linux/net/ipv4/tcp_input.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:     Ross Biro
  10 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *              Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *              Florian La Roche, <flla@stud.uni-sb.de>
  14 *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *              Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *              Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *              Jorge Cwik, <jorge@laser.satlink.net>
  20 */
  21
  22/*
  23 * Changes:
  24 *              Pedro Roque     :       Fast Retransmit/Recovery.
  25 *                                      Two receive queues.
  26 *                                      Retransmit queue handled by TCP.
  27 *                                      Better retransmit timer handling.
  28 *                                      New congestion avoidance.
  29 *                                      Header prediction.
  30 *                                      Variable renaming.
  31 *
  32 *              Eric            :       Fast Retransmit.
  33 *              Randy Scott     :       MSS option defines.
  34 *              Eric Schenk     :       Fixes to slow start algorithm.
  35 *              Eric Schenk     :       Yet another double ACK bug.
  36 *              Eric Schenk     :       Delayed ACK bug fixes.
  37 *              Eric Schenk     :       Floyd style fast retrans war avoidance.
  38 *              David S. Miller :       Don't allow zero congestion window.
  39 *              Eric Schenk     :       Fix retransmitter so that it sends
  40 *                                      next packet on ack of previous packet.
  41 *              Andi Kleen      :       Moved open_request checking here
  42 *                                      and process RSTs for open_requests.
  43 *              Andi Kleen      :       Better prune_queue, and other fixes.
  44 *              Andrey Savochkin:       Fix RTT measurements in the presence of
  45 *                                      timestamps.
  46 *              Andrey Savochkin:       Check sequence numbers correctly when
  47 *                                      removing SACKs due to in sequence incoming
  48 *                                      data segments.
  49 *              Andi Kleen:             Make sure we never ack data there is not
  50 *                                      enough room for. Also make this condition
  51 *                                      a fatal error if it might still happen.
  52 *              Andi Kleen:             Add tcp_measure_rcv_mss to make
  53 *                                      connections with MSS<min(MTU,ann. MSS)
  54 *                                      work without delayed acks.
  55 *              Andi Kleen:             Process packets with PSH set in the
  56 *                                      fast path.
  57 *              J Hadi Salim:           ECN support
  58 *              Andrei Gurtov,
  59 *              Pasi Sarolahti,
  60 *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
  61 *                                      engine. Lots of bugs are found.
  62 *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
  63 */
  64
  65#define pr_fmt(fmt) "TCP: " fmt
  66
  67#include <linux/mm.h>
  68#include <linux/slab.h>
  69#include <linux/module.h>
  70#include <linux/sysctl.h>
  71#include <linux/kernel.h>
  72#include <linux/prefetch.h>
  73#include <net/dst.h>
  74#include <net/tcp.h>
  75#include <net/inet_common.h>
  76#include <linux/ipsec.h>
  77#include <asm/unaligned.h>
  78#include <linux/errqueue.h>
  79#include <trace/events/tcp.h>
  80#include <linux/jump_label_ratelimit.h>
  81#include <net/busy_poll.h>
  82
  83int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  84
  85#define FLAG_DATA               0x01 /* Incoming frame contained data.          */
  86#define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
  87#define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
  88#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
  89#define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
  90#define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
  91#define FLAG_ECE                0x40 /* ECE in this ACK                         */
  92#define FLAG_LOST_RETRANS       0x80 /* This ACK marks some retransmission lost */
  93#define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
  94#define FLAG_ORIG_SACK_ACKED    0x200 /* Never retransmitted data are (s)acked  */
  95#define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  96#define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
  97#define FLAG_SET_XMIT_TIMER     0x1000 /* Set TLP or RTO timer */
  98#define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
  99#define FLAG_UPDATE_TS_RECENT   0x4000 /* tcp_replace_ts_recent() */
 100#define FLAG_NO_CHALLENGE_ACK   0x8000 /* do not call tcp_send_challenge_ack()  */
 101#define FLAG_ACK_MAYBE_DELAYED  0x10000 /* Likely a delayed ACK */
 102
 103#define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 104#define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 105#define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
 106#define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
 107
 108#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 109#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 110
 111#define REXMIT_NONE     0 /* no loss recovery to do */
 112#define REXMIT_LOST     1 /* retransmit packets marked lost */
 113#define REXMIT_NEW      2 /* FRTO-style transmit of unsent/new packets */
 114
 115#if IS_ENABLED(CONFIG_TLS_DEVICE)
 116static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
 117
 118void clean_acked_data_enable(struct inet_connection_sock *icsk,
 119                             void (*cad)(struct sock *sk, u32 ack_seq))
 120{
 121        icsk->icsk_clean_acked = cad;
 122        static_branch_deferred_inc(&clean_acked_data_enabled);
 123}
 124EXPORT_SYMBOL_GPL(clean_acked_data_enable);
 125
 126void clean_acked_data_disable(struct inet_connection_sock *icsk)
 127{
 128        static_branch_slow_dec_deferred(&clean_acked_data_enabled);
 129        icsk->icsk_clean_acked = NULL;
 130}
 131EXPORT_SYMBOL_GPL(clean_acked_data_disable);
 132
 133void clean_acked_data_flush(void)
 134{
 135        static_key_deferred_flush(&clean_acked_data_enabled);
 136}
 137EXPORT_SYMBOL_GPL(clean_acked_data_flush);
 138#endif
 139
 140static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
 141                             unsigned int len)
 142{
 143        static bool __once __read_mostly;
 144
 145        if (!__once) {
 146                struct net_device *dev;
 147
 148                __once = true;
 149
 150                rcu_read_lock();
 151                dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
 152                if (!dev || len >= dev->mtu)
 153                        pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
 154                                dev ? dev->name : "Unknown driver");
 155                rcu_read_unlock();
 156        }
 157}
 158
 159/* Adapt the MSS value used to make delayed ack decision to the
 160 * real world.
 161 */
 162static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 163{
 164        struct inet_connection_sock *icsk = inet_csk(sk);
 165        const unsigned int lss = icsk->icsk_ack.last_seg_size;
 166        unsigned int len;
 167
 168        icsk->icsk_ack.last_seg_size = 0;
 169
 170        /* skb->len may jitter because of SACKs, even if peer
 171         * sends good full-sized frames.
 172         */
 173        len = skb_shinfo(skb)->gso_size ? : skb->len;
 174        if (len >= icsk->icsk_ack.rcv_mss) {
 175                icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
 176                                               tcp_sk(sk)->advmss);
 177                /* Account for possibly-removed options */
 178                if (unlikely(len > icsk->icsk_ack.rcv_mss +
 179                                   MAX_TCP_OPTION_SPACE))
 180                        tcp_gro_dev_warn(sk, skb, len);
 181        } else {
 182                /* Otherwise, we make more careful check taking into account,
 183                 * that SACKs block is variable.
 184                 *
 185                 * "len" is invariant segment length, including TCP header.
 186                 */
 187                len += skb->data - skb_transport_header(skb);
 188                if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 189                    /* If PSH is not set, packet should be
 190                     * full sized, provided peer TCP is not badly broken.
 191                     * This observation (if it is correct 8)) allows
 192                     * to handle super-low mtu links fairly.
 193                     */
 194                    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 195                     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 196                        /* Subtract also invariant (if peer is RFC compliant),
 197                         * tcp header plus fixed timestamp option length.
 198                         * Resulting "len" is MSS free of SACK jitter.
 199                         */
 200                        len -= tcp_sk(sk)->tcp_header_len;
 201                        icsk->icsk_ack.last_seg_size = len;
 202                        if (len == lss) {
 203                                icsk->icsk_ack.rcv_mss = len;
 204                                return;
 205                        }
 206                }
 207                if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 208                        icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 209                icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 210        }
 211}
 212
 213static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
 214{
 215        struct inet_connection_sock *icsk = inet_csk(sk);
 216        unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 217
 218        if (quickacks == 0)
 219                quickacks = 2;
 220        quickacks = min(quickacks, max_quickacks);
 221        if (quickacks > icsk->icsk_ack.quick)
 222                icsk->icsk_ack.quick = quickacks;
 223}
 224
 225void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
 226{
 227        struct inet_connection_sock *icsk = inet_csk(sk);
 228
 229        tcp_incr_quickack(sk, max_quickacks);
 230        inet_csk_exit_pingpong_mode(sk);
 231        icsk->icsk_ack.ato = TCP_ATO_MIN;
 232}
 233EXPORT_SYMBOL(tcp_enter_quickack_mode);
 234
 235/* Send ACKs quickly, if "quick" count is not exhausted
 236 * and the session is not interactive.
 237 */
 238
 239static bool tcp_in_quickack_mode(struct sock *sk)
 240{
 241        const struct inet_connection_sock *icsk = inet_csk(sk);
 242        const struct dst_entry *dst = __sk_dst_get(sk);
 243
 244        return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
 245                (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
 246}
 247
 248static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 249{
 250        if (tp->ecn_flags & TCP_ECN_OK)
 251                tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 252}
 253
 254static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
 255{
 256        if (tcp_hdr(skb)->cwr) {
 257                tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 258
 259                /* If the sender is telling us it has entered CWR, then its
 260                 * cwnd may be very low (even just 1 packet), so we should ACK
 261                 * immediately.
 262                 */
 263                inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
 264        }
 265}
 266
 267static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 268{
 269        tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
 270}
 271
 272static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 273{
 274        struct tcp_sock *tp = tcp_sk(sk);
 275
 276        switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 277        case INET_ECN_NOT_ECT:
 278                /* Funny extension: if ECT is not set on a segment,
 279                 * and we already seen ECT on a previous segment,
 280                 * it is probably a retransmit.
 281                 */
 282                if (tp->ecn_flags & TCP_ECN_SEEN)
 283                        tcp_enter_quickack_mode(sk, 2);
 284                break;
 285        case INET_ECN_CE:
 286                if (tcp_ca_needs_ecn(sk))
 287                        tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
 288
 289                if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 290                        /* Better not delay acks, sender can have a very low cwnd */
 291                        tcp_enter_quickack_mode(sk, 2);
 292                        tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 293                }
 294                tp->ecn_flags |= TCP_ECN_SEEN;
 295                break;
 296        default:
 297                if (tcp_ca_needs_ecn(sk))
 298                        tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
 299                tp->ecn_flags |= TCP_ECN_SEEN;
 300                break;
 301        }
 302}
 303
 304static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
 305{
 306        if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
 307                __tcp_ecn_check_ce(sk, skb);
 308}
 309
 310static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 311{
 312        if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 313                tp->ecn_flags &= ~TCP_ECN_OK;
 314}
 315
 316static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 317{
 318        if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 319                tp->ecn_flags &= ~TCP_ECN_OK;
 320}
 321
 322static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 323{
 324        if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 325                return true;
 326        return false;
 327}
 328
 329/* Buffer size and advertised window tuning.
 330 *
 331 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 332 */
 333
 334static void tcp_sndbuf_expand(struct sock *sk)
 335{
 336        const struct tcp_sock *tp = tcp_sk(sk);
 337        const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
 338        int sndmem, per_mss;
 339        u32 nr_segs;
 340
 341        /* Worst case is non GSO/TSO : each frame consumes one skb
 342         * and skb->head is kmalloced using power of two area of memory
 343         */
 344        per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 345                  MAX_TCP_HEADER +
 346                  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 347
 348        per_mss = roundup_pow_of_two(per_mss) +
 349                  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 350
 351        nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
 352        nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 353
 354        /* Fast Recovery (RFC 5681 3.2) :
 355         * Cubic needs 1.7 factor, rounded to 2 to include
 356         * extra cushion (application might react slowly to EPOLLOUT)
 357         */
 358        sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
 359        sndmem *= nr_segs * per_mss;
 360
 361        if (sk->sk_sndbuf < sndmem)
 362                sk->sk_sndbuf = min(sndmem, sock_net(sk)->ipv4.sysctl_tcp_wmem[2]);
 363}
 364
 365/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 366 *
 367 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 368 * forward and advertised in receiver window (tp->rcv_wnd) and
 369 * "application buffer", required to isolate scheduling/application
 370 * latencies from network.
 371 * window_clamp is maximal advertised window. It can be less than
 372 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 373 * is reserved for "application" buffer. The less window_clamp is
 374 * the smoother our behaviour from viewpoint of network, but the lower
 375 * throughput and the higher sensitivity of the connection to losses. 8)
 376 *
 377 * rcv_ssthresh is more strict window_clamp used at "slow start"
 378 * phase to predict further behaviour of this connection.
 379 * It is used for two goals:
 380 * - to enforce header prediction at sender, even when application
 381 *   requires some significant "application buffer". It is check #1.
 382 * - to prevent pruning of receive queue because of misprediction
 383 *   of receiver window. Check #2.
 384 *
 385 * The scheme does not work when sender sends good segments opening
 386 * window and then starts to feed us spaghetti. But it should work
 387 * in common situations. Otherwise, we have to rely on queue collapsing.
 388 */
 389
 390/* Slow part of check#2. */
 391static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 392{
 393        struct tcp_sock *tp = tcp_sk(sk);
 394        /* Optimize this! */
 395        int truesize = tcp_win_from_space(sk, skb->truesize) >> 1;
 396        int window = tcp_win_from_space(sk, sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
 397
 398        while (tp->rcv_ssthresh <= window) {
 399                if (truesize <= skb->len)
 400                        return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 401
 402                truesize >>= 1;
 403                window >>= 1;
 404        }
 405        return 0;
 406}
 407
 408static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 409{
 410        struct tcp_sock *tp = tcp_sk(sk);
 411        int room;
 412
 413        room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
 414
 415        /* Check #1 */
 416        if (room > 0 && !tcp_under_memory_pressure(sk)) {
 417                int incr;
 418
 419                /* Check #2. Increase window, if skb with such overhead
 420                 * will fit to rcvbuf in future.
 421                 */
 422                if (tcp_win_from_space(sk, skb->truesize) <= skb->len)
 423                        incr = 2 * tp->advmss;
 424                else
 425                        incr = __tcp_grow_window(sk, skb);
 426
 427                if (incr) {
 428                        incr = max_t(int, incr, 2 * skb->len);
 429                        tp->rcv_ssthresh += min(room, incr);
 430                        inet_csk(sk)->icsk_ack.quick |= 1;
 431                }
 432        }
 433}
 434
 435/* 3. Try to fixup all. It is made immediately after connection enters
 436 *    established state.
 437 */
 438void tcp_init_buffer_space(struct sock *sk)
 439{
 440        int tcp_app_win = sock_net(sk)->ipv4.sysctl_tcp_app_win;
 441        struct tcp_sock *tp = tcp_sk(sk);
 442        int maxwin;
 443
 444        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 445                tcp_sndbuf_expand(sk);
 446
 447        tp->rcvq_space.space = min_t(u32, tp->rcv_wnd, TCP_INIT_CWND * tp->advmss);
 448        tcp_mstamp_refresh(tp);
 449        tp->rcvq_space.time = tp->tcp_mstamp;
 450        tp->rcvq_space.seq = tp->copied_seq;
 451
 452        maxwin = tcp_full_space(sk);
 453
 454        if (tp->window_clamp >= maxwin) {
 455                tp->window_clamp = maxwin;
 456
 457                if (tcp_app_win && maxwin > 4 * tp->advmss)
 458                        tp->window_clamp = max(maxwin -
 459                                               (maxwin >> tcp_app_win),
 460                                               4 * tp->advmss);
 461        }
 462
 463        /* Force reservation of one segment. */
 464        if (tcp_app_win &&
 465            tp->window_clamp > 2 * tp->advmss &&
 466            tp->window_clamp + tp->advmss > maxwin)
 467                tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 468
 469        tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 470        tp->snd_cwnd_stamp = tcp_jiffies32;
 471}
 472
 473/* 4. Recalculate window clamp after socket hit its memory bounds. */
 474static void tcp_clamp_window(struct sock *sk)
 475{
 476        struct tcp_sock *tp = tcp_sk(sk);
 477        struct inet_connection_sock *icsk = inet_csk(sk);
 478        struct net *net = sock_net(sk);
 479
 480        icsk->icsk_ack.quick = 0;
 481
 482        if (sk->sk_rcvbuf < net->ipv4.sysctl_tcp_rmem[2] &&
 483            !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 484            !tcp_under_memory_pressure(sk) &&
 485            sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 486                sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
 487                                    net->ipv4.sysctl_tcp_rmem[2]);
 488        }
 489        if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 490                tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 491}
 492
 493/* Initialize RCV_MSS value.
 494 * RCV_MSS is an our guess about MSS used by the peer.
 495 * We haven't any direct information about the MSS.
 496 * It's better to underestimate the RCV_MSS rather than overestimate.
 497 * Overestimations make us ACKing less frequently than needed.
 498 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 499 */
 500void tcp_initialize_rcv_mss(struct sock *sk)
 501{
 502        const struct tcp_sock *tp = tcp_sk(sk);
 503        unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 504
 505        hint = min(hint, tp->rcv_wnd / 2);
 506        hint = min(hint, TCP_MSS_DEFAULT);
 507        hint = max(hint, TCP_MIN_MSS);
 508
 509        inet_csk(sk)->icsk_ack.rcv_mss = hint;
 510}
 511EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 512
 513/* Receiver "autotuning" code.
 514 *
 515 * The algorithm for RTT estimation w/o timestamps is based on
 516 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 517 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 518 *
 519 * More detail on this code can be found at
 520 * <http://staff.psc.edu/jheffner/>,
 521 * though this reference is out of date.  A new paper
 522 * is pending.
 523 */
 524static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 525{
 526        u32 new_sample = tp->rcv_rtt_est.rtt_us;
 527        long m = sample;
 528
 529        if (new_sample != 0) {
 530                /* If we sample in larger samples in the non-timestamp
 531                 * case, we could grossly overestimate the RTT especially
 532                 * with chatty applications or bulk transfer apps which
 533                 * are stalled on filesystem I/O.
 534                 *
 535                 * Also, since we are only going for a minimum in the
 536                 * non-timestamp case, we do not smooth things out
 537                 * else with timestamps disabled convergence takes too
 538                 * long.
 539                 */
 540                if (!win_dep) {
 541                        m -= (new_sample >> 3);
 542                        new_sample += m;
 543                } else {
 544                        m <<= 3;
 545                        if (m < new_sample)
 546                                new_sample = m;
 547                }
 548        } else {
 549                /* No previous measure. */
 550                new_sample = m << 3;
 551        }
 552
 553        tp->rcv_rtt_est.rtt_us = new_sample;
 554}
 555
 556static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 557{
 558        u32 delta_us;
 559
 560        if (tp->rcv_rtt_est.time == 0)
 561                goto new_measure;
 562        if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 563                return;
 564        delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
 565        if (!delta_us)
 566                delta_us = 1;
 567        tcp_rcv_rtt_update(tp, delta_us, 1);
 568
 569new_measure:
 570        tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 571        tp->rcv_rtt_est.time = tp->tcp_mstamp;
 572}
 573
 574static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 575                                          const struct sk_buff *skb)
 576{
 577        struct tcp_sock *tp = tcp_sk(sk);
 578
 579        if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
 580                return;
 581        tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
 582
 583        if (TCP_SKB_CB(skb)->end_seq -
 584            TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
 585                u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
 586                u32 delta_us;
 587
 588                if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
 589                        if (!delta)
 590                                delta = 1;
 591                        delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
 592                        tcp_rcv_rtt_update(tp, delta_us, 0);
 593                }
 594        }
 595}
 596
 597/*
 598 * This function should be called every time data is copied to user space.
 599 * It calculates the appropriate TCP receive buffer space.
 600 */
 601void tcp_rcv_space_adjust(struct sock *sk)
 602{
 603        struct tcp_sock *tp = tcp_sk(sk);
 604        u32 copied;
 605        int time;
 606
 607        trace_tcp_rcv_space_adjust(sk);
 608
 609        tcp_mstamp_refresh(tp);
 610        time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
 611        if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
 612                return;
 613
 614        /* Number of bytes copied to user in last RTT */
 615        copied = tp->copied_seq - tp->rcvq_space.seq;
 616        if (copied <= tp->rcvq_space.space)
 617                goto new_measure;
 618
 619        /* A bit of theory :
 620         * copied = bytes received in previous RTT, our base window
 621         * To cope with packet losses, we need a 2x factor
 622         * To cope with slow start, and sender growing its cwin by 100 %
 623         * every RTT, we need a 4x factor, because the ACK we are sending
 624         * now is for the next RTT, not the current one :
 625         * <prev RTT . ><current RTT .. ><next RTT .... >
 626         */
 627
 628        if (sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf &&
 629            !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 630                int rcvmem, rcvbuf;
 631                u64 rcvwin, grow;
 632
 633                /* minimal window to cope with packet losses, assuming
 634                 * steady state. Add some cushion because of small variations.
 635                 */
 636                rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
 637
 638                /* Accommodate for sender rate increase (eg. slow start) */
 639                grow = rcvwin * (copied - tp->rcvq_space.space);
 640                do_div(grow, tp->rcvq_space.space);
 641                rcvwin += (grow << 1);
 642
 643                rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 644                while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
 645                        rcvmem += 128;
 646
 647                do_div(rcvwin, tp->advmss);
 648                rcvbuf = min_t(u64, rcvwin * rcvmem,
 649                               sock_net(sk)->ipv4.sysctl_tcp_rmem[2]);
 650                if (rcvbuf > sk->sk_rcvbuf) {
 651                        sk->sk_rcvbuf = rcvbuf;
 652
 653                        /* Make the window clamp follow along.  */
 654                        tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
 655                }
 656        }
 657        tp->rcvq_space.space = copied;
 658
 659new_measure:
 660        tp->rcvq_space.seq = tp->copied_seq;
 661        tp->rcvq_space.time = tp->tcp_mstamp;
 662}
 663
 664/* There is something which you must keep in mind when you analyze the
 665 * behavior of the tp->ato delayed ack timeout interval.  When a
 666 * connection starts up, we want to ack as quickly as possible.  The
 667 * problem is that "good" TCP's do slow start at the beginning of data
 668 * transmission.  The means that until we send the first few ACK's the
 669 * sender will sit on his end and only queue most of his data, because
 670 * he can only send snd_cwnd unacked packets at any given time.  For
 671 * each ACK we send, he increments snd_cwnd and transmits more of his
 672 * queue.  -DaveM
 673 */
 674static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 675{
 676        struct tcp_sock *tp = tcp_sk(sk);
 677        struct inet_connection_sock *icsk = inet_csk(sk);
 678        u32 now;
 679
 680        inet_csk_schedule_ack(sk);
 681
 682        tcp_measure_rcv_mss(sk, skb);
 683
 684        tcp_rcv_rtt_measure(tp);
 685
 686        now = tcp_jiffies32;
 687
 688        if (!icsk->icsk_ack.ato) {
 689                /* The _first_ data packet received, initialize
 690                 * delayed ACK engine.
 691                 */
 692                tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 693                icsk->icsk_ack.ato = TCP_ATO_MIN;
 694        } else {
 695                int m = now - icsk->icsk_ack.lrcvtime;
 696
 697                if (m <= TCP_ATO_MIN / 2) {
 698                        /* The fastest case is the first. */
 699                        icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 700                } else if (m < icsk->icsk_ack.ato) {
 701                        icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 702                        if (icsk->icsk_ack.ato > icsk->icsk_rto)
 703                                icsk->icsk_ack.ato = icsk->icsk_rto;
 704                } else if (m > icsk->icsk_rto) {
 705                        /* Too long gap. Apparently sender failed to
 706                         * restart window, so that we send ACKs quickly.
 707                         */
 708                        tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
 709                        sk_mem_reclaim(sk);
 710                }
 711        }
 712        icsk->icsk_ack.lrcvtime = now;
 713
 714        tcp_ecn_check_ce(sk, skb);
 715
 716        if (skb->len >= 128)
 717                tcp_grow_window(sk, skb);
 718}
 719
 720/* Called to compute a smoothed rtt estimate. The data fed to this
 721 * routine either comes from timestamps, or from segments that were
 722 * known _not_ to have been retransmitted [see Karn/Partridge
 723 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 724 * piece by Van Jacobson.
 725 * NOTE: the next three routines used to be one big routine.
 726 * To save cycles in the RFC 1323 implementation it was better to break
 727 * it up into three procedures. -- erics
 728 */
 729static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 730{
 731        struct tcp_sock *tp = tcp_sk(sk);
 732        long m = mrtt_us; /* RTT */
 733        u32 srtt = tp->srtt_us;
 734
 735        /*      The following amusing code comes from Jacobson's
 736         *      article in SIGCOMM '88.  Note that rtt and mdev
 737         *      are scaled versions of rtt and mean deviation.
 738         *      This is designed to be as fast as possible
 739         *      m stands for "measurement".
 740         *
 741         *      On a 1990 paper the rto value is changed to:
 742         *      RTO = rtt + 4 * mdev
 743         *
 744         * Funny. This algorithm seems to be very broken.
 745         * These formulae increase RTO, when it should be decreased, increase
 746         * too slowly, when it should be increased quickly, decrease too quickly
 747         * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 748         * does not matter how to _calculate_ it. Seems, it was trap
 749         * that VJ failed to avoid. 8)
 750         */
 751        if (srtt != 0) {
 752                m -= (srtt >> 3);       /* m is now error in rtt est */
 753                srtt += m;              /* rtt = 7/8 rtt + 1/8 new */
 754                if (m < 0) {
 755                        m = -m;         /* m is now abs(error) */
 756                        m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 757                        /* This is similar to one of Eifel findings.
 758                         * Eifel blocks mdev updates when rtt decreases.
 759                         * This solution is a bit different: we use finer gain
 760                         * for mdev in this case (alpha*beta).
 761                         * Like Eifel it also prevents growth of rto,
 762                         * but also it limits too fast rto decreases,
 763                         * happening in pure Eifel.
 764                         */
 765                        if (m > 0)
 766                                m >>= 3;
 767                } else {
 768                        m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 769                }
 770                tp->mdev_us += m;               /* mdev = 3/4 mdev + 1/4 new */
 771                if (tp->mdev_us > tp->mdev_max_us) {
 772                        tp->mdev_max_us = tp->mdev_us;
 773                        if (tp->mdev_max_us > tp->rttvar_us)
 774                                tp->rttvar_us = tp->mdev_max_us;
 775                }
 776                if (after(tp->snd_una, tp->rtt_seq)) {
 777                        if (tp->mdev_max_us < tp->rttvar_us)
 778                                tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 779                        tp->rtt_seq = tp->snd_nxt;
 780                        tp->mdev_max_us = tcp_rto_min_us(sk);
 781
 782                        tcp_bpf_rtt(sk);
 783                }
 784        } else {
 785                /* no previous measure. */
 786                srtt = m << 3;          /* take the measured time to be rtt */
 787                tp->mdev_us = m << 1;   /* make sure rto = 3*rtt */
 788                tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 789                tp->mdev_max_us = tp->rttvar_us;
 790                tp->rtt_seq = tp->snd_nxt;
 791
 792                tcp_bpf_rtt(sk);
 793        }
 794        tp->srtt_us = max(1U, srtt);
 795}
 796
 797static void tcp_update_pacing_rate(struct sock *sk)
 798{
 799        const struct tcp_sock *tp = tcp_sk(sk);
 800        u64 rate;
 801
 802        /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 803        rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
 804
 805        /* current rate is (cwnd * mss) / srtt
 806         * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
 807         * In Congestion Avoidance phase, set it to 120 % the current rate.
