linux/net/ipv4/fib_trie.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *
   4 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
   5 *     & Swedish University of Agricultural Sciences.
   6 *
   7 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
   8 *     Agricultural Sciences.
   9 *
  10 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
  11 *
  12 * This work is based on the LPC-trie which is originally described in:
  13 *
  14 * An experimental study of compression methods for dynamic tries
  15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
  16 * http://www.csc.kth.se/~snilsson/software/dyntrie2/
  17 *
  18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
  19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
  20 *
  21 * Code from fib_hash has been reused which includes the following header:
  22 *
  23 * INET         An implementation of the TCP/IP protocol suite for the LINUX
  24 *              operating system.  INET is implemented using the  BSD Socket
  25 *              interface as the means of communication with the user level.
  26 *
  27 *              IPv4 FIB: lookup engine and maintenance routines.
  28 *
  29 * Authors:     Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
  30 *
  31 * Substantial contributions to this work comes from:
  32 *
  33 *              David S. Miller, <davem@davemloft.net>
  34 *              Stephen Hemminger <shemminger@osdl.org>
  35 *              Paul E. McKenney <paulmck@us.ibm.com>
  36 *              Patrick McHardy <kaber@trash.net>
  37 */
  38
  39#define VERSION "0.409"
  40
  41#include <linux/cache.h>
  42#include <linux/uaccess.h>
  43#include <linux/bitops.h>
  44#include <linux/types.h>
  45#include <linux/kernel.h>
  46#include <linux/mm.h>
  47#include <linux/string.h>
  48#include <linux/socket.h>
  49#include <linux/sockios.h>
  50#include <linux/errno.h>
  51#include <linux/in.h>
  52#include <linux/inet.h>
  53#include <linux/inetdevice.h>
  54#include <linux/netdevice.h>
  55#include <linux/if_arp.h>
  56#include <linux/proc_fs.h>
  57#include <linux/rcupdate.h>
  58#include <linux/skbuff.h>
  59#include <linux/netlink.h>
  60#include <linux/init.h>
  61#include <linux/list.h>
  62#include <linux/slab.h>
  63#include <linux/export.h>
  64#include <linux/vmalloc.h>
  65#include <linux/notifier.h>
  66#include <net/net_namespace.h>
  67#include <net/ip.h>
  68#include <net/protocol.h>
  69#include <net/route.h>
  70#include <net/tcp.h>
  71#include <net/sock.h>
  72#include <net/ip_fib.h>
  73#include <net/fib_notifier.h>
  74#include <trace/events/fib.h>
  75#include "fib_lookup.h"
  76
  77static int call_fib_entry_notifier(struct notifier_block *nb, struct net *net,
  78                                   enum fib_event_type event_type, u32 dst,
  79                                   int dst_len, struct fib_alias *fa)
  80{
  81        struct fib_entry_notifier_info info = {
  82                .dst = dst,
  83                .dst_len = dst_len,
  84                .fi = fa->fa_info,
  85                .tos = fa->fa_tos,
  86                .type = fa->fa_type,
  87                .tb_id = fa->tb_id,
  88        };
  89        return call_fib4_notifier(nb, net, event_type, &info.info);
  90}
  91
  92static int call_fib_entry_notifiers(struct net *net,
  93                                    enum fib_event_type event_type, u32 dst,
  94                                    int dst_len, struct fib_alias *fa,
  95                                    struct netlink_ext_ack *extack)
  96{
  97        struct fib_entry_notifier_info info = {
  98                .info.extack = extack,
  99                .dst = dst,
 100                .dst_len = dst_len,
 101                .fi = fa->fa_info,
 102                .tos = fa->fa_tos,
 103                .type = fa->fa_type,
 104                .tb_id = fa->tb_id,
 105        };
 106        return call_fib4_notifiers(net, event_type, &info.info);
 107}
 108
 109#define MAX_STAT_DEPTH 32
 110
 111#define KEYLENGTH       (8*sizeof(t_key))
 112#define KEY_MAX         ((t_key)~0)
 113
 114typedef unsigned int t_key;
 115
 116#define IS_TRIE(n)      ((n)->pos >= KEYLENGTH)
 117#define IS_TNODE(n)     ((n)->bits)
 118#define IS_LEAF(n)      (!(n)->bits)
 119
 120struct key_vector {
 121        t_key key;
 122        unsigned char pos;              /* 2log(KEYLENGTH) bits needed */
 123        unsigned char bits;             /* 2log(KEYLENGTH) bits needed */
 124        unsigned char slen;
 125        union {
 126                /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
 127                struct hlist_head leaf;
 128                /* This array is valid if (pos | bits) > 0 (TNODE) */
 129                struct key_vector __rcu *tnode[0];
 130        };
 131};
 132
 133struct tnode {
 134        struct rcu_head rcu;
 135        t_key empty_children;           /* KEYLENGTH bits needed */
 136        t_key full_children;            /* KEYLENGTH bits needed */
 137        struct key_vector __rcu *parent;
 138        struct key_vector kv[1];
 139#define tn_bits kv[0].bits
 140};
 141
 142#define TNODE_SIZE(n)   offsetof(struct tnode, kv[0].tnode[n])
 143#define LEAF_SIZE       TNODE_SIZE(1)
 144
 145#ifdef CONFIG_IP_FIB_TRIE_STATS
 146struct trie_use_stats {
 147        unsigned int gets;
 148        unsigned int backtrack;
 149        unsigned int semantic_match_passed;
 150        unsigned int semantic_match_miss;
 151        unsigned int null_node_hit;
 152        unsigned int resize_node_skipped;
 153};
 154#endif
 155
 156struct trie_stat {
 157        unsigned int totdepth;
 158        unsigned int maxdepth;
 159        unsigned int tnodes;
 160        unsigned int leaves;
 161        unsigned int nullpointers;
 162        unsigned int prefixes;
 163        unsigned int nodesizes[MAX_STAT_DEPTH];
 164};
 165
 166struct trie {
 167        struct key_vector kv[1];
 168#ifdef CONFIG_IP_FIB_TRIE_STATS
 169        struct trie_use_stats __percpu *stats;
 170#endif
 171};
 172
 173static struct key_vector *resize(struct trie *t, struct key_vector *tn);
 174static unsigned int tnode_free_size;
 175
 176/*
 177 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
 178 * especially useful before resizing the root node with PREEMPT_NONE configs;
 179 * the value was obtained experimentally, aiming to avoid visible slowdown.
 180 */
 181unsigned int sysctl_fib_sync_mem = 512 * 1024;
 182unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
 183unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
 184
 185static struct kmem_cache *fn_alias_kmem __ro_after_init;
 186static struct kmem_cache *trie_leaf_kmem __ro_after_init;
 187
 188static inline struct tnode *tn_info(struct key_vector *kv)
 189{
 190        return container_of(kv, struct tnode, kv[0]);
 191}
 192
 193/* caller must hold RTNL */
 194#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
 195#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
 196
 197/* caller must hold RCU read lock or RTNL */
 198#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
 199#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
 200
 201/* wrapper for rcu_assign_pointer */
 202static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
 203{
 204        if (n)
 205                rcu_assign_pointer(tn_info(n)->parent, tp);
 206}
 207
 208#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
 209
 210/* This provides us with the number of children in this node, in the case of a
 211 * leaf this will return 0 meaning none of the children are accessible.
 212 */
 213static inline unsigned long child_length(const struct key_vector *tn)
 214{
 215        return (1ul << tn->bits) & ~(1ul);
 216}
 217
 218#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
 219
 220static inline unsigned long get_index(t_key key, struct key_vector *kv)
 221{
 222        unsigned long index = key ^ kv->key;
 223
 224        if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
 225                return 0;
 226
 227        return index >> kv->pos;
 228}
 229
 230/* To understand this stuff, an understanding of keys and all their bits is
 231 * necessary. Every node in the trie has a key associated with it, but not
 232 * all of the bits in that key are significant.
 233 *
 234 * Consider a node 'n' and its parent 'tp'.
 235 *
 236 * If n is a leaf, every bit in its key is significant. Its presence is
 237 * necessitated by path compression, since during a tree traversal (when
 238 * searching for a leaf - unless we are doing an insertion) we will completely
 239 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
 240 * a potentially successful search, that we have indeed been walking the
 241 * correct key path.
 242 *
 243 * Note that we can never "miss" the correct key in the tree if present by
 244 * following the wrong path. Path compression ensures that segments of the key
 245 * that are the same for all keys with a given prefix are skipped, but the
 246 * skipped part *is* identical for each node in the subtrie below the skipped
 247 * bit! trie_insert() in this implementation takes care of that.
 248 *
 249 * if n is an internal node - a 'tnode' here, the various parts of its key
 250 * have many different meanings.
 251 *
 252 * Example:
 253 * _________________________________________________________________
 254 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
 255 * -----------------------------------------------------------------
 256 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
 257 *
 258 * _________________________________________________________________
 259 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
 260 * -----------------------------------------------------------------
 261 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
 262 *
 263 * tp->pos = 22
 264 * tp->bits = 3
 265 * n->pos = 13
 266 * n->bits = 4
 267 *
 268 * First, let's just ignore the bits that come before the parent tp, that is
 269 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
 270 * point we do not use them for anything.
 271 *
 272 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
 273 * index into the parent's child array. That is, they will be used to find
 274 * 'n' among tp's children.
 275 *
 276 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
 277 * for the node n.
 278 *
 279 * All the bits we have seen so far are significant to the node n. The rest
 280 * of the bits are really not needed or indeed known in n->key.
 281 *
 282 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
 283 * n's child array, and will of course be different for each child.
 284 *
 285 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
 286 * at this point.
