev = PTR_ALIGN(p, NETDEV_ALIGN);
9146        dev->padded = (char *)dev - (char *)p;
9147
9148        dev->pcpu_refcnt = alloc_percpu(int);
9149        if (!dev->pcpu_refcnt)
9150                goto free_dev;
9151
9152        if (dev_addr_init(dev))
9153                goto free_pcpu;
9154
9155        dev_mc_init(dev);
9156        dev_uc_init(dev);
9157
9158        dev_net_set(dev, &init_net);
9159
9160        dev->gso_max_size = GSO_MAX_SIZE;
9161        dev->gso_max_segs = GSO_MAX_SEGS;
9162
9163        INIT_LIST_HEAD(&dev->napi_list);
9164        INIT_LIST_HEAD(&dev->unreg_list);
9165        INIT_LIST_HEAD(&dev->close_list);
9166        INIT_LIST_HEAD(&dev->link_watch_list);
9167        INIT_LIST_HEAD(&dev->adj_list.upper);
9168        INIT_LIST_HEAD(&dev->adj_list.lower);
9169        INIT_LIST_HEAD(&dev->ptype_all);
9170        INIT_LIST_HEAD(&dev->ptype_specific);
9171#ifdef CONFIG_NET_SCHED
9172        hash_init(dev->qdisc_hash);
9173#endif
9174        dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
9175        setup(dev);
9176
9177        if (!dev->tx_queue_len) {
9178                dev->priv_flags |= IFF_NO_QUEUE;
9179                dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
9180        }
9181
9182        dev->num_tx_queues = txqs;
9183        dev->real_num_tx_queues = txqs;
9184        if (netif_alloc_netdev_queues(dev))
9185                goto free_all;
9186
9187        dev->num_rx_queues = rxqs;
9188        dev->real_num_rx_queues = rxqs;
9189        if (netif_alloc_rx_queues(dev))
9190                goto free_all;
9191
9192        strcpy(dev->name, name);
9193        dev->name_assign_type = name_assign_type;
9194        dev->group = INIT_NETDEV_GROUP;
9195        if (!dev->ethtool_ops)
9196                dev->ethtool_ops = &default_ethtool_ops;
9197
9198        nf_hook_ingress_init(dev);
9199
9200        return dev;
9201
9202free_all:
9203        free_netdev(dev);
9204        return NULL;
9205
9206free_pcpu:
9207        free_percpu(dev->pcpu_refcnt);
9208free_dev:
9209        netdev_freemem(dev);
9210        return NULL;
9211}
9212EXPORT_SYMBOL(alloc_netdev_mqs);
9213
9214/**
9215 * free_netdev - free network device
9216 * @dev: device
9217 *
9218 * This function does the last stage of destroying an allocated device
9219 * interface. The reference to the device object is released. If this
9220 * is the last reference then it will be freed.Must be called in process
9221 * context.
9222 */
9223void free_netdev(struct net_device *dev)
9224{
9225        struct napi_struct *p, *n;
9226
9227        might_sleep();
9228        netif_free_tx_queues(dev);
9229        netif_free_rx_queues(dev);
9230
9231        kfree(rcu_dereference_protected(dev->ingress_queue, 1));
9232
9233        /* Flush device addresses */
9234        dev_addr_flush(dev);
9235
9236        list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
9237                netif_napi_del(p);
9238
9239        free_percpu(dev->pcpu_refcnt);
9240        dev->pcpu_refcnt = NULL;
9241
9242        /*  Compatibility with error handling in drivers */
9243        if (dev->reg_state == NETREG_UNINITIALIZED) {
9244                netdev_freemem(dev);
9245                return;
9246        }
9247
9248        BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
9249        dev->reg_state = NETREG_RELEASED;
9250
9251        /* will free via device release */
9252        put_device(&dev->dev);
9253}
9254EXPORT_SYMBOL(free_netdev);
9255
9256/**
9257 *      synchronize_net -  Synchronize with packet receive processing
9258 *
9259 *      Wait for packets currently being received to be done.
9260 *      Does not block later packets from starting.