 808         *
 809         * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
 810         *       If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
 811         *       end of slow start and should slow down.
 812         */
 813        if (tp->snd_cwnd < tp->snd_ssthresh / 2)
 814                rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
 815        else
 816                rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
 817
 818        rate *= max(tp->snd_cwnd, tp->packets_out);
 819
 820        if (likely(tp->srtt_us))
 821                do_div(rate, tp->srtt_us);
 822
 823        /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
 824         * without any lock. We want to make sure compiler wont store
 825         * intermediate values in this location.
 826         */
 827        WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
 828                                             sk->sk_max_pacing_rate));
 829}
 830
 831/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 832 * routine referred to above.
 833 */
 834static void tcp_set_rto(struct sock *sk)
 835{
 836        const struct tcp_sock *tp = tcp_sk(sk);
 837        /* Old crap is replaced with new one. 8)
 838         *
 839         * More seriously:
 840         * 1. If rtt variance happened to be less 50msec, it is hallucination.
 841         *    It cannot be less due to utterly erratic ACK generation made
 842         *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 843         *    to do with delayed acks, because at cwnd>2 true delack timeout
 844         *    is invisible. Actually, Linux-2.4 also generates erratic
 845         *    ACKs in some circumstances.
 846         */
 847        inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 848
 849        /* 2. Fixups made earlier cannot be right.
 850         *    If we do not estimate RTO correctly without them,
 851         *    all the algo is pure shit and should be replaced
 852         *    with correct one. It is exactly, which we pretend to do.
 853         */
 854
 855        /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 856         * guarantees that rto is higher.
 857         */
 858        tcp_bound_rto(sk);
 859}
 860
 861__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 862{
 863        __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 864
 865        if (!cwnd)
 866                cwnd = TCP_INIT_CWND;
 867        return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 868}
 869
 870/* Take a notice that peer is sending D-SACKs */
 871static void tcp_dsack_seen(struct tcp_sock *tp)
 872{
 873        tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 874        tp->rack.dsack_seen = 1;
 875        tp->dsack_dups++;
 876}
 877
 878/* It's reordering when higher sequence was delivered (i.e. sacked) before
 879 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
 880 * distance is approximated in full-mss packet distance ("reordering").
 881 */
 882static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
 883                                      const int ts)
 884{
 885        struct tcp_sock *tp = tcp_sk(sk);
 886        const u32 mss = tp->mss_cache;
 887        u32 fack, metric;
 888
 889        fack = tcp_highest_sack_seq(tp);
 890        if (!before(low_seq, fack))
 891                return;
 892
 893        metric = fack - low_seq;
 894        if ((metric > tp->reordering * mss) && mss) {
 895#if FASTRETRANS_DEBUG > 1
 896                pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
 897                         tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 898                         tp->reordering,
 899                         0,
 900                         tp->sacked_out,
 901                         tp->undo_marker ? tp->undo_retrans : 0);
 902#endif
 903                tp->reordering = min_t(u32, (metric + mss - 1) / mss,
 904                                       sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
 905        }
 906
 907        /* This exciting event is worth to be remembered. 8) */
 908        tp->reord_seen++;
 909        NET_INC_STATS(sock_net(sk),
 910                      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
 911}
 912
 913/* This must be called before lost_out is incremented */
 914static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
 915{
 916        if (!tp->retransmit_skb_hint ||
 917            before(TCP_SKB_CB(skb)->seq,
 918                   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
 919                tp->retransmit_skb_hint = skb;
 920}
 921
 922/* Sum the number of packets on the wire we have marked as lost.
 923 * There are two cases we care about here:
 924 * a) Packet hasn't been marked lost (nor retransmitted),
 925 *    and this is the first loss.
 926 * b) Packet has been marked both lost and retransmitted,
 927 *    and this means we think it was lost again.
 928 */
 929static void tcp_sum_lost(struct tcp_sock *tp, struct sk_buff *skb)
 930{
 931        __u8 sacked = TCP_SKB_CB(skb)->sacked;
 932
 933        if (!(sacked & TCPCB_LOST) ||
 934            ((sacked & TCPCB_LOST) && (sacked & TCPCB_SACKED_RETRANS)))
 935                tp->lost += tcp_skb_pcount(skb);
 936}
 937
 938static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
 939{
 940        if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 941                tcp_verify_retransmit_hint(tp, skb);
 942
 943                tp->lost_out += tcp_skb_pcount(skb);
 944                tcp_sum_lost(tp, skb);
 945                TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 946        }
 947}
 948
 949void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
 950{
 951        tcp_verify_retransmit_hint(tp, skb);
 952
 953        tcp_sum_lost(tp, skb);
 954        if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 955                tp->lost_out += tcp_skb_pcount(skb);
 956                TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 957        }
 958}
 959
 960/* This procedure tags the retransmission queue when SACKs arrive.
 961 *
 962 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
 963 * Packets in queue with these bits set are counted in variables
 964 * sacked_out, retrans_out and lost_out, correspondingly.
 965 *
 966 * Valid combinations are:
 967 * Tag  InFlight        Description
 968 * 0    1               - orig segment is in flight.
 969 * S    0               - nothing flies, orig reached receiver.
 970 * L    0               - nothing flies, orig lost by net.
 971 * R    2               - both orig and retransmit are in flight.
 972 * L|R  1               - orig is lost, retransmit is in flight.
 973 * S|R  1               - orig reached receiver, retrans is still in flight.
 974 * (L|S|R is logically valid, it could occur when L|R is sacked,
 975 *  but it is equivalent to plain S and code short-curcuits it to S.
 976 *  L|S is logically invalid, it would mean -1 packet in flight 8))
 977 *
 978 * These 6 states form finite state machine, controlled by the following events:
 979 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
 980 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
 981 * 3. Loss detection event of two flavors:
 982 *      A. Scoreboard estimator decided the packet is lost.
 983 *         A'. Reno "three dupacks" marks head of queue lost.
 984 *      B. SACK arrives sacking SND.NXT at the moment, when the
 985 *         segment was retransmitted.
 986 * 4. D-SACK added new rule: D-SACK changes any tag to S.
 987 *
 988 * It is pleasant to note, that state diagram turns out to be commutative,
 989 * so that we are allowed not to be bothered by order of our actions,
 990 * when multiple events arrive simultaneously. (see the function below).
 991 *
 992 * Reordering detection.
 993 * --------------------
 994 * Reordering metric is maximal distance, which a packet can be displaced
 995 * in packet stream. With SACKs we can estimate it:
 996 *
 997 * 1. SACK fills old hole and the corresponding segment was not
 998 *    ever retransmitted -> reordering. Alas, we cannot use it
 999 *    when segment was retransmitted.
1000 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1001 *    for retransmitted and already SACKed segment -> reordering..
1002 * Both of these heuristics are not used in Loss state, when we cannot
1003 * account for retransmits accurately.
1004 *
1005 * SACK block validation.
1006 * ----------------------
1007 *
1008 * SACK block range validation checks that the received SACK block fits to
1009 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1010 * Note that SND.UNA is not included to the range though being valid because
1011 * it means that the receiver is rather inconsistent with itself reporting
1012 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1013 * perfectly valid, however, in light of RFC2018 which explicitly states
1014 * that "SACK block MUST reflect the newest segment.  Even if the newest
1015 * segment is going to be discarded ...", not that it looks very clever
1016 * in case of head skb. Due to potentional receiver driven attacks, we
1017 * choose to avoid immediate execution of a walk in write queue due to
1018 * reneging and defer head skb's loss recovery to standard loss recovery
1019 * procedure that will eventually trigger (nothing forbids us doing this).
1020 *
1021 * Implements also blockage to start_seq wrap-around. Problem lies in the
1022 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1023 * there's no guarantee that it will be before snd_nxt (n). The problem
1024 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1025 * wrap (s_w):
1026 *
1027 *         <- outs wnd ->                          <- wrapzone ->
1028 *         u     e      n                         u_w   e_w  s n_w
1029 *         |     |      |                          |     |   |  |
1030 * |<------------+------+----- TCP seqno space --------------+---------->|
1031 * ...-- <2^31 ->|                                           |<--------...
1032 * ...---- >2^31 ------>|                                    |<--------...
1033 *
1034 * Current code wouldn't be vulnerable but it's better still to discard such
1035 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1036 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1037 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1038 * equal to the ideal case (infinite seqno space without wrap caused issues).
1039 *
1040 * With D-SACK the lower bound is extended to cover sequence space below
1041 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1042 * again, D-SACK block must not to go across snd_una (for the same reason as
1043 * for the normal SACK blocks, explained above). But there all simplicity
1044 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1045 * fully below undo_marker they do not affect behavior in anyway and can
1046 * therefore be safely ignored. In rare cases (which are more or less
1047 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1048 * fragmentation and packet reordering past skb's retransmission. To consider
1049 * them correctly, the acceptable range must be extended even more though
1050 * the exact amount is rather hard to quantify. However, tp->max_window can
1051 * be used as an exaggerated estimate.
1052 */
1053static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1054                                   u32 start_seq, u32 end_seq)
1055{
1056        /* Too far in future, or reversed (interpretation is ambiguous) */
1057        if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1058                return false;
1059
1060        /* Nasty start_seq wrap-around check (see comments above) */
1061        if (!before(start_seq, tp->snd_nxt))
1062                return false;
1063
1064        /* In outstanding window? ...This is valid exit for D-SACKs too.
1065         * start_seq == snd_una is non-sensical (see comments above)
1066         */
1067        if (after(start_seq, tp->snd_una))
1068                return true;
1069
1070        if (!is_dsack || !tp->undo_marker)
1071                return false;
1072
1073        /* ...Then it's D-SACK, and must reside below snd_una completely */
1074        if (after(end_seq, tp->snd_una))
1075                return false;
1076
1077        if (!before(start_seq, tp->undo_marker))
1078                return true;
1079
1080        /* Too old */
1081        if (!after(end_seq, tp->undo_marker))
1082                return false;
1083
1084        /* Undo_marker boundary crossing (overestimates a lot). Known already:
1085         *   start_seq < undo_marker and end_seq >= undo_marker.
1086         */
1087        return !before(start_seq, end_seq - tp->max_window);
1088}
1089
1090static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1091                            struct tcp_sack_block_wire *sp, int num_sacks,
1092                            u32 prior_snd_una)
1093{
1094        struct tcp_sock *tp = tcp_sk(sk);
1095        u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1096        u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1097        bool dup_sack = false;
1098
1099        if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1100                dup_sack = true;
1101                tcp_dsack_seen(tp);
1102                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1103        } else if (num_sacks > 1) {
1104                u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1105                u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1106
1107                if (!after(end_seq_0, end_seq_1) &&
1108                    !before(start_seq_0, start_seq_1)) {
1109                        dup_sack = true;
1110                        tcp_dsack_seen(tp);
1111                        NET_INC_STATS(sock_net(sk),
1112                                        LINUX_MIB_TCPDSACKOFORECV);
1113                }
1114        }
1115
1116        /* D-SACK for already forgotten data... Do dumb counting. */
1117        if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1118            !after(end_seq_0, prior_snd_una) &&
1119            after(end_seq_0, tp->undo_marker))
1120                tp->undo_retrans--;
1121
1122        return dup_sack;
1123}
1124
1125struct tcp_sacktag_state {
1126        u32     reord;
1127        /* Timestamps for earliest and latest never-retransmitted segment
1128         * that was SACKed. RTO needs the earliest RTT to stay conservative,
1129         * but congestion control should still get an accurate delay signal.
1130         */
1131        u64     first_sackt;
1132        u64     last_sackt;
1133        struct rate_sample *rate;
1134        int     flag;
1135        unsigned int mss_now;
1136};
1137
1138/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1139 * the incoming SACK may not exactly match but we can find smaller MSS
1140 * aligned portion of it that matches. Therefore we might need to fragment
1141 * which may fail and creates some hassle (caller must handle error case
1142 * returns).
1143 *
1144 * FIXME: this could be merged to shift decision code
1145 */
1146static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1147                                  u32 start_seq, u32 end_seq)
1148{
1149        int err;
1150        bool in_sack;
1151        unsigned int pkt_len;
1152        unsigned int mss;
1153
1154        in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1155                  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1156
1157        if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1158            after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1159                mss = tcp_skb_mss(skb);
1160                in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1161
1162                if (!in_sack) {
1163                        pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1164                        if (pkt_len < mss)
1165                                pkt_len = mss;
1166                } else {
1167                        pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1168                        if (pkt_len < mss)
1169                                return -EINVAL;
1170                }
1171
1172                /* Round if necessary so that SACKs cover only full MSSes
1173                 * and/or the remaining small portion (if present)
1174                 */
1175                if (pkt_len > mss) {
1176                        unsigned int new_len = (pkt_len / mss) * mss;
1177                        if (!in_sack && new_len < pkt_len)
1178                                new_len += mss;
1179                        pkt_len = new_len;
1180                }
1181
1182                if (pkt_len >= skb->len && !in_sack)
1183                        return 0;
1184
1185                err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1186                                   pkt_len, mss, GFP_ATOMIC);
1187                if (err < 0)
1188                        return err;
1189        }
1190
1191        return in_sack;
1192}
1193
1194/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1195static u8 tcp_sacktag_one(struct sock *sk,
1196                          struct tcp_sacktag_state *state, u8 sacked,
1197                          u32 start_seq, u32 end_seq,
1198                          int dup_sack, int pcount,
1199                          u64 xmit_time)
1200{
1201        struct tcp_sock *tp = tcp_sk(sk);
1202
1203        /* Account D-SACK for retransmitted packet. */
1204        if (dup_sack && (sacked & TCPCB_RETRANS)) {
1205                if (tp->undo_marker && tp->undo_retrans > 0 &&
1206                    after(end_seq, tp->undo_marker))
1207                        tp->undo_retrans--;
1208                if ((sacked & TCPCB_SACKED_ACKED) &&
1209                    before(start_seq, state->reord))
1210                                state->reord = start_seq;
1211        }
1212
1213        /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1214        if (!after(end_seq, tp->snd_una))
1215                return sacked;
1216
1217        if (!(sacked & TCPCB_SACKED_ACKED)) {
1218                tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1219
1220                if (sacked & TCPCB_SACKED_RETRANS) {
1221                        /* If the segment is not tagged as lost,
1222                         * we do not clear RETRANS, believing
1223                         * that retransmission is still in flight.
1224                         */
1225                        if (sacked & TCPCB_LOST) {
1226                                sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1227                                tp->lost_out -= pcount;
1228                                tp->retrans_out -= pcount;
1229                        }
1230                } else {
1231                        if (!(sacked & TCPCB_RETRANS)) {
1232                                /* New sack for not retransmitted frame,
1233                                 * which was in hole. It is reordering.
1234                                 */
1235                                if (before(start_seq,
1236                                           tcp_highest_sack_seq(tp)) &&
1237                                    before(start_seq, state->reord))
1238                                        state->reord = start_seq;
1239
1240                                if (!after(end_seq, tp->high_seq))
1241                                        state->flag |= FLAG_ORIG_SACK_ACKED;
1242                                if (state->first_sackt == 0)
1243                                        state->first_sackt = xmit_time;
1244                                state->last_sackt = xmit_time;
1245                        }
1246
1247                        if (sacked & TCPCB_LOST) {
1248                                sacked &= ~TCPCB_LOST;
1249                                tp->lost_out -= pcount;
1250                        }
1251                }
1252
1253                sacked |= TCPCB_SACKED_ACKED;
1254                state->flag |= FLAG_DATA_SACKED;
1255                tp->sacked_out += pcount;
1256                tp->delivered += pcount;  /* Out-of-order packets delivered */
1257
1258                /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1259                if (tp->lost_skb_hint &&
1260                    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1261                        tp->lost_cnt_hint += pcount;
1262        }
1263
1264        /* D-SACK. We can detect redundant retransmission in S|R and plain R
1265         * frames and clear it. undo_retrans is decreased above, L|R frames
1266         * are accounted above as well.
1267         */
1268        if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1269                sacked &= ~TCPCB_SACKED_RETRANS;
1270                tp->retrans_out -= pcount;
1271        }
1272
1273        return sacked;
1274}
1275
1276/* Shift newly-SACKed bytes from this skb to the immediately previous
1277 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1278 */
1279static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1280                            struct sk_buff *skb,
1281                            struct tcp_sacktag_state *state,
1282                            unsigned int pcount, int shifted, int mss,
1283                            bool dup_sack)
1284{
1285        struct tcp_sock *tp = tcp_sk(sk);
1286        u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1287        u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1288
1289        BUG_ON(!pcount);
1290
1291        /* Adjust counters and hints for the newly sacked sequence
1292         * range but discard the return value since prev is already
1293         * marked. We must tag the range first because the seq
1294         * advancement below implicitly advances
1295         * tcp_highest_sack_seq() when skb is highest_sack.
1296         */
1297        tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1298                        start_seq, end_seq, dup_sack, pcount,
1299                        tcp_skb_timestamp_us(skb));
1300        tcp_rate_skb_delivered(sk, skb, state->rate);
1301
1302        if (skb == tp->lost_skb_hint)
1303                tp->lost_cnt_hint += pcount;
1304
1305        TCP_SKB_CB(prev)->end_seq += shifted;
1306        TCP_SKB_CB(skb)->seq += shifted;
1307
1308        tcp_skb_pcount_add(prev, pcount);
1309        WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1310        tcp_skb_pcount_add(skb, -pcount);
1311
1312        /* When we're adding to gso_segs == 1, gso_size will be zero,
1313         * in theory this shouldn't be necessary but as long as DSACK
1314         * code can come after this skb later on it's better to keep
1315         * setting gso_size to something.
1316         */
1317        if (!TCP_SKB_CB(prev)->tcp_gso_size)
1318                TCP_SKB_CB(prev)->tcp_gso_size = mss;
1319
1320        /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1321        if (tcp_skb_pcount(skb) <= 1)
1322                TCP_SKB_CB(skb)->tcp_gso_size = 0;
1323
1324        /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1325        TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1326
1327        if (skb->len > 0) {
1328                BUG_ON(!tcp_skb_pcount(skb));
1329                NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1330                return false;
1331        }
1332
1333        /* Whole SKB was eaten :-) */
1334
1335        if (skb == tp->retransmit_skb_hint)
1336                tp->retransmit_skb_hint = prev;
1337        if (skb == tp->lost_skb_hint) {
1338                tp->lost_skb_hint = prev;
1339                tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1340        }
1341
1342        TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1343        TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1344        if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1345                TCP_SKB_CB(prev)->end_seq++;
1346
1347        if (skb == tcp_highest_sack(sk))
1348                tcp_advance_highest_sack(sk, skb);
1349
1350        tcp_skb_collapse_tstamp(prev, skb);
1351        if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1352                TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1353
1354        tcp_rtx_queue_unlink_and_free(skb, sk);
1355
1356        NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1357
1358        return true;
1359}
1360
1361/* I wish gso_size would have a bit more sane initialization than
1362 * something-or-zero which complicates things
1363 */
1364static int tcp_skb_seglen(const struct sk_buff *skb)
1365{
1366        return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1367}
1368
1369/* Shifting pages past head area doesn't work */
1370static int skb_can_shift(const struct sk_buff *skb)
1371{
1372        return !skb_headlen(skb) && skb_is_nonlinear(skb);
1373}
1374
1375int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1376                  int pcount, int shiftlen)
1377{
1378        /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1379         * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1380         * to make sure not storing more than 65535 * 8 bytes per skb,
1381         * even if current MSS is bigger.
1382         */
1383        if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1384                return 0;
1385        if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1386                return 0;
1387        return skb_shift(to, from, shiftlen);
1388}
1389
1390/* Try collapsing SACK blocks spanning across multiple skbs to a single
1391 * skb.
1392 */
1393static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1394                                          struct tcp_sacktag_state *state,
1395                                          u32 start_seq, u32 end_seq,
1396                                          bool dup_sack)
1397{
1398        struct tcp_sock *tp = tcp_sk(sk);
1399        struct sk_buff *prev;
1400        int mss;
1401        int pcount = 0;
1402        int len;
1403        int in_sack;
1404
1405        /* Normally R but no L won't result in plain S */
1406        if (!dup_sack &&
1407            (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1408                goto fallback;
1409        if (!skb_can_shift(skb))
1410                goto fallback;
1411        /* This frame is about to be dropped (was ACKed). */
1412        if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1413                goto fallback;
1414
1415        /* Can only happen with delayed DSACK + discard craziness */
1416        prev = skb_rb_prev(skb);
1417        if (!prev)
1418                goto fallback;
1419
1420        if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1421                goto fallback;
1422
1423        if (!tcp_skb_can_collapse_to(prev))
1424                goto fallback;
1425
1426        in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1427                  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1428
1429        if (in_sack) {
1430                len = skb->len;
1431                pcount = tcp_skb_pcount(skb);
1432                mss = tcp_skb_seglen(skb);
1433
1434                /* TODO: Fix DSACKs to not fragment already SACKed and we can
1435                 * drop this restriction as unnecessary
1436                 */
1437                if (mss != tcp_skb_seglen(prev))
1438                        goto fallback;
1439        } else {
1440                if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1441                        goto noop;
1442                /* CHECKME: This is non-MSS split case only?, this will
1443                 * cause skipped skbs due to advancing loop btw, original
1444                 * has that feature too
1445                 */
1446                if (tcp_skb_pcount(skb) <= 1)
1447                        goto noop;
1448
1449                in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1450                if (!in_sack) {
1451                        /* TODO: head merge to next could be attempted here
1452                         * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1453                         * though it might not be worth of the additional hassle
1454                         *
1455                         * ...we can probably just fallback to what was done
1456                         * previously. We could try merging non-SACKed ones
1457                         * as well but it probably isn't going to buy off
1458                         * because later SACKs might again split them, and
1459                         * it would make skb timestamp tracking considerably
1460                         * harder problem.
1461                         */
1462                        goto fallback;
1463                }
1464
1465                len = end_seq - TCP_SKB_CB(skb)->seq;
1466                BUG_ON(len < 0);
1467                BUG_ON(len > skb->len);
1468
1469                /* MSS boundaries should be honoured or else pcount will
1470                 * severely break even though it makes things bit trickier.
1471                 * Optimize common case to avoid most of the divides
1472                 */
1473                mss = tcp_skb_mss(skb);
1474
1475                /* TODO: Fix DSACKs to not fragment already SACKed and we can
1476                 * drop this restriction as unnecessary
1477                 */
1478                if (mss != tcp_skb_seglen(prev))
1479                        goto fallback;
1480
1481                if (len == mss) {
1482                        pcount = 1;
1483                } else if (len < mss) {
1484                        goto noop;
1485                } else {
1486                        pcount = len / mss;
1487                        len = pcount * mss;
1488                }
1489        }
1490
1491        /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1492        if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1493                goto fallback;
1494
1495        if (!tcp_skb_shift(prev, skb, pcount, len))
1496                goto fallback;
1497        if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1498                goto out;
1499
1500        /* Hole filled allows collapsing with the next as well, this is very
1501         * useful when hole on every nth skb pattern happens
1502         */
1503        skb = skb_rb_next(prev);
1504        if (!skb)
1505                goto out;
1506
1507        if (!skb_can_shift(skb) ||
1508            ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1509            (mss != tcp_skb_seglen(skb)))
1510                goto out;
1511
1512        len = skb->len;
1513        pcount = tcp_skb_pcount(skb);
1514        if (tcp_skb_shift(prev, skb, pcount, len))
1515                tcp_shifted_skb(sk, prev, skb, state, pcount,
1516                                len, mss, 0);
1517
1518out:
1519        return prev;
1520
1521noop:
1522        return skb;
1523
1524fallback:
1525        NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1526        return NULL;
1527}
1528
1529static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1530                                        struct tcp_sack_block *next_dup,
1531                                        struct tcp_sacktag_state *state,
1532                                        u32 start_seq, u32 end_seq,
1533                                        bool dup_sack_in)
1534{
1535        struct tcp_sock *tp = tcp_sk(sk);
1536        struct sk_buff *tmp;
1537
1538        skb_rbtree_walk_from(skb) {
1539                int in_sack = 0;
1540                bool dup_sack = dup_sack_in;
1541
1542                /* queue is in-order => we can short-circuit the walk early */
1543                if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1544                        break;
1545
1546                if (next_dup  &&
1547                    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1548                        in_sack = tcp_match_skb_to_sack(sk, skb,
1549                                                        next_dup->start_seq,
1550                                                        next_dup->end_seq);
1551                        if (in_sack > 0)
1552                                dup_sack = true;
1553                }
1554
1555                /* skb reference here is a bit tricky to get right, since
1556                 * shifting can eat and free both this skb and the next,
1557                 * so not even _safe variant of the loop is enough.
1558                 */
1559                if (in_sack <= 0) {
1560                        tmp = tcp_shift_skb_data(sk, skb, state,
1561                                                 start_seq, end_seq, dup_sack);
1562                        if (tmp) {
1563                                if (tmp != skb) {
1564                                        skb = tmp;
1565                                        continue;
1566                                }
1567
1568                                in_sack = 0;
1569                        } else {
1570                                in_sack = tcp_match_skb_to_sack(sk, skb,
1571                                                                start_seq,
1572                                                                end_seq);
1573                        }
1574                }
1575
1576                if (unlikely(in_sack < 0))
1577                        break;
1578
1579                if (in_sack) {
1580                        TCP_SKB_CB(skb)->sacked =
1581                                tcp_sacktag_one(sk,
1582                                                state,
1583                                                TCP_SKB_CB(skb)->sacked,
1584                                                TCP_SKB_CB(skb)->seq,
1585                                                TCP_SKB_CB(skb)->end_seq,
1586                                                dup_sack,
1587                                                tcp_skb_pcount(skb),
1588                                                tcp_skb_timestamp_us(skb));
1589                        tcp_rate_skb_delivered(sk, skb, state->rate);
1590                        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1591                                list_del_init(&skb->tcp_tsorted_anchor);
1592
1593                        if (!before(TCP_SKB_CB(skb)->seq,
1594                                    tcp_highest_sack_seq(tp)))
1595                                tcp_advance_highest_sack(sk, skb);
1596                }
1597        }
1598        return skb;
1599}
1600
1601static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1602{
1603        struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1604        struct sk_buff *skb;
1605
1606        while (*p) {
1607                parent = *p;
1608                skb = rb_to_skb(parent);
1609                if (before(seq, TCP_SKB_CB(skb)->seq)) {
1610                        p = &parent->rb_left;
1611                        continue;
1612                }
1613                if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1614                        p = &parent->rb_right;
1615                        continue;
1616                }
1617                return skb;
1618        }
1619        return NULL;
1620}
1621
1622static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1623                                        u32 skip_to_seq)
1624{
1625        if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1626                return skb;
1627
1628        return tcp_sacktag_bsearch(sk, skip_to_seq);
1629}
1630
1631static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1632                                                struct sock *sk,
1633                                                struct tcp_sack_block *next_dup,
1634                                                struct tcp_sacktag_state *state,
1635                                                u32 skip_to_seq)
1636{
1637        if (!next_dup)
1638                return skb;
1639
1640        if (before(next_dup->start_seq, skip_to_seq)) {
1641                skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1642                skb = tcp_sacktag_walk(skb, sk, NULL, state,
1643                                       next_dup->start_seq, next_dup->end_seq,
1644                                       1);
1645        }
1646
1647        return skb;
1648}
1649
1650static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1651{
1652        return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1653}
1654
1655static int
1656tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1657                        u32 prior_snd_una, struct tcp_sacktag_state *state)
1658{
1659        struct tcp_sock *tp = tcp_sk(sk);
1660        const unsigned char *ptr = (skb_transport_header(ack_skb) +
1661                                    TCP_SKB_CB(ack_skb)->sacked);
1662        struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1663        struct tcp_sack_block sp[TCP_NUM_SACKS];
1664        struct tcp_sack_block *cache;
1665        struct sk_buff *skb;
1666        int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1667        int used_sacks;
1668        bool found_dup_sack = false;
1669        int i, j;
1670        int first_sack_index;
1671
1672        state->flag = 0;
1673        state->reord = tp->snd_nxt;
1674
1675        if (!tp->sacked_out)
1676                tcp_highest_sack_reset(sk);
1677
1678        found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1679                                         num_sacks, prior_snd_una);
1680        if (found_dup_sack) {
1681                state->flag |= FLAG_DSACKING_ACK;
1682                tp->delivered++; /* A spurious retransmission is delivered */
1683        }
1684
1685        /* Eliminate too old ACKs, but take into
1686         * account more or less fresh ones, they can
1687         * contain valid SACK info.
