linux/net/ipv4/arp.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* linux/net/ipv4/arp.c
   3 *
   4 * Copyright (C) 1994 by Florian  La Roche
   5 *
   6 * This module implements the Address Resolution Protocol ARP (RFC 826),
   7 * which is used to convert IP addresses (or in the future maybe other
   8 * high-level addresses) into a low-level hardware address (like an Ethernet
   9 * address).
  10 *
  11 * Fixes:
  12 *              Alan Cox        :       Removed the Ethernet assumptions in
  13 *                                      Florian's code
  14 *              Alan Cox        :       Fixed some small errors in the ARP
  15 *                                      logic
  16 *              Alan Cox        :       Allow >4K in /proc
  17 *              Alan Cox        :       Make ARP add its own protocol entry
  18 *              Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  19 *              Stephen Henson  :       Add AX25 support to arp_get_info()
  20 *              Alan Cox        :       Drop data when a device is downed.
  21 *              Alan Cox        :       Use init_timer().
  22 *              Alan Cox        :       Double lock fixes.
  23 *              Martin Seine    :       Move the arphdr structure
  24 *                                      to if_arp.h for compatibility.
  25 *                                      with BSD based programs.
  26 *              Andrew Tridgell :       Added ARP netmask code and
  27 *                                      re-arranged proxy handling.
  28 *              Alan Cox        :       Changed to use notifiers.
  29 *              Niibe Yutaka    :       Reply for this device or proxies only.
  30 *              Alan Cox        :       Don't proxy across hardware types!
  31 *              Jonathan Naylor :       Added support for NET/ROM.
  32 *              Mike Shaver     :       RFC1122 checks.
  33 *              Jonathan Naylor :       Only lookup the hardware address for
  34 *                                      the correct hardware type.
  35 *              Germano Caronni :       Assorted subtle races.
  36 *              Craig Schlenter :       Don't modify permanent entry
  37 *                                      during arp_rcv.
  38 *              Russ Nelson     :       Tidied up a few bits.
  39 *              Alexey Kuznetsov:       Major changes to caching and behaviour,
  40 *                                      eg intelligent arp probing and
  41 *                                      generation
  42 *                                      of host down events.
  43 *              Alan Cox        :       Missing unlock in device events.
  44 *              Eckes           :       ARP ioctl control errors.
  45 *              Alexey Kuznetsov:       Arp free fix.
  46 *              Manuel Rodriguez:       Gratuitous ARP.
  47 *              Jonathan Layes  :       Added arpd support through kerneld
  48 *                                      message queue (960314)
  49 *              Mike Shaver     :       /proc/sys/net/ipv4/arp_* support
  50 *              Mike McLagan    :       Routing by source
  51 *              Stuart Cheshire :       Metricom and grat arp fixes
  52 *                                      *** FOR 2.1 clean this up ***
  53 *              Lawrence V. Stefani: (08/12/96) Added FDDI support.
  54 *              Alan Cox        :       Took the AP1000 nasty FDDI hack and
  55 *                                      folded into the mainstream FDDI code.
  56 *                                      Ack spit, Linus how did you allow that
  57 *                                      one in...
  58 *              Jes Sorensen    :       Make FDDI work again in 2.1.x and
  59 *                                      clean up the APFDDI & gen. FDDI bits.
  60 *              Alexey Kuznetsov:       new arp state machine;
  61 *                                      now it is in net/core/neighbour.c.
  62 *              Krzysztof Halasa:       Added Frame Relay ARP support.
  63 *              Arnaldo C. Melo :       convert /proc/net/arp to seq_file
  64 *              Shmulik Hen:            Split arp_send to arp_create and
  65 *                                      arp_xmit so intermediate drivers like
  66 *                                      bonding can change the skb before
  67 *                                      sending (e.g. insert 8021q tag).
  68 *              Harald Welte    :       convert to make use of jenkins hash
  69 *              Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  70 */
  71
  72#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  73
  74#include <linux/module.h>
  75#include <linux/types.h>
  76#include <linux/string.h>
  77#include <linux/kernel.h>
  78#include <linux/capability.h>
  79#include <linux/socket.h>
  80#include <linux/sockios.h>
  81#include <linux/errno.h>
  82#include <linux/in.h>
  83#include <linux/mm.h>
  84#include <linux/inet.h>
  85#include <linux/inetdevice.h>
  86#include <linux/netdevice.h>
  87#include <linux/etherdevice.h>
  88#include <linux/fddidevice.h>
  89#include <linux/if_arp.h>
  90#include <linux/skbuff.h>
  91#include <linux/proc_fs.h>
  92#include <linux/seq_file.h>
  93#include <linux/stat.h>
  94#include <linux/init.h>
  95#include <linux/net.h>
  96#include <linux/rcupdate.h>
  97#include <linux/slab.h>
  98#ifdef CONFIG_SYSCTL
  99#include <linux/sysctl.h>
 100#endif
 101
 102#include <net/net_namespace.h>
 103#include <net/ip.h>
 104#include <net/icmp.h>
 105#include <net/route.h>
 106#include <net/protocol.h>
 107#include <net/tcp.h>
 108#include <net/sock.h>
 109#include <net/arp.h>
 110#include <net/ax25.h>
 111#include <net/netrom.h>
 112#include <net/dst_metadata.h>
 113#include <net/ip_tunnels.h>
 114
 115#include <linux/uaccess.h>
 116
 117#include <linux/netfilter_arp.h>
 118
 119/*
 120 *      Interface to generic neighbour cache.