9261 */
9262void synchronize_net(void)
9263{
9264        might_sleep();
9265        if (rtnl_is_locked())
9266                synchronize_rcu_expedited();
9267        else
9268                synchronize_rcu();
9269}
9270EXPORT_SYMBOL(synchronize_net);
9271
9272/**
9273 *      unregister_netdevice_queue - remove device from the kernel
9274 *      @dev: device
9275 *      @head: list
9276 *
9277 *      This function shuts down a device interface and removes it
9278 *      from the kernel tables.
9279 *      If head not NULL, device is queued to be unregistered later.
9280 *
9281 *      Callers must hold the rtnl semaphore.  You may want
9282 *      unregister_netdev() instead of this.
9283 */
9284
9285void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
9286{
9287        ASSERT_RTNL();
9288
9289        if (head) {
9290                list_move_tail(&dev->unreg_list, head);
9291        } else {
9292                rollback_registered(dev);
9293                /* Finish processing unregister after unlock */
9294                net_set_todo(dev);
9295        }
9296}
9297EXPORT_SYMBOL(unregister_netdevice_queue);
9298
9299/**
9300 *      unregister_netdevice_many - unregister many devices
9301 *      @head: list of devices
9302 *
9303 *  Note: As most callers use a stack allocated list_head,
9304 *  we force a list_del() to make sure stack wont be corrupted later.
9305 */
9306void unregister_netdevice_many(struct list_head *head)
9307{
9308        struct net_device *dev;
9309
9310        if (!list_empty(head)) {
9311                rollback_registered_many(head);
9312                list_for_each_entry(dev, head, unreg_list)
9313                        net_set_todo(dev);
9314                list_del(head);
9315        }
9316}
9317EXPORT_SYMBOL(unregister_netdevice_many);
9318
9319/**
9320 *      unregister_netdev - remove device from the kernel
9321 *      @dev: device
9322 *
9323 *      This function shuts down a device interface and removes it
9324 *      from the kernel tables.
9325 *
9326 *      This is just a wrapper for unregister_netdevice that takes
9327 *      the rtnl semaphore.  In general you want to use this and not
9328 *      unregister_netdevice.
9329 */
9330void unregister_netdev(struct net_device *dev)
9331{
9332        rtnl_lock();
9333        unregister_netdevice(dev);
9334        rtnl_unlock();
9335}
9336EXPORT_SYMBOL(unregister_netdev);
9337
9338/**
9339 *      dev_change_net_namespace - move device to different nethost namespace
9340 *      @dev: device
9341 *      @net: network namespace
9342 *      @pat: If not NULL name pattern to try if the current device name
9343 *            is already taken in the destination network namespace.
9344 *
9345 *      This function shuts down a device interface and moves it
9346 *      to a new network namespace. On success 0 is returned, on
9347 *      a failure a netagive errno code is returned.
9348 *
9349 *      Callers must hold the rtnl semaphore.
9350 */
9351
9352int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
9353{
9354        int err, new_nsid, new_ifindex;
9355
9356        ASSERT_RTNL();
9357
9358        /* Don't allow namespace local devices to be moved. */
9359        err = -EINVAL;
9360        if (dev->features & NETIF_F_NETNS_LOCAL)
9361                goto out;
9362
9363        /* Ensure the device has been registrered */
9364        if (dev->reg_state != NETREG_REGISTERED)
9365                goto out;
9366
9367        /* Get out if there is nothing todo */
9368        err = 0;
9369        if (net_eq(dev_net(dev), net))
9370                goto out;
9371
9372        /* Pick the destination device name, and ensure
9373         * we can use it in the destination network namespace.
9374         */
9375        err = -EEXIST;
9376        if (__dev_get_by_name(net, dev->name)) {
9377                /* We get here if we can't use the current device name */
9378                if (!pat)
9379                        goto out;
9380                err = dev_get_valid_name(net, dev, pat);
9381                if (err < 0)
9382                        goto out;
9383        }
9384
9385        /*
9386         * And now a mini version of register_netdevice unregister_netdevice.
9387         */
9388
9389        /* If device is running close it first. */
9390        dev_close(dev);
9391
9392        /* And unlink it from device chain */
9393        unlist_netdevice(dev);
9394
9395        synchronize_net();
9396
9397        /* Shutdown queueing discipline. */
9398        dev_shutdown(dev);
9399
9400        /* Notify protocols, that we are about to destroy
9401         * this device. They should clean all the things.
