linux/net/openvswitch/actions.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (c) 2007-2017 Nicira, Inc.
   4 */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <linux/skbuff.h>
   9#include <linux/in.h>
  10#include <linux/ip.h>
  11#include <linux/openvswitch.h>
  12#include <linux/netfilter_ipv6.h>
  13#include <linux/sctp.h>
  14#include <linux/tcp.h>
  15#include <linux/udp.h>
  16#include <linux/in6.h>
  17#include <linux/if_arp.h>
  18#include <linux/if_vlan.h>
  19
  20#include <net/dst.h>
  21#include <net/ip.h>
  22#include <net/ipv6.h>
  23#include <net/ip6_fib.h>
  24#include <net/checksum.h>
  25#include <net/dsfield.h>
  26#include <net/mpls.h>
  27#include <net/sctp/checksum.h>
  28
  29#include "datapath.h"
  30#include "flow.h"
  31#include "conntrack.h"
  32#include "vport.h"
  33#include "flow_netlink.h"
  34
  35struct deferred_action {
  36        struct sk_buff *skb;
  37        const struct nlattr *actions;
  38        int actions_len;
  39
  40        /* Store pkt_key clone when creating deferred action. */
  41        struct sw_flow_key pkt_key;
  42};
  43
  44#define MAX_L2_LEN      (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
  45struct ovs_frag_data {
  46        unsigned long dst;
  47        struct vport *vport;
  48        struct ovs_skb_cb cb;
  49        __be16 inner_protocol;
  50        u16 network_offset;     /* valid only for MPLS */
  51        u16 vlan_tci;
  52        __be16 vlan_proto;
  53        unsigned int l2_len;
  54        u8 mac_proto;
  55        u8 l2_data[MAX_L2_LEN];
  56};
  57
  58static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
  59
  60#define DEFERRED_ACTION_FIFO_SIZE 10
  61#define OVS_RECURSION_LIMIT 5
  62#define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
  63struct action_fifo {
  64        int head;
  65        int tail;
  66        /* Deferred action fifo queue storage. */
  67        struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
  68};
  69
  70struct action_flow_keys {
  71        struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
  72};
  73
  74static struct action_fifo __percpu *action_fifos;
  75static struct action_flow_keys __percpu *flow_keys;
  76static DEFINE_PER_CPU(int, exec_actions_level);
  77
  78/* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
  79 * space. Return NULL if out of key spaces.
  80 */
  81static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
  82{
  83        struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
  84        int level = this_cpu_read(exec_actions_level);
  85        struct sw_flow_key *key = NULL;
  86
  87        if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
  88                key = &keys->key[level - 1];
  89                *key = *key_;
  90        }
  91
  92        return key;
  93}
  94
  95static void action_fifo_init(struct action_fifo *fifo)
  96{
  97        fifo->head = 0;
  98        fifo->tail = 0;
  99}
 100
 101static bool action_fifo_is_empty(const struct action_fifo *fifo)
 102{
 103        return (fifo->head == fifo->tail);
 104}
 105
 106static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
 107{
 108        if (action_fifo_is_empty(fifo))
 109                return NULL;
 110
 111        return &fifo->fifo[fifo->tail++];
 112}
 113
 114static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
 115{
 116        if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
 117                return NULL;
 118
 119        return &fifo->fifo[fifo->head++];
 120}
 121
 122/* Return true if fifo is not full */
 123static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
 124                                    const struct sw_flow_key *key,
 125                                    const struct nlattr *actions,
 126                                    const int actions_len)
 127{
 128        struct action_fifo *fifo;
 129        struct deferred_action *da;
 130
 131        fifo = this_cpu_ptr(action_fifos);
 132        da = action_fifo_put(fifo);
 133        if (da) {
 134                da->skb = skb;
 135                da->actions = actions;
 136                da->actions_len = actions_len;
 137                da->pkt_key = *key;
 138        }
 139
 140        return da;
 141}
 142
 143static void invalidate_flow_key(struct sw_flow_key *key)
 144{
 145        key->mac_proto |= SW_FLOW_KEY_INVALID;
 146}
 147
 148static bool is_flow_key_valid(const struct sw_flow_key *key)
 149{
 150        return !(key->mac_proto & SW_FLOW_KEY_INVALID);
 151}
 152
 153static int clone_execute(struct datapath *dp, struct sk_buff *skb,
 154                         struct sw_flow_key *key,
 155                         u32 recirc_id,
 156                         const struct nlattr *actions, int len,
 157                         bool last, bool clone_flow_key);
 158
 159static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
 160                              struct sw_flow_key *key,
 161                              const struct nlattr *attr, int len);
 162
 163static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 164                     const struct ovs_action_push_mpls *mpls)
 165{
 166        int err;
 167
 168        err = skb_mpls_push(skb, mpls->mpls_lse, mpls->mpls_ethertype);
 169        if (err)
 170                return err;
 171
 172        invalidate_flow_key(key);
 173        return 0;
 174}
 175
 176static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
 177                    const __be16 ethertype)
 178{
 179        int err;
 180
 181        err = skb_mpls_pop(skb, ethertype);
 182        if (err)
 183                return err;
 184
 185        invalidate_flow_key(key);
 186        return 0;
 187}
 188
 189static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
 190                    const __be32 *mpls_lse, const __be32 *mask)
 191{
 192        struct mpls_shim_hdr *stack;
 193        __be32 lse;
 194        int err;
 195
 196        stack = mpls_hdr(skb);
 197        lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
 198        err = skb_mpls_update_lse(skb, lse);
 199        if (err)
 200                return err;
 201
 202        flow_key->mpls.top_lse = lse;
 203        return 0;
 204}
 205
 206static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
 207{
 208        int err;
 209
 210        err = skb_vlan_pop(skb);
 211        if (skb_vlan_tag_present(skb)) {
 212                invalidate_flow_key(key);
 213        } else {
 214                key->eth.vlan.tci = 0;
 215                key->eth.vlan.tpid = 0;
 216        }
 217        return err;
 218}
 219
 220static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
 221                     const struct ovs_action_push_vlan *vlan)
 222{
 223        if (skb_vlan_tag_present(skb)) {
 224                invalidate_flow_key(key);
 225        } else {
 226                key->eth.vlan.tci = vlan->vlan_tci;
 227                key->eth.vlan.tpid = vlan->vlan_tpid;
 228        }
 229        return skb_vlan_push(skb, vlan->vlan_tpid,
 230                             ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
 231}
 232
 233/* 'src' is already properly masked. */
 234static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
 235{
 236        u16 *dst = (u16 *)dst_;
 237        const u16 *src = (const u16 *)src_;
 238        const u16 *mask = (const u16 *)mask_;
 239
 240        OVS_SET_MASKED(dst[0], src[0], mask[0]);
 241        OVS_SET_MASKED(dst[1], src[1], mask[1]);
 242        OVS_SET_MASKED(dst[2], src[2], mask[2]);
 243}
 244
 245static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
 246                        const struct ovs_key_ethernet *key,
 247                        const struct ovs_key_ethernet *mask)
 248{
 249        int err;
 250
 251        err = skb_ensure_writable(skb, ETH_HLEN);
 252        if (unlikely(err))
 253                return err;
 254
 255        skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 256
 257        ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
 258                               mask->eth_src);
 259        ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
 260                               mask->eth_dst);
 261
 262        skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
 263
 264        ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
 265        ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
 266        return 0;
 267}
 268
 269/* pop_eth does not support VLAN packets as this action is never called
 270 * for them.