 121 */
 122static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 123static bool arp_key_eq(const struct neighbour *n, const void *pkey);
 124static int arp_constructor(struct neighbour *neigh);
 125static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 126static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 127static void parp_redo(struct sk_buff *skb);
 128
 129static const struct neigh_ops arp_generic_ops = {
 130        .family =               AF_INET,
 131        .solicit =              arp_solicit,
 132        .error_report =         arp_error_report,
 133        .output =               neigh_resolve_output,
 134        .connected_output =     neigh_connected_output,
 135};
 136
 137static const struct neigh_ops arp_hh_ops = {
 138        .family =               AF_INET,
 139        .solicit =              arp_solicit,
 140        .error_report =         arp_error_report,
 141        .output =               neigh_resolve_output,
 142        .connected_output =     neigh_resolve_output,
 143};
 144
 145static const struct neigh_ops arp_direct_ops = {
 146        .family =               AF_INET,
 147        .output =               neigh_direct_output,
 148        .connected_output =     neigh_direct_output,
 149};
 150
 151struct neigh_table arp_tbl = {
 152        .family         = AF_INET,
 153        .key_len        = 4,
 154        .protocol       = cpu_to_be16(ETH_P_IP),
 155        .hash           = arp_hash,
 156        .key_eq         = arp_key_eq,
 157        .constructor    = arp_constructor,
 158        .proxy_redo     = parp_redo,
 159        .id             = "arp_cache",
 160        .parms          = {
 161                .tbl                    = &arp_tbl,
 162                .reachable_time         = 30 * HZ,
 163                .data   = {
 164                        [NEIGH_VAR_MCAST_PROBES] = 3,
 165                        [NEIGH_VAR_UCAST_PROBES] = 3,
 166                        [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 167                        [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 168                        [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 169                        [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 170                        [NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
 171                        [NEIGH_VAR_PROXY_QLEN] = 64,
 172                        [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 173                        [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10,
 174                        [NEIGH_VAR_LOCKTIME] = 1 * HZ,
 175                },
 176        },
 177        .gc_interval    = 30 * HZ,
 178        .gc_thresh1     = 128,
 179        .gc_thresh2     = 512,
 180        .gc_thresh3     = 1024,
 181};
 182EXPORT_SYMBOL(arp_tbl);
 183
 184int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 185{
 186        switch (dev->type) {
 187        case ARPHRD_ETHER:
 188        case ARPHRD_FDDI:
 189        case ARPHRD_IEEE802:
 190                ip_eth_mc_map(addr, haddr);
 191                return 0;
 192        case ARPHRD_INFINIBAND:
 193                ip_ib_mc_map(addr, dev->broadcast, haddr);
 194                return 0;
 195        case ARPHRD_IPGRE:
 196                ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 197                return 0;
 198        default:
 199                if (dir) {
 200                        memcpy(haddr, dev->broadcast, dev->addr_len);
 201                        return 0;
 202                }
 203        }
 204        return -EINVAL;
 205}
 206
 207
 208static u32 arp_hash(const void *pkey,
 209                    const struct net_device *dev,
 210                    __u32 *hash_rnd)
 211{
 212        return arp_hashfn(pkey, dev, hash_rnd);
 213}
 214
 215static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
 216{
 217        return neigh_key_eq32(neigh, pkey);
 218}
 219
 220static int arp_constructor(struct neighbour *neigh)
 221{
 222        __be32 addr;
 223        struct net_device *dev = neigh->dev;
 224        struct in_device *in_dev;
 225        struct neigh_parms *parms;
 226        u32 inaddr_any = INADDR_ANY;
 227
 228        if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
 229                memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
 230
 231        addr = *(__be32 *)neigh->primary_key;
 232        rcu_read_lock();
 233        in_dev = __in_dev_get_rcu(dev);
 234        if (!in_dev) {
 235                rcu_read_unlock();
 236                return -EINVAL;
 237        }
 238
 239        neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
 240
 241        parms = in_dev->arp_parms;
 242        __neigh_parms_put(neigh->parms);
 243        neigh->parms = neigh_parms_clone(parms);
 244        rcu_read_unlock();
 245
 246        if (!dev->header_ops) {
 247                neigh->nud_state = NUD_NOARP;
 248                neigh->ops = &arp_direct_ops;
 249                neigh->output = neigh_direct_output;
 250        } else {
 251                /* Good devices (checked by reading texts, but only Ethernet is
 252                   tested)
 253
 254                   ARPHRD_ETHER: (ethernet, apfddi)
 255                   ARPHRD_FDDI: (fddi)
 256                   ARPHRD_IEEE802: (tr)
 257                   ARPHRD_METRICOM: (strip)
 258                   ARPHRD_ARCNET:
 259                   etc. etc. etc.
 260
 261                   ARPHRD_IPDDP will also work, if author repairs it.
 262                   I did not it, because this driver does not work even
 263                   in old paradigm.