 287 */
 288
 289static const int halve_threshold = 25;
 290static const int inflate_threshold = 50;
 291static const int halve_threshold_root = 15;
 292static const int inflate_threshold_root = 30;
 293
 294static void __alias_free_mem(struct rcu_head *head)
 295{
 296        struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
 297        kmem_cache_free(fn_alias_kmem, fa);
 298}
 299
 300static inline void alias_free_mem_rcu(struct fib_alias *fa)
 301{
 302        call_rcu(&fa->rcu, __alias_free_mem);
 303}
 304
 305#define TNODE_KMALLOC_MAX \
 306        ilog2((PAGE_SIZE - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 307#define TNODE_VMALLOC_MAX \
 308        ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
 309
 310static void __node_free_rcu(struct rcu_head *head)
 311{
 312        struct tnode *n = container_of(head, struct tnode, rcu);
 313
 314        if (!n->tn_bits)
 315                kmem_cache_free(trie_leaf_kmem, n);
 316        else
 317                kvfree(n);
 318}
 319
 320#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
 321
 322static struct tnode *tnode_alloc(int bits)
 323{
 324        size_t size;
 325
 326        /* verify bits is within bounds */
 327        if (bits > TNODE_VMALLOC_MAX)
 328                return NULL;
 329
 330        /* determine size and verify it is non-zero and didn't overflow */
 331        size = TNODE_SIZE(1ul << bits);
 332
 333        if (size <= PAGE_SIZE)
 334                return kzalloc(size, GFP_KERNEL);
 335        else
 336                return vzalloc(size);
 337}
 338
 339static inline void empty_child_inc(struct key_vector *n)
 340{
 341        tn_info(n)->empty_children++;
 342
 343        if (!tn_info(n)->empty_children)
 344                tn_info(n)->full_children++;
 345}
 346
 347static inline void empty_child_dec(struct key_vector *n)
 348{
 349        if (!tn_info(n)->empty_children)
 350                tn_info(n)->full_children--;
 351
 352        tn_info(n)->empty_children--;
 353}
 354
 355static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
 356{
 357        struct key_vector *l;
 358        struct tnode *kv;
 359
 360        kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
 361        if (!kv)
 362                return NULL;
 363
 364        /* initialize key vector */
 365        l = kv->kv;
 366        l->key = key;
 367        l->pos = 0;
 368        l->bits = 0;
 369        l->slen = fa->fa_slen;
 370
 371        /* link leaf to fib alias */
 372        INIT_HLIST_HEAD(&l->leaf);
 373        hlist_add_head(&fa->fa_list, &l->leaf);
 374
 375        return l;
 376}
 377
 378static struct key_vector *tnode_new(t_key key, int pos, int bits)
 379{
 380        unsigned int shift = pos + bits;
 381        struct key_vector *tn;
 382        struct tnode *tnode;
 383
 384        /* verify bits and pos their msb bits clear and values are valid */
 385        BUG_ON(!bits || (shift > KEYLENGTH));
 386
 387        tnode = tnode_alloc(bits);
 388        if (!tnode)
 389                return NULL;
 390
 391        pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
 392                 sizeof(struct key_vector *) << bits);
 393
 394        if (bits == KEYLENGTH)
 395                tnode->full_children = 1;
 396        else
 397                tnode->empty_children = 1ul << bits;
 398
 399        tn = tnode->kv;
 400        tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
 401        tn->pos = pos;
 402        tn->bits = bits;
 403        tn->slen = pos;
 404
 405        return tn;
 406}
 407
 408/* Check whether a tnode 'n' is "full", i.e. it is an internal node
 409 * and no bits are skipped. See discussion in dyntree paper p. 6
 410 */
 411static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
 412{
 413        return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
 414}
 415
 416/* Add a child at position i overwriting the old value.
 417 * Update the value of full_children and empty_children.
 418 */
 419static void put_child(struct key_vector *tn, unsigned long i,
 420                      struct key_vector *n)
 421{
 422        struct key_vector *chi = get_child(tn, i);
 423        int isfull, wasfull;
 424
 425        BUG_ON(i >= child_length(tn));
 426
 427        /* update emptyChildren, overflow into fullChildren */
 428        if (!n && chi)
 429                empty_child_inc(tn);
 430        if (n && !chi)
 431                empty_child_dec(tn);
 432
 433        /* update fullChildren */
 434        wasfull = tnode_full(tn, chi);
 435        isfull = tnode_full(tn, n);
 436
 437        if (wasfull && !isfull)
 438                tn_info(tn)->full_children--;
 439        else if (!wasfull && isfull)
 440                tn_info(tn)->full_children++;
 441
 442        if (n && (tn->slen < n->slen))
 443                tn->slen = n->slen;
 444
 445        rcu_assign_pointer(tn->tnode[i], n);
 446}
 447
 448static void update_children(struct key_vector *tn)
 449{
 450        unsigned long i;
 451
 452        /* update all of the child parent pointers */
 453        for (i = child_length(tn); i;) {
 454                struct key_vector *inode = get_child(tn, --i);
 455
 456                if (!inode)
 457                        continue;
 458
 459                /* Either update the children of a tnode that
 460                 * already belongs to us or update the child
 461                 * to point to ourselves.
 462                 */
 463                if (node_parent(inode) == tn)
 464                        update_children(inode);
 465                else
 466                        node_set_parent(inode, tn);
 467        }
 468}
 469
 470static inline void put_child_root(struct key_vector *tp, t_key key,
 471                                  struct key_vector *n)
 472{
 473        if (IS_TRIE(tp))
 474                rcu_assign_pointer(tp->tnode[0], n);
 475        else
 476                put_child(tp, get_index(key, tp), n);
 477}
 478
 479static inline void tnode_free_init(struct key_vector *tn)
 480{
 481        tn_info(tn)->rcu.next = NULL;
 482}
 483
 484static inline void tnode_free_append(struct key_vector *tn,
 485                                     struct key_vector *n)
 486{
 487        tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
 488        tn_info(tn)->rcu.next = &tn_info(n)->rcu;
 489}
 490
 491static void tnode_free(struct key_vector *tn)
 492{
 493        struct callback_head *head = &tn_info(tn)->rcu;
 494
 495        while (head) {
 496                head = head->next;
 497                tnode_free_size += TNODE_SIZE(1ul << tn->bits);
 498                node_free(tn);
 499
 500                tn = container_of(head, struct tnode, rcu)->kv;
 501        }
 502
 503        if (tnode_free_size >= sysctl_fib_sync_mem) {
 504                tnode_free_size = 0;
 505                synchronize_rcu();
 506        }
 507}
 508
 509static struct key_vector *replace(struct trie *t,
 510                                  struct key_vector *oldtnode,
 511                                  struct key_vector *tn)
 512{
 513        struct key_vector *tp = node_parent(oldtnode);
 514        unsigned long i;
 515
 516        /* setup the parent pointer out of and back into this node */
 517        NODE_INIT_PARENT(tn, tp);
 518        put_child_root(tp, tn->key, tn);
 519
 520        /* update all of the child parent pointers */
 521        update_children(tn);
 522
 523        /* all pointers should be clean so we are done */
 524        tnode_free(oldtnode);
 525
 526        /* resize children now that oldtnode is freed */
 527        for (i = child_length(tn); i;) {
 528                struct key_vector *inode = get_child(tn, --i);
 529
 530                /* resize child node */
 531                if (tnode_full(tn, inode))
 532                        tn = resize(t, inode);
 533        }
 534
 535        return tp;
 536}
 537
 538static struct key_vector *inflate(struct trie *t,
 539                                  struct key_vector *oldtnode)
 540{
 541        struct key_vector *tn;
 542        unsigned long i;
 543        t_key m;
 544
 545        pr_debug("In inflate\n");
 546
 547        tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
 548        if (!tn)
 549                goto notnode;
 550
 551        /* prepare oldtnode to be freed */
 552        tnode_free_init(oldtnode);
 553
 554        /* Assemble all of the pointers in our cluster, in this case that
 555         * represents all of the pointers out of our allocated nodes that
 556         * point to existing tnodes and the links between our allocated
 557         * nodes.
 558         */
 559        for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
 560                struct key_vector *inode = get_child(oldtnode, --i);
 561                struct key_vector *node0, *node1;
 562                unsigned long j, k;
 563
 564                /* An empty child */
 565                if (!inode)
 566                        continue;
 567
 568                /* A leaf or an internal node with skipped bits */
 569                if (!tnode_full(oldtnode, inode)) {
 570                        put_child(tn, get_index(inode->key, tn), inode);
 571                        continue;
 572                }
 573
 574                /* drop the node in the old tnode free list */
 575                tnode_free_append(oldtnode, inode);
 576
 577                /* An internal node with two children */
 578                if (inode->bits == 1) {
 579                        put_child(tn, 2 * i + 1, get_child(inode, 1));
 580                        put_child(tn, 2 * i, get_child(inode, 0));
 581                        continue;
 582                }
 583
 584                /* We will replace this node 'inode' with two new
 585                 * ones, 'node0' and 'node1', each with half of the
 586                 * original children. The two new nodes will have
 587                 * a position one bit further down the key and this
 588                 * means that the "significant" part of their keys
 589                 * (see the discussion near the top of this file)
 590                 * will differ by one bit, which will be "0" in
 591                 * node0's key and "1" in node1's key. Since we are
 592                 * moving the key position by one step, the bit that
 593                 * we are moving away from - the bit at position
 594                 * (tn->pos) - is the one that will differ between
 595                 * node0 and node1. So... we synthesize that bit in the
 596                 * two new keys.
 597                 */
 598                node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
 599                if (!node1)
 600                        goto nomem;
 601                node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
 602
 603                tnode_free_append(tn, node1);
 604                if (!node0)
 605                        goto nomem;
 606                tnode_free_append(tn, node0);
 607
 608                /* populate child pointers in new nodes */
 609                for (k = child_length(inode), j = k / 2; j;) {
 610                        put_child(node1, --j, get_child(inode, --k));
 611                        put_child(node0, j, get_child(inode, j));
 612                        put_child(node1, --j, get_child(inode, --k));
 613                        put_child(node0, j, get_child(inode, j));
 614                }
 615
 616                /* link new nodes to parent */
 617                NODE_INIT_PARENT(node1, tn);
 618                NODE_INIT_PARENT(node0, tn);
 619
 620                /* link parent to nodes */
 621                put_child(tn, 2 * i + 1, node1);
 622                put_child(tn, 2 * i, node0);
 623        }
 624
 625        /* setup the parent pointers into and out of this node */
 626        return replace(t, oldtnode, tn);
 627nomem:
 628        /* all pointers should be clean so we are done */
 629        tnode_free(tn);
 630notnode:
 631        return NULL;
 632}
 633
 634static struct key_vector *halve(struct trie *t,
 635                                struct key_vector *oldtnode)
 636{
 637        struct key_vector *tn;
 638        unsigned long i;
 639
 640        pr_debug("In halve\n");
 641
 642        tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
 643        if (!tn)
 644                goto notnode;
 645
 646        /* prepare oldtnode to be freed */
 647        tnode_free_init(oldtnode);
 648
 649        /* Assemble all of the pointers in our cluster, in this case that
 650         * represents all of the pointers out of our allocated nodes that
 651         * point to existing tnodes and the links between our allocated
 652         * nodes.