9402         *
9403         * Note that dev->reg_state stays at NETREG_REGISTERED.
9404         * This is wanted because this way 8021q and macvlan know
9405         * the device is just moving and can keep their slaves up.
9406         */
9407        call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
9408        rcu_barrier();
9409
9410        new_nsid = peernet2id_alloc(dev_net(dev), net);
9411        /* If there is an ifindex conflict assign a new one */
9412        if (__dev_get_by_index(net, dev->ifindex))
9413                new_ifindex = dev_new_index(net);
9414        else
9415                new_ifindex = dev->ifindex;
9416
9417        rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
9418                            new_ifindex);
9419
9420        /*
9421         *      Flush the unicast and multicast chains
9422         */
9423        dev_uc_flush(dev);
9424        dev_mc_flush(dev);
9425
9426        /* Send a netdev-removed uevent to the old namespace */
9427        kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
9428        netdev_adjacent_del_links(dev);
9429
9430        /* Actually switch the network namespace */
9431        dev_net_set(dev, net);
9432        dev->ifindex = new_ifindex;
9433
9434        /* Send a netdev-add uevent to the new namespace */
9435        kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
9436        netdev_adjacent_add_links(dev);
9437
9438        /* Fixup kobjects */
9439        err = device_rename(&dev->dev, dev->name);
9440        WARN_ON(err);
9441
9442        /* Add the device back in the hashes */
9443        list_netdevice(dev);
9444
9445        /* Notify protocols, that a new device appeared. */
9446        call_netdevice_notifiers(NETDEV_REGISTER, dev);
9447
9448        /*
9449         *      Prevent userspace races by waiting until the network
9450         *      device is fully setup before sending notifications.
9451         */
9452        rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
9453
9454        synchronize_net();
9455        err = 0;
9456out:
9457        return err;
9458}
9459EXPORT_SYMBOL_GPL(dev_change_net_namespace);
9460
9461static int dev_cpu_dead(unsigned int oldcpu)
9462{
9463        struct sk_buff **list_skb;
9464        struct sk_buff *skb;
9465        unsigned int cpu;
9466        struct softnet_data *sd, *oldsd, *remsd = NULL;
9467
9468        local_irq_disable();
9469        cpu = smp_processor_id();
9470        sd = &per_cpu(softnet_data, cpu);
9471        oldsd = &per_cpu(softnet_data, oldcpu);
9472
9473        /* Find end of our completion_queue. */
9474        list_skb = &sd->completion_queue;
9475        while (*list_skb)
9476                list_skb = &(*list_skb)->next;
9477        /* Append completion queue from offline CPU. */
9478        *list_skb = oldsd->completion_queue;
9479        oldsd->completion_queue = NULL;
9480
9481        /* Append output queue from offline CPU. */
9482        if (oldsd->output_queue) {
9483                *sd->output_queue_tailp = oldsd->output_queue;
9484                sd->output_queue_tailp = oldsd->output_queue_tailp;
9485                oldsd->output_queue = NULL;
9486                oldsd->output_queue_tailp = &oldsd->output_queue;
9487        }
9488        /* Append NAPI poll list from offline CPU, with one exception :
9489         * process_backlog() must be called by cpu owning percpu backlog.
9490         * We properly handle process_queue & input_pkt_queue later.
9491         */
9492        while (!list_empty(&oldsd->poll_list)) {
9493                struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
9494                                                            struct napi_struct,
9495                                                            poll_list);
9496
9497                list_del_init(&napi->poll_list);
9498                if (napi->poll == process_backlog)
9499                        napi->state = 0;
9500                else
9501                        ____napi_schedule(sd, napi);
9502        }
9503
9504        raise_softirq_irqoff(NET_TX_SOFTIRQ);
9505        local_irq_enable();
9506
9507#ifdef CONFIG_RPS
9508        remsd = oldsd->rps_ipi_list;
9509        oldsd->rps_ipi_list = NULL;
9510#endif
9511        /* send out pending IPI's on offline CPU */
9512        net_rps_send_ipi(remsd);
9513
9514        /* Process offline CPU's input_pkt_queue */
9515        while ((skb = __skb_dequeue(&oldsd->process_queue))) {
9516                netif_rx_ni(skb);
9517                input_queue_head_incr(oldsd);
9518        }
9519        while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
9520                netif_rx_ni(skb);
9521                input_queue_head_incr(oldsd);
9522        }
9523
9524        return 0;
9525}
9526
9527/**
9528 *      netdev_increment_features - increment feature set by one
9529 *      @all: current feature set
9530 *      @one: new feature set
9531 *      @mask: mask feature set
9532 *
9533 *      Computes a new feature set after adding a device with feature set
9534 *      @one to the master device with current feature set @all.  Will not
9535 *      enable anything that is off in @mask. Returns the new feature set.