 264                 */
 265
 266                if (neigh->type == RTN_MULTICAST) {
 267                        neigh->nud_state = NUD_NOARP;
 268                        arp_mc_map(addr, neigh->ha, dev, 1);
 269                } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 270                        neigh->nud_state = NUD_NOARP;
 271                        memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 272                } else if (neigh->type == RTN_BROADCAST ||
 273                           (dev->flags & IFF_POINTOPOINT)) {
 274                        neigh->nud_state = NUD_NOARP;
 275                        memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 276                }
 277
 278                if (dev->header_ops->cache)
 279                        neigh->ops = &arp_hh_ops;
 280                else
 281                        neigh->ops = &arp_generic_ops;
 282
 283                if (neigh->nud_state & NUD_VALID)
 284                        neigh->output = neigh->ops->connected_output;
 285                else
 286                        neigh->output = neigh->ops->output;
 287        }
 288        return 0;
 289}
 290
 291static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 292{
 293        dst_link_failure(skb);
 294        kfree_skb(skb);
 295}
 296
 297/* Create and send an arp packet. */
 298static void arp_send_dst(int type, int ptype, __be32 dest_ip,
 299                         struct net_device *dev, __be32 src_ip,
 300                         const unsigned char *dest_hw,
 301                         const unsigned char *src_hw,
 302                         const unsigned char *target_hw,
 303                         struct dst_entry *dst)
 304{
 305        struct sk_buff *skb;
 306
 307        /* arp on this interface. */
 308        if (dev->flags & IFF_NOARP)
 309                return;
 310
 311        skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 312                         dest_hw, src_hw, target_hw);
 313        if (!skb)
 314                return;
 315
 316        skb_dst_set(skb, dst_clone(dst));
 317        arp_xmit(skb);
 318}
 319
 320void arp_send(int type, int ptype, __be32 dest_ip,
 321              struct net_device *dev, __be32 src_ip,
 322              const unsigned char *dest_hw, const unsigned char *src_hw,
 323              const unsigned char *target_hw)
 324{
 325        arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
 326                     target_hw, NULL);
 327}
 328EXPORT_SYMBOL(arp_send);
 329
 330static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 331{
 332        __be32 saddr = 0;
 333        u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 334        struct net_device *dev = neigh->dev;
 335        __be32 target = *(__be32 *)neigh->primary_key;
 336        int probes = atomic_read(&neigh->probes);
 337        struct in_device *in_dev;
 338        struct dst_entry *dst = NULL;
 339
 340        rcu_read_lock();
 341        in_dev = __in_dev_get_rcu(dev);
 342        if (!in_dev) {
 343                rcu_read_unlock();
 344                return;
 345        }
 346        switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 347        default:
 348        case 0:         /* By default announce any local IP */
 349                if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
 350                                          ip_hdr(skb)->saddr) == RTN_LOCAL)
 351                        saddr = ip_hdr(skb)->saddr;
 352                break;
 353        case 1:         /* Restrict announcements of saddr in same subnet */
 354                if (!skb)
 355                        break;
 356                saddr = ip_hdr(skb)->saddr;
 357                if (inet_addr_type_dev_table(dev_net(dev), dev,
 358                                             saddr) == RTN_LOCAL) {
 359                        /* saddr should be known to target */
 360                        if (inet_addr_onlink(in_dev, target, saddr))
 361                                break;
 362                }
 363                saddr = 0;
 364                break;
 365        case 2:         /* Avoid secondary IPs, get a primary/preferred one */
 366                break;
 367        }
 368        rcu_read_unlock();
 369
 370        if (!saddr)
 371                saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 372
 373        probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 374        if (probes < 0) {
 375                if (!(neigh->nud_state & NUD_VALID))
 376                        pr_debug("trying to ucast probe in NUD_INVALID\n");
 377                neigh_ha_snapshot(dst_ha, neigh, dev);
 378                dst_hw = dst_ha;
 379        } else {
 380                probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 381                if (probes < 0) {
 382                        neigh_app_ns(neigh);
 383                        return;
 384                }
 385        }
 386
 387        if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
 388                dst = skb_dst(skb);
 389        arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 390                     dst_hw, dev->dev_addr, NULL, dst);
 391}
 392
 393static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 394{
 395        struct net *net = dev_net(in_dev->dev);
 396        int scope;
 397
 398        switch (IN_DEV_ARP_IGNORE(in_dev)) {
 399        case 0: /* Reply, the tip is already validated */
 400                return 0;
 401        case 1: /* Reply only if tip is configured on the incoming interface */
 402                sip = 0;
 403                scope = RT_SCOPE_HOST;
 404                break;
 405        case 2: /*
 406                 * Reply only if tip is configured on the incoming interface
 407                 * and is in same subnet as sip
 408                 */
 409                scope = RT_SCOPE_HOST;
 410                break;
 411        case 3: /* Do not reply for scope host addresses */
 412                sip = 0;
 413                scope = RT_SCOPE_LINK;
 414                in_dev = NULL;
 415                break;
 416        case 4: /* Reserved */
 417        case 5:
 418        case 6:
 419        case 7:
 420                return 0;
 421        case 8: /* Do not reply */
 422                return 1;
 423        default:
 424                return 0;
 425        }
 426        return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 427}
 428
 429static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 430{
 431        struct rtable *rt;
 432        int flag = 0;
 433        /*unsigned long now; */
 434        struct net *net = dev_net(dev);
 435
 436        rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
 437        if (IS_ERR(rt))
 438                return 1;
 439        if (rt->dst.dev != dev) {
 440                __NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
 441                flag = 1;
 442        }
 443        ip_rt_put(rt);
 444        return flag;
 445}
 446
 447/*
 448 * Check if we can use proxy ARP for this path
 449 */
 450static inline int arp_fwd_proxy(struct in_device *in_dev,
 451                                struct net_device *dev, struct rtable *rt)
 452{
 453        struct in_device *out_dev;
 454        int imi, omi = -1;
 455
 456        if (rt->dst.dev == dev)
 457                return 0;
 458
 459        if (!IN_DEV_PROXY_ARP(in_dev))
 460                return 0;
 461        imi = IN_DEV_MEDIUM_ID(in_dev);
 462        if (imi == 0)
 463                return 1;
 464        if (imi == -1)
 465                return 0;
 466
 467        /* place to check for proxy_arp for routes */
 468
 469        out_dev = __in_dev_get_rcu(rt->dst.dev);
 470        if (out_dev)
 471                omi = IN_DEV_MEDIUM_ID(out_dev);
 472
 473        return omi != imi && omi != -1;
 474}
 475
 476/*
 477 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 478 *
 479 * RFC3069 supports proxy arp replies back to the same interface.  This
 480 * is done to support (ethernet) switch features, like RFC 3069, where
 481 * the individual ports are not allowed to communicate with each
 482 * other, BUT they are allowed to talk to the upstream router.  As
 483 * described in RFC 3069, it is possible to allow these hosts to
 484 * communicate through the upstream router, by proxy_arp'ing.
 485 *
 486 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 487 *
 488 *  This technology is known by different names:
 489 *    In RFC 3069 it is called VLAN Aggregation.
 490 *    Cisco and Allied Telesyn call it Private VLAN.
 491 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 492 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 493 *
 494 */
 495static inline int arp_fwd_pvlan(struct in_device *in_dev,
 496                                struct net_device *dev, struct rtable *rt,
 497                                __be32 sip, __be32 tip)
 498{
 499        /* Private VLAN is only concerned about the same ethernet segment */
 500        if (rt->dst.dev != dev)
 501                return 0;
 502
 503        /* Don't reply on self probes (often done by windowz boxes)*/
 504        if (sip == tip)
 505                return 0;
 506
 507        if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 508                return 1;
 509        else
 510                return 0;
 511}
 512
 513/*
 514 *      Interface to link layer: send routine and receive handler.