1688         */
1689        if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1690                return 0;
1691
1692        if (!tp->packets_out)
1693                goto out;
1694
1695        used_sacks = 0;
1696        first_sack_index = 0;
1697        for (i = 0; i < num_sacks; i++) {
1698                bool dup_sack = !i && found_dup_sack;
1699
1700                sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1701                sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1702
1703                if (!tcp_is_sackblock_valid(tp, dup_sack,
1704                                            sp[used_sacks].start_seq,
1705                                            sp[used_sacks].end_seq)) {
1706                        int mib_idx;
1707
1708                        if (dup_sack) {
1709                                if (!tp->undo_marker)
1710                                        mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1711                                else
1712                                        mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1713                        } else {
1714                                /* Don't count olds caused by ACK reordering */
1715                                if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1716                                    !after(sp[used_sacks].end_seq, tp->snd_una))
1717                                        continue;
1718                                mib_idx = LINUX_MIB_TCPSACKDISCARD;
1719                        }
1720
1721                        NET_INC_STATS(sock_net(sk), mib_idx);
1722                        if (i == 0)
1723                                first_sack_index = -1;
1724                        continue;
1725                }
1726
1727                /* Ignore very old stuff early */
1728                if (!after(sp[used_sacks].end_seq, prior_snd_una))
1729                        continue;
1730
1731                used_sacks++;
1732        }
1733
1734        /* order SACK blocks to allow in order walk of the retrans queue */
1735        for (i = used_sacks - 1; i > 0; i--) {
1736                for (j = 0; j < i; j++) {
1737                        if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1738                                swap(sp[j], sp[j + 1]);
1739
1740                                /* Track where the first SACK block goes to */
1741                                if (j == first_sack_index)
1742                                        first_sack_index = j + 1;
1743                        }
1744                }
1745        }
1746
1747        state->mss_now = tcp_current_mss(sk);
1748        skb = NULL;
1749        i = 0;
1750
1751        if (!tp->sacked_out) {
1752                /* It's already past, so skip checking against it */
1753                cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1754        } else {
1755                cache = tp->recv_sack_cache;
1756                /* Skip empty blocks in at head of the cache */
1757                while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1758                       !cache->end_seq)
1759                        cache++;
1760        }
1761
1762        while (i < used_sacks) {
1763                u32 start_seq = sp[i].start_seq;
1764                u32 end_seq = sp[i].end_seq;
1765                bool dup_sack = (found_dup_sack && (i == first_sack_index));
1766                struct tcp_sack_block *next_dup = NULL;
1767
1768                if (found_dup_sack && ((i + 1) == first_sack_index))
1769                        next_dup = &sp[i + 1];
1770
1771                /* Skip too early cached blocks */
1772                while (tcp_sack_cache_ok(tp, cache) &&
1773                       !before(start_seq, cache->end_seq))
1774                        cache++;
1775
1776                /* Can skip some work by looking recv_sack_cache? */
1777                if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1778                    after(end_seq, cache->start_seq)) {
1779
1780                        /* Head todo? */
1781                        if (before(start_seq, cache->start_seq)) {
1782                                skb = tcp_sacktag_skip(skb, sk, start_seq);
1783                                skb = tcp_sacktag_walk(skb, sk, next_dup,
1784                                                       state,
1785                                                       start_seq,
1786                                                       cache->start_seq,
1787                                                       dup_sack);
1788                        }
1789
1790                        /* Rest of the block already fully processed? */
1791                        if (!after(end_seq, cache->end_seq))
1792                                goto advance_sp;
1793
1794                        skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1795                                                       state,
1796                                                       cache->end_seq);
1797
1798                        /* ...tail remains todo... */
1799                        if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1800                                /* ...but better entrypoint exists! */
1801                                skb = tcp_highest_sack(sk);
1802                                if (!skb)
1803                                        break;
1804                                cache++;
1805                                goto walk;
1806                        }
1807
1808                        skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1809                        /* Check overlap against next cached too (past this one already) */
1810                        cache++;
1811                        continue;
1812                }
1813
1814                if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1815                        skb = tcp_highest_sack(sk);
1816                        if (!skb)
1817                                break;
1818                }
1819                skb = tcp_sacktag_skip(skb, sk, start_seq);
1820
1821walk:
1822                skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1823                                       start_seq, end_seq, dup_sack);
1824
1825advance_sp:
1826                i++;
1827        }
1828
1829        /* Clear the head of the cache sack blocks so we can skip it next time */
1830        for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1831                tp->recv_sack_cache[i].start_seq = 0;
1832                tp->recv_sack_cache[i].end_seq = 0;
1833        }
1834        for (j = 0; j < used_sacks; j++)
1835                tp->recv_sack_cache[i++] = sp[j];
1836
1837        if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1838                tcp_check_sack_reordering(sk, state->reord, 0);
1839
1840        tcp_verify_left_out(tp);
1841out:
1842
1843#if FASTRETRANS_DEBUG > 0
1844        WARN_ON((int)tp->sacked_out < 0);
1845        WARN_ON((int)tp->lost_out < 0);
1846        WARN_ON((int)tp->retrans_out < 0);
1847        WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1848#endif
1849        return state->flag;
1850}
1851
1852/* Limits sacked_out so that sum with lost_out isn't ever larger than
1853 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1854 */
1855static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1856{
1857        u32 holes;
1858
1859        holes = max(tp->lost_out, 1U);
1860        holes = min(holes, tp->packets_out);
1861
1862        if ((tp->sacked_out + holes) > tp->packets_out) {
1863                tp->sacked_out = tp->packets_out - holes;
1864                return true;
1865        }
1866        return false;
1867}
1868
1869/* If we receive more dupacks than we expected counting segments
1870 * in assumption of absent reordering, interpret this as reordering.
1871 * The only another reason could be bug in receiver TCP.
1872 */
1873static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1874{
1875        struct tcp_sock *tp = tcp_sk(sk);
1876
1877        if (!tcp_limit_reno_sacked(tp))
1878                return;
1879
1880        tp->reordering = min_t(u32, tp->packets_out + addend,
1881                               sock_net(sk)->ipv4.sysctl_tcp_max_reordering);
1882        tp->reord_seen++;
1883        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
1884}
1885
1886/* Emulate SACKs for SACKless connection: account for a new dupack. */
1887
1888static void tcp_add_reno_sack(struct sock *sk, int num_dupack)
1889{
1890        if (num_dupack) {
1891                struct tcp_sock *tp = tcp_sk(sk);
1892                u32 prior_sacked = tp->sacked_out;
1893                s32 delivered;
1894
1895                tp->sacked_out += num_dupack;
1896                tcp_check_reno_reordering(sk, 0);
1897                delivered = tp->sacked_out - prior_sacked;
1898                if (delivered > 0)
1899                        tp->delivered += delivered;
1900                tcp_verify_left_out(tp);
1901        }
1902}
1903
1904/* Account for ACK, ACKing some data in Reno Recovery phase. */
1905
1906static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1907{
1908        struct tcp_sock *tp = tcp_sk(sk);
1909
1910        if (acked > 0) {
1911                /* One ACK acked hole. The rest eat duplicate ACKs. */
1912                tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1913                if (acked - 1 >= tp->sacked_out)
1914                        tp->sacked_out = 0;
1915                else
1916                        tp->sacked_out -= acked - 1;
1917        }
1918        tcp_check_reno_reordering(sk, acked);
1919        tcp_verify_left_out(tp);
1920}
1921
1922static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1923{
1924        tp->sacked_out = 0;
1925}
1926
1927void tcp_clear_retrans(struct tcp_sock *tp)
1928{
1929        tp->retrans_out = 0;
1930        tp->lost_out = 0;
1931        tp->undo_marker = 0;
1932        tp->undo_retrans = -1;
1933        tp->sacked_out = 0;
1934}
1935
1936static inline void tcp_init_undo(struct tcp_sock *tp)
1937{
1938        tp->undo_marker = tp->snd_una;
1939        /* Retransmission still in flight may cause DSACKs later. */
1940        tp->undo_retrans = tp->retrans_out ? : -1;
1941}
1942
1943static bool tcp_is_rack(const struct sock *sk)
1944{
1945        return sock_net(sk)->ipv4.sysctl_tcp_recovery & TCP_RACK_LOSS_DETECTION;
1946}
1947
1948/* If we detect SACK reneging, forget all SACK information
1949 * and reset tags completely, otherwise preserve SACKs. If receiver
1950 * dropped its ofo queue, we will know this due to reneging detection.
1951 */
1952static void tcp_timeout_mark_lost(struct sock *sk)
1953{
1954        struct tcp_sock *tp = tcp_sk(sk);
1955        struct sk_buff *skb, *head;
1956        bool is_reneg;                  /* is receiver reneging on SACKs? */
1957
1958        head = tcp_rtx_queue_head(sk);
1959        is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
1960        if (is_reneg) {
1961                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1962                tp->sacked_out = 0;
1963                /* Mark SACK reneging until we recover from this loss event. */
1964                tp->is_sack_reneg = 1;
1965        } else if (tcp_is_reno(tp)) {
1966                tcp_reset_reno_sack(tp);
1967        }
1968
1969        skb = head;
1970        skb_rbtree_walk_from(skb) {
1971                if (is_reneg)
1972                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1973                else if (tcp_is_rack(sk) && skb != head &&
1974                         tcp_rack_skb_timeout(tp, skb, 0) > 0)
1975                        continue; /* Don't mark recently sent ones lost yet */
1976                tcp_mark_skb_lost(sk, skb);
1977        }
1978        tcp_verify_left_out(tp);
1979        tcp_clear_all_retrans_hints(tp);
1980}
1981
1982/* Enter Loss state. */
1983void tcp_enter_loss(struct sock *sk)
1984{
1985        const struct inet_connection_sock *icsk = inet_csk(sk);
1986        struct tcp_sock *tp = tcp_sk(sk);
1987        struct net *net = sock_net(sk);
1988        bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1989
1990        tcp_timeout_mark_lost(sk);
1991
1992        /* Reduce ssthresh if it has not yet been made inside this window. */
1993        if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1994            !after(tp->high_seq, tp->snd_una) ||
1995            (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1996                tp->prior_ssthresh = tcp_current_ssthresh(sk);
1997                tp->prior_cwnd = tp->snd_cwnd;
1998                tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1999                tcp_ca_event(sk, CA_EVENT_LOSS);
2000                tcp_init_undo(tp);
2001        }
2002        tp->snd_cwnd       = tcp_packets_in_flight(tp) + 1;
2003        tp->snd_cwnd_cnt   = 0;
2004        tp->snd_cwnd_stamp = tcp_jiffies32;
2005
2006        /* Timeout in disordered state after receiving substantial DUPACKs
2007         * suggests that the degree of reordering is over-estimated.
2008         */
2009        if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2010            tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
2011                tp->reordering = min_t(unsigned int, tp->reordering,
2012                                       net->ipv4.sysctl_tcp_reordering);
2013        tcp_set_ca_state(sk, TCP_CA_Loss);
2014        tp->high_seq = tp->snd_nxt;
2015        tcp_ecn_queue_cwr(tp);
2016
2017        /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2018         * loss recovery is underway except recurring timeout(s) on
2019         * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2020         */
2021        tp->frto = net->ipv4.sysctl_tcp_frto &&
2022                   (new_recovery || icsk->icsk_retransmits) &&
2023                   !inet_csk(sk)->icsk_mtup.probe_size;
2024}
2025
2026/* If ACK arrived pointing to a remembered SACK, it means that our
2027 * remembered SACKs do not reflect real state of receiver i.e.
2028 * receiver _host_ is heavily congested (or buggy).
2029 *
2030 * To avoid big spurious retransmission bursts due to transient SACK
2031 * scoreboard oddities that look like reneging, we give the receiver a
2032 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2033 * restore sanity to the SACK scoreboard. If the apparent reneging
2034 * persists until this RTO then we'll clear the SACK scoreboard.
2035 */
2036static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2037{
2038        if (flag & FLAG_SACK_RENEGING) {
2039                struct tcp_sock *tp = tcp_sk(sk);
2040                unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2041                                          msecs_to_jiffies(10));
2042
2043                inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2044                                          delay, TCP_RTO_MAX);
2045                return true;
2046        }
2047        return false;
2048}
2049
2050/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2051 * counter when SACK is enabled (without SACK, sacked_out is used for
2052 * that purpose).
2053 *
2054 * With reordering, holes may still be in flight, so RFC3517 recovery
2055 * uses pure sacked_out (total number of SACKed segments) even though
2056 * it violates the RFC that uses duplicate ACKs, often these are equal
2057 * but when e.g. out-of-window ACKs or packet duplication occurs,
2058 * they differ. Since neither occurs due to loss, TCP should really
2059 * ignore them.
2060 */
2061static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2062{
2063        return tp->sacked_out + 1;
2064}
2065
2066/* Linux NewReno/SACK/ECN state machine.
2067 * --------------------------------------
2068 *
2069 * "Open"       Normal state, no dubious events, fast path.
2070 * "Disorder"   In all the respects it is "Open",
2071 *              but requires a bit more attention. It is entered when
2072 *              we see some SACKs or dupacks. It is split of "Open"
2073 *              mainly to move some processing from fast path to slow one.
2074 * "CWR"        CWND was reduced due to some Congestion Notification event.
2075 *              It can be ECN, ICMP source quench, local device congestion.
2076 * "Recovery"   CWND was reduced, we are fast-retransmitting.
2077 * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2078 *
2079 * tcp_fastretrans_alert() is entered:
2080 * - each incoming ACK, if state is not "Open"
2081 * - when arrived ACK is unusual, namely:
2082 *      * SACK
2083 *      * Duplicate ACK.
2084 *      * ECN ECE.
2085 *
2086 * Counting packets in flight is pretty simple.
2087 *
2088 *      in_flight = packets_out - left_out + retrans_out
2089 *
2090 *      packets_out is SND.NXT-SND.UNA counted in packets.
2091 *
2092 *      retrans_out is number of retransmitted segments.
2093 *
2094 *      left_out is number of segments left network, but not ACKed yet.
2095 *
2096 *              left_out = sacked_out + lost_out
2097 *
2098 *     sacked_out: Packets, which arrived to receiver out of order
2099 *                 and hence not ACKed. With SACKs this number is simply
2100 *                 amount of SACKed data. Even without SACKs
2101 *                 it is easy to give pretty reliable estimate of this number,
2102 *                 counting duplicate ACKs.
2103 *
2104 *       lost_out: Packets lost by network. TCP has no explicit
2105 *                 "loss notification" feedback from network (for now).
2106 *                 It means that this number can be only _guessed_.
2107 *                 Actually, it is the heuristics to predict lossage that
2108 *                 distinguishes different algorithms.
2109 *
2110 *      F.e. after RTO, when all the queue is considered as lost,
2111 *      lost_out = packets_out and in_flight = retrans_out.
2112 *
2113 *              Essentially, we have now a few algorithms detecting
2114 *              lost packets.
2115 *
2116 *              If the receiver supports SACK:
2117 *
2118 *              RFC6675/3517: It is the conventional algorithm. A packet is
2119 *              considered lost if the number of higher sequence packets
2120 *              SACKed is greater than or equal the DUPACK thoreshold
2121 *              (reordering). This is implemented in tcp_mark_head_lost and
2122 *              tcp_update_scoreboard.
2123 *
2124 *              RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2125 *              (2017-) that checks timing instead of counting DUPACKs.
2126 *              Essentially a packet is considered lost if it's not S/ACKed
2127 *              after RTT + reordering_window, where both metrics are
2128 *              dynamically measured and adjusted. This is implemented in
2129 *              tcp_rack_mark_lost.
2130 *
2131 *              If the receiver does not support SACK:
2132 *
2133 *              NewReno (RFC6582): in Recovery we assume that one segment
2134 *              is lost (classic Reno). While we are in Recovery and
2135 *              a partial ACK arrives, we assume that one more packet
2136 *              is lost (NewReno). This heuristics are the same in NewReno
2137 *              and SACK.
2138 *
2139 * Really tricky (and requiring careful tuning) part of algorithm
2140 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2141 * The first determines the moment _when_ we should reduce CWND and,
2142 * hence, slow down forward transmission. In fact, it determines the moment
2143 * when we decide that hole is caused by loss, rather than by a reorder.
2144 *
2145 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2146 * holes, caused by lost packets.
2147 *
2148 * And the most logically complicated part of algorithm is undo
2149 * heuristics. We detect false retransmits due to both too early
2150 * fast retransmit (reordering) and underestimated RTO, analyzing
2151 * timestamps and D-SACKs. When we detect that some segments were
2152 * retransmitted by mistake and CWND reduction was wrong, we undo
2153 * window reduction and abort recovery phase. This logic is hidden
2154 * inside several functions named tcp_try_undo_<something>.
2155 */
2156
2157/* This function decides, when we should leave Disordered state
2158 * and enter Recovery phase, reducing congestion window.
2159 *
2160 * Main question: may we further continue forward transmission
2161 * with the same cwnd?
2162 */
2163static bool tcp_time_to_recover(struct sock *sk, int flag)
2164{
2165        struct tcp_sock *tp = tcp_sk(sk);
2166
2167        /* Trick#1: The loss is proven. */
2168        if (tp->lost_out)
2169                return true;
2170
2171        /* Not-A-Trick#2 : Classic rule... */
2172        if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2173                return true;
2174
2175        return false;
2176}
2177
2178/* Detect loss in event "A" above by marking head of queue up as lost.
2179 * For non-SACK(Reno) senders, the first "packets" number of segments
2180 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2181 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2182 * the maximum SACKed segments to pass before reaching this limit.
2183 */
2184static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2185{
2186        struct tcp_sock *tp = tcp_sk(sk);
2187        struct sk_buff *skb;
2188        int cnt, oldcnt, lost;
2189        unsigned int mss;
2190        /* Use SACK to deduce losses of new sequences sent during recovery */
2191        const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2192
2193        WARN_ON(packets > tp->packets_out);
2194        skb = tp->lost_skb_hint;
2195        if (skb) {
2196                /* Head already handled? */
2197                if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2198                        return;
2199                cnt = tp->lost_cnt_hint;
2200        } else {
2201                skb = tcp_rtx_queue_head(sk);
2202                cnt = 0;
2203        }
2204
2205        skb_rbtree_walk_from(skb) {
2206                /* TODO: do this better */
2207                /* this is not the most efficient way to do this... */
2208                tp->lost_skb_hint = skb;
2209                tp->lost_cnt_hint = cnt;
2210
2211                if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2212                        break;
2213
2214                oldcnt = cnt;
2215                if (tcp_is_reno(tp) ||
2216                    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2217                        cnt += tcp_skb_pcount(skb);
2218
2219                if (cnt > packets) {
2220                        if (tcp_is_sack(tp) ||
2221                            (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2222                            (oldcnt >= packets))
2223                                break;
2224
2225                        mss = tcp_skb_mss(skb);
2226                        /* If needed, chop off the prefix to mark as lost. */
2227                        lost = (packets - oldcnt) * mss;
2228                        if (lost < skb->len &&
2229                            tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2230                                         lost, mss, GFP_ATOMIC) < 0)
2231                                break;
2232                        cnt = packets;
2233                }
2234
2235                tcp_skb_mark_lost(tp, skb);
2236
2237                if (mark_head)
2238                        break;
2239        }
2240        tcp_verify_left_out(tp);
2241}
2242
2243/* Account newly detected lost packet(s) */
2244
2245static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2246{
2247        struct tcp_sock *tp = tcp_sk(sk);
2248
2249        if (tcp_is_sack(tp)) {
2250                int sacked_upto = tp->sacked_out - tp->reordering;
2251                if (sacked_upto >= 0)
2252                        tcp_mark_head_lost(sk, sacked_upto, 0);
2253                else if (fast_rexmit)
2254                        tcp_mark_head_lost(sk, 1, 1);
2255        }
2256}
2257
2258static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2259{
2260        return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2261               before(tp->rx_opt.rcv_tsecr, when);
2262}
2263
2264/* skb is spurious retransmitted if the returned timestamp echo
2265 * reply is prior to the skb transmission time
2266 */
2267static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2268                                     const struct sk_buff *skb)
2269{
2270        return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2271               tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2272}
2273
2274/* Nothing was retransmitted or returned timestamp is less
2275 * than timestamp of the first retransmission.
2276 */
2277static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2278{
2279        return tp->retrans_stamp &&
2280               tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2281}
2282
2283/* Undo procedures. */
2284
2285/* We can clear retrans_stamp when there are no retransmissions in the
2286 * window. It would seem that it is trivially available for us in
2287 * tp->retrans_out, however, that kind of assumptions doesn't consider
2288 * what will happen if errors occur when sending retransmission for the
2289 * second time. ...It could the that such segment has only
2290 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2291 * the head skb is enough except for some reneging corner cases that
2292 * are not worth the effort.
2293 *
2294 * Main reason for all this complexity is the fact that connection dying
2295 * time now depends on the validity of the retrans_stamp, in particular,
2296 * that successive retransmissions of a segment must not advance
2297 * retrans_stamp under any conditions.
2298 */
2299static bool tcp_any_retrans_done(const struct sock *sk)
2300{
2301        const struct tcp_sock *tp = tcp_sk(sk);
2302        struct sk_buff *skb;
2303
2304        if (tp->retrans_out)
2305                return true;
2306
2307        skb = tcp_rtx_queue_head(sk);
2308        if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2309                return true;
2310
2311        return false;
2312}
2313
2314static void DBGUNDO(struct sock *sk, const char *msg)
2315{
2316#if FASTRETRANS_DEBUG > 1
2317        struct tcp_sock *tp = tcp_sk(sk);
2318        struct inet_sock *inet = inet_sk(sk);
2319
2320        if (sk->sk_family == AF_INET) {
2321                pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2322                         msg,
2323                         &inet->inet_daddr, ntohs(inet->inet_dport),
2324                         tp->snd_cwnd, tcp_left_out(tp),
2325                         tp->snd_ssthresh, tp->prior_ssthresh,
2326                         tp->packets_out);
2327        }
2328#if IS_ENABLED(CONFIG_IPV6)
2329        else if (sk->sk_family == AF_INET6) {
2330                pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2331                         msg,
2332                         &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2333                         tp->snd_cwnd, tcp_left_out(tp),
2334                         tp->snd_ssthresh, tp->prior_ssthresh,
2335                         tp->packets_out);
2336        }
2337#endif
2338#endif
2339}
2340
2341static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2342{
2343        struct tcp_sock *tp = tcp_sk(sk);
2344
2345        if (unmark_loss) {
2346                struct sk_buff *skb;
2347
2348                skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2349                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2350                }
2351                tp->lost_out = 0;
2352                tcp_clear_all_retrans_hints(tp);
2353        }
2354
2355        if (tp->prior_ssthresh) {
2356                const struct inet_connection_sock *icsk = inet_csk(sk);
2357
2358                tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2359
2360                if (tp->prior_ssthresh > tp->snd_ssthresh) {
2361                        tp->snd_ssthresh = tp->prior_ssthresh;
2362                        tcp_ecn_withdraw_cwr(tp);
2363                }
2364        }
2365        tp->snd_cwnd_stamp = tcp_jiffies32;
2366        tp->undo_marker = 0;
2367        tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2368}
2369
2370static inline bool tcp_may_undo(const struct tcp_sock *tp)
2371{
2372        return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2373}
2374
2375/* People celebrate: "We love our President!" */
2376static bool tcp_try_undo_recovery(struct sock *sk)
2377{
2378        struct tcp_sock *tp = tcp_sk(sk);
2379
2380        if (tcp_may_undo(tp)) {
2381                int mib_idx;
2382
2383                /* Happy end! We did not retransmit anything
2384                 * or our original transmission succeeded.
2385                 */
2386                DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2387                tcp_undo_cwnd_reduction(sk, false);
2388                if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2389                        mib_idx = LINUX_MIB_TCPLOSSUNDO;
2390                else
2391                        mib_idx = LINUX_MIB_TCPFULLUNDO;
2392
2393                NET_INC_STATS(sock_net(sk), mib_idx);
2394        } else if (tp->rack.reo_wnd_persist) {
2395                tp->rack.reo_wnd_persist--;
2396        }
2397        if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2398                /* Hold old state until something *above* high_seq
2399                 * is ACKed. For Reno it is MUST to prevent false
2400                 * fast retransmits (RFC2582). SACK TCP is safe. */
2401                if (!tcp_any_retrans_done(sk))
2402                        tp->retrans_stamp = 0;
2403                return true;
2404        }
2405        tcp_set_ca_state(sk, TCP_CA_Open);
2406        tp->is_sack_reneg = 0;
2407        return false;
2408}
2409
2410/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2411static bool tcp_try_undo_dsack(struct sock *sk)
2412{
2413        struct tcp_sock *tp = tcp_sk(sk);
2414
2415        if (tp->undo_marker && !tp->undo_retrans) {
2416                tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2417                                               tp->rack.reo_wnd_persist + 1);
2418                DBGUNDO(sk, "D-SACK");
2419                tcp_undo_cwnd_reduction(sk, false);
2420                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2421                return true;
2422        }
2423        return false;
2424}
2425
2426/* Undo during loss recovery after partial ACK or using F-RTO. */
2427static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2428{
2429        struct tcp_sock *tp = tcp_sk(sk);
2430
2431        if (frto_undo || tcp_may_undo(tp)) {
2432                tcp_undo_cwnd_reduction(sk, true);
2433
2434                DBGUNDO(sk, "partial loss");
2435                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2436                if (frto_undo)
2437                        NET_INC_STATS(sock_net(sk),
2438                                        LINUX_MIB_TCPSPURIOUSRTOS);
2439                inet_csk(sk)->icsk_retransmits = 0;
2440                if (frto_undo || tcp_is_sack(tp)) {
2441                        tcp_set_ca_state(sk, TCP_CA_Open);
2442                        tp->is_sack_reneg = 0;
2443                }
2444                return true;
2445        }
2446        return false;
2447}
2448
2449/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2450 * It computes the number of packets to send (sndcnt) based on packets newly
2451 * delivered:
2452 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2453 *      cwnd reductions across a full RTT.
