linux/net/socket.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * NET          An implementation of the SOCKET network access protocol.
   4 *
   5 * Version:     @(#)socket.c    1.1.93  18/02/95
   6 *
   7 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   8 *              Ross Biro
   9 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *
  11 * Fixes:
  12 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  13 *                                      shutdown()
  14 *              Alan Cox        :       verify_area() fixes
  15 *              Alan Cox        :       Removed DDI
  16 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  17 *              Alan Cox        :       Moved a load of checks to the very
  18 *                                      top level.
  19 *              Alan Cox        :       Move address structures to/from user
  20 *                                      mode above the protocol layers.
  21 *              Rob Janssen     :       Allow 0 length sends.
  22 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  23 *                                      tty drivers).
  24 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  25 *              Jeff Uphoff     :       Made max number of sockets command-line
  26 *                                      configurable.
  27 *              Matti Aarnio    :       Made the number of sockets dynamic,
  28 *                                      to be allocated when needed, and mr.
  29 *                                      Uphoff's max is used as max to be
  30 *                                      allowed to allocate.
  31 *              Linus           :       Argh. removed all the socket allocation
  32 *                                      altogether: it's in the inode now.
  33 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  34 *                                      for NetROM and future kernel nfsd type
  35 *                                      stuff.
  36 *              Alan Cox        :       sendmsg/recvmsg basics.
  37 *              Tom Dyas        :       Export net symbols.
  38 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  39 *              Alan Cox        :       Added thread locking to sys_* calls
  40 *                                      for sockets. May have errors at the
  41 *                                      moment.
  42 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  43 *              Andi Kleen      :       Some small cleanups, optimizations,
  44 *                                      and fixed a copy_from_user() bug.
  45 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  46 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  47 *                                      protocol-independent
  48 *
  49 *      This module is effectively the top level interface to the BSD socket
  50 *      paradigm.
  51 *
  52 *      Based upon Swansea University Computer Society NET3.039
  53 */
  54
  55#include <linux/mm.h>
  56#include <linux/socket.h>
  57#include <linux/file.h>
  58#include <linux/net.h>
  59#include <linux/interrupt.h>
  60#include <linux/thread_info.h>
  61#include <linux/rcupdate.h>
  62#include <linux/netdevice.h>
  63#include <linux/proc_fs.h>
  64#include <linux/seq_file.h>
  65#include <linux/mutex.h>
  66#include <linux/if_bridge.h>
  67#include <linux/if_frad.h>
  68#include <linux/if_vlan.h>
  69#include <linux/ptp_classify.h>
  70#include <linux/init.h>
  71#include <linux/poll.h>
  72#include <linux/cache.h>
  73#include <linux/module.h>
  74#include <linux/highmem.h>
  75#include <linux/mount.h>
  76#include <linux/pseudo_fs.h>
  77#include <linux/security.h>
  78#include <linux/syscalls.h>
  79#include <linux/compat.h>
  80#include <linux/kmod.h>
  81#include <linux/audit.h>
  82#include <linux/wireless.h>
  83#include <linux/nsproxy.h>
  84#include <linux/magic.h>
  85#include <linux/slab.h>
  86#include <linux/xattr.h>
  87#include <linux/nospec.h>
  88#include <linux/indirect_call_wrapper.h>
  89
  90#include <linux/uaccess.h>
  91#include <asm/unistd.h>
  92
  93#include <net/compat.h>
  94#include <net/wext.h>
  95#include <net/cls_cgroup.h>
  96
  97#include <net/sock.h>
  98#include <linux/netfilter.h>
  99
 100#include <linux/if_tun.h>
 101#include <linux/ipv6_route.h>
 102#include <linux/route.h>
 103#include <linux/sockios.h>
 104#include <net/busy_poll.h>
 105#include <linux/errqueue.h>
 106
 107#ifdef CONFIG_NET_RX_BUSY_POLL
 108unsigned int sysctl_net_busy_read __read_mostly;
 109unsigned int sysctl_net_busy_poll __read_mostly;
 110#endif
 111
 112static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 113static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 114static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 115
 116static int sock_close(struct inode *inode, struct file *file);
 117static __poll_t sock_poll(struct file *file,
 118                              struct poll_table_struct *wait);
 119static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 120#ifdef CONFIG_COMPAT
 121static long compat_sock_ioctl(struct file *file,
 122                              unsigned int cmd, unsigned long arg);
 123#endif
 124static int sock_fasync(int fd, struct file *filp, int on);
 125static ssize_t sock_sendpage(struct file *file, struct page *page,
 126                             int offset, size_t size, loff_t *ppos, int more);
 127static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 128                                struct pipe_inode_info *pipe, size_t len,
 129                                unsigned int flags);
 130
 131/*
 132 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 133 *      in the operation structures but are done directly via the socketcall() multiplexor.