 515 */
 516
 517/*
 518 *      Create an arp packet. If dest_hw is not set, we create a broadcast
 519 *      message.
 520 */
 521struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 522                           struct net_device *dev, __be32 src_ip,
 523                           const unsigned char *dest_hw,
 524                           const unsigned char *src_hw,
 525                           const unsigned char *target_hw)
 526{
 527        struct sk_buff *skb;
 528        struct arphdr *arp;
 529        unsigned char *arp_ptr;
 530        int hlen = LL_RESERVED_SPACE(dev);
 531        int tlen = dev->needed_tailroom;
 532
 533        /*
 534         *      Allocate a buffer
 535         */
 536
 537        skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 538        if (!skb)
 539                return NULL;
 540
 541        skb_reserve(skb, hlen);
 542        skb_reset_network_header(skb);
 543        arp = skb_put(skb, arp_hdr_len(dev));
 544        skb->dev = dev;
 545        skb->protocol = htons(ETH_P_ARP);
 546        if (!src_hw)
 547                src_hw = dev->dev_addr;
 548        if (!dest_hw)
 549                dest_hw = dev->broadcast;
 550
 551        /*
 552         *      Fill the device header for the ARP frame
 553         */
 554        if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 555                goto out;
 556
 557        /*
 558         * Fill out the arp protocol part.
 559         *
 560         * The arp hardware type should match the device type, except for FDDI,
 561         * which (according to RFC 1390) should always equal 1 (Ethernet).
 562         */
 563        /*
 564         *      Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 565         *      DIX code for the protocol. Make these device structure fields.
 566         */
 567        switch (dev->type) {
 568        default:
 569                arp->ar_hrd = htons(dev->type);
 570                arp->ar_pro = htons(ETH_P_IP);
 571                break;
 572
 573#if IS_ENABLED(CONFIG_AX25)
 574        case ARPHRD_AX25:
 575                arp->ar_hrd = htons(ARPHRD_AX25);
 576                arp->ar_pro = htons(AX25_P_IP);
 577                break;
 578
 579#if IS_ENABLED(CONFIG_NETROM)
 580        case ARPHRD_NETROM:
 581                arp->ar_hrd = htons(ARPHRD_NETROM);
 582                arp->ar_pro = htons(AX25_P_IP);
 583                break;
 584#endif
 585#endif
 586
 587#if IS_ENABLED(CONFIG_FDDI)
 588        case ARPHRD_FDDI:
 589                arp->ar_hrd = htons(ARPHRD_ETHER);
 590                arp->ar_pro = htons(ETH_P_IP);
 591                break;
 592#endif
 593        }
 594
 595        arp->ar_hln = dev->addr_len;
 596        arp->ar_pln = 4;
 597        arp->ar_op = htons(type);
 598
 599        arp_ptr = (unsigned char *)(arp + 1);
 600
 601        memcpy(arp_ptr, src_hw, dev->addr_len);
 602        arp_ptr += dev->addr_len;
 603        memcpy(arp_ptr, &src_ip, 4);
 604        arp_ptr += 4;
 605
 606        switch (dev->type) {
 607#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 608        case ARPHRD_IEEE1394:
 609                break;
 610#endif
 611        default:
 612                if (target_hw)
 613                        memcpy(arp_ptr, target_hw, dev->addr_len);
 614                else
 615                        memset(arp_ptr, 0, dev->addr_len);
 616                arp_ptr += dev->addr_len;
 617        }
 618        memcpy(arp_ptr, &dest_ip, 4);
 619
 620        return skb;
 621
 622out:
 623        kfree_skb(skb);
 624        return NULL;
 625}
 626EXPORT_SYMBOL(arp_create);
 627
 628static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 629{
 630        return dev_queue_xmit(skb);
 631}
 632
 633/*
 634 *      Send an arp packet.
 635 */
 636void arp_xmit(struct sk_buff *skb)
 637{
 638        /* Send it off, maybe filter it using firewalling first.  */
 639        NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
 640                dev_net(skb->dev), NULL, skb, NULL, skb->dev,
 641                arp_xmit_finish);
 642}
 643EXPORT_SYMBOL(arp_xmit);
 644
 645static bool arp_is_garp(struct net *net, struct net_device *dev,
 646                        int *addr_type, __be16 ar_op,
 647                        __be32 sip, __be32 tip,
 648                        unsigned char *sha, unsigned char *tha)
 649{
 650        bool is_garp = tip == sip;
 651
 652        /* Gratuitous ARP _replies_ also require target hwaddr to be
 653         * the same as source.
 654         */
 655        if (is_garp && ar_op == htons(ARPOP_REPLY))
 656                is_garp =
 657                        /* IPv4 over IEEE 1394 doesn't provide target
 658                         * hardware address field in its ARP payload.
 659                         */
 660                        tha &&
 661                        !memcmp(tha, sha, dev->addr_len);
 662
 663        if (is_garp) {
 664                *addr_type = inet_addr_type_dev_table(net, dev, sip);
 665                if (*addr_type != RTN_UNICAST)
 666                        is_garp = false;
 667        }
 668        return is_garp;
 669}
 670
 671/*
 672 *      Process an arp request.
 673 */
 674
 675static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
 676{
 677        struct net_device *dev = skb->dev;
 678        struct in_device *in_dev = __in_dev_get_rcu(dev);
 679        struct arphdr *arp;
 680        unsigned char *arp_ptr;
 681        struct rtable *rt;
 682        unsigned char *sha;
 683        unsigned char *tha = NULL;
 684        __be32 sip, tip;
 685        u16 dev_type = dev->type;
 686        int addr_type;
 687        struct neighbour *n;
 688        struct dst_entry *reply_dst = NULL;
 689        bool is_garp = false;
 690
 691        /* arp_rcv below verifies the ARP header and verifies the device
 692         * is ARP'able.