 271 */
 272static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
 273{
 274        skb_pull_rcsum(skb, ETH_HLEN);
 275        skb_reset_mac_header(skb);
 276        skb_reset_mac_len(skb);
 277
 278        /* safe right before invalidate_flow_key */
 279        key->mac_proto = MAC_PROTO_NONE;
 280        invalidate_flow_key(key);
 281        return 0;
 282}
 283
 284static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
 285                    const struct ovs_action_push_eth *ethh)
 286{
 287        struct ethhdr *hdr;
 288
 289        /* Add the new Ethernet header */
 290        if (skb_cow_head(skb, ETH_HLEN) < 0)
 291                return -ENOMEM;
 292
 293        skb_push(skb, ETH_HLEN);
 294        skb_reset_mac_header(skb);
 295        skb_reset_mac_len(skb);
 296
 297        hdr = eth_hdr(skb);
 298        ether_addr_copy(hdr->h_source, ethh->addresses.eth_src);
 299        ether_addr_copy(hdr->h_dest, ethh->addresses.eth_dst);
 300        hdr->h_proto = skb->protocol;
 301
 302        skb_postpush_rcsum(skb, hdr, ETH_HLEN);
 303
 304        /* safe right before invalidate_flow_key */
 305        key->mac_proto = MAC_PROTO_ETHERNET;
 306        invalidate_flow_key(key);
 307        return 0;
 308}
 309
 310static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
 311                    const struct nshhdr *nh)
 312{
 313        int err;
 314
 315        err = nsh_push(skb, nh);
 316        if (err)
 317                return err;
 318
 319        /* safe right before invalidate_flow_key */
 320        key->mac_proto = MAC_PROTO_NONE;
 321        invalidate_flow_key(key);
 322        return 0;
 323}
 324
 325static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
 326{
 327        int err;
 328
 329        err = nsh_pop(skb);
 330        if (err)
 331                return err;
 332
 333        /* safe right before invalidate_flow_key */
 334        if (skb->protocol == htons(ETH_P_TEB))
 335                key->mac_proto = MAC_PROTO_ETHERNET;
 336        else
 337                key->mac_proto = MAC_PROTO_NONE;
 338        invalidate_flow_key(key);
 339        return 0;
 340}
 341
 342static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
 343                                  __be32 addr, __be32 new_addr)
 344{
 345        int transport_len = skb->len - skb_transport_offset(skb);
 346
 347        if (nh->frag_off & htons(IP_OFFSET))
 348                return;
 349
 350        if (nh->protocol == IPPROTO_TCP) {
 351                if (likely(transport_len >= sizeof(struct tcphdr)))
 352                        inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
 353                                                 addr, new_addr, true);
 354        } else if (nh->protocol == IPPROTO_UDP) {
 355                if (likely(transport_len >= sizeof(struct udphdr))) {
 356                        struct udphdr *uh = udp_hdr(skb);
 357
 358                        if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 359                                inet_proto_csum_replace4(&uh->check, skb,
 360                                                         addr, new_addr, true);
 361                                if (!uh->check)
 362                                        uh->check = CSUM_MANGLED_0;
 363                        }
 364                }
 365        }
 366}
 367
 368static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
 369                        __be32 *addr, __be32 new_addr)
 370{
 371        update_ip_l4_checksum(skb, nh, *addr, new_addr);
 372        csum_replace4(&nh->check, *addr, new_addr);
 373        skb_clear_hash(skb);
 374        *addr = new_addr;
 375}
 376
 377static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
 378                                 __be32 addr[4], const __be32 new_addr[4])
 379{
 380        int transport_len = skb->len - skb_transport_offset(skb);
 381
 382        if (l4_proto == NEXTHDR_TCP) {
 383                if (likely(transport_len >= sizeof(struct tcphdr)))
 384                        inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
 385                                                  addr, new_addr, true);
 386        } else if (l4_proto == NEXTHDR_UDP) {
 387                if (likely(transport_len >= sizeof(struct udphdr))) {
 388                        struct udphdr *uh = udp_hdr(skb);
 389
 390                        if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
 391                                inet_proto_csum_replace16(&uh->check, skb,
 392                                                          addr, new_addr, true);
 393                                if (!uh->check)
 394                                        uh->check = CSUM_MANGLED_0;
 395                        }
 396                }
 397        } else if (l4_proto == NEXTHDR_ICMP) {
 398                if (likely(transport_len >= sizeof(struct icmp6hdr)))
 399                        inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
 400                                                  skb, addr, new_addr, true);
 401        }
 402}
 403
 404static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
 405                           const __be32 mask[4], __be32 masked[4])
 406{
 407        masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
 408        masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
 409        masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
 410        masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
 411}
 412
 413static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
 414                          __be32 addr[4], const __be32 new_addr[4],
 415                          bool recalculate_csum)
 416{
 417        if (recalculate_csum)
 418                update_ipv6_checksum(skb, l4_proto, addr, new_addr);
 419
 420        skb_clear_hash(skb);
 421        memcpy(addr, new_addr, sizeof(__be32[4]));
 422}
 423
 424static void set_ipv6_fl(struct ipv6hdr *nh, u32 fl, u32 mask)
 425{
 426        /* Bits 21-24 are always unmasked, so this retains their values. */
 427        OVS_SET_MASKED(nh->flow_lbl[0], (u8)(fl >> 16), (u8)(mask >> 16));
 428        OVS_SET_MASKED(nh->flow_lbl[1], (u8)(fl >> 8), (u8)(mask >> 8));
 429        OVS_SET_MASKED(nh->flow_lbl[2], (u8)fl, (u8)mask);
 430}
 431
 432static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
 433                       u8 mask)
 434{
 435        new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
 436
 437        csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
 438        nh->ttl = new_ttl;
 439}
 440
 441static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
 442                    const struct ovs_key_ipv4 *key,
 443                    const struct ovs_key_ipv4 *mask)
 444{
 445        struct iphdr *nh;
 446        __be32 new_addr;
 447        int err;
 448
 449        err = skb_ensure_writable(skb, skb_network_offset(skb) +
 450                                  sizeof(struct iphdr));
 451        if (unlikely(err))
 452                return err;
 453
 454        nh = ip_hdr(skb);
 455
 456        /* Setting an IP addresses is typically only a side effect of
 457         * matching on them in the current userspace implementation, so it
 458         * makes sense to check if the value actually changed.