 653         */
 654        for (i = child_length(oldtnode); i;) {
 655                struct key_vector *node1 = get_child(oldtnode, --i);
 656                struct key_vector *node0 = get_child(oldtnode, --i);
 657                struct key_vector *inode;
 658
 659                /* At least one of the children is empty */
 660                if (!node1 || !node0) {
 661                        put_child(tn, i / 2, node1 ? : node0);
 662                        continue;
 663                }
 664
 665                /* Two nonempty children */
 666                inode = tnode_new(node0->key, oldtnode->pos, 1);
 667                if (!inode)
 668                        goto nomem;
 669                tnode_free_append(tn, inode);
 670
 671                /* initialize pointers out of node */
 672                put_child(inode, 1, node1);
 673                put_child(inode, 0, node0);
 674                NODE_INIT_PARENT(inode, tn);
 675
 676                /* link parent to node */
 677                put_child(tn, i / 2, inode);
 678        }
 679
 680        /* setup the parent pointers into and out of this node */
 681        return replace(t, oldtnode, tn);
 682nomem:
 683        /* all pointers should be clean so we are done */
 684        tnode_free(tn);
 685notnode:
 686        return NULL;
 687}
 688
 689static struct key_vector *collapse(struct trie *t,
 690                                   struct key_vector *oldtnode)
 691{
 692        struct key_vector *n, *tp;
 693        unsigned long i;
 694
 695        /* scan the tnode looking for that one child that might still exist */
 696        for (n = NULL, i = child_length(oldtnode); !n && i;)
 697                n = get_child(oldtnode, --i);
 698
 699        /* compress one level */
 700        tp = node_parent(oldtnode);
 701        put_child_root(tp, oldtnode->key, n);
 702        node_set_parent(n, tp);
 703
 704        /* drop dead node */
 705        node_free(oldtnode);
 706
 707        return tp;
 708}
 709
 710static unsigned char update_suffix(struct key_vector *tn)
 711{
 712        unsigned char slen = tn->pos;
 713        unsigned long stride, i;
 714        unsigned char slen_max;
 715
 716        /* only vector 0 can have a suffix length greater than or equal to
 717         * tn->pos + tn->bits, the second highest node will have a suffix
 718         * length at most of tn->pos + tn->bits - 1
 719         */
 720        slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
 721
 722        /* search though the list of children looking for nodes that might
 723         * have a suffix greater than the one we currently have.  This is
 724         * why we start with a stride of 2 since a stride of 1 would
 725         * represent the nodes with suffix length equal to tn->pos
 726         */
 727        for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
 728                struct key_vector *n = get_child(tn, i);
 729
 730                if (!n || (n->slen <= slen))
 731                        continue;
 732
 733                /* update stride and slen based on new value */
 734                stride <<= (n->slen - slen);
 735                slen = n->slen;
 736                i &= ~(stride - 1);
 737
 738                /* stop searching if we have hit the maximum possible value */
 739                if (slen >= slen_max)
 740                        break;
 741        }
 742
 743        tn->slen = slen;
 744
 745        return slen;
 746}
 747
 748/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
 749 * the Helsinki University of Technology and Matti Tikkanen of Nokia
 750 * Telecommunications, page 6:
 751 * "A node is doubled if the ratio of non-empty children to all
 752 * children in the *doubled* node is at least 'high'."
 753 *
 754 * 'high' in this instance is the variable 'inflate_threshold'. It
 755 * is expressed as a percentage, so we multiply it with
 756 * child_length() and instead of multiplying by 2 (since the
 757 * child array will be doubled by inflate()) and multiplying
 758 * the left-hand side by 100 (to handle the percentage thing) we
 759 * multiply the left-hand side by 50.
 760 *
 761 * The left-hand side may look a bit weird: child_length(tn)
 762 * - tn->empty_children is of course the number of non-null children
 763 * in the current node. tn->full_children is the number of "full"
 764 * children, that is non-null tnodes with a skip value of 0.
 765 * All of those will be doubled in the resulting inflated tnode, so
 766 * we just count them one extra time here.
 767 *
 768 * A clearer way to write this would be:
 769 *
 770 * to_be_doubled = tn->full_children;
 771 * not_to_be_doubled = child_length(tn) - tn->empty_children -
 772 *     tn->full_children;
 773 *
 774 * new_child_length = child_length(tn) * 2;
 775 *
 776 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
 777 *      new_child_length;
 778 * if (new_fill_factor >= inflate_threshold)
 779 *
 780 * ...and so on, tho it would mess up the while () loop.
 781 *
 782 * anyway,
 783 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
 784 *      inflate_threshold
 785 *
 786 * avoid a division:
 787 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
 788 *      inflate_threshold * new_child_length
 789 *
 790 * expand not_to_be_doubled and to_be_doubled, and shorten:
 791 * 100 * (child_length(tn) - tn->empty_children +
 792 *    tn->full_children) >= inflate_threshold * new_child_length
 793 *
 794 * expand new_child_length:
 795 * 100 * (child_length(tn) - tn->empty_children +
 796 *    tn->full_children) >=
 797 *      inflate_threshold * child_length(tn) * 2
 798 *
 799 * shorten again:
 800 * 50 * (tn->full_children + child_length(tn) -
 801 *    tn->empty_children) >= inflate_threshold *
 802 *    child_length(tn)
 803 *
 804 */
 805static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
 806{
 807        unsigned long used = child_length(tn);
 808        unsigned long threshold = used;
 809
 810        /* Keep root node larger */
 811        threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
 812        used -= tn_info(tn)->empty_children;
 813        used += tn_info(tn)->full_children;
 814
 815        /* if bits == KEYLENGTH then pos = 0, and will fail below */
 816
 817        return (used > 1) && tn->pos && ((50 * used) >= threshold);
 818}
 819
 820static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
 821{
 822        unsigned long used = child_length(tn);
 823        unsigned long threshold = used;
 824
 825        /* Keep root node larger */
 826        threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
 827        used -= tn_info(tn)->empty_children;
 828
 829        /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
 830
 831        return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
 832}
 833
 834static inline bool should_collapse(struct key_vector *tn)
 835{
 836        unsigned long used = child_length(tn);
 837
 838        used -= tn_info(tn)->empty_children;
 839
 840        /* account for bits == KEYLENGTH case */
 841        if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
 842                used -= KEY_MAX;
 843
 844        /* One child or none, time to drop us from the trie */
 845        return used < 2;
 846}
 847
 848#define MAX_WORK 10
 849static struct key_vector *resize(struct trie *t, struct key_vector *tn)
 850{
 851#ifdef CONFIG_IP_FIB_TRIE_STATS
 852        struct trie_use_stats __percpu *stats = t->stats;
 853#endif
 854        struct key_vector *tp = node_parent(tn);
 855        unsigned long cindex = get_index(tn->key, tp);
 856        int max_work = MAX_WORK;
 857
 858        pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
 859                 tn, inflate_threshold, halve_threshold);
 860
 861        /* track the tnode via the pointer from the parent instead of
 862         * doing it ourselves.  This way we can let RCU fully do its
 863         * thing without us interfering
 864         */
 865        BUG_ON(tn != get_child(tp, cindex));
 866
 867        /* Double as long as the resulting node has a number of
 868         * nonempty nodes that are above the threshold.
 869         */
 870        while (should_inflate(tp, tn) && max_work) {
 871                tp = inflate(t, tn);
 872                if (!tp) {
 873#ifdef CONFIG_IP_FIB_TRIE_STATS
 874                        this_cpu_inc(stats->resize_node_skipped);
 875#endif
 876                        break;
 877                }
 878
 879                max_work--;
 880                tn = get_child(tp, cindex);
 881        }
 882
 883        /* update parent in case inflate failed */
 884        tp = node_parent(tn);
 885
 886        /* Return if at least one inflate is run */
 887        if (max_work != MAX_WORK)
 888                return tp;
 889
 890        /* Halve as long as the number of empty children in this
 891         * node is above threshold.
 892         */
 893        while (should_halve(tp, tn) && max_work) {
 894                tp = halve(t, tn);
 895                if (!tp) {
 896#ifdef CONFIG_IP_FIB_TRIE_STATS
 897                        this_cpu_inc(stats->resize_node_skipped);
 898#endif
 899                        break;
 900                }
 901
 902                max_work--;
 903                tn = get_child(tp, cindex);
 904        }
 905
 906        /* Only one child remains */
 907        if (should_collapse(tn))
 908                return collapse(t, tn);
 909
 910        /* update parent in case halve failed */
 911        return node_parent(tn);
 912}
 913
 914static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
 915{
 916        unsigned char node_slen = tn->slen;
 917
 918        while ((node_slen > tn->pos) && (node_slen > slen)) {
 919                slen = update_suffix(tn);
 920                if (node_slen == slen)
 921                        break;
 922
 923                tn = node_parent(tn);
 924                node_slen = tn->slen;
 925        }
 926}
 927
 928static void node_push_suffix(struct key_vector *tn, unsigned char slen)
 929{
 930        while (tn->slen < slen) {
 931                tn->slen = slen;
 932                tn = node_parent(tn);
 933        }
 934}
 935
 936/* rcu_read_lock needs to be hold by caller from readside */
 937static struct key_vector *fib_find_node(struct trie *t,
 938                                        struct key_vector **tp, u32 key)
 939{
 940        struct key_vector *pn, *n = t->kv;
 941        unsigned long index = 0;
 942
 943        do {
 944                pn = n;
 945                n = get_child_rcu(n, index);
 946
 947                if (!n)
 948                        break;
 949
 950                index = get_cindex(key, n);
 951
 952                /* This bit of code is a bit tricky but it combines multiple
 953                 * checks into a single check.  The prefix consists of the
 954                 * prefix plus zeros for the bits in the cindex. The index
 955                 * is the difference between the key and this value.  From
 956                 * this we can actually derive several pieces of data.
 957                 *   if (index >= (1ul << bits))
 958                 *     we have a mismatch in skip bits and failed
 959                 *   else
 960                 *     we know the value is cindex
 961                 *
 962                 * This check is safe even if bits == KEYLENGTH due to the
 963                 * fact that we can only allocate a node with 32 bits if a
 964                 * long is greater than 32 bits.
 965                 */
 966                if (index >= (1ul << n->bits)) {
 967                        n = NULL;
 968                        break;
 969                }
 970
 971                /* keep searching until we find a perfect match leaf or NULL */
 972        } while (IS_TNODE(n));
 973
 974        *tp = pn;
 975
 976        return n;
 977}
 978
 979/* Return the first fib alias matching TOS with
 980 * priority less than or equal to PRIO.