2454 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2455 *      But when the retransmits are acked without further losses, PRR
2456 *      slow starts cwnd up to ssthresh to speed up the recovery.
2457 */
2458static void tcp_init_cwnd_reduction(struct sock *sk)
2459{
2460        struct tcp_sock *tp = tcp_sk(sk);
2461
2462        tp->high_seq = tp->snd_nxt;
2463        tp->tlp_high_seq = 0;
2464        tp->snd_cwnd_cnt = 0;
2465        tp->prior_cwnd = tp->snd_cwnd;
2466        tp->prr_delivered = 0;
2467        tp->prr_out = 0;
2468        tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2469        tcp_ecn_queue_cwr(tp);
2470}
2471
2472void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2473{
2474        struct tcp_sock *tp = tcp_sk(sk);
2475        int sndcnt = 0;
2476        int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2477
2478        if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2479                return;
2480
2481        tp->prr_delivered += newly_acked_sacked;
2482        if (delta < 0) {
2483                u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2484                               tp->prior_cwnd - 1;
2485                sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2486        } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2487                   FLAG_RETRANS_DATA_ACKED) {
2488                sndcnt = min_t(int, delta,
2489                               max_t(int, tp->prr_delivered - tp->prr_out,
2490                                     newly_acked_sacked) + 1);
2491        } else {
2492                sndcnt = min(delta, newly_acked_sacked);
2493        }
2494        /* Force a fast retransmit upon entering fast recovery */
2495        sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2496        tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2497}
2498
2499static inline void tcp_end_cwnd_reduction(struct sock *sk)
2500{
2501        struct tcp_sock *tp = tcp_sk(sk);
2502
2503        if (inet_csk(sk)->icsk_ca_ops->cong_control)
2504                return;
2505
2506        /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2507        if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2508            (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2509                tp->snd_cwnd = tp->snd_ssthresh;
2510                tp->snd_cwnd_stamp = tcp_jiffies32;
2511        }
2512        tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2513}
2514
2515/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2516void tcp_enter_cwr(struct sock *sk)
2517{
2518        struct tcp_sock *tp = tcp_sk(sk);
2519
2520        tp->prior_ssthresh = 0;
2521        if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2522                tp->undo_marker = 0;
2523                tcp_init_cwnd_reduction(sk);
2524                tcp_set_ca_state(sk, TCP_CA_CWR);
2525        }
2526}
2527EXPORT_SYMBOL(tcp_enter_cwr);
2528
2529static void tcp_try_keep_open(struct sock *sk)
2530{
2531        struct tcp_sock *tp = tcp_sk(sk);
2532        int state = TCP_CA_Open;
2533
2534        if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2535                state = TCP_CA_Disorder;
2536
2537        if (inet_csk(sk)->icsk_ca_state != state) {
2538                tcp_set_ca_state(sk, state);
2539                tp->high_seq = tp->snd_nxt;
2540        }
2541}
2542
2543static void tcp_try_to_open(struct sock *sk, int flag)
2544{
2545        struct tcp_sock *tp = tcp_sk(sk);
2546
2547        tcp_verify_left_out(tp);
2548
2549        if (!tcp_any_retrans_done(sk))
2550                tp->retrans_stamp = 0;
2551
2552        if (flag & FLAG_ECE)
2553                tcp_enter_cwr(sk);
2554
2555        if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2556                tcp_try_keep_open(sk);
2557        }
2558}
2559
2560static void tcp_mtup_probe_failed(struct sock *sk)
2561{
2562        struct inet_connection_sock *icsk = inet_csk(sk);
2563
2564        icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2565        icsk->icsk_mtup.probe_size = 0;
2566        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2567}
2568
2569static void tcp_mtup_probe_success(struct sock *sk)
2570{
2571        struct tcp_sock *tp = tcp_sk(sk);
2572        struct inet_connection_sock *icsk = inet_csk(sk);
2573
2574        /* FIXME: breaks with very large cwnd */
2575        tp->prior_ssthresh = tcp_current_ssthresh(sk);
2576        tp->snd_cwnd = tp->snd_cwnd *
2577                       tcp_mss_to_mtu(sk, tp->mss_cache) /
2578                       icsk->icsk_mtup.probe_size;
2579        tp->snd_cwnd_cnt = 0;
2580        tp->snd_cwnd_stamp = tcp_jiffies32;
2581        tp->snd_ssthresh = tcp_current_ssthresh(sk);
2582
2583        icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2584        icsk->icsk_mtup.probe_size = 0;
2585        tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2586        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2587}
2588
2589/* Do a simple retransmit without using the backoff mechanisms in
2590 * tcp_timer. This is used for path mtu discovery.
2591 * The socket is already locked here.
2592 */
2593void tcp_simple_retransmit(struct sock *sk)
2594{
2595        const struct inet_connection_sock *icsk = inet_csk(sk);
2596        struct tcp_sock *tp = tcp_sk(sk);
2597        struct sk_buff *skb;
2598        unsigned int mss = tcp_current_mss(sk);
2599
2600        skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2601                if (tcp_skb_seglen(skb) > mss &&
2602                    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2603                        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2604                                TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2605                                tp->retrans_out -= tcp_skb_pcount(skb);
2606                        }
2607                        tcp_skb_mark_lost_uncond_verify(tp, skb);
2608                }
2609        }
2610
2611        tcp_clear_retrans_hints_partial(tp);
2612
2613        if (!tp->lost_out)
2614                return;
2615
2616        if (tcp_is_reno(tp))
2617                tcp_limit_reno_sacked(tp);
2618
2619        tcp_verify_left_out(tp);
2620
2621        /* Don't muck with the congestion window here.
2622         * Reason is that we do not increase amount of _data_
2623         * in network, but units changed and effective
2624         * cwnd/ssthresh really reduced now.
2625         */
2626        if (icsk->icsk_ca_state != TCP_CA_Loss) {
2627                tp->high_seq = tp->snd_nxt;
2628                tp->snd_ssthresh = tcp_current_ssthresh(sk);
2629                tp->prior_ssthresh = 0;
2630                tp->undo_marker = 0;
2631                tcp_set_ca_state(sk, TCP_CA_Loss);
2632        }
2633        tcp_xmit_retransmit_queue(sk);
2634}
2635EXPORT_SYMBOL(tcp_simple_retransmit);
2636
2637void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2638{
2639        struct tcp_sock *tp = tcp_sk(sk);
2640        int mib_idx;
2641
2642        if (tcp_is_reno(tp))
2643                mib_idx = LINUX_MIB_TCPRENORECOVERY;
2644        else
2645                mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2646
2647        NET_INC_STATS(sock_net(sk), mib_idx);
2648
2649        tp->prior_ssthresh = 0;
2650        tcp_init_undo(tp);
2651
2652        if (!tcp_in_cwnd_reduction(sk)) {
2653                if (!ece_ack)
2654                        tp->prior_ssthresh = tcp_current_ssthresh(sk);
2655                tcp_init_cwnd_reduction(sk);
2656        }
2657        tcp_set_ca_state(sk, TCP_CA_Recovery);
2658}
2659
2660/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2661 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2662 */
2663static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2664                             int *rexmit)
2665{
2666        struct tcp_sock *tp = tcp_sk(sk);
2667        bool recovered = !before(tp->snd_una, tp->high_seq);
2668
2669        if ((flag & FLAG_SND_UNA_ADVANCED || tp->fastopen_rsk) &&
2670            tcp_try_undo_loss(sk, false))
2671                return;
2672
2673        if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2674                /* Step 3.b. A timeout is spurious if not all data are
2675                 * lost, i.e., never-retransmitted data are (s)acked.
2676                 */
2677                if ((flag & FLAG_ORIG_SACK_ACKED) &&
2678                    tcp_try_undo_loss(sk, true))
2679                        return;
2680
2681                if (after(tp->snd_nxt, tp->high_seq)) {
2682                        if (flag & FLAG_DATA_SACKED || num_dupack)
2683                                tp->frto = 0; /* Step 3.a. loss was real */
2684                } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2685                        tp->high_seq = tp->snd_nxt;
2686                        /* Step 2.b. Try send new data (but deferred until cwnd
2687                         * is updated in tcp_ack()). Otherwise fall back to
2688                         * the conventional recovery.
2689                         */
2690                        if (!tcp_write_queue_empty(sk) &&
2691                            after(tcp_wnd_end(tp), tp->snd_nxt)) {
2692                                *rexmit = REXMIT_NEW;
2693                                return;
2694                        }
2695                        tp->frto = 0;
2696                }
2697        }
2698
2699        if (recovered) {
2700                /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2701                tcp_try_undo_recovery(sk);
2702                return;
2703        }
2704        if (tcp_is_reno(tp)) {
2705                /* A Reno DUPACK means new data in F-RTO step 2.b above are
2706                 * delivered. Lower inflight to clock out (re)tranmissions.
2707                 */
2708                if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2709                        tcp_add_reno_sack(sk, num_dupack);
2710                else if (flag & FLAG_SND_UNA_ADVANCED)
2711                        tcp_reset_reno_sack(tp);
2712        }
2713        *rexmit = REXMIT_LOST;
2714}
2715
2716/* Undo during fast recovery after partial ACK. */
2717static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una)
2718{
2719        struct tcp_sock *tp = tcp_sk(sk);
2720
2721        if (tp->undo_marker && tcp_packet_delayed(tp)) {
2722                /* Plain luck! Hole if filled with delayed
2723                 * packet, rather than with a retransmit. Check reordering.
2724                 */
2725                tcp_check_sack_reordering(sk, prior_snd_una, 1);
2726
2727                /* We are getting evidence that the reordering degree is higher
2728                 * than we realized. If there are no retransmits out then we
2729                 * can undo. Otherwise we clock out new packets but do not
2730                 * mark more packets lost or retransmit more.
2731                 */
2732                if (tp->retrans_out)
2733                        return true;
2734
2735                if (!tcp_any_retrans_done(sk))
2736                        tp->retrans_stamp = 0;
2737
2738                DBGUNDO(sk, "partial recovery");
2739                tcp_undo_cwnd_reduction(sk, true);
2740                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2741                tcp_try_keep_open(sk);
2742                return true;
2743        }
2744        return false;
2745}
2746
2747static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2748{
2749        struct tcp_sock *tp = tcp_sk(sk);
2750
2751        if (tcp_rtx_queue_empty(sk))
2752                return;
2753
2754        if (unlikely(tcp_is_reno(tp))) {
2755                tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2756        } else if (tcp_is_rack(sk)) {
2757                u32 prior_retrans = tp->retrans_out;
2758
2759                tcp_rack_mark_lost(sk);
2760                if (prior_retrans > tp->retrans_out)
2761                        *ack_flag |= FLAG_LOST_RETRANS;
2762        }
2763}
2764
2765static bool tcp_force_fast_retransmit(struct sock *sk)
2766{
2767        struct tcp_sock *tp = tcp_sk(sk);
2768
2769        return after(tcp_highest_sack_seq(tp),
2770                     tp->snd_una + tp->reordering * tp->mss_cache);
2771}
2772
2773/* Process an event, which can update packets-in-flight not trivially.
2774 * Main goal of this function is to calculate new estimate for left_out,
2775 * taking into account both packets sitting in receiver's buffer and
2776 * packets lost by network.
2777 *
2778 * Besides that it updates the congestion state when packet loss or ECN
2779 * is detected. But it does not reduce the cwnd, it is done by the
2780 * congestion control later.
2781 *
2782 * It does _not_ decide what to send, it is made in function
2783 * tcp_xmit_retransmit_queue().
2784 */
2785static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2786                                  int num_dupack, int *ack_flag, int *rexmit)
2787{
2788        struct inet_connection_sock *icsk = inet_csk(sk);
2789        struct tcp_sock *tp = tcp_sk(sk);
2790        int fast_rexmit = 0, flag = *ack_flag;
2791        bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2792                                      tcp_force_fast_retransmit(sk));
2793
2794        if (!tp->packets_out && tp->sacked_out)
2795                tp->sacked_out = 0;
2796
2797        /* Now state machine starts.
2798         * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2799        if (flag & FLAG_ECE)
2800                tp->prior_ssthresh = 0;
2801
2802        /* B. In all the states check for reneging SACKs. */
2803        if (tcp_check_sack_reneging(sk, flag))
2804                return;
2805
2806        /* C. Check consistency of the current state. */
2807        tcp_verify_left_out(tp);
2808
2809        /* D. Check state exit conditions. State can be terminated
2810         *    when high_seq is ACKed. */
2811        if (icsk->icsk_ca_state == TCP_CA_Open) {
2812                WARN_ON(tp->retrans_out != 0);
2813                tp->retrans_stamp = 0;
2814        } else if (!before(tp->snd_una, tp->high_seq)) {
2815                switch (icsk->icsk_ca_state) {
2816                case TCP_CA_CWR:
2817                        /* CWR is to be held something *above* high_seq
2818                         * is ACKed for CWR bit to reach receiver. */
2819                        if (tp->snd_una != tp->high_seq) {
2820                                tcp_end_cwnd_reduction(sk);
2821                                tcp_set_ca_state(sk, TCP_CA_Open);
2822                        }
2823                        break;
2824
2825                case TCP_CA_Recovery:
2826                        if (tcp_is_reno(tp))
2827                                tcp_reset_reno_sack(tp);
2828                        if (tcp_try_undo_recovery(sk))
2829                                return;
2830                        tcp_end_cwnd_reduction(sk);
2831                        break;
2832                }
2833        }
2834
2835        /* E. Process state. */
2836        switch (icsk->icsk_ca_state) {
2837        case TCP_CA_Recovery:
2838                if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2839                        if (tcp_is_reno(tp))
2840                                tcp_add_reno_sack(sk, num_dupack);
2841                } else {
2842                        if (tcp_try_undo_partial(sk, prior_snd_una))
2843                                return;
2844                        /* Partial ACK arrived. Force fast retransmit. */
2845                        do_lost = tcp_is_reno(tp) ||
2846                                  tcp_force_fast_retransmit(sk);
2847                }
2848                if (tcp_try_undo_dsack(sk)) {
2849                        tcp_try_keep_open(sk);
2850                        return;
2851                }
2852                tcp_identify_packet_loss(sk, ack_flag);
2853                break;
2854        case TCP_CA_Loss:
2855                tcp_process_loss(sk, flag, num_dupack, rexmit);
2856                tcp_identify_packet_loss(sk, ack_flag);
2857                if (!(icsk->icsk_ca_state == TCP_CA_Open ||
2858                      (*ack_flag & FLAG_LOST_RETRANS)))
2859                        return;
2860                /* Change state if cwnd is undone or retransmits are lost */
2861                /* fall through */
2862        default:
2863                if (tcp_is_reno(tp)) {
2864                        if (flag & FLAG_SND_UNA_ADVANCED)
2865                                tcp_reset_reno_sack(tp);
2866                        tcp_add_reno_sack(sk, num_dupack);
2867                }
2868
2869                if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2870                        tcp_try_undo_dsack(sk);
2871
2872                tcp_identify_packet_loss(sk, ack_flag);
2873                if (!tcp_time_to_recover(sk, flag)) {
2874                        tcp_try_to_open(sk, flag);
2875                        return;
2876                }
2877
2878                /* MTU probe failure: don't reduce cwnd */
2879                if (icsk->icsk_ca_state < TCP_CA_CWR &&
2880                    icsk->icsk_mtup.probe_size &&
2881                    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2882                        tcp_mtup_probe_failed(sk);
2883                        /* Restores the reduction we did in tcp_mtup_probe() */
2884                        tp->snd_cwnd++;
2885                        tcp_simple_retransmit(sk);
2886                        return;
2887                }
2888
2889                /* Otherwise enter Recovery state */
2890                tcp_enter_recovery(sk, (flag & FLAG_ECE));
2891                fast_rexmit = 1;
2892        }
2893
2894        if (!tcp_is_rack(sk) && do_lost)
2895                tcp_update_scoreboard(sk, fast_rexmit);
2896        *rexmit = REXMIT_LOST;
2897}
2898
2899static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
2900{
2901        u32 wlen = sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen * HZ;
2902        struct tcp_sock *tp = tcp_sk(sk);
2903
2904        if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
2905                /* If the remote keeps returning delayed ACKs, eventually
2906                 * the min filter would pick it up and overestimate the
2907                 * prop. delay when it expires. Skip suspected delayed ACKs.
2908                 */
2909                return;
2910        }
2911        minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
2912                           rtt_us ? : jiffies_to_usecs(1));
2913}
2914
2915static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2916                               long seq_rtt_us, long sack_rtt_us,
2917                               long ca_rtt_us, struct rate_sample *rs)
2918{
2919        const struct tcp_sock *tp = tcp_sk(sk);
2920
2921        /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2922         * broken middle-boxes or peers may corrupt TS-ECR fields. But
2923         * Karn's algorithm forbids taking RTT if some retransmitted data
2924         * is acked (RFC6298).
2925         */
2926        if (seq_rtt_us < 0)
2927                seq_rtt_us = sack_rtt_us;
2928
2929        /* RTTM Rule: A TSecr value received in a segment is used to
2930         * update the averaged RTT measurement only if the segment
2931         * acknowledges some new data, i.e., only if it advances the
2932         * left edge of the send window.
2933         * See draft-ietf-tcplw-high-performance-00, section 3.3.
2934         */
2935        if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2936            flag & FLAG_ACKED) {
2937                u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
2938
2939                if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
2940                        seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
2941                        ca_rtt_us = seq_rtt_us;
2942                }
2943        }
2944        rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
2945        if (seq_rtt_us < 0)
2946                return false;
2947
2948        /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2949         * always taken together with ACK, SACK, or TS-opts. Any negative
2950         * values will be skipped with the seq_rtt_us < 0 check above.
2951         */
2952        tcp_update_rtt_min(sk, ca_rtt_us, flag);
2953        tcp_rtt_estimator(sk, seq_rtt_us);
2954        tcp_set_rto(sk);
2955
2956        /* RFC6298: only reset backoff on valid RTT measurement. */
2957        inet_csk(sk)->icsk_backoff = 0;
2958        return true;
2959}
2960
2961/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2962void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2963{
2964        struct rate_sample rs;
2965        long rtt_us = -1L;
2966
2967        if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
2968                rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
2969
2970        tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
2971}
2972
2973
2974static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
2975{
2976        const struct inet_connection_sock *icsk = inet_csk(sk);
2977
2978        icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
2979        tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
2980}
2981
2982/* Restart timer after forward progress on connection.
2983 * RFC2988 recommends to restart timer to now+rto.
2984 */
2985void tcp_rearm_rto(struct sock *sk)
2986{
2987        const struct inet_connection_sock *icsk = inet_csk(sk);
2988        struct tcp_sock *tp = tcp_sk(sk);
2989
2990        /* If the retrans timer is currently being used by Fast Open
2991         * for SYN-ACK retrans purpose, stay put.
2992         */
2993        if (tp->fastopen_rsk)
2994                return;
2995
2996        if (!tp->packets_out) {
2997                inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
2998        } else {
2999                u32 rto = inet_csk(sk)->icsk_rto;
3000                /* Offset the time elapsed after installing regular RTO */
3001                if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3002                    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3003                        s64 delta_us = tcp_rto_delta_us(sk);
3004                        /* delta_us may not be positive if the socket is locked
3005                         * when the retrans timer fires and is rescheduled.
3006                         */
3007                        rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3008                }
3009                tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3010                                     TCP_RTO_MAX, tcp_rtx_queue_head(sk));
3011        }
3012}
3013
3014/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3015static void tcp_set_xmit_timer(struct sock *sk)
3016{
3017        if (!tcp_schedule_loss_probe(sk, true))
3018                tcp_rearm_rto(sk);
3019}
3020
3021/* If we get here, the whole TSO packet has not been acked. */
3022static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3023{
3024        struct tcp_sock *tp = tcp_sk(sk);
3025        u32 packets_acked;
3026
3027        BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3028
3029        packets_acked = tcp_skb_pcount(skb);
3030        if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3031                return 0;
3032        packets_acked -= tcp_skb_pcount(skb);
3033
3034        if (packets_acked) {
3035                BUG_ON(tcp_skb_pcount(skb) == 0);
3036                BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3037        }
3038
3039        return packets_acked;
3040}
3041
3042static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3043                           u32 prior_snd_una)
3044{
3045        const struct skb_shared_info *shinfo;
3046
3047        /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3048        if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3049                return;
3050
3051        shinfo = skb_shinfo(skb);
3052        if (!before(shinfo->tskey, prior_snd_una) &&
3053            before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3054                tcp_skb_tsorted_save(skb) {
3055                        __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3056                } tcp_skb_tsorted_restore(skb);
3057        }
3058}
3059
3060/* Remove acknowledged frames from the retransmission queue. If our packet
3061 * is before the ack sequence we can discard it as it's confirmed to have
3062 * arrived at the other end.
3063 */
3064static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3065                               u32 prior_snd_una,
3066                               struct tcp_sacktag_state *sack)
3067{
3068        const struct inet_connection_sock *icsk = inet_csk(sk);
3069        u64 first_ackt, last_ackt;
3070        struct tcp_sock *tp = tcp_sk(sk);
3071        u32 prior_sacked = tp->sacked_out;
3072        u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3073        struct sk_buff *skb, *next;
3074        bool fully_acked = true;
3075        long sack_rtt_us = -1L;
3076        long seq_rtt_us = -1L;
3077        long ca_rtt_us = -1L;
3078        u32 pkts_acked = 0;
3079        u32 last_in_flight = 0;
3080        bool rtt_update;
3081        int flag = 0;
3082
3083        first_ackt = 0;
3084
3085        for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3086                struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3087                const u32 start_seq = scb->seq;
3088                u8 sacked = scb->sacked;
3089                u32 acked_pcount;
3090
3091                tcp_ack_tstamp(sk, skb, prior_snd_una);
3092
3093                /* Determine how many packets and what bytes were acked, tso and else */
3094                if (after(scb->end_seq, tp->snd_una)) {
3095                        if (tcp_skb_pcount(skb) == 1 ||
3096                            !after(tp->snd_una, scb->seq))
3097                                break;
3098
3099                        acked_pcount = tcp_tso_acked(sk, skb);
3100                        if (!acked_pcount)
3101                                break;
3102                        fully_acked = false;
3103                } else {
3104                        acked_pcount = tcp_skb_pcount(skb);
3105                }
3106
3107                if (unlikely(sacked & TCPCB_RETRANS)) {
3108                        if (sacked & TCPCB_SACKED_RETRANS)
3109                                tp->retrans_out -= acked_pcount;
3110                        flag |= FLAG_RETRANS_DATA_ACKED;
3111                } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3112                        last_ackt = tcp_skb_timestamp_us(skb);
3113                        WARN_ON_ONCE(last_ackt == 0);
3114                        if (!first_ackt)
3115                                first_ackt = last_ackt;
3116
3117                        last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3118                        if (before(start_seq, reord))
3119                                reord = start_seq;
3120                        if (!after(scb->end_seq, tp->high_seq))
3121                                flag |= FLAG_ORIG_SACK_ACKED;
3122                }
3123
3124                if (sacked & TCPCB_SACKED_ACKED) {
3125                        tp->sacked_out -= acked_pcount;
3126                } else if (tcp_is_sack(tp)) {
3127                        tp->delivered += acked_pcount;
3128                        if (!tcp_skb_spurious_retrans(tp, skb))
3129                                tcp_rack_advance(tp, sacked, scb->end_seq,
3130                                                 tcp_skb_timestamp_us(skb));
3131                }
3132                if (sacked & TCPCB_LOST)
3133                        tp->lost_out -= acked_pcount;
3134
3135                tp->packets_out -= acked_pcount;
3136                pkts_acked += acked_pcount;
3137                tcp_rate_skb_delivered(sk, skb, sack->rate);
3138
3139                /* Initial outgoing SYN's get put onto the write_queue
3140                 * just like anything else we transmit.  It is not
3141                 * true data, and if we misinform our callers that
3142                 * this ACK acks real data, we will erroneously exit
3143                 * connection startup slow start one packet too
3144                 * quickly.  This is severely frowned upon behavior.
3145                 */
3146                if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3147                        flag |= FLAG_DATA_ACKED;
3148                } else {
3149                        flag |= FLAG_SYN_ACKED;
3150                        tp->retrans_stamp = 0;
3151                }
3152
3153                if (!fully_acked)
3154                        break;
3155
3156                next = skb_rb_next(skb);
3157                if (unlikely(skb == tp->retransmit_skb_hint))
3158                        tp->retransmit_skb_hint = NULL;
3159                if (unlikely(skb == tp->lost_skb_hint))
3160                        tp->lost_skb_hint = NULL;
3161                tcp_rtx_queue_unlink_and_free(skb, sk);
3162        }
3163
3164        if (!skb)
3165                tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3166
3167        if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3168                tp->snd_up = tp->snd_una;
3169
3170        if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3171                flag |= FLAG_SACK_RENEGING;
3172
3173        if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3174                seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3175                ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3176
3177                if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3178                    last_in_flight && !prior_sacked && fully_acked &&
3179                    sack->rate->prior_delivered + 1 == tp->delivered &&
3180                    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3181                        /* Conservatively mark a delayed ACK. It's typically
3182                         * from a lone runt packet over the round trip to
3183                         * a receiver w/o out-of-order or CE events.
3184                         */
3185                        flag |= FLAG_ACK_MAYBE_DELAYED;
3186                }
3187        }
3188        if (sack->first_sackt) {
3189                sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3190                ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3191        }
3192        rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3193                                        ca_rtt_us, sack->rate);
3194
3195        if (flag & FLAG_ACKED) {
3196                flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3197                if (unlikely(icsk->icsk_mtup.probe_size &&
3198                             !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3199                        tcp_mtup_probe_success(sk);
3200                }
3201
3202                if (tcp_is_reno(tp)) {
3203                        tcp_remove_reno_sacks(sk, pkts_acked);
3204
3205                        /* If any of the cumulatively ACKed segments was
3206                         * retransmitted, non-SACK case cannot confirm that
3207                         * progress was due to original transmission due to
3208                         * lack of TCPCB_SACKED_ACKED bits even if some of
3209                         * the packets may have been never retransmitted.
3210                         */
3211                        if (flag & FLAG_RETRANS_DATA_ACKED)
3212                                flag &= ~FLAG_ORIG_SACK_ACKED;
3213                } else {
3214                        int delta;
3215
3216                        /* Non-retransmitted hole got filled? That's reordering */
3217                        if (before(reord, prior_fack))
3218                                tcp_check_sack_reordering(sk, reord, 0);
3219
3220                        delta = prior_sacked - tp->sacked_out;
3221                        tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3222                }
3223        } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3224                   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3225                                                    tcp_skb_timestamp_us(skb))) {
3226                /* Do not re-arm RTO if the sack RTT is measured from data sent
3227                 * after when the head was last (re)transmitted. Otherwise the
3228                 * timeout may continue to extend in loss recovery.