 459         */
 460        if (mask->ipv4_src) {
 461                new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
 462
 463                if (unlikely(new_addr != nh->saddr)) {
 464                        set_ip_addr(skb, nh, &nh->saddr, new_addr);
 465                        flow_key->ipv4.addr.src = new_addr;
 466                }
 467        }
 468        if (mask->ipv4_dst) {
 469                new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
 470
 471                if (unlikely(new_addr != nh->daddr)) {
 472                        set_ip_addr(skb, nh, &nh->daddr, new_addr);
 473                        flow_key->ipv4.addr.dst = new_addr;
 474                }
 475        }
 476        if (mask->ipv4_tos) {
 477                ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
 478                flow_key->ip.tos = nh->tos;
 479        }
 480        if (mask->ipv4_ttl) {
 481                set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
 482                flow_key->ip.ttl = nh->ttl;
 483        }
 484
 485        return 0;
 486}
 487
 488static bool is_ipv6_mask_nonzero(const __be32 addr[4])
 489{
 490        return !!(addr[0] | addr[1] | addr[2] | addr[3]);
 491}
 492
 493static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
 494                    const struct ovs_key_ipv6 *key,
 495                    const struct ovs_key_ipv6 *mask)
 496{
 497        struct ipv6hdr *nh;
 498        int err;
 499
 500        err = skb_ensure_writable(skb, skb_network_offset(skb) +
 501                                  sizeof(struct ipv6hdr));
 502        if (unlikely(err))
 503                return err;
 504
 505        nh = ipv6_hdr(skb);
 506
 507        /* Setting an IP addresses is typically only a side effect of
 508         * matching on them in the current userspace implementation, so it
 509         * makes sense to check if the value actually changed.
 510         */
 511        if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
 512                __be32 *saddr = (__be32 *)&nh->saddr;
 513                __be32 masked[4];
 514
 515                mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
 516
 517                if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
 518                        set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
 519                                      true);
 520                        memcpy(&flow_key->ipv6.addr.src, masked,
 521                               sizeof(flow_key->ipv6.addr.src));
 522                }
 523        }
 524        if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
 525                unsigned int offset = 0;
 526                int flags = IP6_FH_F_SKIP_RH;
 527                bool recalc_csum = true;
 528                __be32 *daddr = (__be32 *)&nh->daddr;
 529                __be32 masked[4];
 530
 531                mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
 532
 533                if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
 534                        if (ipv6_ext_hdr(nh->nexthdr))
 535                                recalc_csum = (ipv6_find_hdr(skb, &offset,
 536                                                             NEXTHDR_ROUTING,
 537                                                             NULL, &flags)
 538                                               != NEXTHDR_ROUTING);
 539
 540                        set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
 541                                      recalc_csum);
 542                        memcpy(&flow_key->ipv6.addr.dst, masked,
 543                               sizeof(flow_key->ipv6.addr.dst));
 544                }
 545        }
 546        if (mask->ipv6_tclass) {
 547                ipv6_change_dsfield(nh, ~mask->ipv6_tclass, key->ipv6_tclass);
 548                flow_key->ip.tos = ipv6_get_dsfield(nh);
 549        }
 550        if (mask->ipv6_label) {
 551                set_ipv6_fl(nh, ntohl(key->ipv6_label),
 552                            ntohl(mask->ipv6_label));
 553                flow_key->ipv6.label =
 554                    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
 555        }
 556        if (mask->ipv6_hlimit) {
 557                OVS_SET_MASKED(nh->hop_limit, key->ipv6_hlimit,
 558                               mask->ipv6_hlimit);
 559                flow_key->ip.ttl = nh->hop_limit;
 560        }
 561        return 0;
 562}
 563
 564static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
 565                   const struct nlattr *a)
 566{
 567        struct nshhdr *nh;
 568        size_t length;
 569        int err;
 570        u8 flags;
 571        u8 ttl;
 572        int i;
 573
 574        struct ovs_key_nsh key;
 575        struct ovs_key_nsh mask;
 576
 577        err = nsh_key_from_nlattr(a, &key, &mask);
 578        if (err)
 579                return err;
 580
 581        /* Make sure the NSH base header is there */
 582        if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
 583                return -ENOMEM;
 584
 585        nh = nsh_hdr(skb);
 586        length = nsh_hdr_len(nh);
 587
 588        /* Make sure the whole NSH header is there */
 589        err = skb_ensure_writable(skb, skb_network_offset(skb) +
 590                                       length);
 591        if (unlikely(err))
 592                return err;
 593
 594        nh = nsh_hdr(skb);
 595        skb_postpull_rcsum(skb, nh, length);
 596        flags = nsh_get_flags(nh);
 597        flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
 598        flow_key->nsh.base.flags = flags;
 599        ttl = nsh_get_ttl(nh);
 600        ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
 601        flow_key->nsh.base.ttl = ttl;
 602        nsh_set_flags_and_ttl(nh, flags, ttl);
 603        nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
 604                                  mask.base.path_hdr);
 605        flow_key->nsh.base.path_hdr = nh->path_hdr;
 606        switch (nh->mdtype) {
 607        case NSH_M_TYPE1:
 608                for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
 609                        nh->md1.context[i] =
 610                            OVS_MASKED(nh->md1.context[i], key.context[i],