 693         */
 694
 695        if (!in_dev)
 696                goto out_free_skb;
 697
 698        arp = arp_hdr(skb);
 699
 700        switch (dev_type) {
 701        default:
 702                if (arp->ar_pro != htons(ETH_P_IP) ||
 703                    htons(dev_type) != arp->ar_hrd)
 704                        goto out_free_skb;
 705                break;
 706        case ARPHRD_ETHER:
 707        case ARPHRD_FDDI:
 708        case ARPHRD_IEEE802:
 709                /*
 710                 * ETHERNET, and Fibre Channel (which are IEEE 802
 711                 * devices, according to RFC 2625) devices will accept ARP
 712                 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 713                 * This is the case also of FDDI, where the RFC 1390 says that
 714                 * FDDI devices should accept ARP hardware of (1) Ethernet,
 715                 * however, to be more robust, we'll accept both 1 (Ethernet)
 716                 * or 6 (IEEE 802.2)
 717                 */
 718                if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 719                     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 720                    arp->ar_pro != htons(ETH_P_IP))
 721                        goto out_free_skb;
 722                break;
 723        case ARPHRD_AX25:
 724                if (arp->ar_pro != htons(AX25_P_IP) ||
 725                    arp->ar_hrd != htons(ARPHRD_AX25))
 726                        goto out_free_skb;
 727                break;
 728        case ARPHRD_NETROM:
 729                if (arp->ar_pro != htons(AX25_P_IP) ||
 730                    arp->ar_hrd != htons(ARPHRD_NETROM))
 731                        goto out_free_skb;
 732                break;
 733        }
 734
 735        /* Understand only these message types */
 736
 737        if (arp->ar_op != htons(ARPOP_REPLY) &&
 738            arp->ar_op != htons(ARPOP_REQUEST))
 739                goto out_free_skb;
 740
 741/*
 742 *      Extract fields
 743 */
 744        arp_ptr = (unsigned char *)(arp + 1);
 745        sha     = arp_ptr;
 746        arp_ptr += dev->addr_len;
 747        memcpy(&sip, arp_ptr, 4);
 748        arp_ptr += 4;
 749        switch (dev_type) {
 750#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 751        case ARPHRD_IEEE1394:
 752                break;
 753#endif
 754        default:
 755                tha = arp_ptr;
 756                arp_ptr += dev->addr_len;
 757        }
 758        memcpy(&tip, arp_ptr, 4);
 759/*
 760 *      Check for bad requests for 127.x.x.x and requests for multicast
 761 *      addresses.  If this is one such, delete it.
 762 */
 763        if (ipv4_is_multicast(tip) ||
 764            (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 765                goto out_free_skb;
 766
 767 /*
 768  *     For some 802.11 wireless deployments (and possibly other networks),
 769  *     there will be an ARP proxy and gratuitous ARP frames are attacks
 770  *     and thus should not be accepted.
 771  */
 772        if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
 773                goto out_free_skb;
 774
 775/*
 776 *     Special case: We must set Frame Relay source Q.922 address
 777 */
 778        if (dev_type == ARPHRD_DLCI)
 779                sha = dev->broadcast;
 780
 781/*
 782 *  Process entry.  The idea here is we want to send a reply if it is a
 783 *  request for us or if it is a request for someone else that we hold
 784 *  a proxy for.  We want to add an entry to our cache if it is a reply
 785 *  to us or if it is a request for our address.
 786 *  (The assumption for this last is that if someone is requesting our
 787 *  address, they are probably intending to talk to us, so it saves time
 788 *  if we cache their address.  Their address is also probably not in
 789 *  our cache, since ours is not in their cache.)
 790 *
 791 *  Putting this another way, we only care about replies if they are to
 792 *  us, in which case we add them to the cache.  For requests, we care
 793 *  about those for us and those for our proxies.  We reply to both,
 794 *  and in the case of requests for us we add the requester to the arp
 795 *  cache.
 796 */
 797
 798        if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
 799                reply_dst = (struct dst_entry *)
 800                            iptunnel_metadata_reply(skb_metadata_dst(skb),
 801                                                    GFP_ATOMIC);
 802
 803        /* Special case: IPv4 duplicate address detection packet (RFC2131) */
 804        if (sip == 0) {
 805                if (arp->ar_op == htons(ARPOP_REQUEST) &&
 806                    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
 807                    !arp_ignore(in_dev, sip, tip))
 808                        arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
 809                                     sha, dev->dev_addr, sha, reply_dst);
 810                goto out_consume_skb;
 811        }
 812
 813        if (arp->ar_op == htons(ARPOP_REQUEST) &&
 814            ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 815
 816                rt = skb_rtable(skb);
 817                addr_type = rt->rt_type;
 818
 819                if (addr_type == RTN_LOCAL) {
 820                        int dont_send;
 821
 822                        dont_send = arp_ignore(in_dev, sip, tip);
 823                        if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 824                                dont_send = arp_filter(sip, tip, dev);
 825                        if (!dont_send) {
 826                                n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 827                                if (n) {
 828                                        arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 829                                                     sip, dev, tip, sha,
 830                                                     dev->dev_addr, sha,
 831                                                     reply_dst);
 832                                        neigh_release(n);
 833                                }
 834                        }
 835                        goto out_consume_skb;
 836                } else if (IN_DEV_FORWARD(in_dev)) {
 837                        if (addr_type == RTN_UNICAST  &&
 838                            (arp_fwd_proxy(in_dev, dev, rt) ||
 839                             arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 840                             (rt->dst.dev != dev &&
 841                              pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 842                                n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 843                                if (n)
 844                                        neigh_release(n);
 845
 846                                if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 847                                    skb->pkt_type == PACKET_HOST ||
 848                                    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 849                                        arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 850                                                     sip, dev, tip, sha,
 851                                                     dev->dev_addr, sha,
 852                                                     reply_dst);
 853                                } else {
 854                                        pneigh_enqueue(&arp_tbl,
 855                                                       in_dev->arp_parms, skb);
 856                                        goto out_free_dst;
 857                                }
 858                                goto out_consume_skb;
 859                        }
 860                }
 861        }
 862
 863        /* Update our ARP tables */
 864
 865        n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 866
 867        addr_type = -1;
 868        if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
 869                is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
 870                                      sip, tip, sha, tha);
 871        }
 872
 873        if (IN_DEV_ARP_ACCEPT(in_dev)) {
 874                /* Unsolicited ARP is not accepted by default.