3229                 */
3230                flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3231        }
3232
3233        if (icsk->icsk_ca_ops->pkts_acked) {
3234                struct ack_sample sample = { .pkts_acked = pkts_acked,
3235                                             .rtt_us = sack->rate->rtt_us,
3236                                             .in_flight = last_in_flight };
3237
3238                icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3239        }
3240
3241#if FASTRETRANS_DEBUG > 0
3242        WARN_ON((int)tp->sacked_out < 0);
3243        WARN_ON((int)tp->lost_out < 0);
3244        WARN_ON((int)tp->retrans_out < 0);
3245        if (!tp->packets_out && tcp_is_sack(tp)) {
3246                icsk = inet_csk(sk);
3247                if (tp->lost_out) {
3248                        pr_debug("Leak l=%u %d\n",
3249                                 tp->lost_out, icsk->icsk_ca_state);
3250                        tp->lost_out = 0;
3251                }
3252                if (tp->sacked_out) {
3253                        pr_debug("Leak s=%u %d\n",
3254                                 tp->sacked_out, icsk->icsk_ca_state);
3255                        tp->sacked_out = 0;
3256                }
3257                if (tp->retrans_out) {
3258                        pr_debug("Leak r=%u %d\n",
3259                                 tp->retrans_out, icsk->icsk_ca_state);
3260                        tp->retrans_out = 0;
3261                }
3262        }
3263#endif
3264        return flag;
3265}
3266
3267static void tcp_ack_probe(struct sock *sk)
3268{
3269        struct inet_connection_sock *icsk = inet_csk(sk);
3270        struct sk_buff *head = tcp_send_head(sk);
3271        const struct tcp_sock *tp = tcp_sk(sk);
3272
3273        /* Was it a usable window open? */
3274        if (!head)
3275                return;
3276        if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3277                icsk->icsk_backoff = 0;
3278                inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3279                /* Socket must be waked up by subsequent tcp_data_snd_check().
3280                 * This function is not for random using!
3281                 */
3282        } else {
3283                unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3284
3285                tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3286                                     when, TCP_RTO_MAX, NULL);
3287        }
3288}
3289
3290static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3291{
3292        return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3293                inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3294}
3295
3296/* Decide wheather to run the increase function of congestion control. */
3297static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3298{
3299        /* If reordering is high then always grow cwnd whenever data is
3300         * delivered regardless of its ordering. Otherwise stay conservative
3301         * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3302         * new SACK or ECE mark may first advance cwnd here and later reduce
3303         * cwnd in tcp_fastretrans_alert() based on more states.
3304         */
3305        if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3306                return flag & FLAG_FORWARD_PROGRESS;
3307
3308        return flag & FLAG_DATA_ACKED;
3309}
3310
3311/* The "ultimate" congestion control function that aims to replace the rigid
3312 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3313 * It's called toward the end of processing an ACK with precise rate
3314 * information. All transmission or retransmission are delayed afterwards.
3315 */
3316static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3317                             int flag, const struct rate_sample *rs)
3318{
3319        const struct inet_connection_sock *icsk = inet_csk(sk);
3320
3321        if (icsk->icsk_ca_ops->cong_control) {
3322                icsk->icsk_ca_ops->cong_control(sk, rs);
3323                return;
3324        }
3325
3326        if (tcp_in_cwnd_reduction(sk)) {
3327                /* Reduce cwnd if state mandates */
3328                tcp_cwnd_reduction(sk, acked_sacked, flag);
3329        } else if (tcp_may_raise_cwnd(sk, flag)) {
3330                /* Advance cwnd if state allows */
3331                tcp_cong_avoid(sk, ack, acked_sacked);
3332        }
3333        tcp_update_pacing_rate(sk);
3334}
3335
3336/* Check that window update is acceptable.
3337 * The function assumes that snd_una<=ack<=snd_next.
3338 */
3339static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3340                                        const u32 ack, const u32 ack_seq,
3341                                        const u32 nwin)
3342{
3343        return  after(ack, tp->snd_una) ||
3344                after(ack_seq, tp->snd_wl1) ||
3345                (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3346}
3347
3348/* If we update tp->snd_una, also update tp->bytes_acked */
3349static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3350{
3351        u32 delta = ack - tp->snd_una;
3352
3353        sock_owned_by_me((struct sock *)tp);
3354        tp->bytes_acked += delta;
3355        tp->snd_una = ack;
3356}
3357
3358/* If we update tp->rcv_nxt, also update tp->bytes_received */
3359static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3360{
3361        u32 delta = seq - tp->rcv_nxt;
3362
3363        sock_owned_by_me((struct sock *)tp);
3364        tp->bytes_received += delta;
3365        tp->rcv_nxt = seq;
3366}
3367
3368/* Update our send window.
3369 *
3370 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3371 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3372 */
3373static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3374                                 u32 ack_seq)
3375{
3376        struct tcp_sock *tp = tcp_sk(sk);
3377        int flag = 0;
3378        u32 nwin = ntohs(tcp_hdr(skb)->window);
3379
3380        if (likely(!tcp_hdr(skb)->syn))
3381                nwin <<= tp->rx_opt.snd_wscale;
3382
3383        if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3384                flag |= FLAG_WIN_UPDATE;
3385                tcp_update_wl(tp, ack_seq);
3386
3387                if (tp->snd_wnd != nwin) {
3388                        tp->snd_wnd = nwin;
3389
3390                        /* Note, it is the only place, where
3391                         * fast path is recovered for sending TCP.
3392                         */
3393                        tp->pred_flags = 0;
3394                        tcp_fast_path_check(sk);
3395
3396                        if (!tcp_write_queue_empty(sk))
3397                                tcp_slow_start_after_idle_check(sk);
3398
3399                        if (nwin > tp->max_window) {
3400                                tp->max_window = nwin;
3401                                tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3402                        }
3403                }
3404        }
3405
3406        tcp_snd_una_update(tp, ack);
3407
3408        return flag;
3409}
3410
3411static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3412                                   u32 *last_oow_ack_time)
3413{
3414        if (*last_oow_ack_time) {
3415                s32 elapsed = (s32)(tcp_jiffies32 - *last_oow_ack_time);
3416
3417                if (0 <= elapsed && elapsed < net->ipv4.sysctl_tcp_invalid_ratelimit) {
3418                        NET_INC_STATS(net, mib_idx);
3419                        return true;    /* rate-limited: don't send yet! */
3420                }
3421        }
3422
3423        *last_oow_ack_time = tcp_jiffies32;
3424
3425        return false;   /* not rate-limited: go ahead, send dupack now! */
3426}
3427
3428/* Return true if we're currently rate-limiting out-of-window ACKs and
3429 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3430 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3431 * attacks that send repeated SYNs or ACKs for the same connection. To
3432 * do this, we do not send a duplicate SYNACK or ACK if the remote
3433 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3434 */
3435bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3436                          int mib_idx, u32 *last_oow_ack_time)
3437{
3438        /* Data packets without SYNs are not likely part of an ACK loop. */
3439        if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3440            !tcp_hdr(skb)->syn)
3441                return false;
3442
3443        return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3444}
3445
3446/* RFC 5961 7 [ACK Throttling] */
3447static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3448{
3449        /* unprotected vars, we dont care of overwrites */
3450        static u32 challenge_timestamp;
3451        static unsigned int challenge_count;
3452        struct tcp_sock *tp = tcp_sk(sk);
3453        struct net *net = sock_net(sk);
3454        u32 count, now;
3455
3456        /* First check our per-socket dupack rate limit. */
3457        if (__tcp_oow_rate_limited(net,
3458                                   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3459                                   &tp->last_oow_ack_time))
3460                return;
3461
3462        /* Then check host-wide RFC 5961 rate limit. */
3463        now = jiffies / HZ;
3464        if (now != challenge_timestamp) {
3465                u32 ack_limit = net->ipv4.sysctl_tcp_challenge_ack_limit;
3466                u32 half = (ack_limit + 1) >> 1;
3467
3468                challenge_timestamp = now;
3469                WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3470        }
3471        count = READ_ONCE(challenge_count);
3472        if (count > 0) {
3473                WRITE_ONCE(challenge_count, count - 1);
3474                NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3475                tcp_send_ack(sk);
3476        }
3477}
3478
3479static void tcp_store_ts_recent(struct tcp_sock *tp)
3480{
3481        tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3482        tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3483}
3484
3485static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3486{
3487        if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3488                /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3489                 * extra check below makes sure this can only happen
3490                 * for pure ACK frames.  -DaveM
3491                 *
3492                 * Not only, also it occurs for expired timestamps.
3493                 */
3494
3495                if (tcp_paws_check(&tp->rx_opt, 0))
3496                        tcp_store_ts_recent(tp);
3497        }
3498}
3499
3500/* This routine deals with acks during a TLP episode.
3501 * We mark the end of a TLP episode on receiving TLP dupack or when
3502 * ack is after tlp_high_seq.
3503 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3504 */
3505static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3506{
3507        struct tcp_sock *tp = tcp_sk(sk);
3508
3509        if (before(ack, tp->tlp_high_seq))
3510                return;
3511
3512        if (flag & FLAG_DSACKING_ACK) {
3513                /* This DSACK means original and TLP probe arrived; no loss */
3514                tp->tlp_high_seq = 0;
3515        } else if (after(ack, tp->tlp_high_seq)) {
3516                /* ACK advances: there was a loss, so reduce cwnd. Reset
3517                 * tlp_high_seq in tcp_init_cwnd_reduction()
3518                 */
3519                tcp_init_cwnd_reduction(sk);
3520                tcp_set_ca_state(sk, TCP_CA_CWR);
3521                tcp_end_cwnd_reduction(sk);
3522                tcp_try_keep_open(sk);
3523                NET_INC_STATS(sock_net(sk),
3524                                LINUX_MIB_TCPLOSSPROBERECOVERY);
3525        } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3526                             FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3527                /* Pure dupack: original and TLP probe arrived; no loss */
3528                tp->tlp_high_seq = 0;
3529        }
3530}
3531
3532static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3533{
3534        const struct inet_connection_sock *icsk = inet_csk(sk);
3535
3536        if (icsk->icsk_ca_ops->in_ack_event)
3537                icsk->icsk_ca_ops->in_ack_event(sk, flags);
3538}
3539
3540/* Congestion control has updated the cwnd already. So if we're in
3541 * loss recovery then now we do any new sends (for FRTO) or
3542 * retransmits (for CA_Loss or CA_recovery) that make sense.
3543 */
3544static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3545{
3546        struct tcp_sock *tp = tcp_sk(sk);
3547
3548        if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3549                return;
3550
3551        if (unlikely(rexmit == 2)) {
3552                __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3553                                          TCP_NAGLE_OFF);
3554                if (after(tp->snd_nxt, tp->high_seq))
3555                        return;
3556                tp->frto = 0;
3557        }
3558        tcp_xmit_retransmit_queue(sk);
3559}
3560
3561/* Returns the number of packets newly acked or sacked by the current ACK */
3562static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3563{
3564        const struct net *net = sock_net(sk);
3565        struct tcp_sock *tp = tcp_sk(sk);
3566        u32 delivered;
3567
3568        delivered = tp->delivered - prior_delivered;
3569        NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3570        if (flag & FLAG_ECE) {
3571                tp->delivered_ce += delivered;
3572                NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3573        }
3574        return delivered;
3575}
3576
3577/* This routine deals with incoming acks, but not outgoing ones. */
3578static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3579{
3580        struct inet_connection_sock *icsk = inet_csk(sk);
3581        struct tcp_sock *tp = tcp_sk(sk);
3582        struct tcp_sacktag_state sack_state;
3583        struct rate_sample rs = { .prior_delivered = 0 };
3584        u32 prior_snd_una = tp->snd_una;
3585        bool is_sack_reneg = tp->is_sack_reneg;
3586        u32 ack_seq = TCP_SKB_CB(skb)->seq;
3587        u32 ack = TCP_SKB_CB(skb)->ack_seq;
3588        int num_dupack = 0;
3589        int prior_packets = tp->packets_out;
3590        u32 delivered = tp->delivered;
3591        u32 lost = tp->lost;
3592        int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3593        u32 prior_fack;
3594
3595        sack_state.first_sackt = 0;
3596        sack_state.rate = &rs;
3597
3598        /* We very likely will need to access rtx queue. */
3599        prefetch(sk->tcp_rtx_queue.rb_node);
3600
3601        /* If the ack is older than previous acks
3602         * then we can probably ignore it.
3603         */
3604        if (before(ack, prior_snd_una)) {
3605                /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3606                if (before(ack, prior_snd_una - tp->max_window)) {
3607                        if (!(flag & FLAG_NO_CHALLENGE_ACK))
3608                                tcp_send_challenge_ack(sk, skb);
3609                        return -1;
3610                }
3611                goto old_ack;
3612        }
3613
3614        /* If the ack includes data we haven't sent yet, discard
3615         * this segment (RFC793 Section 3.9).
3616         */
3617        if (after(ack, tp->snd_nxt))
3618                return -1;
3619
3620        if (after(ack, prior_snd_una)) {
3621                flag |= FLAG_SND_UNA_ADVANCED;
3622                icsk->icsk_retransmits = 0;
3623
3624#if IS_ENABLED(CONFIG_TLS_DEVICE)
3625                if (static_branch_unlikely(&clean_acked_data_enabled.key))
3626                        if (icsk->icsk_clean_acked)
3627                                icsk->icsk_clean_acked(sk, ack);
3628#endif
3629        }
3630
3631        prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3632        rs.prior_in_flight = tcp_packets_in_flight(tp);
3633
3634        /* ts_recent update must be made after we are sure that the packet
3635         * is in window.
3636         */
3637        if (flag & FLAG_UPDATE_TS_RECENT)
3638                tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3639
3640        if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3641            FLAG_SND_UNA_ADVANCED) {
3642                /* Window is constant, pure forward advance.
3643                 * No more checks are required.
3644                 * Note, we use the fact that SND.UNA>=SND.WL2.
3645                 */
3646                tcp_update_wl(tp, ack_seq);
3647                tcp_snd_una_update(tp, ack);
3648                flag |= FLAG_WIN_UPDATE;
3649
3650                tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3651
3652                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3653        } else {
3654                u32 ack_ev_flags = CA_ACK_SLOWPATH;
3655
3656                if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3657                        flag |= FLAG_DATA;
3658                else
3659                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3660
3661                flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3662
3663                if (TCP_SKB_CB(skb)->sacked)
3664                        flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3665                                                        &sack_state);
3666
3667                if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3668                        flag |= FLAG_ECE;
3669                        ack_ev_flags |= CA_ACK_ECE;
3670                }
3671
3672                if (flag & FLAG_WIN_UPDATE)
3673                        ack_ev_flags |= CA_ACK_WIN_UPDATE;
3674
3675                tcp_in_ack_event(sk, ack_ev_flags);
3676        }
3677
3678        /* We passed data and got it acked, remove any soft error
3679         * log. Something worked...
3680         */
3681        sk->sk_err_soft = 0;
3682        icsk->icsk_probes_out = 0;
3683        tp->rcv_tstamp = tcp_jiffies32;
3684        if (!prior_packets)
3685                goto no_queue;
3686
3687        /* See if we can take anything off of the retransmit queue. */
3688        flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state);
3689
3690        tcp_rack_update_reo_wnd(sk, &rs);
3691
3692        if (tp->tlp_high_seq)
3693                tcp_process_tlp_ack(sk, ack, flag);
3694        /* If needed, reset TLP/RTO timer; RACK may later override this. */
3695        if (flag & FLAG_SET_XMIT_TIMER)
3696                tcp_set_xmit_timer(sk);
3697
3698        if (tcp_ack_is_dubious(sk, flag)) {
3699                if (!(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP))) {
3700                        num_dupack = 1;
3701                        /* Consider if pure acks were aggregated in tcp_add_backlog() */
3702                        if (!(flag & FLAG_DATA))
3703                                num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3704                }
3705                tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3706                                      &rexmit);
3707        }
3708
3709        if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3710                sk_dst_confirm(sk);
3711
3712        delivered = tcp_newly_delivered(sk, delivered, flag);
3713        lost = tp->lost - lost;                 /* freshly marked lost */
3714        rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3715        tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3716        tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3717        tcp_xmit_recovery(sk, rexmit);
3718        return 1;
3719
3720no_queue:
3721        /* If data was DSACKed, see if we can undo a cwnd reduction. */
3722        if (flag & FLAG_DSACKING_ACK) {
3723                tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3724                                      &rexmit);
3725                tcp_newly_delivered(sk, delivered, flag);
3726        }
3727        /* If this ack opens up a zero window, clear backoff.  It was
3728         * being used to time the probes, and is probably far higher than
3729         * it needs to be for normal retransmission.
3730         */
3731        tcp_ack_probe(sk);
3732
3733        if (tp->tlp_high_seq)
3734                tcp_process_tlp_ack(sk, ack, flag);
3735        return 1;
3736
3737old_ack:
3738        /* If data was SACKed, tag it and see if we should send more data.
3739         * If data was DSACKed, see if we can undo a cwnd reduction.
3740         */
3741        if (TCP_SKB_CB(skb)->sacked) {
3742                flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3743                                                &sack_state);
3744                tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3745                                      &rexmit);
3746                tcp_newly_delivered(sk, delivered, flag);
3747                tcp_xmit_recovery(sk, rexmit);
3748        }
3749
3750        return 0;
3751}
3752
3753static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3754                                      bool syn, struct tcp_fastopen_cookie *foc,
3755                                      bool exp_opt)
3756{
3757        /* Valid only in SYN or SYN-ACK with an even length.  */
3758        if (!foc || !syn || len < 0 || (len & 1))
3759                return;
3760
3761        if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3762            len <= TCP_FASTOPEN_COOKIE_MAX)
3763                memcpy(foc->val, cookie, len);
3764        else if (len != 0)
3765                len = -1;
3766        foc->len = len;
3767        foc->exp = exp_opt;
3768}
3769
3770static void smc_parse_options(const struct tcphdr *th,
3771                              struct tcp_options_received *opt_rx,
3772                              const unsigned char *ptr,
3773                              int opsize)
3774{
3775#if IS_ENABLED(CONFIG_SMC)
3776        if (static_branch_unlikely(&tcp_have_smc)) {
3777                if (th->syn && !(opsize & 1) &&
3778                    opsize >= TCPOLEN_EXP_SMC_BASE &&
3779                    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC)
3780                        opt_rx->smc_ok = 1;
3781        }
3782#endif
3783}
3784
3785/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3786 * But, this can also be called on packets in the established flow when
3787 * the fast version below fails.
3788 */
3789void tcp_parse_options(const struct net *net,
3790                       const struct sk_buff *skb,
3791                       struct tcp_options_received *opt_rx, int estab,
3792                       struct tcp_fastopen_cookie *foc)
3793{
3794        const unsigned char *ptr;
3795        const struct tcphdr *th = tcp_hdr(skb);
3796        int length = (th->doff * 4) - sizeof(struct tcphdr);
3797
3798        ptr = (const unsigned char *)(th + 1);
3799        opt_rx->saw_tstamp = 0;
3800
3801        while (length > 0) {
3802                int opcode = *ptr++;
3803                int opsize;
3804
3805                switch (opcode) {
3806                case TCPOPT_EOL:
3807                        return;
3808                case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3809                        length--;
3810                        continue;
3811                default:
3812                        if (length < 2)
3813                                return;
3814                        opsize = *ptr++;
3815                        if (opsize < 2) /* "silly options" */
3816                                return;
3817                        if (opsize > length)
3818                                return; /* don't parse partial options */
3819                        switch (opcode) {
3820                        case TCPOPT_MSS:
3821                                if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3822                                        u16 in_mss = get_unaligned_be16(ptr);
3823                                        if (in_mss) {
3824                                                if (opt_rx->user_mss &&
3825                                                    opt_rx->user_mss < in_mss)
3826                                                        in_mss = opt_rx->user_mss;
3827                                                opt_rx->mss_clamp = in_mss;
3828                                        }
3829                                }
3830                                break;
3831                        case TCPOPT_WINDOW:
3832                                if (opsize == TCPOLEN_WINDOW && th->syn &&
3833                                    !estab && net->ipv4.sysctl_tcp_window_scaling) {
3834                                        __u8 snd_wscale = *(__u8 *)ptr;
3835                                        opt_rx->wscale_ok = 1;
3836                                        if (snd_wscale > TCP_MAX_WSCALE) {
3837                                                net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
3838                                                                     __func__,
3839                                                                     snd_wscale,
3840                                                                     TCP_MAX_WSCALE);
3841                                                snd_wscale = TCP_MAX_WSCALE;
3842                                        }
3843                                        opt_rx->snd_wscale = snd_wscale;
3844                                }
3845                                break;
3846                        case TCPOPT_TIMESTAMP:
3847                                if ((opsize == TCPOLEN_TIMESTAMP) &&
3848                                    ((estab && opt_rx->tstamp_ok) ||
3849                                     (!estab && net->ipv4.sysctl_tcp_timestamps))) {
3850                                        opt_rx->saw_tstamp = 1;
3851                                        opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3852                                        opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3853                                }
3854                                break;
3855                        case TCPOPT_SACK_PERM:
3856                                if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3857                                    !estab && net->ipv4.sysctl_tcp_sack) {
3858                                        opt_rx->sack_ok = TCP_SACK_SEEN;
3859                                        tcp_sack_reset(opt_rx);
3860                                }
3861                                break;
3862
3863                        case TCPOPT_SACK:
3864                                if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3865                                   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3866                                   opt_rx->sack_ok) {
3867                                        TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3868                                }
3869                                break;
3870#ifdef CONFIG_TCP_MD5SIG
3871                        case TCPOPT_MD5SIG:
3872                                /*
3873                                 * The MD5 Hash has already been
3874                                 * checked (see tcp_v{4,6}_do_rcv()).
3875                                 */
3876                                break;
3877#endif
3878                        case TCPOPT_FASTOPEN:
3879                                tcp_parse_fastopen_option(
3880                                        opsize - TCPOLEN_FASTOPEN_BASE,
3881                                        ptr, th->syn, foc, false);
3882                                break;
3883
3884                        case TCPOPT_EXP:
3885                                /* Fast Open option shares code 254 using a
3886                                 * 16 bits magic number.
3887                                 */
3888                                if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3889                                    get_unaligned_be16(ptr) ==
3890                                    TCPOPT_FASTOPEN_MAGIC)
3891                                        tcp_parse_fastopen_option(opsize -
3892                                                TCPOLEN_EXP_FASTOPEN_BASE,
3893                                                ptr + 2, th->syn, foc, true);
3894                                else
3895                                        smc_parse_options(th, opt_rx, ptr,
3896                                                          opsize);
3897                                break;
3898
3899                        }
3900                        ptr += opsize-2;
3901                        length -= opsize;
3902                }
3903        }
3904}
3905EXPORT_SYMBOL(tcp_parse_options);
3906
3907static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3908{
3909        const __be32 *ptr = (const __be32 *)(th + 1);
3910
3911        if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3912                          | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3913                tp->rx_opt.saw_tstamp = 1;
3914                ++ptr;
3915                tp->rx_opt.rcv_tsval = ntohl(*ptr);
3916                ++ptr;
3917                if (*ptr)
3918                        tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3919                else
3920                        tp->rx_opt.rcv_tsecr = 0;
3921                return true;
3922        }
3923        return false;
3924}
3925
3926/* Fast parse options. This hopes to only see timestamps.
3927 * If it is wrong it falls back on tcp_parse_options().
3928 */
3929static bool tcp_fast_parse_options(const struct net *net,
3930                                   const struct sk_buff *skb,
3931                                   const struct tcphdr *th, struct tcp_sock *tp)
3932{
3933        /* In the spirit of fast parsing, compare doff directly to constant
3934         * values.  Because equality is used, short doff can be ignored here.
3935         */
3936        if (th->doff == (sizeof(*th) / 4)) {
3937                tp->rx_opt.saw_tstamp = 0;
3938                return false;
3939        } else if (tp->rx_opt.tstamp_ok &&
3940                   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3941                if (tcp_parse_aligned_timestamp(tp, th))
3942                        return true;
3943        }
3944
3945        tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
3946        if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3947                tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3948
3949        return true;
3950}
3951
3952#ifdef CONFIG_TCP_MD5SIG
3953/*
3954 * Parse MD5 Signature option
3955 */
3956const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3957{
3958        int length = (th->doff << 2) - sizeof(*th);
3959        const u8 *ptr = (const u8 *)(th + 1);
3960
3961        /* If not enough data remaining, we can short cut */
3962        while (length >= TCPOLEN_MD5SIG) {
3963                int opcode = *ptr++;
3964                int opsize;
3965
3966                switch (opcode) {
3967                case TCPOPT_EOL:
3968                        return NULL;
3969                case TCPOPT_NOP:
3970                        length--;
3971                        continue;
3972                default:
3973                        opsize = *ptr++;
3974                        if (opsize < 2 || opsize > length)
3975                                return NULL;
3976                        if (opcode == TCPOPT_MD5SIG)
3977                                return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3978                }
3979                ptr += opsize - 2;
3980                length -= opsize;
3981        }
3982        return NULL;
3983}
3984EXPORT_SYMBOL(tcp_parse_md5sig_option);
3985#endif
3986
3987/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3988 *
3989 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3990 * it can pass through stack. So, the following predicate verifies that
3991 * this segment is not used for anything but congestion avoidance or
3992 * fast retransmit. Moreover, we even are able to eliminate most of such
3993 * second order effects, if we apply some small "replay" window (~RTO)
3994 * to timestamp space.
3995 *
3996 * All these measures still do not guarantee that we reject wrapped ACKs
3997 * on networks with high bandwidth, when sequence space is recycled fastly,
3998 * but it guarantees that such events will be very rare and do not affect
3999 * connection seriously. This doesn't look nice, but alas, PAWS is really
4000 * buggy extension.
4001 *
4002 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4003 * states that events when retransmit arrives after original data are rare.
4004 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4005 * the biggest problem on large power networks even with minor reordering.
4006 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4007 * up to bandwidth of 18Gigabit/sec. 8) ]
4008 */
4009
4010static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4011{
4012        const struct tcp_sock *tp = tcp_sk(sk);
4013        const struct tcphdr *th = tcp_hdr(skb);
4014        u32 seq = TCP_SKB_CB(skb)->seq;
4015        u32 ack = TCP_SKB_CB(skb)->ack_seq;
4016
4017        return (/* 1. Pure ACK with correct sequence number. */
4018                (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4019
4020                /* 2. ... and duplicate ACK. */
4021                ack == tp->snd_una &&
4022
4023                /* 3. ... and does not update window. */
4024                !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4025
4026                /* 4. ... and sits in replay window. */
4027                (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4028}
4029
4030static inline bool tcp_paws_discard(const struct sock *sk,
4031                                   const struct sk_buff *skb)
4032{
4033        const struct tcp_sock *tp = tcp_sk(sk);
4034
4035        return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4036               !tcp_disordered_ack(sk, skb);
4037}
4038
4039/* Check segment sequence number for validity.