 611                                       mask.context[i]);
 612                }
 613                memcpy(flow_key->nsh.context, nh->md1.context,
 614                       sizeof(nh->md1.context));
 615                break;
 616        case NSH_M_TYPE2:
 617                memset(flow_key->nsh.context, 0,
 618                       sizeof(flow_key->nsh.context));
 619                break;
 620        default:
 621                return -EINVAL;
 622        }
 623        skb_postpush_rcsum(skb, nh, length);
 624        return 0;
 625}
 626
 627/* Must follow skb_ensure_writable() since that can move the skb data. */
 628static void set_tp_port(struct sk_buff *skb, __be16 *port,
 629                        __be16 new_port, __sum16 *check)
 630{
 631        inet_proto_csum_replace2(check, skb, *port, new_port, false);
 632        *port = new_port;
 633}
 634
 635static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 636                   const struct ovs_key_udp *key,
 637                   const struct ovs_key_udp *mask)
 638{
 639        struct udphdr *uh;
 640        __be16 src, dst;
 641        int err;
 642
 643        err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 644                                  sizeof(struct udphdr));
 645        if (unlikely(err))
 646                return err;
 647
 648        uh = udp_hdr(skb);
 649        /* Either of the masks is non-zero, so do not bother checking them. */
 650        src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
 651        dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
 652
 653        if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
 654                if (likely(src != uh->source)) {
 655                        set_tp_port(skb, &uh->source, src, &uh->check);
 656                        flow_key->tp.src = src;
 657                }
 658                if (likely(dst != uh->dest)) {
 659                        set_tp_port(skb, &uh->dest, dst, &uh->check);
 660                        flow_key->tp.dst = dst;
 661                }
 662
 663                if (unlikely(!uh->check))
 664                        uh->check = CSUM_MANGLED_0;
 665        } else {
 666                uh->source = src;
 667                uh->dest = dst;
 668                flow_key->tp.src = src;
 669                flow_key->tp.dst = dst;
 670        }
 671
 672        skb_clear_hash(skb);
 673
 674        return 0;
 675}
 676
 677static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 678                   const struct ovs_key_tcp *key,
 679                   const struct ovs_key_tcp *mask)
 680{
 681        struct tcphdr *th;
 682        __be16 src, dst;
 683        int err;
 684
 685        err = skb_ensure_writable(skb, skb_transport_offset(skb) +
 686                                  sizeof(struct tcphdr));
 687        if (unlikely(err))
 688                return err;
 689
 690        th = tcp_hdr(skb);
 691        src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
 692        if (likely(src != th->source)) {
 693                set_tp_port(skb, &th->source, src, &th->check);
 694                flow_key->tp.src = src;
 695        }
 696        dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
 697        if (likely(dst != th->dest)) {
 698                set_tp_port(skb, &th->dest, dst, &th->check);
 699                flow_key->tp.dst = dst;
 700        }
 701        skb_clear_hash(skb);
 702
 703        return 0;
 704}
 705
 706static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
 707                    const struct ovs_key_sctp *key,
 708                    const struct ovs_key_sctp *mask)
 709{
 710        unsigned int sctphoff = skb_transport_offset(skb);
 711        struct sctphdr *sh;
 712        __le32 old_correct_csum, new_csum, old_csum;
 713        int err;
 714
 715        err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
 716        if (unlikely(err))
 717                return err;
 718
 719        sh = sctp_hdr(skb);
 720        old_csum = sh->checksum;
 721        old_correct_csum = sctp_compute_cksum(skb, sctphoff);
 722
 723        sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
 724        sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
 725
 726        new_csum = sctp_compute_cksum(skb, sctphoff);
 727
 728        /* Carry any checksum errors through. */
 729        sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
 730
 731        skb_clear_hash(skb);
 732        flow_key->tp.src = sh->source;
 733        flow_key->tp.dst = sh->dest;
 734
 735        return 0;
 736}
 737
 738static int ovs_vport_output(struct net *net, struct sock *sk, struct sk_buff *skb)
 739{
 740        struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
 741        struct vport *vport = data->vport;
 742
 743        if (skb_cow_head(skb, data->l2_len) < 0) {
 744                kfree_skb(skb);
 745                return -ENOMEM;
 746        }
 747
 748        __skb_dst_copy(skb, data->dst);
 749        *OVS_CB(skb) = data->cb;
 750        skb->inner_protocol = data->inner_protocol;
 751        if (data->vlan_tci & VLAN_CFI_MASK)
 752                __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
 753        else
 754                __vlan_hwaccel_clear_tag(skb);
 755
 756        /* Reconstruct the MAC header.  */
 757        skb_push(skb, data->l2_len);
 758        memcpy(skb->data, &data->l2_data, data->l2_len);
 759        skb_postpush_rcsum(skb, skb->data, data->l2_len);
 760        skb_reset_mac_header(skb);
 761
 762        if (eth_p_mpls(skb->protocol)) {
 763                skb->inner_network_header = skb->network_header;
 764                skb_set_network_header(skb, data->network_offset);
 765                skb_reset_mac_len(skb);
 766        }
 767
 768        ovs_vport_send(vport, skb, data->mac_proto);
 769        return 0;
 770}
 771
 772static unsigned int
 773ovs_dst_get_mtu(const struct dst_entry *dst)
 774{
 775        return dst->dev->mtu;
 776}
 777
 778static struct dst_ops ovs_dst_ops = {
 779        .family = AF_UNSPEC,
 780        .mtu = ovs_dst_get_mtu,
 781};
 782
 783/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
 784 * ovs_vport_output(), which is called once per fragmented packet.