9536 */
9537netdev_features_t netdev_increment_features(netdev_features_t all,
9538        netdev_features_t one, netdev_features_t mask)
9539{
9540        if (mask & NETIF_F_HW_CSUM)
9541                mask |= NETIF_F_CSUM_MASK;
9542        mask |= NETIF_F_VLAN_CHALLENGED;
9543
9544        all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
9545        all &= one | ~NETIF_F_ALL_FOR_ALL;
9546
9547        /* If one device supports hw checksumming, set for all. */
9548        if (all & NETIF_F_HW_CSUM)
9549                all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
9550
9551        return all;
9552}
9553EXPORT_SYMBOL(netdev_increment_features);
9554
9555static struct hlist_head * __net_init netdev_create_hash(void)
9556{
9557        int i;
9558        struct hlist_head *hash;
9559
9560        hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
9561        if (hash != NULL)
9562                for (i = 0; i < NETDEV_HASHENTRIES; i++)
9563                        INIT_HLIST_HEAD(&hash[i]);
9564
9565        return hash;
9566}
9567
9568/* Initialize per network namespace state */
9569static int __net_init netdev_init(struct net *net)
9570{
9571        BUILD_BUG_ON(GRO_HASH_BUCKETS >
9572                     8 * FIELD_SIZEOF(struct napi_struct, gro_bitmask));
9573
9574        if (net != &init_net)
9575                INIT_LIST_HEAD(&net->dev_base_head);
9576
9577        net->dev_name_head = netdev_create_hash();
9578        if (net->dev_name_head == NULL)
9579                goto err_name;
9580
9581        net->dev_index_head = netdev_create_hash();
9582        if (net->dev_index_head == NULL)
9583                goto err_idx;
9584
9585        return 0;
9586
9587err_idx:
9588        kfree(net->dev_name_head);
9589err_name:
9590        return -ENOMEM;
9591}
9592
9593/**
9594 *      netdev_drivername - network driver for the device
9595 *      @dev: network device
9596 *
9597 *      Determine network driver for device.
9598 */
9599const char *netdev_drivername(const struct net_device *dev)
9600{
9601        const struct device_driver *driver;
9602        const struct device *parent;
9603        const char *empty = "";
9604
9605        parent = dev->dev.parent;
9606        if (!parent)
9607                return empty;
9608
9609        driver = parent->driver;
9610        if (driver && driver->name)
9611                return driver->name;
9612        return empty;
9613}
9614
9615static void __netdev_printk(const char *level, const struct net_device *dev,
9616                            struct va_format *vaf)
9617{
9618        if (dev && dev->dev.parent) {
9619                dev_printk_emit(level[1] - '0',
9620                                dev->dev.parent,
9621                                "%s %s %s%s: %pV",
9622                                dev_driver_string(dev->dev.parent),
9623                                dev_name(dev->dev.parent),
9624                                netdev_name(dev), netdev_reg_state(dev),
9625                                vaf);
9626        } else if (dev) {
9627                printk("%s%s%s: %pV",
9628                       level, netdev_name(dev), netdev_reg_state(dev), vaf);
9629        } else {
9630                printk("%s(NULL net_device): %pV", level, vaf);
9631        }
9632}
9633
9634void netdev_printk(const char *level, const struct net_device *dev,
9635                   const char *format, ...)