 981 */
 982static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
 983                                        u8 tos, u32 prio, u32 tb_id)
 984{
 985        struct fib_alias *fa;
 986
 987        if (!fah)
 988                return NULL;
 989
 990        hlist_for_each_entry(fa, fah, fa_list) {
 991                if (fa->fa_slen < slen)
 992                        continue;
 993                if (fa->fa_slen != slen)
 994                        break;
 995                if (fa->tb_id > tb_id)
 996                        continue;
 997                if (fa->tb_id != tb_id)
 998                        break;
 999                if (fa->fa_tos > tos)
1000                        continue;
1001                if (fa->fa_info->fib_priority >= prio || fa->fa_tos < tos)
1002                        return fa;
1003        }
1004
1005        return NULL;
1006}
1007
1008static void trie_rebalance(struct trie *t, struct key_vector *tn)
1009{
1010        while (!IS_TRIE(tn))
1011                tn = resize(t, tn);
1012}
1013
1014static int fib_insert_node(struct trie *t, struct key_vector *tp,
1015                           struct fib_alias *new, t_key key)
1016{
1017        struct key_vector *n, *l;
1018
1019        l = leaf_new(key, new);
1020        if (!l)
1021                goto noleaf;
1022
1023        /* retrieve child from parent node */
1024        n = get_child(tp, get_index(key, tp));
1025
1026        /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1027         *
1028         *  Add a new tnode here
1029         *  first tnode need some special handling
1030         *  leaves us in position for handling as case 3
1031         */
1032        if (n) {
1033                struct key_vector *tn;
1034
1035                tn = tnode_new(key, __fls(key ^ n->key), 1);
1036                if (!tn)
1037                        goto notnode;
1038
1039                /* initialize routes out of node */
1040                NODE_INIT_PARENT(tn, tp);
1041                put_child(tn, get_index(key, tn) ^ 1, n);
1042
1043                /* start adding routes into the node */
1044                put_child_root(tp, key, tn);
1045                node_set_parent(n, tn);
1046
1047                /* parent now has a NULL spot where the leaf can go */
1048                tp = tn;
1049        }
1050
1051        /* Case 3: n is NULL, and will just insert a new leaf */
1052        node_push_suffix(tp, new->fa_slen);
1053        NODE_INIT_PARENT(l, tp);
1054        put_child_root(tp, key, l);
1055        trie_rebalance(t, tp);
1056
1057        return 0;
1058notnode:
1059        node_free(l);
1060noleaf:
1061        return -ENOMEM;
1062}
1063
1064/* fib notifier for ADD is sent before calling fib_insert_alias with
1065 * the expectation that the only possible failure ENOMEM
1066 */
1067static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1068                            struct key_vector *l, struct fib_alias *new,
1069                            struct fib_alias *fa, t_key key)
1070{
1071        if (!l)
1072                return fib_insert_node(t, tp, new, key);
1073
1074        if (fa) {
1075                hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1076        } else {
1077                struct fib_alias *last;
1078
1079                hlist_for_each_entry(last, &l->leaf, fa_list) {
1080                        if (new->fa_slen < last->fa_slen)
1081                                break;
1082                        if ((new->fa_slen == last->fa_slen) &&
1083                            (new->tb_id > last->tb_id))
1084                                break;
1085                        fa = last;
1086                }
1087
1088                if (fa)
1089                        hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1090                else
1091                        hlist_add_head_rcu(&new->fa_list, &l->leaf);
1092        }
1093
1094        /* if we added to the tail node then we need to update slen */
1095        if (l->slen < new->fa_slen) {
1096                l->slen = new->fa_slen;
1097                node_push_suffix(tp, new->fa_slen);
1098        }
1099
1100        return 0;
1101}
1102
1103static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1104{
1105        if (plen > KEYLENGTH) {
1106                NL_SET_ERR_MSG(extack, "Invalid prefix length");
1107                return false;
1108        }
1109
1110        if ((plen < KEYLENGTH) && (key << plen)) {
1111                NL_SET_ERR_MSG(extack,
1112                               "Invalid prefix for given prefix length");
1113                return false;
1114        }
1115
1116        return true;
1117}
1118
1119/* Caller must hold RTNL. */
1120int fib_table_insert(struct net *net, struct fib_table *tb,
1121                     struct fib_config *cfg, struct netlink_ext_ack *extack)
1122{
1123        enum fib_event_type event = FIB_EVENT_ENTRY_ADD;
1124        struct trie *t = (struct trie *)tb->tb_data;
1125        struct fib_alias *fa, *new_fa;
1126        struct key_vector *l, *tp;
1127        u16 nlflags = NLM_F_EXCL;
1128        struct fib_info *fi;
1129        u8 plen = cfg->fc_dst_len;
1130        u8 slen = KEYLENGTH - plen;
1131        u8 tos = cfg->fc_tos;
1132        u32 key;
1133        int err;
1134
1135        key = ntohl(cfg->fc_dst);
1136
1137        if (!fib_valid_key_len(key, plen, extack))
1138                return -EINVAL;
1139
1140        pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1141
1142        fi = fib_create_info(cfg, extack);
1143        if (IS_ERR(fi)) {
1144                err = PTR_ERR(fi);
1145                goto err;
1146        }
1147
1148        l = fib_find_node(t, &tp, key);
1149        fa = l ? fib_find_alias(&l->leaf, slen, tos, fi->fib_priority,
1150                                tb->tb_id) : NULL;
1151
1152        /* Now fa, if non-NULL, points to the first fib alias
1153         * with the same keys [prefix,tos,priority], if such key already
1154         * exists or to the node before which we will insert new one.
1155         *
1156         * If fa is NULL, we will need to allocate a new one and
1157         * insert to the tail of the section matching the suffix length
1158         * of the new alias.
1159         */
1160
1161        if (fa && fa->fa_tos == tos &&
1162            fa->fa_info->fib_priority == fi->fib_priority) {
1163                struct fib_alias *fa_first, *fa_match;
1164
1165                err = -EEXIST;
1166                if (cfg->fc_nlflags & NLM_F_EXCL)
1167                        goto out;
1168
1169                nlflags &= ~NLM_F_EXCL;
1170
1171                /* We have 2 goals:
1172                 * 1. Find exact match for type, scope, fib_info to avoid
1173                 * duplicate routes
1174                 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1175                 */
1176                fa_match = NULL;
1177                fa_first = fa;
1178                hlist_for_each_entry_from(fa, fa_list) {
1179                        if ((fa->fa_slen != slen) ||
1180                            (fa->tb_id != tb->tb_id) ||
1181                            (fa->fa_tos != tos))
1182                                break;
1183                        if (fa->fa_info->fib_priority != fi->fib_priority)
1184                                break;
1185                        if (fa->fa_type == cfg->fc_type &&
1186                            fa->fa_info == fi) {
1187                                fa_match = fa;
1188                                break;
1189                        }
1190                }
1191
1192                if (cfg->fc_nlflags & NLM_F_REPLACE) {
1193                        struct fib_info *fi_drop;
1194                        u8 state;
1195
1196                        nlflags |= NLM_F_REPLACE;
1197                        fa = fa_first;
1198                        if (fa_match) {
1199                                if (fa == fa_match)
1200                                        err = 0;
1201                                goto out;
1202                        }
1203                        err = -ENOBUFS;
1204                        new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1205                        if (!new_fa)
1206                                goto out;
1207
1208                        fi_drop = fa->fa_info;
1209                        new_fa->fa_tos = fa->fa_tos;
1210                        new_fa->fa_info = fi;
1211                        new_fa->fa_type = cfg->fc_type;
1212                        state = fa->fa_state;
1213                        new_fa->fa_state = state & ~FA_S_ACCESSED;
1214                        new_fa->fa_slen = fa->fa_slen;
1215                        new_fa->tb_id = tb->tb_id;
1216                        new_fa->fa_default = -1;
1217
1218                        err = call_fib_entry_notifiers(net,
1219                                                       FIB_EVENT_ENTRY_REPLACE,
1220                                                       key, plen, new_fa,
1221                                                       extack);
1222                        if (err)
1223                                goto out_free_new_fa;
1224
1225                        rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1226                                  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1227
1228                        hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1229
1230                        alias_free_mem_rcu(fa);
1231
1232                        fib_release_info(fi_drop);
1233                        if (state & FA_S_ACCESSED)
1234                                rt_cache_flush(cfg->fc_nlinfo.nl_net);
1235
1236                        goto succeeded;
1237                }
1238                /* Error if we find a perfect match which
1239                 * uses the same scope, type, and nexthop
1240                 * information.
1241                 */
1242                if (fa_match)
1243                        goto out;
1244
1245                if (cfg->fc_nlflags & NLM_F_APPEND) {
1246                        event = FIB_EVENT_ENTRY_APPEND;
1247                        nlflags |= NLM_F_APPEND;
1248                } else {
1249                        fa = fa_first;
1250                }
1251        }
1252        err = -ENOENT;
1253        if (!(cfg->fc_nlflags & NLM_F_CREATE))
1254                goto out;
1255
1256        nlflags |= NLM_F_CREATE;
1257        err = -ENOBUFS;
1258        new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1259        if (!new_fa)
1260                goto out;
1261
1262        new_fa->fa_info = fi;
1263        new_fa->fa_tos = tos;
1264        new_fa->fa_type = cfg->fc_type;
1265        new_fa->fa_state = 0;
1266        new_fa->fa_slen = slen;
1267        new_fa->tb_id = tb->tb_id;
1268        new_fa->fa_default = -1;
1269
1270        err = call_fib_entry_notifiers(net, event, key, plen, new_fa, extack);
1271        if (err)
1272                goto out_free_new_fa;
1273
1274        /* Insert new entry to the list. */
1275        err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1276        if (err)
1277                goto out_fib_notif;
1278
1279        if (!plen)
1280                tb->tb_num_default++;
1281
1282        rt_cache_flush(cfg->fc_nlinfo.nl_net);
1283        rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1284                  &cfg->fc_nlinfo, nlflags);
1285succeeded:
1286        return 0;
1287
1288out_fib_notif:
1289        /* notifier was sent that entry would be added to trie, but
1290         * the add failed and need to recover. Only failure for
1291         * fib_insert_alias is ENOMEM.
1292         */
1293        NL_SET_ERR_MSG(extack, "Failed to insert route into trie");
1294        call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key,
1295                                 plen, new_fa, NULL);
1296out_free_new_fa:
1297        kmem_cache_free(fn_alias_kmem, new_fa);
1298out:
1299        fib_release_info(fi);
1300err:
1301        return err;
1302}
1303
1304static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1305{
1306        t_key prefix = n->key;
1307
1308        return (key ^ prefix) & (prefix | -prefix);
1309}
1310
1311/* should be called with rcu_read_lock */
1312int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1313                     struct fib_result *res, int fib_flags)
1314{
1315        struct trie *t = (struct trie *) tb->tb_data;
1316#ifdef CONFIG_IP_FIB_TRIE_STATS
1317        struct trie_use_stats __percpu *stats = t->stats;
1318#endif
1319        const t_key key = ntohl(flp->daddr);
1320        struct key_vector *n, *pn;
1321        struct fib_alias *fa;
1322        unsigned long index;
1323        t_key cindex;
1324
1325        pn = t->kv;
1326        cindex = 0;
1327
1328        n = get_child_rcu(pn, cindex);
1329        if (!n) {
1330                trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1331                return -EAGAIN;
1332        }
1333
1334#ifdef CONFIG_IP_FIB_TRIE_STATS
1335        this_cpu_inc(stats->gets);
1336#endif
1337
1338        /* Step 1: Travel to the longest prefix match in the trie */
1339        for (;;) {
1340                index = get_cindex(key, n);
1341
1342                /* This bit of code is a bit tricky but it combines multiple
1343                 * checks into a single check.  The prefix consists of the
1344                 * prefix plus zeros for the "bits" in the prefix. The index
1345                 * is the difference between the key and this value.  From
1346                 * this we can actually derive several pieces of data.
1347                 *   if (index >= (1ul << bits))
1348                 *     we have a mismatch in skip bits and failed
1349                 *   else
1350                 *     we know the value is cindex
1351                 *
1352                 * This check is safe even if bits == KEYLENGTH due to the
1353                 * fact that we can only allocate a node with 32 bits if a
1354                 * long is greater than 32 bits.
1355                 */
1356                if (index >= (1ul << n->bits))
1357                        break;
1358
1359                /* we have found a leaf. Prefixes have already been compared */
1360                if (IS_LEAF(n))
1361                        goto found;
1362
1363                /* only record pn and cindex if we are going to be chopping
1364                 * bits later.  Otherwise we are just wasting cycles.
1365                 */
1366                if (n->slen > n->pos) {
1367                        pn = n;
1368                        cindex = index;
1369                }
1370
1371                n = get_child_rcu(n, index);
1372                if (unlikely(!n))
1373                        goto backtrace;
1374        }
1375
1376        /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1377        for (;;) {
1378                /* record the pointer where our next node pointer is stored */
1379                struct key_vector __rcu **cptr = n->tnode;
1380
1381                /* This test verifies that none of the bits that differ
1382                 * between the key and the prefix exist in the region of
1383                 * the lsb and higher in the prefix.