4040 *
4041 * Segment controls are considered valid, if the segment
4042 * fits to the window after truncation to the window. Acceptability
4043 * of data (and SYN, FIN, of course) is checked separately.
4044 * See tcp_data_queue(), for example.
4045 *
4046 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4047 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4048 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4049 * (borrowed from freebsd)
4050 */
4051
4052static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4053{
4054        return  !before(end_seq, tp->rcv_wup) &&
4055                !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4056}
4057
4058/* When we get a reset we do this. */
4059void tcp_reset(struct sock *sk)
4060{
4061        trace_tcp_receive_reset(sk);
4062
4063        /* We want the right error as BSD sees it (and indeed as we do). */
4064        switch (sk->sk_state) {
4065        case TCP_SYN_SENT:
4066                sk->sk_err = ECONNREFUSED;
4067                break;
4068        case TCP_CLOSE_WAIT:
4069                sk->sk_err = EPIPE;
4070                break;
4071        case TCP_CLOSE:
4072                return;
4073        default:
4074                sk->sk_err = ECONNRESET;
4075        }
4076        /* This barrier is coupled with smp_rmb() in tcp_poll() */
4077        smp_wmb();
4078
4079        tcp_write_queue_purge(sk);
4080        tcp_done(sk);
4081
4082        if (!sock_flag(sk, SOCK_DEAD))
4083                sk->sk_error_report(sk);
4084}
4085
4086/*
4087 *      Process the FIN bit. This now behaves as it is supposed to work
4088 *      and the FIN takes effect when it is validly part of sequence
4089 *      space. Not before when we get holes.
4090 *
4091 *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4092 *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4093 *      TIME-WAIT)
4094 *
4095 *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4096 *      close and we go into CLOSING (and later onto TIME-WAIT)
4097 *
4098 *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4099 */
4100void tcp_fin(struct sock *sk)
4101{
4102        struct tcp_sock *tp = tcp_sk(sk);
4103
4104        inet_csk_schedule_ack(sk);
4105
4106        sk->sk_shutdown |= RCV_SHUTDOWN;
4107        sock_set_flag(sk, SOCK_DONE);
4108
4109        switch (sk->sk_state) {
4110        case TCP_SYN_RECV:
4111        case TCP_ESTABLISHED:
4112                /* Move to CLOSE_WAIT */
4113                tcp_set_state(sk, TCP_CLOSE_WAIT);
4114                inet_csk_enter_pingpong_mode(sk);
4115                break;
4116
4117        case TCP_CLOSE_WAIT:
4118        case TCP_CLOSING:
4119                /* Received a retransmission of the FIN, do
4120                 * nothing.
4121                 */
4122                break;
4123        case TCP_LAST_ACK:
4124                /* RFC793: Remain in the LAST-ACK state. */
4125                break;
4126
4127        case TCP_FIN_WAIT1:
4128                /* This case occurs when a simultaneous close
4129                 * happens, we must ack the received FIN and
4130                 * enter the CLOSING state.
4131                 */
4132                tcp_send_ack(sk);
4133                tcp_set_state(sk, TCP_CLOSING);
4134                break;
4135        case TCP_FIN_WAIT2:
4136                /* Received a FIN -- send ACK and enter TIME_WAIT. */
4137                tcp_send_ack(sk);
4138                tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4139                break;
4140        default:
4141                /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4142                 * cases we should never reach this piece of code.
4143                 */
4144                pr_err("%s: Impossible, sk->sk_state=%d\n",
4145                       __func__, sk->sk_state);
4146                break;
4147        }
4148
4149        /* It _is_ possible, that we have something out-of-order _after_ FIN.
4150         * Probably, we should reset in this case. For now drop them.
4151         */
4152        skb_rbtree_purge(&tp->out_of_order_queue);
4153        if (tcp_is_sack(tp))
4154                tcp_sack_reset(&tp->rx_opt);
4155        sk_mem_reclaim(sk);
4156
4157        if (!sock_flag(sk, SOCK_DEAD)) {
4158                sk->sk_state_change(sk);
4159
4160                /* Do not send POLL_HUP for half duplex close. */
4161                if (sk->sk_shutdown == SHUTDOWN_MASK ||
4162                    sk->sk_state == TCP_CLOSE)
4163                        sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4164                else
4165                        sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4166        }
4167}
4168
4169static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4170                                  u32 end_seq)
4171{
4172        if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4173                if (before(seq, sp->start_seq))
4174                        sp->start_seq = seq;
4175                if (after(end_seq, sp->end_seq))
4176                        sp->end_seq = end_seq;
4177                return true;
4178        }
4179        return false;
4180}
4181
4182static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4183{
4184        struct tcp_sock *tp = tcp_sk(sk);
4185
4186        if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4187                int mib_idx;
4188
4189                if (before(seq, tp->rcv_nxt))
4190                        mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4191                else
4192                        mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4193
4194                NET_INC_STATS(sock_net(sk), mib_idx);
4195
4196                tp->rx_opt.dsack = 1;
4197                tp->duplicate_sack[0].start_seq = seq;
4198                tp->duplicate_sack[0].end_seq = end_seq;
4199        }
4200}
4201
4202static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4203{
4204        struct tcp_sock *tp = tcp_sk(sk);
4205
4206        if (!tp->rx_opt.dsack)
4207                tcp_dsack_set(sk, seq, end_seq);
4208        else
4209                tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4210}
4211
4212static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4213{
4214        /* When the ACK path fails or drops most ACKs, the sender would
4215         * timeout and spuriously retransmit the same segment repeatedly.
4216         * The receiver remembers and reflects via DSACKs. Leverage the
4217         * DSACK state and change the txhash to re-route speculatively.
4218         */
4219        if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq)
4220                sk_rethink_txhash(sk);
4221}
4222
4223static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4224{
4225        struct tcp_sock *tp = tcp_sk(sk);
4226
4227        if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4228            before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4229                NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4230                tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4231
4232                if (tcp_is_sack(tp) && sock_net(sk)->ipv4.sysctl_tcp_dsack) {
4233                        u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4234
4235                        tcp_rcv_spurious_retrans(sk, skb);
4236                        if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4237                                end_seq = tp->rcv_nxt;
4238                        tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4239                }
4240        }
4241
4242        tcp_send_ack(sk);
4243}
4244
4245/* These routines update the SACK block as out-of-order packets arrive or
4246 * in-order packets close up the sequence space.
4247 */
4248static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4249{
4250        int this_sack;
4251        struct tcp_sack_block *sp = &tp->selective_acks[0];
4252        struct tcp_sack_block *swalk = sp + 1;
4253
4254        /* See if the recent change to the first SACK eats into
4255         * or hits the sequence space of other SACK blocks, if so coalesce.
4256         */
4257        for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4258                if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4259                        int i;
4260
4261                        /* Zap SWALK, by moving every further SACK up by one slot.
4262                         * Decrease num_sacks.
4263                         */
4264                        tp->rx_opt.num_sacks--;
4265                        for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4266                                sp[i] = sp[i + 1];
4267                        continue;
4268                }
4269                this_sack++, swalk++;
4270        }
4271}
4272
4273static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4274{
4275        struct tcp_sock *tp = tcp_sk(sk);
4276        struct tcp_sack_block *sp = &tp->selective_acks[0];
4277        int cur_sacks = tp->rx_opt.num_sacks;
4278        int this_sack;
4279
4280        if (!cur_sacks)
4281                goto new_sack;
4282
4283        for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4284                if (tcp_sack_extend(sp, seq, end_seq)) {
4285                        /* Rotate this_sack to the first one. */
4286                        for (; this_sack > 0; this_sack--, sp--)
4287                                swap(*sp, *(sp - 1));
4288                        if (cur_sacks > 1)
4289                                tcp_sack_maybe_coalesce(tp);
4290                        return;
4291                }
4292        }
4293
4294        /* Could not find an adjacent existing SACK, build a new one,
4295         * put it at the front, and shift everyone else down.  We
4296         * always know there is at least one SACK present already here.
4297         *
4298         * If the sack array is full, forget about the last one.
4299         */
4300        if (this_sack >= TCP_NUM_SACKS) {
4301                if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
4302                        tcp_send_ack(sk);
4303                this_sack--;
4304                tp->rx_opt.num_sacks--;
4305                sp--;
4306        }
4307        for (; this_sack > 0; this_sack--, sp--)
4308                *sp = *(sp - 1);
4309
4310new_sack:
4311        /* Build the new head SACK, and we're done. */
4312        sp->start_seq = seq;
4313        sp->end_seq = end_seq;
4314        tp->rx_opt.num_sacks++;
4315}
4316
4317/* RCV.NXT advances, some SACKs should be eaten. */
4318
4319static void tcp_sack_remove(struct tcp_sock *tp)
4320{
4321        struct tcp_sack_block *sp = &tp->selective_acks[0];
4322        int num_sacks = tp->rx_opt.num_sacks;
4323        int this_sack;
4324
4325        /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4326        if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4327                tp->rx_opt.num_sacks = 0;
4328                return;
4329        }
4330
4331        for (this_sack = 0; this_sack < num_sacks;) {
4332                /* Check if the start of the sack is covered by RCV.NXT. */
4333                if (!before(tp->rcv_nxt, sp->start_seq)) {
4334                        int i;
4335
4336                        /* RCV.NXT must cover all the block! */
4337                        WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4338
4339                        /* Zap this SACK, by moving forward any other SACKS. */
4340                        for (i = this_sack+1; i < num_sacks; i++)
4341                                tp->selective_acks[i-1] = tp->selective_acks[i];
4342                        num_sacks--;
4343                        continue;
4344                }
4345                this_sack++;
4346                sp++;
4347        }
4348        tp->rx_opt.num_sacks = num_sacks;
4349}
4350
4351/**
4352 * tcp_try_coalesce - try to merge skb to prior one
4353 * @sk: socket
4354 * @dest: destination queue
4355 * @to: prior buffer
4356 * @from: buffer to add in queue
4357 * @fragstolen: pointer to boolean
4358 *
4359 * Before queueing skb @from after @to, try to merge them
4360 * to reduce overall memory use and queue lengths, if cost is small.
4361 * Packets in ofo or receive queues can stay a long time.
4362 * Better try to coalesce them right now to avoid future collapses.
4363 * Returns true if caller should free @from instead of queueing it
4364 */
4365static bool tcp_try_coalesce(struct sock *sk,
4366                             struct sk_buff *to,
4367                             struct sk_buff *from,
4368                             bool *fragstolen)
4369{
4370        int delta;
4371
4372        *fragstolen = false;
4373
4374        /* Its possible this segment overlaps with prior segment in queue */
4375        if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4376                return false;
4377
4378#ifdef CONFIG_TLS_DEVICE
4379        if (from->decrypted != to->decrypted)
4380                return false;
4381#endif
4382
4383        if (!skb_try_coalesce(to, from, fragstolen, &delta))
4384                return false;
4385
4386        atomic_add(delta, &sk->sk_rmem_alloc);
4387        sk_mem_charge(sk, delta);
4388        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4389        TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4390        TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4391        TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4392
4393        if (TCP_SKB_CB(from)->has_rxtstamp) {
4394                TCP_SKB_CB(to)->has_rxtstamp = true;
4395                to->tstamp = from->tstamp;
4396                skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4397        }
4398
4399        return true;
4400}
4401
4402static bool tcp_ooo_try_coalesce(struct sock *sk,
4403                             struct sk_buff *to,
4404                             struct sk_buff *from,
4405                             bool *fragstolen)
4406{
4407        bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4408
4409        /* In case tcp_drop() is called later, update to->gso_segs */
4410        if (res) {
4411                u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4412                               max_t(u16, 1, skb_shinfo(from)->gso_segs);
4413
4414                skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4415        }
4416        return res;
4417}
4418
4419static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4420{
4421        sk_drops_add(sk, skb);
4422        __kfree_skb(skb);
4423}
4424
4425/* This one checks to see if we can put data from the
4426 * out_of_order queue into the receive_queue.
4427 */
4428static void tcp_ofo_queue(struct sock *sk)
4429{
4430        struct tcp_sock *tp = tcp_sk(sk);
4431        __u32 dsack_high = tp->rcv_nxt;
4432        bool fin, fragstolen, eaten;
4433        struct sk_buff *skb, *tail;
4434        struct rb_node *p;
4435
4436        p = rb_first(&tp->out_of_order_queue);
4437        while (p) {
4438                skb = rb_to_skb(p);
4439                if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4440                        break;
4441
4442                if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4443                        __u32 dsack = dsack_high;
4444                        if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4445                                dsack_high = TCP_SKB_CB(skb)->end_seq;
4446                        tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4447                }
4448                p = rb_next(p);
4449                rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4450
4451                if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4452                        tcp_drop(sk, skb);
4453                        continue;
4454                }
4455
4456                tail = skb_peek_tail(&sk->sk_receive_queue);
4457                eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4458                tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4459                fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4460                if (!eaten)
4461                        __skb_queue_tail(&sk->sk_receive_queue, skb);
4462                else
4463                        kfree_skb_partial(skb, fragstolen);
4464
4465                if (unlikely(fin)) {
4466                        tcp_fin(sk);
4467                        /* tcp_fin() purges tp->out_of_order_queue,
4468                         * so we must end this loop right now.
4469                         */
4470                        break;
4471                }
4472        }
4473}
4474
4475static bool tcp_prune_ofo_queue(struct sock *sk);
4476static int tcp_prune_queue(struct sock *sk);
4477
4478static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4479                                 unsigned int size)
4480{
4481        if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4482            !sk_rmem_schedule(sk, skb, size)) {
4483
4484                if (tcp_prune_queue(sk) < 0)
4485                        return -1;
4486
4487                while (!sk_rmem_schedule(sk, skb, size)) {
4488                        if (!tcp_prune_ofo_queue(sk))
4489                                return -1;
4490                }
4491        }
4492        return 0;
4493}
4494
4495static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4496{
4497        struct tcp_sock *tp = tcp_sk(sk);
4498        struct rb_node **p, *parent;
4499        struct sk_buff *skb1;
4500        u32 seq, end_seq;
4501        bool fragstolen;
4502
4503        tcp_ecn_check_ce(sk, skb);
4504
4505        if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4506                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4507                tcp_drop(sk, skb);
4508                return;
4509        }
4510
4511        /* Disable header prediction. */
4512        tp->pred_flags = 0;
4513        inet_csk_schedule_ack(sk);
4514
4515        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4516        seq = TCP_SKB_CB(skb)->seq;
4517        end_seq = TCP_SKB_CB(skb)->end_seq;
4518
4519        p = &tp->out_of_order_queue.rb_node;
4520        if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4521                /* Initial out of order segment, build 1 SACK. */
4522                if (tcp_is_sack(tp)) {
4523                        tp->rx_opt.num_sacks = 1;
4524                        tp->selective_acks[0].start_seq = seq;
4525                        tp->selective_acks[0].end_seq = end_seq;
4526                }
4527                rb_link_node(&skb->rbnode, NULL, p);
4528                rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4529                tp->ooo_last_skb = skb;
4530                goto end;
4531        }
4532
4533        /* In the typical case, we are adding an skb to the end of the list.
4534         * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4535         */
4536        if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4537                                 skb, &fragstolen)) {
4538coalesce_done:
4539                tcp_grow_window(sk, skb);
4540                kfree_skb_partial(skb, fragstolen);
4541                skb = NULL;
4542                goto add_sack;
4543        }
4544        /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4545        if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4546                parent = &tp->ooo_last_skb->rbnode;
4547                p = &parent->rb_right;
4548                goto insert;
4549        }
4550
4551        /* Find place to insert this segment. Handle overlaps on the way. */
4552        parent = NULL;
4553        while (*p) {
4554                parent = *p;
4555                skb1 = rb_to_skb(parent);
4556                if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4557                        p = &parent->rb_left;
4558                        continue;
4559                }
4560                if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4561                        if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4562                                /* All the bits are present. Drop. */
4563                                NET_INC_STATS(sock_net(sk),
4564                                              LINUX_MIB_TCPOFOMERGE);
4565                                tcp_drop(sk, skb);
4566                                skb = NULL;
4567                                tcp_dsack_set(sk, seq, end_seq);
4568                                goto add_sack;
4569                        }
4570                        if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4571                                /* Partial overlap. */
4572                                tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4573                        } else {
4574                                /* skb's seq == skb1's seq and skb covers skb1.
4575                                 * Replace skb1 with skb.
4576                                 */
4577                                rb_replace_node(&skb1->rbnode, &skb->rbnode,
4578                                                &tp->out_of_order_queue);
4579                                tcp_dsack_extend(sk,
4580                                                 TCP_SKB_CB(skb1)->seq,
4581                                                 TCP_SKB_CB(skb1)->end_seq);
4582                                NET_INC_STATS(sock_net(sk),
4583                                              LINUX_MIB_TCPOFOMERGE);
4584                                tcp_drop(sk, skb1);
4585                                goto merge_right;
4586                        }
4587                } else if (tcp_ooo_try_coalesce(sk, skb1,
4588                                                skb, &fragstolen)) {
4589                        goto coalesce_done;
4590                }
4591                p = &parent->rb_right;
4592        }
4593insert:
4594        /* Insert segment into RB tree. */
4595        rb_link_node(&skb->rbnode, parent, p);
4596        rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4597
4598merge_right:
4599        /* Remove other segments covered by skb. */
4600        while ((skb1 = skb_rb_next(skb)) != NULL) {
4601                if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4602                        break;
4603                if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4604                        tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4605                                         end_seq);
4606                        break;
4607                }
4608                rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4609                tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4610                                 TCP_SKB_CB(skb1)->end_seq);
4611                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4612                tcp_drop(sk, skb1);
4613        }
4614        /* If there is no skb after us, we are the last_skb ! */
4615        if (!skb1)
4616                tp->ooo_last_skb = skb;
4617
4618add_sack:
4619        if (tcp_is_sack(tp))
4620                tcp_sack_new_ofo_skb(sk, seq, end_seq);
4621end:
4622        if (skb) {
4623                tcp_grow_window(sk, skb);
4624                skb_condense(skb);
4625                skb_set_owner_r(skb, sk);
4626        }
4627}
4628
4629static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4630                                      bool *fragstolen)
4631{
4632        int eaten;
4633        struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4634
4635        eaten = (tail &&
4636                 tcp_try_coalesce(sk, tail,
4637                                  skb, fragstolen)) ? 1 : 0;
4638        tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4639        if (!eaten) {
4640                __skb_queue_tail(&sk->sk_receive_queue, skb);
4641                skb_set_owner_r(skb, sk);
4642        }
4643        return eaten;
4644}
4645
4646int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4647{
4648        struct sk_buff *skb;
4649        int err = -ENOMEM;
4650        int data_len = 0;
4651        bool fragstolen;
4652
4653        if (size == 0)
4654                return 0;
4655
4656        if (size > PAGE_SIZE) {
4657                int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4658
4659                data_len = npages << PAGE_SHIFT;
4660                size = data_len + (size & ~PAGE_MASK);
4661        }
4662        skb = alloc_skb_with_frags(size - data_len, data_len,
4663                                   PAGE_ALLOC_COSTLY_ORDER,
4664                                   &err, sk->sk_allocation);
4665        if (!skb)
4666                goto err;
4667
4668        skb_put(skb, size - data_len);
4669        skb->data_len = data_len;
4670        skb->len = size;
4671
4672        if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4673                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4674                goto err_free;
4675        }
4676
4677        err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4678        if (err)
4679                goto err_free;
4680
4681        TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4682        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4683        TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4684
4685        if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4686                WARN_ON_ONCE(fragstolen); /* should not happen */
4687                __kfree_skb(skb);
4688        }
4689        return size;
4690
4691err_free:
4692        kfree_skb(skb);
4693err:
4694        return err;
4695
4696}
4697
4698void tcp_data_ready(struct sock *sk)
4699{
4700        const struct tcp_sock *tp = tcp_sk(sk);
4701        int avail = tp->rcv_nxt - tp->copied_seq;
4702
4703        if (avail < sk->sk_rcvlowat && !sock_flag(sk, SOCK_DONE))
4704                return;
4705
4706        sk->sk_data_ready(sk);
4707}
4708
4709static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4710{
4711        struct tcp_sock *tp = tcp_sk(sk);
4712        bool fragstolen;
4713        int eaten;
4714
4715        if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4716                __kfree_skb(skb);
4717                return;
4718        }
4719        skb_dst_drop(skb);
4720        __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4721
4722        tcp_ecn_accept_cwr(sk, skb);
4723
4724        tp->rx_opt.dsack = 0;
4725
4726        /*  Queue data for delivery to the user.
4727         *  Packets in sequence go to the receive queue.
4728         *  Out of sequence packets to the out_of_order_queue.
4729         */
4730        if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4731                if (tcp_receive_window(tp) == 0) {
4732                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4733                        goto out_of_window;
4734                }
4735
4736                /* Ok. In sequence. In window. */
4737queue_and_out:
4738                if (skb_queue_len(&sk->sk_receive_queue) == 0)
4739                        sk_forced_mem_schedule(sk, skb->truesize);
4740                else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4741                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4742                        goto drop;
4743                }
4744
4745                eaten = tcp_queue_rcv(sk, skb, &fragstolen);
4746                if (skb->len)
4747                        tcp_event_data_recv(sk, skb);
4748                if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4749                        tcp_fin(sk);
4750
4751                if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4752                        tcp_ofo_queue(sk);
4753
4754                        /* RFC5681. 4.2. SHOULD send immediate ACK, when
4755                         * gap in queue is filled.
4756                         */
4757                        if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
4758                                inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
4759                }
4760
4761                if (tp->rx_opt.num_sacks)
4762                        tcp_sack_remove(tp);
4763
4764                tcp_fast_path_check(sk);
4765
4766                if (eaten > 0)
4767                        kfree_skb_partial(skb, fragstolen);
4768                if (!sock_flag(sk, SOCK_DEAD))
4769                        tcp_data_ready(sk);
4770                return;
4771        }
4772
4773        if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4774                tcp_rcv_spurious_retrans(sk, skb);
4775                /* A retransmit, 2nd most common case.  Force an immediate ack. */
4776                NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4777                tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4778
4779out_of_window:
4780                tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4781                inet_csk_schedule_ack(sk);
4782drop:
4783                tcp_drop(sk, skb);
4784                return;
4785        }
4786
4787        /* Out of window. F.e. zero window probe. */
4788        if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4789                goto out_of_window;
4790
4791        if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4792                /* Partial packet, seq < rcv_next < end_seq */
4793                tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4794
4795                /* If window is closed, drop tail of packet. But after
4796                 * remembering D-SACK for its head made in previous line.
4797                 */
4798                if (!tcp_receive_window(tp)) {
4799                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
4800                        goto out_of_window;
4801                }
4802                goto queue_and_out;
4803        }
4804
4805        tcp_data_queue_ofo(sk, skb);
4806}
4807
4808static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
4809{
4810        if (list)
4811                return !skb_queue_is_last(list, skb) ? skb->next : NULL;
4812
4813        return skb_rb_next(skb);
4814}
4815
4816static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4817                                        struct sk_buff_head *list,
4818                                        struct rb_root *root)
4819{
4820        struct sk_buff *next = tcp_skb_next(skb, list);
4821
4822        if (list)
4823                __skb_unlink(skb, list);
4824        else
4825                rb_erase(&skb->rbnode, root);
4826
4827        __kfree_skb(skb);
4828        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4829
4830        return next;
4831}
4832
4833/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
4834void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
4835{
4836        struct rb_node **p = &root->rb_node;
4837        struct rb_node *parent = NULL;
4838        struct sk_buff *skb1;
4839
4840        while (*p) {
4841                parent = *p;
4842                skb1 = rb_to_skb(parent);
4843                if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
4844                        p = &parent->rb_left;
4845                else
4846                        p = &parent->rb_right;
4847        }
4848        rb_link_node(&skb->rbnode, parent, p);
4849        rb_insert_color(&skb->rbnode, root);
4850}
4851
4852/* Collapse contiguous sequence of skbs head..tail with
4853 * sequence numbers start..end.
4854 *
4855 * If tail is NULL, this means until the end of the queue.
4856 *
4857 * Segments with FIN/SYN are not collapsed (only because this
4858 * simplifies code)
4859 */
4860static void
4861tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
4862             struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
4863{
4864        struct sk_buff *skb = head, *n;
4865        struct sk_buff_head tmp;
4866        bool end_of_skbs;
4867
4868        /* First, check that queue is collapsible and find
4869         * the point where collapsing can be useful.
4870         */
4871restart:
4872        for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
4873                n = tcp_skb_next(skb, list);
4874
4875                /* No new bits? It is possible on ofo queue. */
4876                if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4877                        skb = tcp_collapse_one(sk, skb, list, root);
4878                        if (!skb)
4879                                break;
4880                        goto restart;
4881                }
4882
4883                /* The first skb to collapse is:
4884                 * - not SYN/FIN and
4885                 * - bloated or contains data before "start" or
4886                 *   overlaps to the next one.
4887                 */
4888                if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4889                    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
4890                     before(TCP_SKB_CB(skb)->seq, start))) {
4891                        end_of_skbs = false;
4892                        break;
4893                }
4894
4895                if (n && n != tail &&
4896                    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
4897                        end_of_skbs = false;
4898                        break;
4899                }
4900
4901                /* Decided to skip this, advance start seq. */
4902                start = TCP_SKB_CB(skb)->end_seq;
4903        }
4904        if (end_of_skbs ||
4905            (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4906                return;
4907
4908        __skb_queue_head_init(&tmp);
4909
4910        while (before(start, end)) {
4911                int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4912                struct sk_buff *nskb;
4913
4914                nskb = alloc_skb(copy, GFP_ATOMIC);
4915                if (!nskb)
4916                        break;
4917
4918                memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4919#ifdef CONFIG_TLS_DEVICE
4920                nskb->decrypted = skb->decrypted;
4921#endif
4922                TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4923                if (list)
4924                        __skb_queue_before(list, skb, nskb);
4925                else
4926                        __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
4927                skb_set_owner_r(nskb, sk);
4928
4929                /* Copy data, releasing collapsed skbs. */
4930                while (copy > 0) {
4931                        int offset = start - TCP_SKB_CB(skb)->seq;
4932                        int size = TCP_SKB_CB(skb)->end_seq - start;
4933
4934                        BUG_ON(offset < 0);
4935                        if (size > 0) {
4936                                size = min(copy, size);
4937                                if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4938                                        BUG();
4939                                TCP_SKB_CB(nskb)->end_seq += size;
4940                                copy -= size;
4941                                start += size;
4942                        }
4943                        if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4944                                skb = tcp_collapse_one(sk, skb, list, root);
4945                                if (!skb ||
4946                                    skb == tail ||
4947                                    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4948                                        goto end;
4949#ifdef CONFIG_TLS_DEVICE
4950                                if (skb->decrypted != nskb->decrypted)
4951                                        goto end;
4952#endif
4953                        }
4954                }
4955        }
4956end:
4957        skb_queue_walk_safe(&tmp, skb, n)
4958                tcp_rbtree_insert(root, skb);
4959}
4960
4961/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4962 * and tcp_collapse() them until all the queue is collapsed.