 875                   It is possible, that this option should be enabled for some
 876                   devices (strip is candidate)
 877                 */
 878                if (!n &&
 879                    (is_garp ||
 880                     (arp->ar_op == htons(ARPOP_REPLY) &&
 881                      (addr_type == RTN_UNICAST ||
 882                       (addr_type < 0 &&
 883                        /* postpone calculation to as late as possible */
 884                        inet_addr_type_dev_table(net, dev, sip) ==
 885                                RTN_UNICAST)))))
 886                        n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 887        }
 888
 889        if (n) {
 890                int state = NUD_REACHABLE;
 891                int override;
 892
 893                /* If several different ARP replies follows back-to-back,
 894                   use the FIRST one. It is possible, if several proxy
 895                   agents are active. Taking the first reply prevents
 896                   arp trashing and chooses the fastest router.
 897                 */
 898                override = time_after(jiffies,
 899                                      n->updated +
 900                                      NEIGH_VAR(n->parms, LOCKTIME)) ||
 901                           is_garp;
 902
 903                /* Broadcast replies and request packets
 904                   do not assert neighbour reachability.
 905                 */
 906                if (arp->ar_op != htons(ARPOP_REPLY) ||
 907                    skb->pkt_type != PACKET_HOST)
 908                        state = NUD_STALE;
 909                neigh_update(n, sha, state,
 910                             override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
 911                neigh_release(n);
 912        }
 913
 914out_consume_skb:
 915        consume_skb(skb);
 916
 917out_free_dst:
 918        dst_release(reply_dst);
 919        return NET_RX_SUCCESS;
 920
 921out_free_skb:
 922        kfree_skb(skb);
 923        return NET_RX_DROP;
 924}
 925
 926static void parp_redo(struct sk_buff *skb)
 927{
 928        arp_process(dev_net(skb->dev), NULL, skb);
 929}
 930
 931
 932/*
 933 *      Receive an arp request from the device layer.
 934 */
 935
 936static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 937                   struct packet_type *pt, struct net_device *orig_dev)
 938{
 939        const struct arphdr *arp;
 940
 941        /* do not tweak dropwatch on an ARP we will ignore */
 942        if (dev->flags & IFF_NOARP ||
 943            skb->pkt_type == PACKET_OTHERHOST ||
 944            skb->pkt_type == PACKET_LOOPBACK)
 945                goto consumeskb;
 946
 947        skb = skb_share_check(skb, GFP_ATOMIC);
 948        if (!skb)
 949                goto out_of_mem;
 950
 951        /* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 952        if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 953                goto freeskb;
 954
 955        arp = arp_hdr(skb);
 956        if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 957                goto freeskb;
 958
 959        memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 960
 961        return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
 962                       dev_net(dev), NULL, skb, dev, NULL,
 963                       arp_process);
 964
 965consumeskb:
 966        consume_skb(skb);
 967        return NET_RX_SUCCESS;
 968freeskb:
 969        kfree_skb(skb);
 970out_of_mem:
 971        return NET_RX_DROP;
 972}
 973
 974/*
 975 *      User level interface (ioctl)
 976 */
 977
 978/*
 979 *      Set (create) an ARP cache entry.
 980 */
 981
 982static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 983{
 984        if (!dev) {
 985                IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 986                return 0;
 987        }
 988        if (__in_dev_get_rtnl(dev)) {
 989                IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 990                return 0;
 991        }
 992        return -ENXIO;
 993}
 994
 995static int arp_req_set_public(struct net *net, struct arpreq *r,
 996                struct net_device *dev)
 997{
 998        __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
 999        __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1000
1001        if (mask && mask != htonl(0xFFFFFFFF))
1002                return -EINVAL;
1003        if (!dev && (r->arp_flags & ATF_COM)) {
1004                dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1005                                      r->arp_ha.sa_data);
1006                if (!dev)
1007                        return -ENODEV;
1008        }
1009        if (mask) {
1010                if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1011                        return -ENOBUFS;
1012                return 0;
1013        }
1014
1015        return arp_req_set_proxy(net, dev, 1);
1016}
1017
1018static int arp_req_set(struct net *net, struct arpreq *r,
1019                       struct net_device *dev)
1020{
1021        __be32 ip;
1022        struct neighbour *neigh;
1023        int err;
1024
1025        if (r->arp_flags & ATF_PUBL)
1026                return arp_req_set_public(net, r, dev);
1027
1028        ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1029        if (r->arp_flags & ATF_PERM)
1030                r->arp_flags |= ATF_COM;
1031        if (!dev) {
1032                struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1033
1034                if (IS_ERR(rt))
1035                        return PTR_ERR(rt);
1036                dev = rt->dst.dev;
1037                ip_rt_put(rt);
1038                if (!dev)
1039                        return -EINVAL;
1040        }
1041        switch (dev->type) {
1042#if IS_ENABLED(CONFIG_FDDI)
1043        case ARPHRD_FDDI:
1044                /*
1045                 * According to RFC 1390, FDDI devices should accept ARP
1046                 * hardware types of 1 (Ethernet).  However, to be more
1047                 * robust, we'll accept hardware types of either 1 (Ethernet)
1048                 * or 6 (IEEE 802.2).