 785 */
 786static void prepare_frag(struct vport *vport, struct sk_buff *skb,
 787                         u16 orig_network_offset, u8 mac_proto)
 788{
 789        unsigned int hlen = skb_network_offset(skb);
 790        struct ovs_frag_data *data;
 791
 792        data = this_cpu_ptr(&ovs_frag_data_storage);
 793        data->dst = skb->_skb_refdst;
 794        data->vport = vport;
 795        data->cb = *OVS_CB(skb);
 796        data->inner_protocol = skb->inner_protocol;
 797        data->network_offset = orig_network_offset;
 798        if (skb_vlan_tag_present(skb))
 799                data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
 800        else
 801                data->vlan_tci = 0;
 802        data->vlan_proto = skb->vlan_proto;
 803        data->mac_proto = mac_proto;
 804        data->l2_len = hlen;
 805        memcpy(&data->l2_data, skb->data, hlen);
 806
 807        memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
 808        skb_pull(skb, hlen);
 809}
 810
 811static void ovs_fragment(struct net *net, struct vport *vport,
 812                         struct sk_buff *skb, u16 mru,
 813                         struct sw_flow_key *key)
 814{
 815        u16 orig_network_offset = 0;
 816
 817        if (eth_p_mpls(skb->protocol)) {
 818                orig_network_offset = skb_network_offset(skb);
 819                skb->network_header = skb->inner_network_header;
 820        }
 821
 822        if (skb_network_offset(skb) > MAX_L2_LEN) {
 823                OVS_NLERR(1, "L2 header too long to fragment");
 824                goto err;
 825        }
 826
 827        if (key->eth.type == htons(ETH_P_IP)) {
 828                struct dst_entry ovs_dst;
 829                unsigned long orig_dst;
 830
 831                prepare_frag(vport, skb, orig_network_offset,
 832                             ovs_key_mac_proto(key));
 833                dst_init(&ovs_dst, &ovs_dst_ops, NULL, 1,
 834                         DST_OBSOLETE_NONE, DST_NOCOUNT);
 835                ovs_dst.dev = vport->dev;
 836
 837                orig_dst = skb->_skb_refdst;
 838                skb_dst_set_noref(skb, &ovs_dst);
 839                IPCB(skb)->frag_max_size = mru;
 840
 841                ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
 842                refdst_drop(orig_dst);
 843        } else if (key->eth.type == htons(ETH_P_IPV6)) {
 844                const struct nf_ipv6_ops *v6ops = nf_get_ipv6_ops();
 845                unsigned long orig_dst;
 846                struct rt6_info ovs_rt;
 847
 848                if (!v6ops)
 849                        goto err;
 850
 851                prepare_frag(vport, skb, orig_network_offset,
 852                             ovs_key_mac_proto(key));
 853                memset(&ovs_rt, 0, sizeof(ovs_rt));
 854                dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
 855                         DST_OBSOLETE_NONE, DST_NOCOUNT);
 856                ovs_rt.dst.dev = vport->dev;
 857
 858                orig_dst = skb->_skb_refdst;
 859                skb_dst_set_noref(skb, &ovs_rt.dst);
 860                IP6CB(skb)->frag_max_size = mru;
 861
 862                v6ops->fragment(net, skb->sk, skb, ovs_vport_output);
 863                refdst_drop(orig_dst);
 864        } else {
 865                WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
 866                          ovs_vport_name(vport), ntohs(key->eth.type), mru,
 867                          vport->dev->mtu);
 868                goto err;
 869        }
 870
 871        return;
 872err:
 873        kfree_skb(skb);
 874}
 875
 876static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
 877                      struct sw_flow_key *key)
 878{
 879        struct vport *vport = ovs_vport_rcu(dp, out_port);
 880
 881        if (likely(vport)) {
 882                u16 mru = OVS_CB(skb)->mru;
 883                u32 cutlen = OVS_CB(skb)->cutlen;
 884
 885                if (unlikely(cutlen > 0)) {
 886                        if (skb->len - cutlen > ovs_mac_header_len(key))
 887                                pskb_trim(skb, skb->len - cutlen);
 888                        else
 889                                pskb_trim(skb, ovs_mac_header_len(key));
 890                }
 891
 892                if (likely(!mru ||
 893                           (skb->len <= mru + vport->dev->hard_header_len))) {
 894                        ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
 895                } else if (mru <= vport->dev->mtu) {
 896                        struct net *net = read_pnet(&dp->net);
 897
 898                        ovs_fragment(net, vport, skb, mru, key);
 899                } else {
 900                        kfree_skb(skb);
 901                }
 902        } else {
 903                kfree_skb(skb);
 904        }
 905}
 906
 907static int output_userspace(struct datapath *dp, struct sk_buff *skb,
 908                            struct sw_flow_key *key, const struct nlattr *attr,
 909                            const struct nlattr *actions, int actions_len,
 910                            uint32_t cutlen)
 911{
 912        struct dp_upcall_info upcall;
 913        const struct nlattr *a;
 914        int rem;
 915
 916        memset(&upcall, 0, sizeof(upcall));
 917        upcall.cmd = OVS_PACKET_CMD_ACTION;
 918        upcall.mru = OVS_CB(skb)->mru;
 919
 920        for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
 921                 a = nla_next(a, &rem)) {
 922                switch (nla_type(a)) {
 923                case OVS_USERSPACE_ATTR_USERDATA:
 924                        upcall.userdata = a;
 925                        break;
 926
 927                case OVS_USERSPACE_ATTR_PID:
 928                        upcall.portid = nla_get_u32(a);
 929                        break;
 930
 931                case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
 932                        /* Get out tunnel info. */
 933                        struct vport *vport;
 934
 935                        vport = ovs_vport_rcu(dp, nla_get_u32(a));
 936                        if (vport) {
 937                                int err;
 938
 939                                err = dev_fill_metadata_dst(vport->dev, skb);
 940                                if (!err)
 941                                        upcall.egress_tun_info = skb_tunnel_info(skb);
 942                        }
 943
 944                        break;
 945                }
 946
 947                case OVS_USERSPACE_ATTR_ACTIONS: {
 948                        /* Include actions. */
 949                        upcall.actions = actions;
 950                        upcall.actions_len = actions_len;
 951                        break;
 952                }
 953
 954                } /* End of switch. */
 955        }
 956
 957        return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
 958}
 959
 960/* When 'last' is true, sample() should always consume the 'skb'.