4963 */
4964static void tcp_collapse_ofo_queue(struct sock *sk)
4965{
4966        struct tcp_sock *tp = tcp_sk(sk);
4967        u32 range_truesize, sum_tiny = 0;
4968        struct sk_buff *skb, *head;
4969        u32 start, end;
4970
4971        skb = skb_rb_first(&tp->out_of_order_queue);
4972new_range:
4973        if (!skb) {
4974                tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
4975                return;
4976        }
4977        start = TCP_SKB_CB(skb)->seq;
4978        end = TCP_SKB_CB(skb)->end_seq;
4979        range_truesize = skb->truesize;
4980
4981        for (head = skb;;) {
4982                skb = skb_rb_next(skb);
4983
4984                /* Range is terminated when we see a gap or when
4985                 * we are at the queue end.
4986                 */
4987                if (!skb ||
4988                    after(TCP_SKB_CB(skb)->seq, end) ||
4989                    before(TCP_SKB_CB(skb)->end_seq, start)) {
4990                        /* Do not attempt collapsing tiny skbs */
4991                        if (range_truesize != head->truesize ||
4992                            end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
4993                                tcp_collapse(sk, NULL, &tp->out_of_order_queue,
4994                                             head, skb, start, end);
4995                        } else {
4996                                sum_tiny += range_truesize;
4997                                if (sum_tiny > sk->sk_rcvbuf >> 3)
4998                                        return;
4999                        }
5000                        goto new_range;
5001                }
5002
5003                range_truesize += skb->truesize;
5004                if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5005                        start = TCP_SKB_CB(skb)->seq;
5006                if (after(TCP_SKB_CB(skb)->end_seq, end))
5007                        end = TCP_SKB_CB(skb)->end_seq;
5008        }
5009}
5010
5011/*
5012 * Clean the out-of-order queue to make room.
5013 * We drop high sequences packets to :
5014 * 1) Let a chance for holes to be filled.
5015 * 2) not add too big latencies if thousands of packets sit there.
5016 *    (But if application shrinks SO_RCVBUF, we could still end up
5017 *     freeing whole queue here)
5018 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5019 *
5020 * Return true if queue has shrunk.
5021 */
5022static bool tcp_prune_ofo_queue(struct sock *sk)
5023{
5024        struct tcp_sock *tp = tcp_sk(sk);
5025        struct rb_node *node, *prev;
5026        int goal;
5027
5028        if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5029                return false;
5030
5031        NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5032        goal = sk->sk_rcvbuf >> 3;
5033        node = &tp->ooo_last_skb->rbnode;
5034        do {
5035                prev = rb_prev(node);
5036                rb_erase(node, &tp->out_of_order_queue);
5037                goal -= rb_to_skb(node)->truesize;
5038                tcp_drop(sk, rb_to_skb(node));
5039                if (!prev || goal <= 0) {
5040                        sk_mem_reclaim(sk);
5041                        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5042                            !tcp_under_memory_pressure(sk))
5043                                break;
5044                        goal = sk->sk_rcvbuf >> 3;
5045                }
5046                node = prev;
5047        } while (node);
5048        tp->ooo_last_skb = rb_to_skb(prev);
5049
5050        /* Reset SACK state.  A conforming SACK implementation will
5051         * do the same at a timeout based retransmit.  When a connection
5052         * is in a sad state like this, we care only about integrity
5053         * of the connection not performance.
5054         */
5055        if (tp->rx_opt.sack_ok)
5056                tcp_sack_reset(&tp->rx_opt);
5057        return true;
5058}
5059
5060/* Reduce allocated memory if we can, trying to get
5061 * the socket within its memory limits again.
5062 *
5063 * Return less than zero if we should start dropping frames
5064 * until the socket owning process reads some of the data
5065 * to stabilize the situation.
5066 */
5067static int tcp_prune_queue(struct sock *sk)
5068{
5069        struct tcp_sock *tp = tcp_sk(sk);
5070
5071        NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5072
5073        if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5074                tcp_clamp_window(sk);
5075        else if (tcp_under_memory_pressure(sk))
5076                tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5077
5078        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5079                return 0;
5080
5081        tcp_collapse_ofo_queue(sk);
5082        if (!skb_queue_empty(&sk->sk_receive_queue))
5083                tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5084                             skb_peek(&sk->sk_receive_queue),
5085                             NULL,
5086                             tp->copied_seq, tp->rcv_nxt);
5087        sk_mem_reclaim(sk);
5088
5089        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5090                return 0;
5091
5092        /* Collapsing did not help, destructive actions follow.
5093         * This must not ever occur. */
5094
5095        tcp_prune_ofo_queue(sk);
5096
5097        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5098                return 0;
5099
5100        /* If we are really being abused, tell the caller to silently
5101         * drop receive data on the floor.  It will get retransmitted
5102         * and hopefully then we'll have sufficient space.
5103         */
5104        NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5105
5106        /* Massive buffer overcommit. */
5107        tp->pred_flags = 0;
5108        return -1;
5109}
5110
5111static bool tcp_should_expand_sndbuf(const struct sock *sk)
5112{
5113        const struct tcp_sock *tp = tcp_sk(sk);
5114
5115        /* If the user specified a specific send buffer setting, do
5116         * not modify it.
5117         */
5118        if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5119                return false;
5120
5121        /* If we are under global TCP memory pressure, do not expand.  */
5122        if (tcp_under_memory_pressure(sk))
5123                return false;
5124
5125        /* If we are under soft global TCP memory pressure, do not expand.  */
5126        if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5127                return false;
5128
5129        /* If we filled the congestion window, do not expand.  */
5130        if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5131                return false;
5132
5133        return true;
5134}
5135
5136/* When incoming ACK allowed to free some skb from write_queue,
5137 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
5138 * on the exit from tcp input handler.
5139 *
5140 * PROBLEM: sndbuf expansion does not work well with largesend.
5141 */
5142static void tcp_new_space(struct sock *sk)
5143{
5144        struct tcp_sock *tp = tcp_sk(sk);
5145
5146        if (tcp_should_expand_sndbuf(sk)) {
5147                tcp_sndbuf_expand(sk);
5148                tp->snd_cwnd_stamp = tcp_jiffies32;
5149        }
5150
5151        sk->sk_write_space(sk);
5152}
5153
5154static void tcp_check_space(struct sock *sk)
5155{
5156        if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
5157                sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
5158                /* pairs with tcp_poll() */
5159                smp_mb();
5160                if (sk->sk_socket &&
5161                    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5162                        tcp_new_space(sk);
5163                        if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5164                                tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5165                }
5166        }
5167}
5168
5169static inline void tcp_data_snd_check(struct sock *sk)
5170{
5171        tcp_push_pending_frames(sk);
5172        tcp_check_space(sk);
5173}
5174
5175/*
5176 * Check if sending an ack is needed.
5177 */
5178static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5179{
5180        struct tcp_sock *tp = tcp_sk(sk);
5181        unsigned long rtt, delay;
5182
5183            /* More than one full frame received... */
5184        if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5185             /* ... and right edge of window advances far enough.
5186              * (tcp_recvmsg() will send ACK otherwise).
5187              * If application uses SO_RCVLOWAT, we want send ack now if
5188              * we have not received enough bytes to satisfy the condition.
5189              */
5190            (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5191             __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5192            /* We ACK each frame or... */
5193            tcp_in_quickack_mode(sk) ||
5194            /* Protocol state mandates a one-time immediate ACK */
5195            inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5196send_now:
5197                tcp_send_ack(sk);
5198                return;
5199        }
5200
5201        if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5202                tcp_send_delayed_ack(sk);
5203                return;
5204        }
5205
5206        if (!tcp_is_sack(tp) ||
5207            tp->compressed_ack >= sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr)
5208                goto send_now;
5209
5210        if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5211                tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5212                if (tp->compressed_ack > TCP_FASTRETRANS_THRESH)
5213                        NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
5214                                      tp->compressed_ack - TCP_FASTRETRANS_THRESH);
5215                tp->compressed_ack = 0;
5216        }
5217
5218        if (++tp->compressed_ack <= TCP_FASTRETRANS_THRESH)
5219                goto send_now;
5220
5221        if (hrtimer_is_queued(&tp->compressed_ack_timer))
5222                return;
5223
5224        /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5225
5226        rtt = tp->rcv_rtt_est.rtt_us;
5227        if (tp->srtt_us && tp->srtt_us < rtt)
5228                rtt = tp->srtt_us;
5229
5230        delay = min_t(unsigned long, sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns,
5231                      rtt * (NSEC_PER_USEC >> 3)/20);
5232        sock_hold(sk);
5233        hrtimer_start(&tp->compressed_ack_timer, ns_to_ktime(delay),
5234                      HRTIMER_MODE_REL_PINNED_SOFT);
5235}
5236
5237static inline void tcp_ack_snd_check(struct sock *sk)
5238{
5239        if (!inet_csk_ack_scheduled(sk)) {
5240                /* We sent a data segment already. */
5241                return;
5242        }
5243        __tcp_ack_snd_check(sk, 1);
5244}
5245
5246/*
5247 *      This routine is only called when we have urgent data
5248 *      signaled. Its the 'slow' part of tcp_urg. It could be
5249 *      moved inline now as tcp_urg is only called from one
5250 *      place. We handle URGent data wrong. We have to - as
5251 *      BSD still doesn't use the correction from RFC961.
5252 *      For 1003.1g we should support a new option TCP_STDURG to permit
5253 *      either form (or just set the sysctl tcp_stdurg).
5254 */
5255
5256static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5257{
5258        struct tcp_sock *tp = tcp_sk(sk);
5259        u32 ptr = ntohs(th->urg_ptr);
5260
5261        if (ptr && !sock_net(sk)->ipv4.sysctl_tcp_stdurg)
5262                ptr--;
5263        ptr += ntohl(th->seq);
5264
5265        /* Ignore urgent data that we've already seen and read. */
5266        if (after(tp->copied_seq, ptr))
5267                return;
5268
5269        /* Do not replay urg ptr.
5270         *
5271         * NOTE: interesting situation not covered by specs.
5272         * Misbehaving sender may send urg ptr, pointing to segment,
5273         * which we already have in ofo queue. We are not able to fetch
5274         * such data and will stay in TCP_URG_NOTYET until will be eaten
5275         * by recvmsg(). Seems, we are not obliged to handle such wicked
5276         * situations. But it is worth to think about possibility of some
5277         * DoSes using some hypothetical application level deadlock.
5278         */
5279        if (before(ptr, tp->rcv_nxt))
5280                return;
5281
5282        /* Do we already have a newer (or duplicate) urgent pointer? */
5283        if (tp->urg_data && !after(ptr, tp->urg_seq))
5284                return;
5285
5286        /* Tell the world about our new urgent pointer. */
5287        sk_send_sigurg(sk);
5288
5289        /* We may be adding urgent data when the last byte read was
5290         * urgent. To do this requires some care. We cannot just ignore
5291         * tp->copied_seq since we would read the last urgent byte again
5292         * as data, nor can we alter copied_seq until this data arrives
5293         * or we break the semantics of SIOCATMARK (and thus sockatmark())
5294         *
5295         * NOTE. Double Dutch. Rendering to plain English: author of comment
5296         * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5297         * and expect that both A and B disappear from stream. This is _wrong_.
5298         * Though this happens in BSD with high probability, this is occasional.
5299         * Any application relying on this is buggy. Note also, that fix "works"
5300         * only in this artificial test. Insert some normal data between A and B and we will
5301         * decline of BSD again. Verdict: it is better to remove to trap
5302         * buggy users.
5303         */
5304        if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5305            !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5306                struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5307                tp->copied_seq++;
5308                if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5309                        __skb_unlink(skb, &sk->sk_receive_queue);
5310                        __kfree_skb(skb);
5311                }
5312        }
5313
5314        tp->urg_data = TCP_URG_NOTYET;
5315        tp->urg_seq = ptr;
5316
5317        /* Disable header prediction. */
5318        tp->pred_flags = 0;
5319}
5320
5321/* This is the 'fast' part of urgent handling. */
5322static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5323{
5324        struct tcp_sock *tp = tcp_sk(sk);
5325
5326        /* Check if we get a new urgent pointer - normally not. */
5327        if (th->urg)
5328                tcp_check_urg(sk, th);
5329
5330        /* Do we wait for any urgent data? - normally not... */
5331        if (tp->urg_data == TCP_URG_NOTYET) {
5332                u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5333                          th->syn;
5334
5335                /* Is the urgent pointer pointing into this packet? */
5336                if (ptr < skb->len) {
5337                        u8 tmp;
5338                        if (skb_copy_bits(skb, ptr, &tmp, 1))
5339                                BUG();
5340                        tp->urg_data = TCP_URG_VALID | tmp;
5341                        if (!sock_flag(sk, SOCK_DEAD))
5342                                sk->sk_data_ready(sk);
5343                }
5344        }
5345}
5346
5347/* Accept RST for rcv_nxt - 1 after a FIN.
5348 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5349 * FIN is sent followed by a RST packet. The RST is sent with the same
5350 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5351 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5352 * ACKs on the closed socket. In addition middleboxes can drop either the
5353 * challenge ACK or a subsequent RST.
5354 */
5355static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5356{
5357        struct tcp_sock *tp = tcp_sk(sk);
5358
5359        return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5360                        (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5361                                               TCPF_CLOSING));
5362}
5363
5364/* Does PAWS and seqno based validation of an incoming segment, flags will
5365 * play significant role here.
5366 */
5367static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5368                                  const struct tcphdr *th, int syn_inerr)
5369{
5370        struct tcp_sock *tp = tcp_sk(sk);
5371        bool rst_seq_match = false;
5372
5373        /* RFC1323: H1. Apply PAWS check first. */
5374        if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5375            tp->rx_opt.saw_tstamp &&
5376            tcp_paws_discard(sk, skb)) {
5377                if (!th->rst) {
5378                        NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5379                        if (!tcp_oow_rate_limited(sock_net(sk), skb,
5380                                                  LINUX_MIB_TCPACKSKIPPEDPAWS,
5381                                                  &tp->last_oow_ack_time))
5382                                tcp_send_dupack(sk, skb);
5383                        goto discard;
5384                }
5385                /* Reset is accepted even if it did not pass PAWS. */
5386        }
5387
5388        /* Step 1: check sequence number */
5389        if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5390                /* RFC793, page 37: "In all states except SYN-SENT, all reset
5391                 * (RST) segments are validated by checking their SEQ-fields."
5392                 * And page 69: "If an incoming segment is not acceptable,
5393                 * an acknowledgment should be sent in reply (unless the RST
5394                 * bit is set, if so drop the segment and return)".
5395                 */
5396                if (!th->rst) {
5397                        if (th->syn)
5398                                goto syn_challenge;
5399                        if (!tcp_oow_rate_limited(sock_net(sk), skb,
5400                                                  LINUX_MIB_TCPACKSKIPPEDSEQ,
5401                                                  &tp->last_oow_ack_time))
5402                                tcp_send_dupack(sk, skb);
5403                } else if (tcp_reset_check(sk, skb)) {
5404                        tcp_reset(sk);
5405                }
5406                goto discard;
5407        }
5408
5409        /* Step 2: check RST bit */
5410        if (th->rst) {
5411                /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5412                 * FIN and SACK too if available):
5413                 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5414                 * the right-most SACK block,
5415                 * then
5416                 *     RESET the connection
5417                 * else
5418                 *     Send a challenge ACK
5419                 */
5420                if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5421                    tcp_reset_check(sk, skb)) {
5422                        rst_seq_match = true;
5423                } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5424                        struct tcp_sack_block *sp = &tp->selective_acks[0];
5425                        int max_sack = sp[0].end_seq;
5426                        int this_sack;
5427
5428                        for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5429                             ++this_sack) {
5430                                max_sack = after(sp[this_sack].end_seq,
5431                                                 max_sack) ?
5432                                        sp[this_sack].end_seq : max_sack;
5433                        }
5434
5435                        if (TCP_SKB_CB(skb)->seq == max_sack)
5436                                rst_seq_match = true;
5437                }
5438
5439                if (rst_seq_match)
5440                        tcp_reset(sk);
5441                else {
5442                        /* Disable TFO if RST is out-of-order
5443                         * and no data has been received
5444                         * for current active TFO socket
5445                         */
5446                        if (tp->syn_fastopen && !tp->data_segs_in &&
5447                            sk->sk_state == TCP_ESTABLISHED)
5448                                tcp_fastopen_active_disable(sk);
5449                        tcp_send_challenge_ack(sk, skb);
5450                }
5451                goto discard;
5452        }
5453
5454        /* step 3: check security and precedence [ignored] */
5455
5456        /* step 4: Check for a SYN
5457         * RFC 5961 4.2 : Send a challenge ack
5458         */
5459        if (th->syn) {
5460syn_challenge:
5461                if (syn_inerr)
5462                        TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5463                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5464                tcp_send_challenge_ack(sk, skb);
5465                goto discard;
5466        }
5467
5468        return true;
5469
5470discard:
5471        tcp_drop(sk, skb);
5472        return false;
5473}
5474
5475/*
5476 *      TCP receive function for the ESTABLISHED state.
5477 *
5478 *      It is split into a fast path and a slow path. The fast path is
5479 *      disabled when:
5480 *      - A zero window was announced from us - zero window probing
5481 *        is only handled properly in the slow path.
5482 *      - Out of order segments arrived.
5483 *      - Urgent data is expected.
5484 *      - There is no buffer space left
5485 *      - Unexpected TCP flags/window values/header lengths are received
5486 *        (detected by checking the TCP header against pred_flags)
5487 *      - Data is sent in both directions. Fast path only supports pure senders
5488 *        or pure receivers (this means either the sequence number or the ack
5489 *        value must stay constant)
5490 *      - Unexpected TCP option.
5491 *
5492 *      When these conditions are not satisfied it drops into a standard
5493 *      receive procedure patterned after RFC793 to handle all cases.
5494 *      The first three cases are guaranteed by proper pred_flags setting,
5495 *      the rest is checked inline. Fast processing is turned on in
5496 *      tcp_data_queue when everything is OK.
5497 */
5498void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5499{
5500        const struct tcphdr *th = (const struct tcphdr *)skb->data;
5501        struct tcp_sock *tp = tcp_sk(sk);
5502        unsigned int len = skb->len;
5503
5504        /* TCP congestion window tracking */
5505        trace_tcp_probe(sk, skb);
5506
5507        tcp_mstamp_refresh(tp);
5508        if (unlikely(!sk->sk_rx_dst))
5509                inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5510        /*
5511         *      Header prediction.
5512         *      The code loosely follows the one in the famous
5513         *      "30 instruction TCP receive" Van Jacobson mail.
5514         *
5515         *      Van's trick is to deposit buffers into socket queue
5516         *      on a device interrupt, to call tcp_recv function
5517         *      on the receive process context and checksum and copy
5518         *      the buffer to user space. smart...
5519         *
5520         *      Our current scheme is not silly either but we take the
5521         *      extra cost of the net_bh soft interrupt processing...
5522         *      We do checksum and copy also but from device to kernel.
5523         */
5524
5525        tp->rx_opt.saw_tstamp = 0;
5526
5527        /*      pred_flags is 0xS?10 << 16 + snd_wnd
5528         *      if header_prediction is to be made
5529         *      'S' will always be tp->tcp_header_len >> 2
5530         *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5531         *  turn it off (when there are holes in the receive
5532         *       space for instance)
5533         *      PSH flag is ignored.
5534         */
5535
5536        if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5537            TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5538            !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5539                int tcp_header_len = tp->tcp_header_len;
5540
5541                /* Timestamp header prediction: tcp_header_len
5542                 * is automatically equal to th->doff*4 due to pred_flags
5543                 * match.
5544                 */
5545
5546                /* Check timestamp */
5547                if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5548                        /* No? Slow path! */
5549                        if (!tcp_parse_aligned_timestamp(tp, th))
5550                                goto slow_path;
5551
5552                        /* If PAWS failed, check it more carefully in slow path */
5553                        if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5554                                goto slow_path;
5555
5556                        /* DO NOT update ts_recent here, if checksum fails
5557                         * and timestamp was corrupted part, it will result
5558                         * in a hung connection since we will drop all
5559                         * future packets due to the PAWS test.
5560                         */
5561                }
5562
5563                if (len <= tcp_header_len) {
5564                        /* Bulk data transfer: sender */
5565                        if (len == tcp_header_len) {
5566                                /* Predicted packet is in window by definition.
5567                                 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5568                                 * Hence, check seq<=rcv_wup reduces to:
5569                                 */
5570                                if (tcp_header_len ==
5571                                    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5572                                    tp->rcv_nxt == tp->rcv_wup)
5573                                        tcp_store_ts_recent(tp);
5574
5575                                /* We know that such packets are checksummed
5576                                 * on entry.
5577                                 */
5578                                tcp_ack(sk, skb, 0);
5579                                __kfree_skb(skb);
5580                                tcp_data_snd_check(sk);
5581                                /* When receiving pure ack in fast path, update
5582                                 * last ts ecr directly instead of calling
5583                                 * tcp_rcv_rtt_measure_ts()
5584                                 */
5585                                tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5586                                return;
5587                        } else { /* Header too small */
5588                                TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5589                                goto discard;
5590                        }
5591                } else {
5592                        int eaten = 0;
5593                        bool fragstolen = false;
5594
5595                        if (tcp_checksum_complete(skb))
5596                                goto csum_error;
5597
5598                        if ((int)skb->truesize > sk->sk_forward_alloc)
5599                                goto step5;
5600
5601                        /* Predicted packet is in window by definition.
5602                         * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5603                         * Hence, check seq<=rcv_wup reduces to:
5604                         */
5605                        if (tcp_header_len ==
5606                            (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5607                            tp->rcv_nxt == tp->rcv_wup)
5608                                tcp_store_ts_recent(tp);
5609
5610                        tcp_rcv_rtt_measure_ts(sk, skb);
5611
5612                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5613
5614                        /* Bulk data transfer: receiver */
5615                        __skb_pull(skb, tcp_header_len);
5616                        eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5617
5618                        tcp_event_data_recv(sk, skb);
5619
5620                        if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5621                                /* Well, only one small jumplet in fast path... */
5622                                tcp_ack(sk, skb, FLAG_DATA);
5623                                tcp_data_snd_check(sk);
5624                                if (!inet_csk_ack_scheduled(sk))
5625                                        goto no_ack;
5626                        }
5627
5628                        __tcp_ack_snd_check(sk, 0);
5629no_ack:
5630                        if (eaten)
5631                                kfree_skb_partial(skb, fragstolen);
5632                        tcp_data_ready(sk);
5633                        return;
5634                }
5635        }
5636
5637slow_path:
5638        if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5639                goto csum_error;
5640
5641        if (!th->ack && !th->rst && !th->syn)
5642                goto discard;
5643
5644        /*
5645         *      Standard slow path.
5646         */
5647
5648        if (!tcp_validate_incoming(sk, skb, th, 1))
5649                return;
5650
5651step5:
5652        if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5653                goto discard;
5654
5655        tcp_rcv_rtt_measure_ts(sk, skb);
5656
5657        /* Process urgent data. */
5658        tcp_urg(sk, skb, th);
5659
5660        /* step 7: process the segment text */
5661        tcp_data_queue(sk, skb);
5662
5663        tcp_data_snd_check(sk);
5664        tcp_ack_snd_check(sk);
5665        return;
5666
5667csum_error:
5668        TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5669        TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5670
5671discard:
5672        tcp_drop(sk, skb);
5673}
5674EXPORT_SYMBOL(tcp_rcv_established);
5675
5676void tcp_init_transfer(struct sock *sk, int bpf_op)
5677{
5678        struct inet_connection_sock *icsk = inet_csk(sk);
5679        struct tcp_sock *tp = tcp_sk(sk);
5680
5681        tcp_mtup_init(sk);
5682        icsk->icsk_af_ops->rebuild_header(sk);
5683        tcp_init_metrics(sk);
5684
5685        /* Initialize the congestion window to start the transfer.
5686         * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5687         * retransmitted. In light of RFC6298 more aggressive 1sec
5688         * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5689         * retransmission has occurred.
5690         */
5691        if (tp->total_retrans > 1 && tp->undo_marker)
5692                tp->snd_cwnd = 1;
5693        else
5694                tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5695        tp->snd_cwnd_stamp = tcp_jiffies32;
5696
5697        tcp_call_bpf(sk, bpf_op, 0, NULL);
5698        tcp_init_congestion_control(sk);
5699        tcp_init_buffer_space(sk);
5700}
5701
5702void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5703{
5704        struct tcp_sock *tp = tcp_sk(sk);
5705        struct inet_connection_sock *icsk = inet_csk(sk);
5706
5707        tcp_set_state(sk, TCP_ESTABLISHED);
5708        icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5709
5710        if (skb) {
5711                icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5712                security_inet_conn_established(sk, skb);
5713                sk_mark_napi_id(sk, skb);
5714        }
5715
5716        tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB);
5717
5718        /* Prevent spurious tcp_cwnd_restart() on first data
5719         * packet.
5720         */
5721        tp->lsndtime = tcp_jiffies32;
5722
5723        if (sock_flag(sk, SOCK_KEEPOPEN))
5724                inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5725
5726        if (!tp->rx_opt.snd_wscale)
5727                __tcp_fast_path_on(tp, tp->snd_wnd);
5728        else
5729                tp->pred_flags = 0;
5730}
5731
5732static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5733                                    struct tcp_fastopen_cookie *cookie)
5734{
5735        struct tcp_sock *tp = tcp_sk(sk);
5736        struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
5737        u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5738        bool syn_drop = false;
5739
5740        if (mss == tp->rx_opt.user_mss) {
5741                struct tcp_options_received opt;
5742
5743                /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5744                tcp_clear_options(&opt);
5745                opt.user_mss = opt.mss_clamp = 0;
5746                tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
5747                mss = opt.mss_clamp;
5748        }
5749
5750        if (!tp->syn_fastopen) {
5751                /* Ignore an unsolicited cookie */
5752                cookie->len = -1;
5753        } else if (tp->total_retrans) {
5754                /* SYN timed out and the SYN-ACK neither has a cookie nor
5755                 * acknowledges data. Presumably the remote received only
5756                 * the retransmitted (regular) SYNs: either the original
5757                 * SYN-data or the corresponding SYN-ACK was dropped.
5758                 */
5759                syn_drop = (cookie->len < 0 && data);
5760        } else if (cookie->len < 0 && !tp->syn_data) {
5761                /* We requested a cookie but didn't get it. If we did not use
5762                 * the (old) exp opt format then try so next time (try_exp=1).