1049                 */
1050                if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1051                    r->arp_ha.sa_family != ARPHRD_ETHER &&
1052                    r->arp_ha.sa_family != ARPHRD_IEEE802)
1053                        return -EINVAL;
1054                break;
1055#endif
1056        default:
1057                if (r->arp_ha.sa_family != dev->type)
1058                        return -EINVAL;
1059                break;
1060        }
1061
1062        neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1063        err = PTR_ERR(neigh);
1064        if (!IS_ERR(neigh)) {
1065                unsigned int state = NUD_STALE;
1066                if (r->arp_flags & ATF_PERM)
1067                        state = NUD_PERMANENT;
1068                err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1069                                   r->arp_ha.sa_data : NULL, state,
1070                                   NEIGH_UPDATE_F_OVERRIDE |
1071                                   NEIGH_UPDATE_F_ADMIN, 0);
1072                neigh_release(neigh);
1073        }
1074        return err;
1075}
1076
1077static unsigned int arp_state_to_flags(struct neighbour *neigh)
1078{
1079        if (neigh->nud_state&NUD_PERMANENT)
1080                return ATF_PERM | ATF_COM;
1081        else if (neigh->nud_state&NUD_VALID)
1082                return ATF_COM;
1083        else
1084                return 0;
1085}
1086
1087/*
1088 *      Get an ARP cache entry.
1089 */
1090
1091static int arp_req_get(struct arpreq *r, struct net_device *dev)
1092{
1093        __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1094        struct neighbour *neigh;
1095        int err = -ENXIO;
1096
1097        neigh = neigh_lookup(&arp_tbl, &ip, dev);
1098        if (neigh) {
1099                if (!(neigh->nud_state & NUD_NOARP)) {
1100                        read_lock_bh(&neigh->lock);
1101                        memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1102                        r->arp_flags = arp_state_to_flags(neigh);
1103                        read_unlock_bh(&neigh->lock);
1104                        r->arp_ha.sa_family = dev->type;
1105                        strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1106                        err = 0;
1107                }
1108                neigh_release(neigh);
1109        }
1110        return err;
1111}
1112
1113static int arp_invalidate(struct net_device *dev, __be32 ip)
1114{
1115        struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1116        int err = -ENXIO;
1117        struct neigh_table *tbl = &arp_tbl;
1118
1119        if (neigh) {
1120                if (neigh->nud_state & ~NUD_NOARP)
1121                        err = neigh_update(neigh, NULL, NUD_FAILED,
1122                                           NEIGH_UPDATE_F_OVERRIDE|
1123                                           NEIGH_UPDATE_F_ADMIN, 0);
1124                write_lock_bh(&tbl->lock);
1125                neigh_release(neigh);
1126                neigh_remove_one(neigh, tbl);
1127                write_unlock_bh(&tbl->lock);
1128        }
1129
1130        return err;
1131}
1132
1133static int arp_req_delete_public(struct net *net, struct arpreq *r,
1134                struct net_device *dev)
1135{
1136        __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1137        __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1138
1139        if (mask == htonl(0xFFFFFFFF))
1140                return pneigh_delete(&arp_tbl, net, &ip, dev);
1141
1142        if (mask)
1143                return -EINVAL;
1144
1145        return arp_req_set_proxy(net, dev, 0);
1146}
1147
1148static int arp_req_delete(struct net *net, struct arpreq *r,
1149                          struct net_device *dev)
1150{
1151        __be32 ip;
1152
1153        if (r->arp_flags & ATF_PUBL)
1154                return arp_req_delete_public(net, r, dev);
1155
1156        ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1157        if (!dev) {
1158                struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1159                if (IS_ERR(rt))
1160                        return PTR_ERR(rt);
1161                dev = rt->dst.dev;
1162                ip_rt_put(rt);
1163                if (!dev)
1164                        return -EINVAL;
1165        }
1166        return arp_invalidate(dev, ip);
1167}
1168
1169/*
1170 *      Handle an ARP layer I/O control request.
1171 */
1172
1173int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1174{
1175        int err;
1176        struct arpreq r;
1177        struct net_device *dev = NULL;
1178
1179        switch (cmd) {
1180        case SIOCDARP:
1181        case SIOCSARP:
1182                if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1183                        return -EPERM;
1184                /* fall through */
1185        case SIOCGARP:
1186                err = copy_from_user(&r, arg, sizeof(struct arpreq));
1187                if (err)
1188                        return -EFAULT;
1189                break;
1190        default:
1191                return -EINVAL;
1192        }
1193
1194        if (r.arp_pa.sa_family != AF_INET)
1195                return -EPFNOSUPPORT;
1196
1197        if (!(r.arp_flags & ATF_PUBL) &&
1198            (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1199                return -EINVAL;
1200        if (!(r.arp_flags & ATF_NETMASK))
1201                ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1202                                                           htonl(0xFFFFFFFFUL);
1203        rtnl_lock();
1204        if (r.arp_dev[0]) {
1205                err = -ENODEV;
1206                dev = __dev_get_by_name(net, r.arp_dev);
1207                if (!dev)
1208                        goto out;
1209
1210                /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1211                if (!r.arp_ha.sa_family)
1212                        r.arp_ha.sa_family = dev->type;
1213                err = -EINVAL;
1214                if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1215                        goto out;
1216        } else if (cmd == SIOCGARP) {
1217                err = -ENODEV;
1218                goto out;
1219        }
1220
1221        switch (cmd) {
1222        case SIOCDARP:
1223                err = arp_req_delete(net, &r, dev);
1224                break;
1225        case SIOCSARP:
1226                err = arp_req_set(net, &r, dev);
1227                break;
1228        case SIOCGARP:
1229                err = arp_req_get(&r, dev);
1230                break;
1231        }
1232out:
1233        rtnl_unlock();
1234        if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1235                err = -EFAULT;
1236        return err;
1237}
1238
1239static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1240                            void *ptr)
1241{
1242        struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1243        struct netdev_notifier_change_info *change_info;
1244
1245        switch (event) {
1246        case NETDEV_CHANGEADDR:
1247                neigh_changeaddr(&arp_tbl, dev);
1248                rt_cache_flush(dev_net(dev));
1249                break;
1250        case NETDEV_CHANGE:
1251                change_info = ptr;
1252                if (change_info->flags_changed & IFF_NOARP)
1253                        neigh_changeaddr(&arp_tbl, dev);
1254                if (!netif_carrier_ok(dev))
1255                        neigh_carrier_down(&arp_tbl, dev);
1256                break;
1257        default:
1258                break;
1259        }
1260
1261        return NOTIFY_DONE;
1262}
1263
1264static struct notifier_block arp_netdev_notifier = {
1265        .notifier_call = arp_netdev_event,
1266};
1267
1268/* Note, that it is not on notifier chain.