 961 * Otherwise, sample() should keep 'skb' intact regardless what
 962 * actions are executed within sample().
 963 */
 964static int sample(struct datapath *dp, struct sk_buff *skb,
 965                  struct sw_flow_key *key, const struct nlattr *attr,
 966                  bool last)
 967{
 968        struct nlattr *actions;
 969        struct nlattr *sample_arg;
 970        int rem = nla_len(attr);
 971        const struct sample_arg *arg;
 972        bool clone_flow_key;
 973
 974        /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
 975        sample_arg = nla_data(attr);
 976        arg = nla_data(sample_arg);
 977        actions = nla_next(sample_arg, &rem);
 978
 979        if ((arg->probability != U32_MAX) &&
 980            (!arg->probability || prandom_u32() > arg->probability)) {
 981                if (last)
 982                        consume_skb(skb);
 983                return 0;
 984        }
 985
 986        clone_flow_key = !arg->exec;
 987        return clone_execute(dp, skb, key, 0, actions, rem, last,
 988                             clone_flow_key);
 989}
 990
 991/* When 'last' is true, clone() should always consume the 'skb'.
 992 * Otherwise, clone() should keep 'skb' intact regardless what
 993 * actions are executed within clone().
 994 */
 995static int clone(struct datapath *dp, struct sk_buff *skb,
 996                 struct sw_flow_key *key, const struct nlattr *attr,
 997                 bool last)
 998{
 999        struct nlattr *actions;
1000        struct nlattr *clone_arg;
1001        int rem = nla_len(attr);
1002        bool dont_clone_flow_key;
1003
1004        /* The first action is always 'OVS_CLONE_ATTR_ARG'. */
1005        clone_arg = nla_data(attr);
1006        dont_clone_flow_key = nla_get_u32(clone_arg);
1007        actions = nla_next(clone_arg, &rem);
1008
1009        return clone_execute(dp, skb, key, 0, actions, rem, last,
1010                             !dont_clone_flow_key);
1011}
1012
1013static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1014                         const struct nlattr *attr)
1015{
1016        struct ovs_action_hash *hash_act = nla_data(attr);
1017        u32 hash = 0;
1018
1019        /* OVS_HASH_ALG_L4 is the only possible hash algorithm.  */
1020        hash = skb_get_hash(skb);
1021        hash = jhash_1word(hash, hash_act->hash_basis);
1022        if (!hash)
1023                hash = 0x1;
1024
1025        key->ovs_flow_hash = hash;
1026}
1027
1028static int execute_set_action(struct sk_buff *skb,
1029                              struct sw_flow_key *flow_key,
1030                              const struct nlattr *a)
1031{
1032        /* Only tunnel set execution is supported without a mask. */
1033        if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1034                struct ovs_tunnel_info *tun = nla_data(a);
1035
1036                skb_dst_drop(skb);
1037                dst_hold((struct dst_entry *)tun->tun_dst);
1038                skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1039                return 0;
1040        }
1041
1042        return -EINVAL;
1043}
1044
1045/* Mask is at the midpoint of the data. */
1046#define get_mask(a, type) ((const type)nla_data(a) + 1)
1047
1048static int execute_masked_set_action(struct sk_buff *skb,
1049                                     struct sw_flow_key *flow_key,
1050                                     const struct nlattr *a)
1051{
1052        int err = 0;
1053
1054        switch (nla_type(a)) {
1055        case OVS_KEY_ATTR_PRIORITY:
1056                OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1057                               *get_mask(a, u32 *));
1058                flow_key->phy.priority = skb->priority;
1059                break;
1060
1061        case OVS_KEY_ATTR_SKB_MARK:
1062                OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1063                flow_key->phy.skb_mark = skb->mark;
1064                break;
1065
1066        case OVS_KEY_ATTR_TUNNEL_INFO:
1067                /* Masked data not supported for tunnel. */
1068                err = -EINVAL;
1069                break;
1070
1071        case OVS_KEY_ATTR_ETHERNET:
1072                err = set_eth_addr(skb, flow_key, nla_data(a),
1073                                   get_mask(a, struct ovs_key_ethernet *));
1074                break;
1075
1076        case OVS_KEY_ATTR_NSH:
1077                err = set_nsh(skb, flow_key, a);
1078                break;
1079
1080        case OVS_KEY_ATTR_IPV4:
1081                err = set_ipv4(skb, flow_key, nla_data(a),
1082                               get_mask(a, struct ovs_key_ipv4 *));
1083                break;
1084
1085        case OVS_KEY_ATTR_IPV6:
1086                err = set_ipv6(skb, flow_key, nla_data(a),
1087                               get_mask(a, struct ovs_key_ipv6 *));
1088                break;
1089
1090        case OVS_KEY_ATTR_TCP:
1091                err = set_tcp(skb, flow_key, nla_data(a),
1092                              get_mask(a, struct ovs_key_tcp *));
1093                break;
1094
1095        case OVS_KEY_ATTR_UDP:
1096                err = set_udp(skb, flow_key, nla_data(a),
1097                              get_mask(a, struct ovs_key_udp *));
1098                break;
1099
1100        case OVS_KEY_ATTR_SCTP:
1101                err = set_sctp(skb, flow_key, nla_data(a),
1102                               get_mask(a, struct ovs_key_sctp *));
1103                break;
1104
1105        case OVS_KEY_ATTR_MPLS:
1106                err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1107                                                                    __be32 *));
1108                break;
1109
1110        case OVS_KEY_ATTR_CT_STATE:
1111        case OVS_KEY_ATTR_CT_ZONE:
1112        case OVS_KEY_ATTR_CT_MARK:
1113        case OVS_KEY_ATTR_CT_LABELS:
1114        case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1115        case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1116                err = -EINVAL;
1117                break;
1118        }
1119
1120        return err;
1121}
1122
1123static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1124                          struct sw_flow_key *key,
1125                          const struct nlattr *a, bool last)
1126{
1127        u32 recirc_id;
1128
1129        if (!is_flow_key_valid(key)) {
1130                int err;
1131
1132                err = ovs_flow_key_update(skb, key);
1133                if (err)
1134                        return err;
1135        }
1136        BUG_ON(!is_flow_key_valid(key));
1137
1138        recirc_id = nla_get_u32(a);
1139        return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1140}
1141
1142static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1143                                 struct sw_flow_key *key,
1144                                 const struct nlattr *attr, bool last)
1145{
1146        const struct nlattr *actions, *cpl_arg;
1147        const struct check_pkt_len_arg *arg;
1148        int rem = nla_len(attr);
1149        bool clone_flow_key;
1150
1151        /* The first netlink attribute in 'attr' is always
1152         * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1153         */
1154        cpl_arg = nla_data(attr);
1155        arg = nla_data(cpl_arg);
1156
1157        if (skb->len <= arg->pkt_len) {
1158                /* Second netlink attribute in 'attr' is always
1159                 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1160                 */
1161                actions = nla_next(cpl_arg, &rem);
1162                clone_flow_key = !arg->exec_for_lesser_equal;
1163        } else {
1164                /* Third netlink attribute in 'attr' is always
1165                 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1166                 */