1384                 */
1385                if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1386                        goto backtrace;
1387
1388                /* exit out and process leaf */
1389                if (unlikely(IS_LEAF(n)))
1390                        break;
1391
1392                /* Don't bother recording parent info.  Since we are in
1393                 * prefix match mode we will have to come back to wherever
1394                 * we started this traversal anyway
1395                 */
1396
1397                while ((n = rcu_dereference(*cptr)) == NULL) {
1398backtrace:
1399#ifdef CONFIG_IP_FIB_TRIE_STATS
1400                        if (!n)
1401                                this_cpu_inc(stats->null_node_hit);
1402#endif
1403                        /* If we are at cindex 0 there are no more bits for
1404                         * us to strip at this level so we must ascend back
1405                         * up one level to see if there are any more bits to
1406                         * be stripped there.
1407                         */
1408                        while (!cindex) {
1409                                t_key pkey = pn->key;
1410
1411                                /* If we don't have a parent then there is
1412                                 * nothing for us to do as we do not have any
1413                                 * further nodes to parse.
1414                                 */
1415                                if (IS_TRIE(pn)) {
1416                                        trace_fib_table_lookup(tb->tb_id, flp,
1417                                                               NULL, -EAGAIN);
1418                                        return -EAGAIN;
1419                                }
1420#ifdef CONFIG_IP_FIB_TRIE_STATS
1421                                this_cpu_inc(stats->backtrack);
1422#endif
1423                                /* Get Child's index */
1424                                pn = node_parent_rcu(pn);
1425                                cindex = get_index(pkey, pn);
1426                        }
1427
1428                        /* strip the least significant bit from the cindex */
1429                        cindex &= cindex - 1;
1430
1431                        /* grab pointer for next child node */
1432                        cptr = &pn->tnode[cindex];
1433                }
1434        }
1435
1436found:
1437        /* this line carries forward the xor from earlier in the function */
1438        index = key ^ n->key;
1439
1440        /* Step 3: Process the leaf, if that fails fall back to backtracing */
1441        hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1442                struct fib_info *fi = fa->fa_info;
1443                int nhsel, err;
1444
1445                if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1446                        if (index >= (1ul << fa->fa_slen))
1447                                continue;
1448                }
1449                if (fa->fa_tos && fa->fa_tos != flp->flowi4_tos)
1450                        continue;
1451                if (fi->fib_dead)
1452                        continue;
1453                if (fa->fa_info->fib_scope < flp->flowi4_scope)
1454                        continue;
1455                fib_alias_accessed(fa);
1456                err = fib_props[fa->fa_type].error;
1457                if (unlikely(err < 0)) {
1458out_reject:
1459#ifdef CONFIG_IP_FIB_TRIE_STATS
1460                        this_cpu_inc(stats->semantic_match_passed);
1461#endif
1462                        trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1463                        return err;
1464                }
1465                if (fi->fib_flags & RTNH_F_DEAD)
1466                        continue;
1467
1468                if (unlikely(fi->nh && nexthop_is_blackhole(fi->nh))) {
1469                        err = fib_props[RTN_BLACKHOLE].error;
1470                        goto out_reject;
1471                }
1472
1473                for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1474                        struct fib_nh_common *nhc = fib_info_nhc(fi, nhsel);
1475
1476                        if (nhc->nhc_flags & RTNH_F_DEAD)
1477                                continue;
1478                        if (ip_ignore_linkdown(nhc->nhc_dev) &&
1479                            nhc->nhc_flags & RTNH_F_LINKDOWN &&
1480                            !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1481                                continue;
1482                        if (!(flp->flowi4_flags & FLOWI_FLAG_SKIP_NH_OIF)) {
1483                                if (flp->flowi4_oif &&
1484                                    flp->flowi4_oif != nhc->nhc_oif)
1485                                        continue;
1486                        }
1487
1488                        if (!(fib_flags & FIB_LOOKUP_NOREF))
1489                                refcount_inc(&fi->fib_clntref);
1490
1491                        res->prefix = htonl(n->key);
1492                        res->prefixlen = KEYLENGTH - fa->fa_slen;
1493                        res->nh_sel = nhsel;
1494                        res->nhc = nhc;
1495                        res->type = fa->fa_type;
1496                        res->scope = fi->fib_scope;
1497                        res->fi = fi;
1498                        res->table = tb;
1499                        res->fa_head = &n->leaf;
1500#ifdef CONFIG_IP_FIB_TRIE_STATS
1501                        this_cpu_inc(stats->semantic_match_passed);
1502#endif
1503                        trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1504
1505                        return err;
1506                }
1507        }
1508#ifdef CONFIG_IP_FIB_TRIE_STATS
1509        this_cpu_inc(stats->semantic_match_miss);
1510#endif
1511        goto backtrace;
1512}
1513EXPORT_SYMBOL_GPL(fib_table_lookup);
1514
1515static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1516                             struct key_vector *l, struct fib_alias *old)
1517{
1518        /* record the location of the previous list_info entry */
1519        struct hlist_node **pprev = old->fa_list.pprev;
1520        struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1521
1522        /* remove the fib_alias from the list */
1523        hlist_del_rcu(&old->fa_list);
1524
1525        /* if we emptied the list this leaf will be freed and we can sort
1526         * out parent suffix lengths as a part of trie_rebalance
1527         */
1528        if (hlist_empty(&l->leaf)) {
1529                if (tp->slen == l->slen)
1530                        node_pull_suffix(tp, tp->pos);
1531                put_child_root(tp, l->key, NULL);
1532                node_free(l);
1533                trie_rebalance(t, tp);
1534                return;
1535        }
1536
1537        /* only access fa if it is pointing at the last valid hlist_node */
1538        if (*pprev)
1539                return;
1540
1541        /* update the trie with the latest suffix length */
1542        l->slen = fa->fa_slen;
1543        node_pull_suffix(tp, fa->fa_slen);
1544}
1545
1546/* Caller must hold RTNL. */
1547int fib_table_delete(struct net *net, struct fib_table *tb,
1548                     struct fib_config *cfg, struct netlink_ext_ack *extack)
1549{
1550        struct trie *t = (struct trie *) tb->tb_data;
1551        struct fib_alias *fa, *fa_to_delete;
1552        struct key_vector *l, *tp;
1553        u8 plen = cfg->fc_dst_len;
1554        u8 slen = KEYLENGTH - plen;
1555        u8 tos = cfg->fc_tos;
1556        u32 key;
1557
1558        key = ntohl(cfg->fc_dst);
1559
1560        if (!fib_valid_key_len(key, plen, extack))
1561                return -EINVAL;
1562
1563        l = fib_find_node(t, &tp, key);
1564        if (!l)
1565                return -ESRCH;
1566
1567        fa = fib_find_alias(&l->leaf, slen, tos, 0, tb->tb_id);
1568        if (!fa)
1569                return -ESRCH;
1570
1571        pr_debug("Deleting %08x/%d tos=%d t=%p\n", key, plen, tos, t);
1572
1573        fa_to_delete = NULL;
1574        hlist_for_each_entry_from(fa, fa_list) {
1575                struct fib_info *fi = fa->fa_info;
1576
1577                if ((fa->fa_slen != slen) ||
1578                    (fa->tb_id != tb->tb_id) ||
1579                    (fa->fa_tos != tos))
1580                        break;
1581
1582                if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1583                    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1584                     fa->fa_info->fib_scope == cfg->fc_scope) &&
1585                    (!cfg->fc_prefsrc ||
1586                     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1587                    (!cfg->fc_protocol ||
1588                     fi->fib_protocol == cfg->fc_protocol) &&
1589                    fib_nh_match(cfg, fi, extack) == 0 &&
1590                    fib_metrics_match(cfg, fi)) {
1591                        fa_to_delete = fa;
1592                        break;
1593                }
1594        }
1595
1596        if (!fa_to_delete)
1597                return -ESRCH;
1598
1599        call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL, key, plen,
1600                                 fa_to_delete, extack);
1601        rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1602                  &cfg->fc_nlinfo, 0);
1603
1604        if (!plen)
1605                tb->tb_num_default--;
1606
1607        fib_remove_alias(t, tp, l, fa_to_delete);
1608
1609        if (fa_to_delete->fa_state & FA_S_ACCESSED)
1610                rt_cache_flush(cfg->fc_nlinfo.nl_net);
1611
1612        fib_release_info(fa_to_delete->fa_info);
1613        alias_free_mem_rcu(fa_to_delete);
1614        return 0;
1615}
1616
1617/* Scan for the next leaf starting at the provided key value */
1618static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1619{
1620        struct key_vector *pn, *n = *tn;
1621        unsigned long cindex;
1622
1623        /* this loop is meant to try and find the key in the trie */
1624        do {
1625                /* record parent and next child index */
1626                pn = n;
1627                cindex = (key > pn->key) ? get_index(key, pn) : 0;
1628
1629                if (cindex >> pn->bits)
1630                        break;
1631
1632                /* descend into the next child */
1633                n = get_child_rcu(pn, cindex++);
1634                if (!n)
1635                        break;
1636
1637                /* guarantee forward progress on the keys */
1638                if (IS_LEAF(n) && (n->key >= key))
1639                        goto found;
1640        } while (IS_TNODE(n));
1641
1642        /* this loop will search for the next leaf with a greater key */
1643        while (!IS_TRIE(pn)) {
1644                /* if we exhausted the parent node we will need to climb */
1645                if (cindex >= (1ul << pn->bits)) {
1646                        t_key pkey = pn->key;
1647
1648                        pn = node_parent_rcu(pn);
1649                        cindex = get_index(pkey, pn) + 1;
1650                        continue;
1651                }
1652
1653                /* grab the next available node */
1654                n = get_child_rcu(pn, cindex++);
1655                if (!n)
1656                        continue;
1657
1658                /* no need to compare keys since we bumped the index */
1659                if (IS_LEAF(n))
1660                        goto found;
1661
1662                /* Rescan start scanning in new node */
1663                pn = n;
1664                cindex = 0;
1665        }
1666
1667        *tn = pn;
1668        return NULL; /* Root of trie */
1669found:
1670        /* if we are at the limit for keys just return NULL for the tnode */
1671        *tn = pn;
1672        return n;
1673}
1674
1675static void fib_trie_free(struct fib_table *tb)
1676{
1677        struct trie *t = (struct trie *)tb->tb_data;
1678        struct key_vector *pn = t->kv;
1679        unsigned long cindex = 1;
1680        struct hlist_node *tmp;
1681        struct fib_alias *fa;
1682
1683        /* walk trie in reverse order and free everything */
1684        for (;;) {
1685                struct key_vector *n;
1686
1687                if (!(cindex--)) {
1688                        t_key pkey = pn->key;
1689
1690                        if (IS_TRIE(pn))
1691                                break;