5763                 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5764                 */
5765                try_exp = tp->syn_fastopen_exp ? 2 : 1;
5766        }
5767
5768        tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5769
5770        if (data) { /* Retransmit unacked data in SYN */
5771                skb_rbtree_walk_from(data) {
5772                        if (__tcp_retransmit_skb(sk, data, 1))
5773                                break;
5774                }
5775                tcp_rearm_rto(sk);
5776                NET_INC_STATS(sock_net(sk),
5777                                LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5778                return true;
5779        }
5780        tp->syn_data_acked = tp->syn_data;
5781        if (tp->syn_data_acked) {
5782                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
5783                /* SYN-data is counted as two separate packets in tcp_ack() */
5784                if (tp->delivered > 1)
5785                        --tp->delivered;
5786        }
5787
5788        tcp_fastopen_add_skb(sk, synack);
5789
5790        return false;
5791}
5792
5793static void smc_check_reset_syn(struct tcp_sock *tp)
5794{
5795#if IS_ENABLED(CONFIG_SMC)
5796        if (static_branch_unlikely(&tcp_have_smc)) {
5797                if (tp->syn_smc && !tp->rx_opt.smc_ok)
5798                        tp->syn_smc = 0;
5799        }
5800#endif
5801}
5802
5803static void tcp_try_undo_spurious_syn(struct sock *sk)
5804{
5805        struct tcp_sock *tp = tcp_sk(sk);
5806        u32 syn_stamp;
5807
5808        /* undo_marker is set when SYN or SYNACK times out. The timeout is
5809         * spurious if the ACK's timestamp option echo value matches the
5810         * original SYN timestamp.
5811         */
5812        syn_stamp = tp->retrans_stamp;
5813        if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
5814            syn_stamp == tp->rx_opt.rcv_tsecr)
5815                tp->undo_marker = 0;
5816}
5817
5818static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5819                                         const struct tcphdr *th)
5820{
5821        struct inet_connection_sock *icsk = inet_csk(sk);
5822        struct tcp_sock *tp = tcp_sk(sk);
5823        struct tcp_fastopen_cookie foc = { .len = -1 };
5824        int saved_clamp = tp->rx_opt.mss_clamp;
5825        bool fastopen_fail;
5826
5827        tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
5828        if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5829                tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5830
5831        if (th->ack) {
5832                /* rfc793:
5833                 * "If the state is SYN-SENT then
5834                 *    first check the ACK bit
5835                 *      If the ACK bit is set
5836                 *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5837                 *        a reset (unless the RST bit is set, if so drop
5838                 *        the segment and return)"
5839                 */
5840                if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5841                    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5842                        goto reset_and_undo;
5843
5844                if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5845                    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5846                             tcp_time_stamp(tp))) {
5847                        NET_INC_STATS(sock_net(sk),
5848                                        LINUX_MIB_PAWSACTIVEREJECTED);
5849                        goto reset_and_undo;
5850                }
5851
5852                /* Now ACK is acceptable.
5853                 *
5854                 * "If the RST bit is set
5855                 *    If the ACK was acceptable then signal the user "error:
5856                 *    connection reset", drop the segment, enter CLOSED state,
5857                 *    delete TCB, and return."
5858                 */
5859
5860                if (th->rst) {
5861                        tcp_reset(sk);
5862                        goto discard;
5863                }
5864
5865                /* rfc793:
5866                 *   "fifth, if neither of the SYN or RST bits is set then
5867                 *    drop the segment and return."
5868                 *
5869                 *    See note below!
5870                 *                                        --ANK(990513)
5871                 */
5872                if (!th->syn)
5873                        goto discard_and_undo;
5874
5875                /* rfc793:
5876                 *   "If the SYN bit is on ...
5877                 *    are acceptable then ...
5878                 *    (our SYN has been ACKed), change the connection
5879                 *    state to ESTABLISHED..."
5880                 */
5881
5882                tcp_ecn_rcv_synack(tp, th);
5883
5884                tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5885                tcp_try_undo_spurious_syn(sk);
5886                tcp_ack(sk, skb, FLAG_SLOWPATH);
5887
5888                /* Ok.. it's good. Set up sequence numbers and
5889                 * move to established.
5890                 */
5891                tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5892                tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5893
5894                /* RFC1323: The window in SYN & SYN/ACK segments is
5895                 * never scaled.
5896                 */
5897                tp->snd_wnd = ntohs(th->window);
5898
5899                if (!tp->rx_opt.wscale_ok) {
5900                        tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5901                        tp->window_clamp = min(tp->window_clamp, 65535U);
5902                }
5903
5904                if (tp->rx_opt.saw_tstamp) {
5905                        tp->rx_opt.tstamp_ok       = 1;
5906                        tp->tcp_header_len =
5907                                sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5908                        tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5909                        tcp_store_ts_recent(tp);
5910                } else {
5911                        tp->tcp_header_len = sizeof(struct tcphdr);
5912                }
5913
5914                tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5915                tcp_initialize_rcv_mss(sk);
5916
5917                /* Remember, tcp_poll() does not lock socket!
5918                 * Change state from SYN-SENT only after copied_seq
5919                 * is initialized. */
5920                tp->copied_seq = tp->rcv_nxt;
5921
5922                smc_check_reset_syn(tp);
5923
5924                smp_mb();
5925
5926                tcp_finish_connect(sk, skb);
5927
5928                fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
5929                                tcp_rcv_fastopen_synack(sk, skb, &foc);
5930
5931                if (!sock_flag(sk, SOCK_DEAD)) {
5932                        sk->sk_state_change(sk);
5933                        sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5934                }
5935                if (fastopen_fail)
5936                        return -1;
5937                if (sk->sk_write_pending ||
5938                    icsk->icsk_accept_queue.rskq_defer_accept ||
5939                    inet_csk_in_pingpong_mode(sk)) {
5940                        /* Save one ACK. Data will be ready after
5941                         * several ticks, if write_pending is set.
5942                         *
5943                         * It may be deleted, but with this feature tcpdumps
5944                         * look so _wonderfully_ clever, that I was not able
5945                         * to stand against the temptation 8)     --ANK
5946                         */
5947                        inet_csk_schedule_ack(sk);
5948                        tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5949                        inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5950                                                  TCP_DELACK_MAX, TCP_RTO_MAX);
5951
5952discard:
5953                        tcp_drop(sk, skb);
5954                        return 0;
5955                } else {
5956                        tcp_send_ack(sk);
5957                }
5958                return -1;
5959        }
5960
5961        /* No ACK in the segment */
5962
5963        if (th->rst) {
5964                /* rfc793:
5965                 * "If the RST bit is set
5966                 *
5967                 *      Otherwise (no ACK) drop the segment and return."
5968                 */
5969
5970                goto discard_and_undo;
5971        }
5972
5973        /* PAWS check. */
5974        if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5975            tcp_paws_reject(&tp->rx_opt, 0))
5976                goto discard_and_undo;
5977
5978        if (th->syn) {
5979                /* We see SYN without ACK. It is attempt of
5980                 * simultaneous connect with crossed SYNs.
5981                 * Particularly, it can be connect to self.
5982                 */
5983                tcp_set_state(sk, TCP_SYN_RECV);
5984
5985                if (tp->rx_opt.saw_tstamp) {
5986                        tp->rx_opt.tstamp_ok = 1;
5987                        tcp_store_ts_recent(tp);
5988                        tp->tcp_header_len =
5989                                sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5990                } else {
5991                        tp->tcp_header_len = sizeof(struct tcphdr);
5992                }
5993
5994                tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5995                tp->copied_seq = tp->rcv_nxt;
5996                tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5997
5998                /* RFC1323: The window in SYN & SYN/ACK segments is
5999                 * never scaled.
6000                 */
6001                tp->snd_wnd    = ntohs(th->window);
6002                tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6003                tp->max_window = tp->snd_wnd;
6004
6005                tcp_ecn_rcv_syn(tp, th);
6006
6007                tcp_mtup_init(sk);
6008                tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6009                tcp_initialize_rcv_mss(sk);
6010
6011                tcp_send_synack(sk);
6012#if 0
6013                /* Note, we could accept data and URG from this segment.
6014                 * There are no obstacles to make this (except that we must
6015                 * either change tcp_recvmsg() to prevent it from returning data
6016                 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6017                 *
6018                 * However, if we ignore data in ACKless segments sometimes,
6019                 * we have no reasons to accept it sometimes.
6020                 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6021                 * is not flawless. So, discard packet for sanity.
6022                 * Uncomment this return to process the data.
6023                 */
6024                return -1;
6025#else
6026                goto discard;
6027#endif
6028        }
6029        /* "fifth, if neither of the SYN or RST bits is set then
6030         * drop the segment and return."
6031         */
6032
6033discard_and_undo:
6034        tcp_clear_options(&tp->rx_opt);
6035        tp->rx_opt.mss_clamp = saved_clamp;
6036        goto discard;
6037
6038reset_and_undo:
6039        tcp_clear_options(&tp->rx_opt);
6040        tp->rx_opt.mss_clamp = saved_clamp;
6041        return 1;
6042}
6043
6044static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6045{
6046        tcp_try_undo_loss(sk, false);
6047
6048        /* Reset rtx states to prevent spurious retransmits_timed_out() */
6049        tcp_sk(sk)->retrans_stamp = 0;
6050        inet_csk(sk)->icsk_retransmits = 0;
6051
6052        /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6053         * we no longer need req so release it.
6054         */
6055        reqsk_fastopen_remove(sk, tcp_sk(sk)->fastopen_rsk, false);
6056
6057        /* Re-arm the timer because data may have been sent out.
6058         * This is similar to the regular data transmission case
6059         * when new data has just been ack'ed.
6060         *
6061         * (TFO) - we could try to be more aggressive and
6062         * retransmitting any data sooner based on when they
6063         * are sent out.
6064         */
6065        tcp_rearm_rto(sk);
6066}
6067
6068/*
6069 *      This function implements the receiving procedure of RFC 793 for
6070 *      all states except ESTABLISHED and TIME_WAIT.
6071 *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6072 *      address independent.
6073 */
6074
6075int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6076{
6077        struct tcp_sock *tp = tcp_sk(sk);
6078        struct inet_connection_sock *icsk = inet_csk(sk);
6079        const struct tcphdr *th = tcp_hdr(skb);
6080        struct request_sock *req;
6081        int queued = 0;
6082        bool acceptable;
6083
6084        switch (sk->sk_state) {
6085        case TCP_CLOSE:
6086                goto discard;
6087
6088        case TCP_LISTEN:
6089                if (th->ack)
6090                        return 1;
6091
6092                if (th->rst)
6093                        goto discard;
6094
6095                if (th->syn) {
6096                        if (th->fin)
6097                                goto discard;
6098                        /* It is possible that we process SYN packets from backlog,
6099                         * so we need to make sure to disable BH and RCU right there.
6100                         */
6101                        rcu_read_lock();
6102                        local_bh_disable();
6103                        acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6104                        local_bh_enable();
6105                        rcu_read_unlock();
6106
6107                        if (!acceptable)
6108                                return 1;
6109                        consume_skb(skb);
6110                        return 0;
6111                }
6112                goto discard;
6113
6114        case TCP_SYN_SENT:
6115                tp->rx_opt.saw_tstamp = 0;
6116                tcp_mstamp_refresh(tp);
6117                queued = tcp_rcv_synsent_state_process(sk, skb, th);
6118                if (queued >= 0)
6119                        return queued;
6120
6121                /* Do step6 onward by hand. */
6122                tcp_urg(sk, skb, th);
6123                __kfree_skb(skb);
6124                tcp_data_snd_check(sk);
6125                return 0;
6126        }
6127
6128        tcp_mstamp_refresh(tp);
6129        tp->rx_opt.saw_tstamp = 0;
6130        req = tp->fastopen_rsk;
6131        if (req) {
6132                bool req_stolen;
6133
6134                WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6135                    sk->sk_state != TCP_FIN_WAIT1);
6136
6137                if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6138                        goto discard;
6139        }
6140
6141        if (!th->ack && !th->rst && !th->syn)
6142                goto discard;
6143
6144        if (!tcp_validate_incoming(sk, skb, th, 0))
6145                return 0;
6146
6147        /* step 5: check the ACK field */
6148        acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6149                                      FLAG_UPDATE_TS_RECENT |
6150                                      FLAG_NO_CHALLENGE_ACK) > 0;
6151
6152        if (!acceptable) {
6153                if (sk->sk_state == TCP_SYN_RECV)
6154                        return 1;       /* send one RST */
6155                tcp_send_challenge_ack(sk, skb);
6156                goto discard;
6157        }
6158        switch (sk->sk_state) {
6159        case TCP_SYN_RECV:
6160                tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6161                if (!tp->srtt_us)
6162                        tcp_synack_rtt_meas(sk, req);
6163
6164                if (req) {
6165                        tcp_rcv_synrecv_state_fastopen(sk);
6166                } else {
6167                        tcp_try_undo_spurious_syn(sk);
6168                        tp->retrans_stamp = 0;
6169                        tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB);
6170                        tp->copied_seq = tp->rcv_nxt;
6171                }
6172                smp_mb();
6173                tcp_set_state(sk, TCP_ESTABLISHED);
6174                sk->sk_state_change(sk);
6175
6176                /* Note, that this wakeup is only for marginal crossed SYN case.
6177                 * Passively open sockets are not waked up, because
6178                 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6179                 */
6180                if (sk->sk_socket)
6181                        sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6182
6183                tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6184                tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6185                tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6186
6187                if (tp->rx_opt.tstamp_ok)
6188                        tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6189
6190                if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6191                        tcp_update_pacing_rate(sk);
6192
6193                /* Prevent spurious tcp_cwnd_restart() on first data packet */
6194                tp->lsndtime = tcp_jiffies32;
6195
6196                tcp_initialize_rcv_mss(sk);
6197                tcp_fast_path_on(tp);
6198                break;
6199
6200        case TCP_FIN_WAIT1: {
6201                int tmo;
6202
6203                if (req)
6204                        tcp_rcv_synrecv_state_fastopen(sk);
6205
6206                if (tp->snd_una != tp->write_seq)
6207                        break;
6208
6209                tcp_set_state(sk, TCP_FIN_WAIT2);
6210                sk->sk_shutdown |= SEND_SHUTDOWN;
6211
6212                sk_dst_confirm(sk);
6213
6214                if (!sock_flag(sk, SOCK_DEAD)) {
6215                        /* Wake up lingering close() */
6216                        sk->sk_state_change(sk);
6217                        break;
6218                }
6219
6220                if (tp->linger2 < 0) {
6221                        tcp_done(sk);
6222                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6223                        return 1;
6224                }
6225                if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6226                    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6227                        /* Receive out of order FIN after close() */
6228                        if (tp->syn_fastopen && th->fin)
6229                                tcp_fastopen_active_disable(sk);
6230                        tcp_done(sk);
6231                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6232                        return 1;
6233                }
6234
6235                tmo = tcp_fin_time(sk);
6236                if (tmo > TCP_TIMEWAIT_LEN) {
6237                        inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6238                } else if (th->fin || sock_owned_by_user(sk)) {
6239                        /* Bad case. We could lose such FIN otherwise.
6240                         * It is not a big problem, but it looks confusing
6241                         * and not so rare event. We still can lose it now,
6242                         * if it spins in bh_lock_sock(), but it is really
6243                         * marginal case.
6244                         */
6245                        inet_csk_reset_keepalive_timer(sk, tmo);
6246                } else {
6247                        tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6248                        goto discard;
6249                }
6250                break;
6251        }
6252
6253        case TCP_CLOSING:
6254                if (tp->snd_una == tp->write_seq) {
6255                        tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6256                        goto discard;
6257                }
6258                break;
6259
6260        case TCP_LAST_ACK:
6261                if (tp->snd_una == tp->write_seq) {
6262                        tcp_update_metrics(sk);
6263                        tcp_done(sk);
6264                        goto discard;
6265                }
6266                break;
6267        }
6268
6269        /* step 6: check the URG bit */
6270        tcp_urg(sk, skb, th);
6271
6272        /* step 7: process the segment text */
6273        switch (sk->sk_state) {
6274        case TCP_CLOSE_WAIT:
6275        case TCP_CLOSING:
6276        case TCP_LAST_ACK:
6277                if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6278                        break;
6279                /* fall through */
6280        case TCP_FIN_WAIT1:
6281        case TCP_FIN_WAIT2:
6282                /* RFC 793 says to queue data in these states,
6283                 * RFC 1122 says we MUST send a reset.
6284                 * BSD 4.4 also does reset.
6285                 */
6286                if (sk->sk_shutdown & RCV_SHUTDOWN) {
6287                        if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6288                            after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6289                                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6290                                tcp_reset(sk);
6291                                return 1;
6292                        }
6293                }
6294                /* Fall through */
6295        case TCP_ESTABLISHED:
6296                tcp_data_queue(sk, skb);
6297                queued = 1;
6298                break;
6299        }
6300
6301        /* tcp_data could move socket to TIME-WAIT */
6302        if (sk->sk_state != TCP_CLOSE) {
6303                tcp_data_snd_check(sk);
6304                tcp_ack_snd_check(sk);
6305        }
6306
6307        if (!queued) {
6308discard:
6309                tcp_drop(sk, skb);
6310        }
6311        return 0;
6312}
6313EXPORT_SYMBOL(tcp_rcv_state_process);
6314
6315static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6316{
6317        struct inet_request_sock *ireq = inet_rsk(req);
6318
6319        if (family == AF_INET)
6320                net_dbg_ratelimited("drop open request from %pI4/%u\n",
6321                                    &ireq->ir_rmt_addr, port);
6322#if IS_ENABLED(CONFIG_IPV6)
6323        else if (family == AF_INET6)
6324                net_dbg_ratelimited("drop open request from %pI6/%u\n",
6325                                    &ireq->ir_v6_rmt_addr, port);
6326#endif
6327}
6328
6329/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6330 *
6331 * If we receive a SYN packet with these bits set, it means a
6332 * network is playing bad games with TOS bits. In order to
6333 * avoid possible false congestion notifications, we disable
6334 * TCP ECN negotiation.
6335 *
6336 * Exception: tcp_ca wants ECN. This is required for DCTCP
6337 * congestion control: Linux DCTCP asserts ECT on all packets,
6338 * including SYN, which is most optimal solution; however,
6339 * others, such as FreeBSD do not.
6340 *
6341 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6342 * set, indicating the use of a future TCP extension (such as AccECN). See
6343 * RFC8311 ยง4.3 which updates RFC3168 to allow the development of such
6344 * extensions.
6345 */
6346static void tcp_ecn_create_request(struct request_sock *req,
6347                                   const struct sk_buff *skb,
6348                                   const struct sock *listen_sk,
6349                                   const struct dst_entry *dst)
6350{
6351        const struct tcphdr *th = tcp_hdr(skb);
6352        const struct net *net = sock_net(listen_sk);
6353        bool th_ecn = th->ece && th->cwr;
6354        bool ect, ecn_ok;
6355        u32 ecn_ok_dst;
6356
6357        if (!th_ecn)
6358                return;
6359
6360        ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6361        ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6362        ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6363
6364        if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6365            (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6366            tcp_bpf_ca_needs_ecn((struct sock *)req))
6367                inet_rsk(req)->ecn_ok = 1;
6368}
6369
6370static void tcp_openreq_init(struct request_sock *req,
6371                             const struct tcp_options_received *rx_opt,
6372                             struct sk_buff *skb, const struct sock *sk)
6373{
6374        struct inet_request_sock *ireq = inet_rsk(req);
6375
6376        req->rsk_rcv_wnd = 0;           /* So that tcp_send_synack() knows! */
6377        req->cookie_ts = 0;
6378        tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6379        tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6380        tcp_rsk(req)->snt_synack = 0;
6381        tcp_rsk(req)->last_oow_ack_time = 0;
6382        req->mss = rx_opt->mss_clamp;
6383        req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6384        ireq->tstamp_ok = rx_opt->tstamp_ok;
6385        ireq->sack_ok = rx_opt->sack_ok;
6386        ireq->snd_wscale = rx_opt->snd_wscale;
6387        ireq->wscale_ok = rx_opt->wscale_ok;
6388        ireq->acked = 0;
6389        ireq->ecn_ok = 0;
6390        ireq->ir_rmt_port = tcp_hdr(skb)->source;
6391        ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6392        ireq->ir_mark = inet_request_mark(sk, skb);
6393#if IS_ENABLED(CONFIG_SMC)
6394        ireq->smc_ok = rx_opt->smc_ok;
6395#endif
6396}
6397
6398struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6399                                      struct sock *sk_listener,
6400                                      bool attach_listener)
6401{
6402        struct request_sock *req = reqsk_alloc(ops, sk_listener,
6403                                               attach_listener);
6404
6405        if (req) {
6406                struct inet_request_sock *ireq = inet_rsk(req);
6407
6408                ireq->ireq_opt = NULL;
6409#if IS_ENABLED(CONFIG_IPV6)
6410                ireq->pktopts = NULL;
6411#endif
6412                atomic64_set(&ireq->ir_cookie, 0);
6413                ireq->ireq_state = TCP_NEW_SYN_RECV;
6414                write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6415                ireq->ireq_family = sk_listener->sk_family;
6416        }
6417
6418        return req;
6419}
6420EXPORT_SYMBOL(inet_reqsk_alloc);
6421
6422/*
6423 * Return true if a syncookie should be sent
6424 */
6425static bool tcp_syn_flood_action(const struct sock *sk,
6426                                 const struct sk_buff *skb,
6427                                 const char *proto)
6428{
6429        struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6430        const char *msg = "Dropping request";
6431        bool want_cookie = false;
6432        struct net *net = sock_net(sk);
6433
6434#ifdef CONFIG_SYN_COOKIES
6435        if (net->ipv4.sysctl_tcp_syncookies) {
6436                msg = "Sending cookies";
6437                want_cookie = true;
6438                __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6439        } else
6440#endif
6441                __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6442
6443        if (!queue->synflood_warned &&
6444            net->ipv4.sysctl_tcp_syncookies != 2 &&
6445            xchg(&queue->synflood_warned, 1) == 0)
6446                net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6447                                     proto, ntohs(tcp_hdr(skb)->dest), msg);
6448
6449        return want_cookie;
6450}
6451
6452static void tcp_reqsk_record_syn(const struct sock *sk,
6453                                 struct request_sock *req,
6454                                 const struct sk_buff *skb)
6455{
6456        if (tcp_sk(sk)->save_syn) {
6457                u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6458                u32 *copy;
6459
6460                copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6461                if (copy) {
6462                        copy[0] = len;
6463                        memcpy(&copy[1], skb_network_header(skb), len);
6464                        req->saved_syn = copy;
6465                }
6466        }
6467}
6468
6469int tcp_conn_request(struct request_sock_ops *rsk_ops,
6470                     const struct tcp_request_sock_ops *af_ops,
6471                     struct sock *sk, struct sk_buff *skb)
6472{
6473        struct tcp_fastopen_cookie foc = { .len = -1 };
6474        __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6475        struct tcp_options_received tmp_opt;
6476        struct tcp_sock *tp = tcp_sk(sk);
6477        struct net *net = sock_net(sk);
6478        struct sock *fastopen_sk = NULL;
6479        struct request_sock *req;
6480        bool want_cookie = false;
6481        struct dst_entry *dst;
6482        struct flowi fl;
6483
6484        /* TW buckets are converted to open requests without
6485         * limitations, they conserve resources and peer is
6486         * evidently real one.
6487         */
6488        if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6489             inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6490                want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6491                if (!want_cookie)
6492                        goto drop;
6493        }
6494
6495        if (sk_acceptq_is_full(sk)) {
6496                NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6497                goto drop;
6498        }
6499
6500        req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6501        if (!req)
6502                goto drop;
6503
6504        tcp_rsk(req)->af_specific = af_ops;
6505        tcp_rsk(req)->ts_off = 0;
6506
6507        tcp_clear_options(&tmp_opt);
6508        tmp_opt.mss_clamp = af_ops->mss_clamp;
6509        tmp_opt.user_mss  = tp->rx_opt.user_mss;
6510        tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6511                          want_cookie ? NULL : &foc);
6512
6513        if (want_cookie && !tmp_opt.saw_tstamp)
6514                tcp_clear_options(&tmp_opt);
6515
6516        if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6517                tmp_opt.smc_ok = 0;
6518
6519        tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6520        tcp_openreq_init(req, &tmp_opt, skb, sk);
6521        inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6522
6523        /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6524        inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6525
6526        af_ops->init_req(req, sk, skb);
6527
6528        if (security_inet_conn_request(sk, skb, req))
6529                goto drop_and_free;
6530
6531        if (tmp_opt.tstamp_ok)
6532                tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6533
6534        dst = af_ops->route_req(sk, &fl, req);
6535        if (!dst)
6536                goto drop_and_free;
6537
6538        if (!want_cookie && !isn) {
6539                /* Kill the following clause, if you dislike this way. */
6540                if (!net->ipv4.sysctl_tcp_syncookies &&
6541                    (net->ipv4.sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6542                     (net->ipv4.sysctl_max_syn_backlog >> 2)) &&
6543                    !tcp_peer_is_proven(req, dst)) {
6544                        /* Without syncookies last quarter of
6545                         * backlog is filled with destinations,
6546                         * proven to be alive.
6547                         * It means that we continue to communicate
6548                         * to destinations, already remembered
6549                         * to the moment of synflood.
6550                         */
6551                        pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6552                                    rsk_ops->family);
6553                        goto drop_and_release;
6554                }
6555
6556                isn = af_ops->init_seq(skb);
6557        }
6558
6559        tcp_ecn_create_request(req, skb, sk, dst);
6560
6561        if (want_cookie) {
6562                isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6563                req->cookie_ts = tmp_opt.tstamp_ok;
6564                if (!tmp_opt.tstamp_ok)
6565                        inet_rsk(req)->ecn_ok = 0;
6566        }
6567
6568        tcp_rsk(req)->snt_isn = isn;
6569        tcp_rsk(req)->txhash = net_tx_rndhash();
6570        tcp_openreq_init_rwin(req, sk, dst);
6571        sk_rx_queue_set(req_to_sk(req), skb);
6572        if (!want_cookie) {
6573                tcp_reqsk_record_syn(sk, req, skb);
6574                fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6575        }
6576        if (fastopen_sk) {
6577                af_ops->send_synack(fastopen_sk, dst, &fl, req,
6578                                    &foc, TCP_SYNACK_FASTOPEN);
6579                /* Add the child socket directly into the accept queue */
6580                if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6581                        reqsk_fastopen_remove(fastopen_sk, req, false);
6582                        bh_unlock_sock(fastopen_sk);
6583                        sock_put(fastopen_sk);
6584                        goto drop_and_free;
6585                }
6586                sk->sk_data_ready(sk);
6587                bh_unlock_sock(fastopen_sk);
6588                sock_put(fastopen_sk);
6589        } else {
6590                tcp_rsk(req)->tfo_listener = false;
6591                if (!want_cookie)
6592                        inet_csk_reqsk_queue_hash_add(sk, req,
6593                                tcp_timeout_init((struct sock *)req));
6594                af_ops->send_synack(sk, dst, &fl, req, &foc,
6595                                    !want_cookie ? TCP_SYNACK_NORMAL :
6596                                                   TCP_SYNACK_COOKIE);
6597                if (want_cookie) {
6598                        reqsk_free(req);
6599                        return 0;
6600                }
6601        }
6602        reqsk_put(req);
6603        return 0;
6604
6605drop_and_release:
6606        dst_release(dst);
6607drop_and_free:
6608        __reqsk_free(req);
6609drop:
6610        tcp_listendrop(sk);
6611        return 0;
6612}
6613EXPORT_SYMBOL(tcp_conn_request);
6614