1167                actions = nla_next(cpl_arg, &rem);
1168                actions = nla_next(actions, &rem);
1169                clone_flow_key = !arg->exec_for_greater;
1170        }
1171
1172        return clone_execute(dp, skb, key, 0, nla_data(actions),
1173                             nla_len(actions), last, clone_flow_key);
1174}
1175
1176/* Execute a list of actions against 'skb'. */
1177static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1178                              struct sw_flow_key *key,
1179                              const struct nlattr *attr, int len)
1180{
1181        const struct nlattr *a;
1182        int rem;
1183
1184        for (a = attr, rem = len; rem > 0;
1185             a = nla_next(a, &rem)) {
1186                int err = 0;
1187
1188                switch (nla_type(a)) {
1189                case OVS_ACTION_ATTR_OUTPUT: {
1190                        int port = nla_get_u32(a);
1191                        struct sk_buff *clone;
1192
1193                        /* Every output action needs a separate clone
1194                         * of 'skb', In case the output action is the
1195                         * last action, cloning can be avoided.
1196                         */
1197                        if (nla_is_last(a, rem)) {
1198                                do_output(dp, skb, port, key);
1199                                /* 'skb' has been used for output.
1200                                 */
1201                                return 0;
1202                        }
1203
1204                        clone = skb_clone(skb, GFP_ATOMIC);
1205                        if (clone)
1206                                do_output(dp, clone, port, key);
1207                        OVS_CB(skb)->cutlen = 0;
1208                        break;
1209                }
1210
1211                case OVS_ACTION_ATTR_TRUNC: {
1212                        struct ovs_action_trunc *trunc = nla_data(a);
1213
1214                        if (skb->len > trunc->max_len)
1215                                OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1216                        break;
1217                }
1218
1219                case OVS_ACTION_ATTR_USERSPACE:
1220                        output_userspace(dp, skb, key, a, attr,
1221                                                     len, OVS_CB(skb)->cutlen);
1222                        OVS_CB(skb)->cutlen = 0;
1223                        break;
1224
1225                case OVS_ACTION_ATTR_HASH:
1226                        execute_hash(skb, key, a);
1227                        break;
1228
1229                case OVS_ACTION_ATTR_PUSH_MPLS:
1230                        err = push_mpls(skb, key, nla_data(a));
1231                        break;
1232
1233                case OVS_ACTION_ATTR_POP_MPLS:
1234                        err = pop_mpls(skb, key, nla_get_be16(a));
1235                        break;
1236
1237                case OVS_ACTION_ATTR_PUSH_VLAN:
1238                        err = push_vlan(skb, key, nla_data(a));
1239                        break;
1240
1241                case OVS_ACTION_ATTR_POP_VLAN:
1242                        err = pop_vlan(skb, key);
1243                        break;
1244
1245                case OVS_ACTION_ATTR_RECIRC: {
1246                        bool last = nla_is_last(a, rem);
1247
1248                        err = execute_recirc(dp, skb, key, a, last);
1249                        if (last) {
1250                                /* If this is the last action, the skb has
1251                                 * been consumed or freed.
1252                                 * Return immediately.
1253                                 */
1254                                return err;
1255                        }
1256                        break;
1257                }
1258
1259                case OVS_ACTION_ATTR_SET:
1260                        err = execute_set_action(skb, key, nla_data(a));
1261                        break;
1262
1263                case OVS_ACTION_ATTR_SET_MASKED:
1264                case OVS_ACTION_ATTR_SET_TO_MASKED:
1265                        err = execute_masked_set_action(skb, key, nla_data(a));
1266                        break;
1267
1268                case OVS_ACTION_ATTR_SAMPLE: {
1269                        bool last = nla_is_last(a, rem);
1270
1271                        err = sample(dp, skb, key, a, last);
1272                        if (last)
1273                                return err;
1274
1275                        break;
1276                }
1277
1278                case OVS_ACTION_ATTR_CT:
1279                        if (!is_flow_key_valid(key)) {
1280                                err = ovs_flow_key_update(skb, key);
1281                                if (err)
1282                                        return err;
1283                        }
1284
1285                        err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1286                                             nla_data(a));
1287
1288                        /* Hide stolen IP fragments from user space. */
1289                        if (err)
1290                                return err == -EINPROGRESS ? 0 : err;
1291                        break;
1292
1293                case OVS_ACTION_ATTR_CT_CLEAR:
1294                        err = ovs_ct_clear(skb, key);
1295                        break;
1296
1297                case OVS_ACTION_ATTR_PUSH_ETH:
1298                        err = push_eth(skb, key, nla_data(a));
1299                        break;
1300
1301                case OVS_ACTION_ATTR_POP_ETH:
1302                        err = pop_eth(skb, key);
1303                        break;
1304
1305                case OVS_ACTION_ATTR_PUSH_NSH: {
1306                        u8 buffer[NSH_HDR_MAX_LEN];
1307                        struct nshhdr *nh = (struct nshhdr *)buffer;
1308
1309                        err = nsh_hdr_from_nlattr(nla_data(a), nh,
1310                                                  NSH_HDR_MAX_LEN);
1311                        if (unlikely(err))
1312                                break;
1313                        err = push_nsh(skb, key, nh);
1314                        break;
1315                }
1316
1317                case OVS_ACTION_ATTR_POP_NSH:
1318                        err = pop_nsh(skb, key);
1319                        break;
1320
1321                case OVS_ACTION_ATTR_METER:
1322                        if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1323                                consume_skb(skb);
1324                                return 0;
1325                        }
1326                        break;
1327
1328                case OVS_ACTION_ATTR_CLONE: {
1329                        bool last = nla_is_last(a, rem);
1330
1331                        err = clone(dp, skb, key, a, last);
1332                        if (last)
1333                                return err;
1334
1335                        break;
1336                }
1337
1338                case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1339                        bool last = nla_is_last(a, rem);
1340
1341                        err = execute_check_pkt_len(dp, skb, key, a, last);
1342                        if (last)
1343                                return err;
1344
1345                        break;
1346                }
1347                }
1348
1349                if (unlikely(err)) {
1350                        kfree_skb(skb);
1351                        return err;
1352                }
1353        }
1354
1355        consume_skb(skb);
1356        return 0;
1357}
1358
1359/* Execute the actions on the clone of the packet. The effect of the
1360 * execution does not affect the original 'skb' nor the original 'key'.