9636{
9637        struct va_format vaf;
9638        va_list args;
9639
9640        va_start(args, format);
9641
9642        vaf.fmt = format;
9643        vaf.va = &args;
9644
9645        __netdev_printk(level, dev, &vaf);
9646
9647        va_end(args);
9648}
9649EXPORT_SYMBOL(netdev_printk);
9650
9651#define define_netdev_printk_level(func, level)                 \
9652void func(const struct net_device *dev, const char *fmt, ...)   \
9653{                                                               \
9654        struct va_format vaf;                                   \
9655        va_list args;                                           \
9656                                                                \
9657        va_start(args, fmt);                                    \
9658                                                                \
9659        vaf.fmt = fmt;                                          \
9660        vaf.va = &args;                                         \
9661                                                                \
9662        __netdev_printk(level, dev, &vaf);                      \
9663                                                                \
9664        va_end(args);                                           \
9665}                                                               \
9666EXPORT_SYMBOL(func);
9667
9668define_netdev_printk_level(netdev_emerg, KERN_EMERG);
9669define_netdev_printk_level(netdev_alert, KERN_ALERT);
9670define_netdev_printk_level(netdev_crit, KERN_CRIT);
9671define_netdev_printk_level(netdev_err, KERN_ERR);
9672define_netdev_printk_level(netdev_warn, KERN_WARNING);
9673define_netdev_printk_level(netdev_notice, KERN_NOTICE);
9674define_netdev_printk_level(netdev_info, KERN_INFO);
9675
9676static void __net_exit netdev_exit(struct net *net)
9677{
9678        kfree(net->dev_name_head);
9679        kfree(net->dev_index_head);
9680        if (net != &init_net)
9681                WARN_ON_ONCE(!list_empty(&net->dev_base_head));
9682}
9683
9684static struct pernet_operations __net_initdata netdev_net_ops = {
9685        .init = netdev_init,
9686        .exit = netdev_exit,
9687};
9688
9689static void __net_exit default_device_exit(struct net *net)
9690{
9691        struct net_device *dev, *aux;
9692        /*
9693         * Push all migratable network devices back to the
9694         * initial network namespace
9695         */
9696        rtnl_lock();
9697        for_each_netdev_safe(net, dev, aux) {
9698                int err;
9699                char fb_name[IFNAMSIZ];
9700
9701                /* Ignore unmoveable devices (i.e. loopback) */
9702                if (dev->features & NETIF_F_NETNS_LOCAL)
9703                        continue;
9704
9705                /* Leave virtual devices for the generic cleanup */
9706                if (dev->rtnl_link_ops)
9707                        continue;
9708
9709                /* Push remaining network devices to init_net */
9710                snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
9711                if (__dev_get_by_name(&init_net, fb_name))
9712                        snprintf(fb_name, IFNAMSIZ, "dev%%d");
9713                err = dev_change_net_namespace(dev, &init_net, fb_name);
9714                if (err) {
9715                        pr_emerg("%s: failed to move %s to init_net: %d\n",
9716                                 __func__, dev->name, err);
9717                        BUG();
9718                }
9719        }
9720        rtnl_unlock();
9721}
9722
9723static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
9724{
9725        /* Return with the rtnl_lock held when there are no network
9726         * devices unregistering in any network namespace in net_list.
9727         */
9728        struct net *net;
9729        bool unregistering;
9730        DEFINE_WAIT_FUNC(wait, woken_wake_function);
9731
9732        add_wait_queue(&netdev_unregistering_wq, &wait);
9733        for (;;) {
9734                unregistering = false;
9735                rtnl_lock();
9736                list_for_each_entry(net, net_list, exit_list) {
9737                        if (net->dev_unreg_count > 0) {
9738                                unregistering = true;
9739                                break;
9740                        }
9741                }
9742                if (!unregistering)
9743                        break;
9744                __rtnl_unlock();
9745
9746                wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
9747        }
9748        remove_wait_queue(&netdev_unregistering_wq, &wait);
9749}
9750
9751static void __net_exit default_device_exit_batch(struct list_head *net_list)
9752{
9753        /* At exit all network devices most be removed from a network
9754         * namespace.  Do this in the reverse order of registration.
9755         * Do this across as many network namespaces as possible to
9756         * improve batching efficiency.