 134 */
 135
 136static const struct file_operations socket_file_ops = {
 137        .owner =        THIS_MODULE,
 138        .llseek =       no_llseek,
 139        .read_iter =    sock_read_iter,
 140        .write_iter =   sock_write_iter,
 141        .poll =         sock_poll,
 142        .unlocked_ioctl = sock_ioctl,
 143#ifdef CONFIG_COMPAT
 144        .compat_ioctl = compat_sock_ioctl,
 145#endif
 146        .mmap =         sock_mmap,
 147        .release =      sock_close,
 148        .fasync =       sock_fasync,
 149        .sendpage =     sock_sendpage,
 150        .splice_write = generic_splice_sendpage,
 151        .splice_read =  sock_splice_read,
 152};
 153
 154/*
 155 *      The protocol list. Each protocol is registered in here.
 156 */
 157
 158static DEFINE_SPINLOCK(net_family_lock);
 159static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 160
 161/*
 162 * Support routines.
 163 * Move socket addresses back and forth across the kernel/user
 164 * divide and look after the messy bits.
 165 */
 166
 167/**
 168 *      move_addr_to_kernel     -       copy a socket address into kernel space
 169 *      @uaddr: Address in user space
 170 *      @kaddr: Address in kernel space
 171 *      @ulen: Length in user space
 172 *
 173 *      The address is copied into kernel space. If the provided address is
 174 *      too long an error code of -EINVAL is returned. If the copy gives
 175 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 176 */
 177
 178int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 179{
 180        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 181                return -EINVAL;
 182        if (ulen == 0)
 183                return 0;
 184        if (copy_from_user(kaddr, uaddr, ulen))
 185                return -EFAULT;
 186        return audit_sockaddr(ulen, kaddr);
 187}
 188
 189/**
 190 *      move_addr_to_user       -       copy an address to user space
 191 *      @kaddr: kernel space address
 192 *      @klen: length of address in kernel
 193 *      @uaddr: user space address
 194 *      @ulen: pointer to user length field
 195 *
 196 *      The value pointed to by ulen on entry is the buffer length available.
 197 *      This is overwritten with the buffer space used. -EINVAL is returned
 198 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 199 *      is returned if either the buffer or the length field are not
 200 *      accessible.
 201 *      After copying the data up to the limit the user specifies, the true
 202 *      length of the data is written over the length limit the user
 203 *      specified. Zero is returned for a success.
 204 */
 205
 206static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 207                             void __user *uaddr, int __user *ulen)
 208{
 209        int err;
 210        int len;
 211
 212        BUG_ON(klen > sizeof(struct sockaddr_storage));
 213        err = get_user(len, ulen);
 214        if (err)
 215                return err;
 216        if (len > klen)
 217                len = klen;
 218        if (len < 0)
 219                return -EINVAL;
 220        if (len) {
 221                if (audit_sockaddr(klen, kaddr))
 222                        return -ENOMEM;
 223                if (copy_to_user(uaddr, kaddr, len))
 224                        return -EFAULT;
 225        }
 226        /*
 227         *      "fromlen shall refer to the value before truncation.."
 228         *                      1003.1g
 229         */
 230        return __put_user(klen, ulen);
 231}
 232
 233static struct kmem_cache *sock_inode_cachep __ro_after_init;
 234
 235static struct inode *sock_alloc_inode(struct super_block *sb)
 236{
 237        struct socket_alloc *ei;
 238
 239        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 240        if (!ei)
 241                return NULL;
 242        init_waitqueue_head(&ei->socket.wq.wait);
 243        ei->socket.wq.fasync_list = NULL;
 244        ei->socket.wq.flags = 0;
 245
 246        ei->socket.state = SS_UNCONNECTED;
 247        ei->socket.flags = 0;
 248        ei->socket.ops = NULL;
 249        ei->socket.sk = NULL;
 250        ei->socket.file = NULL;
 251
 252        return &ei->vfs_inode;
 253}
 254
 255static void sock_free_inode(struct inode *inode)
 256{
 257        struct socket_alloc *ei;
 258
 259        ei = container_of(inode, struct socket_alloc, vfs_inode);
 260        kmem_cache_free(sock_inode_cachep, ei);
 261}
 262
 263static void init_once(void *foo)
 264{
 265        struct socket_alloc *ei = (struct socket_alloc *)foo;
 266
 267        inode_init_once(&ei->vfs_inode);
 268}
 269
 270static void init_inodecache(void)
 271{
 272        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 273                                              sizeof(struct socket_alloc),
 274                                              0,
 275                                              (SLAB_HWCACHE_ALIGN |
 276                                               SLAB_RECLAIM_ACCOUNT |
 277                                               SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 278                                              init_once);
 279        BUG_ON(sock_inode_cachep == NULL);
 280}
 281
 282static const struct super_operations sockfs_ops = {
 283        .alloc_inode    = sock_alloc_inode,
 284        .free_inode     = sock_free_inode,
 285        .statfs         = simple_statfs,
 286};
 287
 288/*
 289 * sockfs_dname() is called from d_path().