1692
1693                        n = pn;
1694                        pn = node_parent(pn);
1695
1696                        /* drop emptied tnode */
1697                        put_child_root(pn, n->key, NULL);
1698                        node_free(n);
1699
1700                        cindex = get_index(pkey, pn);
1701
1702                        continue;
1703                }
1704
1705                /* grab the next available node */
1706                n = get_child(pn, cindex);
1707                if (!n)
1708                        continue;
1709
1710                if (IS_TNODE(n)) {
1711                        /* record pn and cindex for leaf walking */
1712                        pn = n;
1713                        cindex = 1ul << n->bits;
1714
1715                        continue;
1716                }
1717
1718                hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1719                        hlist_del_rcu(&fa->fa_list);
1720                        alias_free_mem_rcu(fa);
1721                }
1722
1723                put_child_root(pn, n->key, NULL);
1724                node_free(n);
1725        }
1726
1727#ifdef CONFIG_IP_FIB_TRIE_STATS
1728        free_percpu(t->stats);
1729#endif
1730        kfree(tb);
1731}
1732
1733struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1734{
1735        struct trie *ot = (struct trie *)oldtb->tb_data;
1736        struct key_vector *l, *tp = ot->kv;
1737        struct fib_table *local_tb;
1738        struct fib_alias *fa;
1739        struct trie *lt;
1740        t_key key = 0;
1741
1742        if (oldtb->tb_data == oldtb->__data)
1743                return oldtb;
1744
1745        local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1746        if (!local_tb)
1747                return NULL;
1748
1749        lt = (struct trie *)local_tb->tb_data;
1750
1751        while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1752                struct key_vector *local_l = NULL, *local_tp;
1753
1754                hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1755                        struct fib_alias *new_fa;
1756
1757                        if (local_tb->tb_id != fa->tb_id)
1758                                continue;
1759
1760                        /* clone fa for new local table */
1761                        new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1762                        if (!new_fa)
1763                                goto out;
1764
1765                        memcpy(new_fa, fa, sizeof(*fa));
1766
1767                        /* insert clone into table */
1768                        if (!local_l)
1769                                local_l = fib_find_node(lt, &local_tp, l->key);
1770
1771                        if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1772                                             NULL, l->key)) {
1773                                kmem_cache_free(fn_alias_kmem, new_fa);
1774                                goto out;
1775                        }
1776                }
1777
1778                /* stop loop if key wrapped back to 0 */
1779                key = l->key + 1;
1780                if (key < l->key)
1781                        break;
1782        }
1783
1784        return local_tb;
1785out:
1786        fib_trie_free(local_tb);
1787
1788        return NULL;
1789}
1790
1791/* Caller must hold RTNL */
1792void fib_table_flush_external(struct fib_table *tb)
1793{
1794        struct trie *t = (struct trie *)tb->tb_data;
1795        struct key_vector *pn = t->kv;
1796        unsigned long cindex = 1;
1797        struct hlist_node *tmp;
1798        struct fib_alias *fa;
1799
1800        /* walk trie in reverse order */
1801        for (;;) {
1802                unsigned char slen = 0;
1803                struct key_vector *n;
1804
1805                if (!(cindex--)) {
1806                        t_key pkey = pn->key;
1807
1808                        /* cannot resize the trie vector */
1809                        if (IS_TRIE(pn))
1810                                break;
1811
1812                        /* update the suffix to address pulled leaves */
1813                        if (pn->slen > pn->pos)
1814                                update_suffix(pn);
1815
1816                        /* resize completed node */
1817                        pn = resize(t, pn);
1818                        cindex = get_index(pkey, pn);
1819
1820                        continue;
1821                }
1822
1823                /* grab the next available node */
1824                n = get_child(pn, cindex);
1825                if (!n)
1826                        continue;
1827
1828                if (IS_TNODE(n)) {
1829                        /* record pn and cindex for leaf walking */
1830                        pn = n;
1831                        cindex = 1ul << n->bits;
1832
1833                        continue;
1834                }
1835
1836                hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1837                        /* if alias was cloned to local then we just
1838                         * need to remove the local copy from main
1839                         */
1840                        if (tb->tb_id != fa->tb_id) {
1841                                hlist_del_rcu(&fa->fa_list);
1842                                alias_free_mem_rcu(fa);
1843                                continue;
1844                        }
1845
1846                        /* record local slen */
1847                        slen = fa->fa_slen;
1848                }
1849
1850                /* update leaf slen */
1851                n->slen = slen;
1852
1853                if (hlist_empty(&n->leaf)) {
1854                        put_child_root(pn, n->key, NULL);
1855                        node_free(n);
1856                }
1857        }
1858}
1859
1860/* Caller must hold RTNL. */
1861int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
1862{
1863        struct trie *t = (struct trie *)tb->tb_data;
1864        struct key_vector *pn = t->kv;
1865        unsigned long cindex = 1;
1866        struct hlist_node *tmp;
1867        struct fib_alias *fa;
1868        int found = 0;
1869
1870        /* walk trie in reverse order */
1871        for (;;) {
1872                unsigned char slen = 0;
1873                struct key_vector *n;
1874
1875                if (!(cindex--)) {
1876                        t_key pkey = pn->key;
1877
1878                        /* cannot resize the trie vector */
1879                        if (IS_TRIE(pn))
1880                                break;
1881
1882                        /* update the suffix to address pulled leaves */
1883                        if (pn->slen > pn->pos)
1884                                update_suffix(pn);
1885
1886                        /* resize completed node */
1887                        pn = resize(t, pn);
1888                        cindex = get_index(pkey, pn);
1889
1890                        continue;
1891                }
1892
1893                /* grab the next available node */
1894                n = get_child(pn, cindex);
1895                if (!n)
1896                        continue;
1897
1898                if (IS_TNODE(n)) {
1899                        /* record pn and cindex for leaf walking */
1900                        pn = n;
1901                        cindex = 1ul << n->bits;
1902
1903                        continue;
1904                }
1905
1906                hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1907                        struct fib_info *fi = fa->fa_info;
1908
1909                        if (!fi || tb->tb_id != fa->tb_id ||
1910                            (!(fi->fib_flags & RTNH_F_DEAD) &&
1911                             !fib_props[fa->fa_type].error)) {
1912                                slen = fa->fa_slen;
1913                                continue;
1914                        }
1915
1916                        /* Do not flush error routes if network namespace is
1917                         * not being dismantled
1918                         */
1919                        if (!flush_all && fib_props[fa->fa_type].error) {
1920                                slen = fa->fa_slen;
1921                                continue;
1922                        }
1923
1924                        call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
1925                                                 n->key,
1926                                                 KEYLENGTH - fa->fa_slen, fa,
1927                                                 NULL);
1928                        hlist_del_rcu(&fa->fa_list);
1929                        fib_release_info(fa->fa_info);
1930                        alias_free_mem_rcu(fa);
1931                        found++;
1932                }
1933
1934                /* update leaf slen */
1935                n->slen = slen;
1936
1937                if (hlist_empty(&n->leaf)) {
1938                        put_child_root(pn, n->key, NULL);
1939                        node_free(n);
1940                }
1941        }
1942
1943        pr_debug("trie_flush found=%d\n", found);
1944        return found;
1945}
1946
1947/* derived from fib_trie_free */
1948static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
1949                                     struct nl_info *info)
1950{
1951        struct trie *t = (struct trie *)tb->tb_data;
1952        struct key_vector *pn = t->kv;
1953        unsigned long cindex = 1;
1954        struct fib_alias *fa;
1955
1956        for (;;) {
1957                struct key_vector *n;
1958
1959                if (!(cindex--)) {
1960                        t_key pkey = pn->key;
1961
1962                        if (IS_TRIE(pn))
1963                                break;
1964
1965                        pn = node_parent(pn);
1966                        cindex = get_index(pkey, pn);
1967                        continue;
1968                }
1969
1970                /* grab the next available node */
1971                n = get_child(pn, cindex);
1972                if (!n)
1973                        continue;
1974
1975                if (IS_TNODE(n)) {
1976                        /* record pn and cindex for leaf walking */
1977                        pn = n;
1978                        cindex = 1ul << n->bits;
1979
1980                        continue;
1981                }
1982
1983                hlist_for_each_entry(fa, &n->leaf, fa_list) {
1984                        struct fib_info *fi = fa->fa_info;
1985
1986                        if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
1987                                continue;
1988
1989                        rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
1990                                  KEYLENGTH - fa->fa_slen, tb->tb_id,
1991                                  info, NLM_F_REPLACE);
1992
1993                        /* call_fib_entry_notifiers will be removed when
1994                         * in-kernel notifier is implemented and supported
1995                         * for nexthop objects
1996                         */
1997                        call_fib_entry_notifiers(net, FIB_EVENT_ENTRY_REPLACE,
1998                                                 n->key,
1999                                                 KEYLENGTH - fa->fa_slen, fa,
2000                                                 NULL);
2001                }
2002        }
2003}
2004
2005void fib_info_notify_update(struct net *net, struct nl_info *info)
2006{
2007        unsigned int h;
2008
2009        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2010                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2011                struct fib_table *tb;
2012
2013                hlist_for_each_entry_rcu(tb, head, tb_hlist)
2014                        __fib_info_notify_update(net, tb, info);
2015        }
2016}
2017
2018static void fib_leaf_notify(struct net *net, struct key_vector *l,
2019                            struct fib_table *tb, struct notifier_block *nb)
2020{
2021        struct fib_alias *fa;
2022
2023        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2024                struct fib_info *fi = fa->fa_info;
2025
2026                if (!fi)
2027                        continue;
2028
2029                /* local and main table can share the same trie,
2030                 * so don't notify twice for the same entry.