9757         */
9758        struct net_device *dev;
9759        struct net *net;
9760        LIST_HEAD(dev_kill_list);
9761
9762        /* To prevent network device cleanup code from dereferencing
9763         * loopback devices or network devices that have been freed
9764         * wait here for all pending unregistrations to complete,
9765         * before unregistring the loopback device and allowing the
9766         * network namespace be freed.
9767         *
9768         * The netdev todo list containing all network devices
9769         * unregistrations that happen in default_device_exit_batch
9770         * will run in the rtnl_unlock() at the end of
9771         * default_device_exit_batch.
9772         */
9773        rtnl_lock_unregistering(net_list);
9774        list_for_each_entry(net, net_list, exit_list) {
9775                for_each_netdev_reverse(net, dev) {
9776                        if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
9777                                dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
9778                        else
9779                                unregister_netdevice_queue(dev, &dev_kill_list);
9780                }
9781        }
9782        unregister_netdevice_many(&dev_kill_list);
9783        rtnl_unlock();
9784}
9785
9786static struct pernet_operations __net_initdata default_device_ops = {
9787        .exit = default_device_exit,
9788        .exit_batch = default_device_exit_batch,
9789};
9790
9791/*
9792 *      Initialize the DEV module. At boot time this walks the device list and
9793 *      unhooks any devices that fail to initialise (normally hardware not
9794 *      present) and leaves us with a valid list of present and active devices.
9795 *
9796 */
9797
9798/*
9799 *       This is called single threaded during boot, so no need
9800 *       to take the rtnl semaphore.
9801 */
9802static int __init net_dev_init(void)
9803{
9804        int i, rc = -ENOMEM;
9805
9806        BUG_ON(!dev_boot_phase);
9807
9808        if (dev_proc_init())
9809                goto out;
9810
9811        if (netdev_kobject_init())
9812                goto out;
9813
9814        INIT_LIST_HEAD(&ptype_all);
9815        for (i = 0; i < PTYPE_HASH_SIZE; i++)
9816                INIT_LIST_HEAD(&ptype_base[i]);
9817
9818        INIT_LIST_HEAD(&offload_base);
9819
9820        if (register_pernet_subsys(&netdev_net_ops))
9821                goto out;
9822
9823        /*
9824         *      Initialise the packet receive queues.
9825         */
9826
9827        for_each_possible_cpu(i) {
9828                struct work_struct *flush = per_cpu_ptr(&flush_works, i);
9829                struct softnet_data *sd = &per_cpu(softnet_data, i);
9830
9831                INIT_WORK(flush, flush_backlog);
9832
9833                skb_queue_head_init(&sd->input_pkt_queue);
9834                skb_queue_head_init(&sd->process_queue);
9835#ifdef CONFIG_XFRM_OFFLOAD
9836                skb_queue_head_init(&sd->xfrm_backlog);
9837#endif
9838                INIT_LIST_HEAD(&sd->poll_list);
9839                sd->output_queue_tailp = &sd->output_queue;
9840#ifdef CONFIG_RPS
9841                sd->csd.func = rps_trigger_softirq;
9842                sd->csd.info = sd;
9843                sd->cpu = i;
9844#endif
9845
9846                init_gro_hash(&sd->backlog);
9847                sd->backlog.poll = process_backlog;
9848                sd->backlog.weight = weight_p;
9849        }
9850
9851        dev_boot_phase = 0;
9852
9853        /* The loopback device is special if any other network devices
9854         * is present in a network namespace the loopback device must
9855         * be present. Since we now dynamically allocate and free the
9856         * loopback device ensure this invariant is maintained by
9857         * keeping the loopback device as the first device on the
9858         * list of network devices.  Ensuring the loopback devices
9859         * is the first device that appears and the last network device
9860         * that disappears.
9861         */
9862        if (register_pernet_device(&loopback_net_ops))
9863                goto out;
9864
9865        if (register_pernet_device(&default_device_ops))
9866                goto out;
9867
9868        open_softirq(NET_TX_SOFTIRQ, net_tx_action);
9869        open_softirq(NET_RX_SOFTIRQ, net_rx_action);
9870
9871        rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
9872                                       NULL, dev_cpu_dead);
9873        WARN_ON(rc < 0);
9874        rc = 0;
9875out:
9876        return rc;
9877}
9878
9879subsys_initcall(net_dev_init);
9880