1361 *
1362 * The execution may be deferred in case the actions can not be executed
1363 * immediately.
1364 */
1365static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1366                         struct sw_flow_key *key, u32 recirc_id,
1367                         const struct nlattr *actions, int len,
1368                         bool last, bool clone_flow_key)
1369{
1370        struct deferred_action *da;
1371        struct sw_flow_key *clone;
1372
1373        skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1374        if (!skb) {
1375                /* Out of memory, skip this action.
1376                 */
1377                return 0;
1378        }
1379
1380        /* When clone_flow_key is false, the 'key' will not be change
1381         * by the actions, then the 'key' can be used directly.
1382         * Otherwise, try to clone key from the next recursion level of
1383         * 'flow_keys'. If clone is successful, execute the actions
1384         * without deferring.
1385         */
1386        clone = clone_flow_key ? clone_key(key) : key;
1387        if (clone) {
1388                int err = 0;
1389
1390                if (actions) { /* Sample action */
1391                        if (clone_flow_key)
1392                                __this_cpu_inc(exec_actions_level);
1393
1394                        err = do_execute_actions(dp, skb, clone,
1395                                                 actions, len);
1396
1397                        if (clone_flow_key)
1398                                __this_cpu_dec(exec_actions_level);
1399                } else { /* Recirc action */
1400                        clone->recirc_id = recirc_id;
1401                        ovs_dp_process_packet(skb, clone);
1402                }
1403                return err;
1404        }
1405
1406        /* Out of 'flow_keys' space. Defer actions */
1407        da = add_deferred_actions(skb, key, actions, len);
1408        if (da) {
1409                if (!actions) { /* Recirc action */
1410                        key = &da->pkt_key;
1411                        key->recirc_id = recirc_id;
1412                }
1413        } else {
1414                /* Out of per CPU action FIFO space. Drop the 'skb' and
1415                 * log an error.
1416                 */
1417                kfree_skb(skb);
1418
1419                if (net_ratelimit()) {
1420                        if (actions) { /* Sample action */
1421                                pr_warn("%s: deferred action limit reached, drop sample action\n",
1422                                        ovs_dp_name(dp));
1423                        } else {  /* Recirc action */
1424                                pr_warn("%s: deferred action limit reached, drop recirc action\n",
1425                                        ovs_dp_name(dp));
1426                        }
1427                }
1428        }
1429        return 0;
1430}
1431
1432static void process_deferred_actions(struct datapath *dp)
1433{
1434        struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1435
1436        /* Do not touch the FIFO in case there is no deferred actions. */
1437        if (action_fifo_is_empty(fifo))
1438                return;
1439
1440        /* Finishing executing all deferred actions. */
1441        do {
1442                struct deferred_action *da = action_fifo_get(fifo);
1443                struct sk_buff *skb = da->skb;
1444                struct sw_flow_key *key = &da->pkt_key;
1445                const struct nlattr *actions = da->actions;
1446                int actions_len = da->actions_len;
1447
1448                if (actions)
1449                        do_execute_actions(dp, skb, key, actions, actions_len);
1450                else
1451                        ovs_dp_process_packet(skb, key);
1452        } while (!action_fifo_is_empty(fifo));
1453
1454        /* Reset FIFO for the next packet.  */
1455        action_fifo_init(fifo);
1456}
1457
1458/* Execute a list of actions against 'skb'. */
1459int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1460                        const struct sw_flow_actions *acts,
1461                        struct sw_flow_key *key)
1462{
1463        int err, level;
1464
1465        level = __this_cpu_inc_return(exec_actions_level);
1466        if (unlikely(level > OVS_RECURSION_LIMIT)) {
1467                net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1468                                     ovs_dp_name(dp));
1469                kfree_skb(skb);
1470                err = -ENETDOWN;
1471                goto out;
1472        }
1473
1474        OVS_CB(skb)->acts_origlen = acts->orig_len;
1475        err = do_execute_actions(dp, skb, key,
1476                                 acts->actions, acts->actions_len);
1477
1478        if (level == 1)
1479                process_deferred_actions(dp);
1480
1481out:
1482        __this_cpu_dec(exec_actions_level);
1483        return err;
1484}
1485
1486int action_fifos_init(void)
1487{
1488        action_fifos = alloc_percpu(struct action_fifo);
1489        if (!action_fifos)
1490                return -ENOMEM;
1491
1492        flow_keys = alloc_percpu(struct action_flow_keys);
1493        if (!flow_keys) {
1494                free_percpu(action_fifos);
1495                return -ENOMEM;
1496        }
1497
1498        return 0;
1499}
1500
1501void action_fifos_exit(void)
1502{
1503        free_percpu(action_fifos);
1504        free_percpu(flow_keys);
1505}
1506