2031                 */
2032                if (tb->tb_id != fa->tb_id)
2033                        continue;
2034
2035                call_fib_entry_notifier(nb, net, FIB_EVENT_ENTRY_ADD, l->key,
2036                                        KEYLENGTH - fa->fa_slen, fa);
2037        }
2038}
2039
2040static void fib_table_notify(struct net *net, struct fib_table *tb,
2041                             struct notifier_block *nb)
2042{
2043        struct trie *t = (struct trie *)tb->tb_data;
2044        struct key_vector *l, *tp = t->kv;
2045        t_key key = 0;
2046
2047        while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2048                fib_leaf_notify(net, l, tb, nb);
2049
2050                key = l->key + 1;
2051                /* stop in case of wrap around */
2052                if (key < l->key)
2053                        break;
2054        }
2055}
2056
2057void fib_notify(struct net *net, struct notifier_block *nb)
2058{
2059        unsigned int h;
2060
2061        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2062                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2063                struct fib_table *tb;
2064
2065                hlist_for_each_entry_rcu(tb, head, tb_hlist)
2066                        fib_table_notify(net, tb, nb);
2067        }
2068}
2069
2070static void __trie_free_rcu(struct rcu_head *head)
2071{
2072        struct fib_table *tb = container_of(head, struct fib_table, rcu);
2073#ifdef CONFIG_IP_FIB_TRIE_STATS
2074        struct trie *t = (struct trie *)tb->tb_data;
2075
2076        if (tb->tb_data == tb->__data)
2077                free_percpu(t->stats);
2078#endif /* CONFIG_IP_FIB_TRIE_STATS */
2079        kfree(tb);
2080}
2081
2082void fib_free_table(struct fib_table *tb)
2083{
2084        call_rcu(&tb->rcu, __trie_free_rcu);
2085}
2086
2087static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2088                             struct sk_buff *skb, struct netlink_callback *cb,
2089                             struct fib_dump_filter *filter)
2090{
2091        unsigned int flags = NLM_F_MULTI;
2092        __be32 xkey = htonl(l->key);
2093        int i, s_i, i_fa, s_fa, err;
2094        struct fib_alias *fa;
2095
2096        if (filter->filter_set ||
2097            !filter->dump_exceptions || !filter->dump_routes)
2098                flags |= NLM_F_DUMP_FILTERED;
2099
2100        s_i = cb->args[4];
2101        s_fa = cb->args[5];
2102        i = 0;
2103
2104        /* rcu_read_lock is hold by caller */
2105        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2106                struct fib_info *fi = fa->fa_info;
2107
2108                if (i < s_i)
2109                        goto next;
2110
2111                i_fa = 0;
2112
2113                if (tb->tb_id != fa->tb_id)
2114                        goto next;
2115
2116                if (filter->filter_set) {
2117                        if (filter->rt_type && fa->fa_type != filter->rt_type)
2118                                goto next;
2119
2120                        if ((filter->protocol &&
2121                             fi->fib_protocol != filter->protocol))
2122                                goto next;
2123
2124                        if (filter->dev &&
2125                            !fib_info_nh_uses_dev(fi, filter->dev))
2126                                goto next;
2127                }
2128
2129                if (filter->dump_routes) {
2130                        if (!s_fa) {
2131                                err = fib_dump_info(skb,
2132                                                    NETLINK_CB(cb->skb).portid,
2133                                                    cb->nlh->nlmsg_seq,
2134                                                    RTM_NEWROUTE,
2135                                                    tb->tb_id, fa->fa_type,
2136                                                    xkey,
2137                                                    KEYLENGTH - fa->fa_slen,
2138                                                    fa->fa_tos, fi, flags);
2139                                if (err < 0)
2140                                        goto stop;
2141                        }
2142
2143                        i_fa++;
2144                }
2145
2146                if (filter->dump_exceptions) {
2147                        err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2148                                                 &i_fa, s_fa, flags);
2149                        if (err < 0)
2150                                goto stop;
2151                }
2152
2153next:
2154                i++;
2155        }
2156
2157        cb->args[4] = i;
2158        return skb->len;
2159
2160stop:
2161        cb->args[4] = i;
2162        cb->args[5] = i_fa;
2163        return err;
2164}
2165
2166/* rcu_read_lock needs to be hold by caller from readside */
2167int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2168                   struct netlink_callback *cb, struct fib_dump_filter *filter)
2169{
2170        struct trie *t = (struct trie *)tb->tb_data;
2171        struct key_vector *l, *tp = t->kv;
2172        /* Dump starting at last key.
2173         * Note: 0.0.0.0/0 (ie default) is first key.
2174         */
2175        int count = cb->args[2];
2176        t_key key = cb->args[3];
2177
2178        while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2179                int err;
2180
2181                err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2182                if (err < 0) {
2183                        cb->args[3] = key;
2184                        cb->args[2] = count;
2185                        return err;
2186                }
2187
2188                ++count;
2189                key = l->key + 1;
2190
2191                memset(&cb->args[4], 0,
2192                       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2193
2194                /* stop loop if key wrapped back to 0 */
2195                if (key < l->key)
2196                        break;
2197        }
2198
2199        cb->args[3] = key;
2200        cb->args[2] = count;
2201
2202        return skb->len;
2203}
2204
2205void __init fib_trie_init(void)
2206{
2207        fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2208                                          sizeof(struct fib_alias),
2209                                          0, SLAB_PANIC, NULL);
2210
2211        trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2212                                           LEAF_SIZE,
2213                                           0, SLAB_PANIC, NULL);
2214}
2215
2216struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2217{
2218        struct fib_table *tb;
2219        struct trie *t;
2220        size_t sz = sizeof(*tb);
2221
2222        if (!alias)
2223                sz += sizeof(struct trie);
2224
2225        tb = kzalloc(sz, GFP_KERNEL);
2226        if (!tb)
2227                return NULL;
2228
2229        tb->tb_id = id;
2230        tb->tb_num_default = 0;
2231        tb->tb_data = (alias ? alias->__data : tb->__data);
2232
2233        if (alias)
2234                return tb;
2235
2236        t = (struct trie *) tb->tb_data;
2237        t->kv[0].pos = KEYLENGTH;
2238        t->kv[0].slen = KEYLENGTH;
2239#ifdef CONFIG_IP_FIB_TRIE_STATS
2240        t->stats = alloc_percpu(struct trie_use_stats);
2241        if (!t->stats) {
2242                kfree(tb);
2243                tb = NULL;
2244        }
2245#endif
2246
2247        return tb;
2248}
2249
2250#ifdef CONFIG_PROC_FS
2251/* Depth first Trie walk iterator */
2252struct fib_trie_iter {
2253        struct seq_net_private p;
2254        struct fib_table *tb;
2255        struct key_vector *tnode;
2256        unsigned int index;
2257        unsigned int depth;
2258};
2259
2260static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2261{
2262        unsigned long cindex = iter->index;
2263        struct key_vector *pn = iter->tnode;
2264        t_key pkey;
2265
2266        pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2267                 iter->tnode, iter->index, iter->depth);
2268
2269        while (!IS_TRIE(pn)) {
2270                while (cindex < child_length(pn)) {
2271                        struct key_vector *n = get_child_rcu(pn, cindex++);
2272
2273                        if (!n)
2274                                continue;
2275
2276                        if (IS_LEAF(n)) {
2277                                iter->tnode = pn;
2278                                iter->index = cindex;
2279                        } else {
2280                                /* push down one level */
2281                                iter->tnode = n;
2282                                iter->index = 0;
2283                                ++iter->depth;
2284                        }
2285
2286                        return n;
2287                }
2288
2289                /* Current node exhausted, pop back up */
2290                pkey = pn->key;
2291                pn = node_parent_rcu(pn);
2292                cindex = get_index(pkey, pn) + 1;
2293                --iter->depth;
2294        }
2295
2296        /* record root node so further searches know we are done */
2297        iter->tnode = pn;
2298        iter->index = 0;
2299
2300        return NULL;
2301}
2302
2303static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2304                                             struct trie *t)
2305{
2306        struct key_vector *n, *pn;
2307
2308        if (!t)
2309                return NULL;
2310
2311        pn = t->kv;
2312        n = rcu_dereference(pn->tnode[0]);
2313        if (!n)
2314                return NULL;
2315
2316        if (IS_TNODE(n)) {
2317                iter->tnode = n;
2318                iter->index = 0;
2319                iter->depth = 1;
2320        } else {
2321                iter->tnode = pn;
2322                iter->index = 0;
2323                iter->depth = 0;
2324        }
2325
2326        return n;
2327}
2328
2329static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2330{
2331        struct key_vector *n;
2332        struct fib_trie_iter iter;
2333
2334        memset(s, 0, sizeof(*s));
2335
2336        rcu_read_lock();
2337        for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2338                if (IS_LEAF(n)) {
2339                        struct fib_alias *fa;
2340
2341                        s->leaves++;
2342                        s->totdepth += iter.depth;
2343                        if (iter.depth > s->maxdepth)
2344                                s->maxdepth = iter.depth;
2345
2346                        hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2347                                ++s->prefixes;
2348                } else {
2349                        s->tnodes++;
2350                        if (n->bits < MAX_STAT_DEPTH)
2351                                s->nodesizes[n->bits]++;
2352                        s->nullpointers += tn_info(n)->empty_children;
2353                }
2354        }
2355        rcu_read_unlock();
2356}
2357
2358/*
2359 *      This outputs /proc/net/fib_triestats
2360 */
2361static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2362{
2363        unsigned int i, max, pointers, bytes, avdepth;
2364
2365        if (stat->leaves)
2366                avdepth = stat->totdepth*100 / stat->leaves;
2367        else
2368                avdepth = 0;
2369
2370        seq_printf(seq, "\tAver depth:     %u.%02d\n",
2371                   avdepth / 100, avdepth % 100);
2372        seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2373
2374        seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2375        bytes = LEAF_SIZE * stat->leaves;
2376
2377        seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2378        bytes += sizeof(struct fib_alias) * stat->prefixes;
2379
2380        seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2381        bytes += TNODE_SIZE(0) * stat->tnodes;
2382
2383        max = MAX_STAT_DEPTH;
2384        while (max > 0 && stat->nodesizes[max-1] == 0)
2385                max--;
2386
2387        pointers = 0;
2388        for (i = 1; i < max; i++)
2389                if (stat->nodesizes[i] != 0) {
2390                        seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2391                        pointers += (1<<i) * stat->nodesizes[i];
2392                }
2393        seq_putc(seq, '\n');
2394        seq_printf(seq, "\tPointers: %u\n", pointers);
2395
2396        bytes += sizeof(struct key_vector *) * pointers;
2397        seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2398        seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2399}
2400
2401#ifdef CONFIG_IP_FIB_TRIE_STATS
2402static void trie_show_usage(struct seq_file *seq,
2403                            const struct trie_use_stats __percpu *stats)
2404{
2405        struct trie_use_stats s = { 0 };
2406        int cpu;
2407
2408        /* loop through all of the CPUs and gather up the stats */
2409        for_each_possible_cpu(cpu) {
2410                const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2411
2412                s.gets += pcpu->gets;
2413                s.backtrack += pcpu->backtrack;
2414                s.semantic_match_passed += pcpu->semantic_match_passed;
2415                s.semantic_match_miss += pcpu->semantic_match_miss;
2416                s.null_node_hit += pcpu->null_node_hit;
2417                s.resize_node_skipped += pcpu->resize_node_skipped;
2418        }
2419
2420        seq_printf(seq, "\nCounters:\n---------\n");
2421        seq_printf(seq, "gets = %u\n", s.gets);
2422        seq_printf(seq, "backtracks = %u\n", s.backtrack);
2423        seq_printf(seq, "semantic match passed = %u\n",
2424                   s.semantic_match_passed);
2425        seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2426        seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2427        seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2428}
2429#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2430
2431static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2432{
2433        if (tb->tb_id == RT_TABLE_LOCAL)
2434                seq_puts(seq, "Local:\n");
2435        else if (tb->tb_id == RT_TABLE_MAIN)
2436                seq_puts(seq, "Main:\n");
2437        else
2438                seq_printf(seq, "Id %d:\n", tb->tb_id);
2439}
2440
2441
2442static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2443{
2444        struct net *net = (struct net *)seq->private;
2445        unsigned int h;
2446