1269   It is necessary, that this routine was called after route cache will be
1270   flushed.
1271 */
1272void arp_ifdown(struct net_device *dev)
1273{
1274        neigh_ifdown(&arp_tbl, dev);
1275}
1276
1277
1278/*
1279 *      Called once on startup.
1280 */
1281
1282static struct packet_type arp_packet_type __read_mostly = {
1283        .type = cpu_to_be16(ETH_P_ARP),
1284        .func = arp_rcv,
1285};
1286
1287static int arp_proc_init(void);
1288
1289void __init arp_init(void)
1290{
1291        neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1292
1293        dev_add_pack(&arp_packet_type);
1294        arp_proc_init();
1295#ifdef CONFIG_SYSCTL
1296        neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1297#endif
1298        register_netdevice_notifier(&arp_netdev_notifier);
1299}
1300
1301#ifdef CONFIG_PROC_FS
1302#if IS_ENABLED(CONFIG_AX25)
1303
1304/* ------------------------------------------------------------------------ */
1305/*
1306 *      ax25 -> ASCII conversion
1307 */
1308static void ax2asc2(ax25_address *a, char *buf)
1309{
1310        char c, *s;
1311        int n;
1312
1313        for (n = 0, s = buf; n < 6; n++) {
1314                c = (a->ax25_call[n] >> 1) & 0x7F;
1315
1316                if (c != ' ')
1317                        *s++ = c;
1318        }
1319
1320        *s++ = '-';
1321        n = (a->ax25_call[6] >> 1) & 0x0F;
1322        if (n > 9) {
1323                *s++ = '1';
1324                n -= 10;
1325        }
1326
1327        *s++ = n + '0';
1328        *s++ = '\0';
1329
1330        if (*buf == '\0' || *buf == '-') {
1331                buf[0] = '*';
1332                buf[1] = '\0';
1333        }
1334}
1335#endif /* CONFIG_AX25 */
1336
1337#define HBUFFERLEN 30
1338
1339static void arp_format_neigh_entry(struct seq_file *seq,
1340                                   struct neighbour *n)
1341{
1342        char hbuffer[HBUFFERLEN];
1343        int k, j;
1344        char tbuf[16];
1345        struct net_device *dev = n->dev;
1346        int hatype = dev->type;
1347
1348        read_lock(&n->lock);
1349        /* Convert hardware address to XX:XX:XX:XX ... form. */
1350#if IS_ENABLED(CONFIG_AX25)
1351        if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1352                ax2asc2((ax25_address *)n->ha, hbuffer);
1353        else {
1354#endif
1355        for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1356                hbuffer[k++] = hex_asc_hi(n->ha[j]);
1357                hbuffer[k++] = hex_asc_lo(n->ha[j]);
1358                hbuffer[k++] = ':';
1359        }
1360        if (k != 0)
1361                --k;
1362        hbuffer[k] = 0;
1363#if IS_ENABLED(CONFIG_AX25)
1364        }
1365#endif
1366        sprintf(tbuf, "%pI4", n->primary_key);
1367        seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1368                   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1369        read_unlock(&n->lock);
1370}
1371
1372static void arp_format_pneigh_entry(struct seq_file *seq,
1373                                    struct pneigh_entry *n)
1374{
1375        struct net_device *dev = n->dev;
1376        int hatype = dev ? dev->type : 0;
1377        char tbuf[16];
1378
1379        sprintf(tbuf, "%pI4", n->key);
1380        seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1381                   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1382                   dev ? dev->name : "*");
1383}
1384
1385static int arp_seq_show(struct seq_file *seq, void *v)
1386{
1387        if (v == SEQ_START_TOKEN) {
1388                seq_puts(seq, "IP address       HW type     Flags       "
1389                              "HW address            Mask     Device\n");
1390        } else {
1391                struct neigh_seq_state *state = seq->private;
1392
1393                if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1394                        arp_format_pneigh_entry(seq, v);
1395                else
1396                        arp_format_neigh_entry(seq, v);
1397        }
1398
1399        return 0;
1400}
1401
1402static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1403{
1404        /* Don't want to confuse "arp -a" w/ magic entries,
1405         * so we tell the generic iterator to skip NUD_NOARP.
1406         */
1407        return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1408}
1409
1410/* ------------------------------------------------------------------------ */
1411
1412static const struct seq_operations arp_seq_ops = {
1413        .start  = arp_seq_start,
1414        .next   = neigh_seq_next,
1415        .stop   = neigh_seq_stop,
1416        .show   = arp_seq_show,
1417};
1418
1419/* ------------------------------------------------------------------------ */
1420
1421static int __net_init arp_net_init(struct net *net)
1422{
1423        if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1424                        sizeof(struct neigh_seq_state)))
1425                return -ENOMEM;
1426        return 0;
1427}
1428
1429static void __net_exit arp_net_exit(struct net *net)
1430{
1431        remove_proc_entry("arp", net->proc_net);
1432}
1433
1434static struct pernet_operations arp_net_ops = {
1435        .init = arp_net_init,
1436        .exit = arp_net_exit,
1437};
1438
1439static int __init arp_proc_init(void)
1440{
1441        return register_pernet_subsys(&arp_net_ops);
1442}
1443
1444#else /* CONFIG_PROC_FS */
1445
1446static int __init arp_proc_init(void)
1447{
1448        return 0;
1449}
1450
1451#endif /* CONFIG_PROC_FS */
1452