2447        seq_printf(seq,
2448                   "Basic info: size of leaf:"
2449                   " %zd bytes, size of tnode: %zd bytes.\n",
2450                   LEAF_SIZE, TNODE_SIZE(0));
2451
2452        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2453                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2454                struct fib_table *tb;
2455
2456                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2457                        struct trie *t = (struct trie *) tb->tb_data;
2458                        struct trie_stat stat;
2459
2460                        if (!t)
2461                                continue;
2462
2463                        fib_table_print(seq, tb);
2464
2465                        trie_collect_stats(t, &stat);
2466                        trie_show_stats(seq, &stat);
2467#ifdef CONFIG_IP_FIB_TRIE_STATS
2468                        trie_show_usage(seq, t->stats);
2469#endif
2470                }
2471        }
2472
2473        return 0;
2474}
2475
2476static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2477{
2478        struct fib_trie_iter *iter = seq->private;
2479        struct net *net = seq_file_net(seq);
2480        loff_t idx = 0;
2481        unsigned int h;
2482
2483        for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2484                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2485                struct fib_table *tb;
2486
2487                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2488                        struct key_vector *n;
2489
2490                        for (n = fib_trie_get_first(iter,
2491                                                    (struct trie *) tb->tb_data);
2492                             n; n = fib_trie_get_next(iter))
2493                                if (pos == idx++) {
2494                                        iter->tb = tb;
2495                                        return n;
2496                                }
2497                }
2498        }
2499
2500        return NULL;
2501}
2502
2503static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2504        __acquires(RCU)
2505{
2506        rcu_read_lock();
2507        return fib_trie_get_idx(seq, *pos);
2508}
2509
2510static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2511{
2512        struct fib_trie_iter *iter = seq->private;
2513        struct net *net = seq_file_net(seq);
2514        struct fib_table *tb = iter->tb;
2515        struct hlist_node *tb_node;
2516        unsigned int h;
2517        struct key_vector *n;
2518
2519        ++*pos;
2520        /* next node in same table */
2521        n = fib_trie_get_next(iter);
2522        if (n)
2523                return n;
2524
2525        /* walk rest of this hash chain */
2526        h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2527        while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2528                tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2529                n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2530                if (n)
2531                        goto found;
2532        }
2533
2534        /* new hash chain */
2535        while (++h < FIB_TABLE_HASHSZ) {
2536                struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2537                hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2538                        n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2539                        if (n)
2540                                goto found;
2541                }
2542        }
2543        return NULL;
2544
2545found:
2546        iter->tb = tb;
2547        return n;
2548}
2549
2550static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2551        __releases(RCU)
2552{
2553        rcu_read_unlock();
2554}
2555
2556static void seq_indent(struct seq_file *seq, int n)
2557{
2558        while (n-- > 0)
2559                seq_puts(seq, "   ");
2560}
2561
2562static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2563{
2564        switch (s) {
2565        case RT_SCOPE_UNIVERSE: return "universe";
2566        case RT_SCOPE_SITE:     return "site";
2567        case RT_SCOPE_LINK:     return "link";
2568        case RT_SCOPE_HOST:     return "host";
2569        case RT_SCOPE_NOWHERE:  return "nowhere";
2570        default:
2571                snprintf(buf, len, "scope=%d", s);
2572                return buf;
2573        }
2574}
2575
2576static const char *const rtn_type_names[__RTN_MAX] = {
2577        [RTN_UNSPEC] = "UNSPEC",
2578        [RTN_UNICAST] = "UNICAST",
2579        [RTN_LOCAL] = "LOCAL",
2580        [RTN_BROADCAST] = "BROADCAST",
2581        [RTN_ANYCAST] = "ANYCAST",
2582        [RTN_MULTICAST] = "MULTICAST",
2583        [RTN_BLACKHOLE] = "BLACKHOLE",
2584        [RTN_UNREACHABLE] = "UNREACHABLE",
2585        [RTN_PROHIBIT] = "PROHIBIT",
2586        [RTN_THROW] = "THROW",
2587        [RTN_NAT] = "NAT",
2588        [RTN_XRESOLVE] = "XRESOLVE",
2589};
2590
2591static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2592{
2593        if (t < __RTN_MAX && rtn_type_names[t])
2594                return rtn_type_names[t];
2595        snprintf(buf, len, "type %u", t);
2596        return buf;
2597}
2598
2599/* Pretty print the trie */
2600static int fib_trie_seq_show(struct seq_file *seq, void *v)
2601{
2602        const struct fib_trie_iter *iter = seq->private;
2603        struct key_vector *n = v;
2604
2605        if (IS_TRIE(node_parent_rcu(n)))
2606                fib_table_print(seq, iter->tb);
2607
2608        if (IS_TNODE(n)) {
2609                __be32 prf = htonl(n->key);
2610
2611                seq_indent(seq, iter->depth-1);
2612                seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2613                           &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2614                           tn_info(n)->full_children,
2615                           tn_info(n)->empty_children);
2616        } else {
2617                __be32 val = htonl(n->key);
2618                struct fib_alias *fa;
2619
2620                seq_indent(seq, iter->depth);
2621                seq_printf(seq, "  |-- %pI4\n", &val);
2622
2623                hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2624                        char buf1[32], buf2[32];
2625
2626                        seq_indent(seq, iter->depth + 1);
2627                        seq_printf(seq, "  /%zu %s %s",
2628                                   KEYLENGTH - fa->fa_slen,
2629                                   rtn_scope(buf1, sizeof(buf1),
2630                                             fa->fa_info->fib_scope),
2631                                   rtn_type(buf2, sizeof(buf2),
2632                                            fa->fa_type));
2633                        if (fa->fa_tos)
2634                                seq_printf(seq, " tos=%d", fa->fa_tos);
2635                        seq_putc(seq, '\n');
2636                }
2637        }
2638
2639        return 0;
2640}
2641
2642static const struct seq_operations fib_trie_seq_ops = {
2643        .start  = fib_trie_seq_start,
2644        .next   = fib_trie_seq_next,
2645        .stop   = fib_trie_seq_stop,
2646        .show   = fib_trie_seq_show,
2647};
2648
2649struct fib_route_iter {
2650        struct seq_net_private p;
2651        struct fib_table *main_tb;
2652        struct key_vector *tnode;
2653        loff_t  pos;
2654        t_key   key;
2655};
2656
2657static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2658                                            loff_t pos)
2659{
2660        struct key_vector *l, **tp = &iter->tnode;
2661        t_key key;
2662
2663        /* use cached location of previously found key */
2664        if (iter->pos > 0 && pos >= iter->pos) {
2665                key = iter->key;
2666        } else {
2667                iter->pos = 1;
2668                key = 0;
2669        }
2670
2671        pos -= iter->pos;
2672
2673        while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2674                key = l->key + 1;
2675                iter->pos++;
2676                l = NULL;
2677
2678                /* handle unlikely case of a key wrap */
2679                if (!key)
2680                        break;
2681        }
2682
2683        if (l)
2684                iter->key = l->key;     /* remember it */
2685        else
2686                iter->pos = 0;          /* forget it */
2687
2688        return l;
2689}
2690
2691static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2692        __acquires(RCU)
2693{
2694        struct fib_route_iter *iter = seq->private;
2695        struct fib_table *tb;
2696        struct trie *t;
2697
2698        rcu_read_lock();
2699
2700        tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2701        if (!tb)
2702                return NULL;
2703
2704        iter->main_tb = tb;
2705        t = (struct trie *)tb->tb_data;
2706        iter->tnode = t->kv;
2707
2708        if (*pos != 0)
2709                return fib_route_get_idx(iter, *pos);
2710
2711        iter->pos = 0;
2712        iter->key = KEY_MAX;
2713
2714        return SEQ_START_TOKEN;
2715}
2716
2717static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2718{
2719        struct fib_route_iter *iter = seq->private;
2720        struct key_vector *l = NULL;
2721        t_key key = iter->key + 1;
2722
2723        ++*pos;
2724
2725        /* only allow key of 0 for start of sequence */
2726        if ((v == SEQ_START_TOKEN) || key)
2727                l = leaf_walk_rcu(&iter->tnode, key);
2728
2729        if (l) {
2730                iter->key = l->key;
2731                iter->pos++;
2732        } else {
2733                iter->pos = 0;
2734        }
2735
2736        return l;
2737}
2738
2739static void fib_route_seq_stop(struct seq_file *seq, void *v)
2740        __releases(RCU)
2741{
2742        rcu_read_unlock();
2743}
2744
2745static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2746{
2747        unsigned int flags = 0;
2748
2749        if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2750                flags = RTF_REJECT;
2751        if (fi) {
2752                const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2753
2754                if (nhc->nhc_gw.ipv4)
2755                        flags |= RTF_GATEWAY;
2756        }
2757        if (mask == htonl(0xFFFFFFFF))
2758                flags |= RTF_HOST;
2759        flags |= RTF_UP;
2760        return flags;
2761}
2762
2763/*
2764 *      This outputs /proc/net/route.
2765 *      The format of the file is not supposed to be changed
2766 *      and needs to be same as fib_hash output to avoid breaking
2767 *      legacy utilities
2768 */
2769static int fib_route_seq_show(struct seq_file *seq, void *v)
2770{
2771        struct fib_route_iter *iter = seq->private;
2772        struct fib_table *tb = iter->main_tb;
2773        struct fib_alias *fa;
2774        struct key_vector *l = v;
2775        __be32 prefix;
2776
2777        if (v == SEQ_START_TOKEN) {
2778                seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2779                           "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2780                           "\tWindow\tIRTT");
2781                return 0;
2782        }
2783
2784        prefix = htonl(l->key);
2785
2786        hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2787                struct fib_info *fi = fa->fa_info;
2788                __be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2789                unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2790
2791                if ((fa->fa_type == RTN_BROADCAST) ||
2792                    (fa->fa_type == RTN_MULTICAST))
2793                        continue;
2794
2795                if (fa->tb_id != tb->tb_id)
2796                        continue;
2797
2798                seq_setwidth(seq, 127);
2799
2800                if (fi) {
2801                        struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2802                        __be32 gw = 0;
2803
2804                        if (nhc->nhc_gw_family == AF_INET)
2805                                gw = nhc->nhc_gw.ipv4;
2806
2807                        seq_printf(seq,
2808                                   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
2809                                   "%d\t%08X\t%d\t%u\t%u",
2810                                   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
2811                                   prefix, gw, flags, 0, 0,
2812                                   fi->fib_priority,
2813                                   mask,
2814                                   (fi->fib_advmss ?
2815                                    fi->fib_advmss + 40 : 0),
2816                                   fi->fib_window,
2817                                   fi->fib_rtt >> 3);
2818                } else {
2819                        seq_printf(seq,
2820                                   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
2821                                   "%d\t%08X\t%d\t%u\t%u",
2822                                   prefix, 0, flags, 0, 0, 0,
2823                                   mask, 0, 0, 0);
2824                }
2825                seq_pad(seq, '\n');
2826        }
2827
2828        return 0;
2829}
2830
2831static const struct seq_operations fib_route_seq_ops = {
2832        .start  = fib_route_seq_start,
2833        .next   = fib_route_seq_next,
2834        .stop   = fib_route_seq_stop,
2835        .show   = fib_route_seq_show,
2836};
2837
2838int __net_init fib_proc_init(struct net *net)
2839{
2840        if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
2841                        sizeof(struct fib_trie_iter)))
2842                goto out1;
2843
2844        if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
2845                        fib_triestat_seq_show, NULL))
2846                goto out2;
2847
2848        if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
2849                        sizeof(struct fib_route_iter)))
2850                goto out3;
2851
2852        return 0;
2853
2854out3:
2855        remove_proc_entry("fib_triestat", net->proc_net);
2856out2:
2857        remove_proc_entry("fib_trie", net->proc_net);
2858out1:
2859        return -ENOMEM;
2860}
2861
2862void __net_exit fib_proc_exit(struct net *net)
2863{
2864        remove_proc_entry("fib_trie", net->proc_net);
2865        remove_proc_entry("fib_triestat", net->proc_net);
2866        remove_proc_entry("route", net->proc_net);
2867}
2868
2869#endif /* CONFIG_PROC_FS */
2870