 290 */
 291static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 292{
 293        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 294                                d_inode(dentry)->i_ino);
 295}
 296
 297static const struct dentry_operations sockfs_dentry_operations = {
 298        .d_dname  = sockfs_dname,
 299};
 300
 301static int sockfs_xattr_get(const struct xattr_handler *handler,
 302                            struct dentry *dentry, struct inode *inode,
 303                            const char *suffix, void *value, size_t size)
 304{
 305        if (value) {
 306                if (dentry->d_name.len + 1 > size)
 307                        return -ERANGE;
 308                memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
 309        }
 310        return dentry->d_name.len + 1;
 311}
 312
 313#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 314#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 315#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 316
 317static const struct xattr_handler sockfs_xattr_handler = {
 318        .name = XATTR_NAME_SOCKPROTONAME,
 319        .get = sockfs_xattr_get,
 320};
 321
 322static int sockfs_security_xattr_set(const struct xattr_handler *handler,
 323                                     struct dentry *dentry, struct inode *inode,
 324                                     const char *suffix, const void *value,
 325                                     size_t size, int flags)
 326{
 327        /* Handled by LSM. */
 328        return -EAGAIN;
 329}
 330
 331static const struct xattr_handler sockfs_security_xattr_handler = {
 332        .prefix = XATTR_SECURITY_PREFIX,
 333        .set = sockfs_security_xattr_set,
 334};
 335
 336static const struct xattr_handler *sockfs_xattr_handlers[] = {
 337        &sockfs_xattr_handler,
 338        &sockfs_security_xattr_handler,
 339        NULL
 340};
 341
 342static int sockfs_init_fs_context(struct fs_context *fc)
 343{
 344        struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
 345        if (!ctx)
 346                return -ENOMEM;
 347        ctx->ops = &sockfs_ops;
 348        ctx->dops = &sockfs_dentry_operations;
 349        ctx->xattr = sockfs_xattr_handlers;
 350        return 0;
 351}
 352
 353static struct vfsmount *sock_mnt __read_mostly;
 354
 355static struct file_system_type sock_fs_type = {
 356        .name =         "sockfs",
 357        .init_fs_context = sockfs_init_fs_context,
 358        .kill_sb =      kill_anon_super,
 359};
 360
 361/*
 362 *      Obtains the first available file descriptor and sets it up for use.
 363 *
 364 *      These functions create file structures and maps them to fd space
 365 *      of the current process. On success it returns file descriptor
 366 *      and file struct implicitly stored in sock->file.
 367 *      Note that another thread may close file descriptor before we return
 368 *      from this function. We use the fact that now we do not refer
 369 *      to socket after mapping. If one day we will need it, this
 370 *      function will increment ref. count on file by 1.
 371 *
 372 *      In any case returned fd MAY BE not valid!
 373 *      This race condition is unavoidable
 374 *      with shared fd spaces, we cannot solve it inside kernel,
 375 *      but we take care of internal coherence yet.
 376 */
 377
 378/**
 379 *      sock_alloc_file - Bind a &socket to a &file
 380 *      @sock: socket
 381 *      @flags: file status flags
 382 *      @dname: protocol name
 383 *
 384 *      Returns the &file bound with @sock, implicitly storing it
 385 *      in sock->file. If dname is %NULL, sets to "".
 386 *      On failure the return is a ERR pointer (see linux/err.h).
 387 *      This function uses GFP_KERNEL internally.
 388 */
 389
 390struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 391{
 392        struct file *file;
 393
 394        if (!dname)
 395                dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
 396
 397        file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
 398                                O_RDWR | (flags & O_NONBLOCK),
 399                                &socket_file_ops);
 400        if (IS_ERR(file)) {
 401                sock_release(sock);
 402                return file;
 403        }
 404
 405        sock->file = file;
 406        file->private_data = sock;
 407        return file;
 408}
 409EXPORT_SYMBOL(sock_alloc_file);
 410
 411static int sock_map_fd(struct socket *sock, int flags)
 412{
 413        struct file *newfile;
 414        int fd = get_unused_fd_flags(flags);
 415        if (unlikely(fd < 0)) {
 416                sock_release(sock);
 417                return fd;
 418        }
 419
 420        newfile = sock_alloc_file(sock, flags, NULL);
 421        if (!IS_ERR(newfile)) {
 422                fd_install(fd, newfile);
 423                return fd;
 424        }
 425
 426        put_unused_fd(fd);
 427        return PTR_ERR(newfile);
 428}
 429
 430/**
 431 *      sock_from_file - Return the &socket bounded to @file.
 432 *      @file: file
 433 *      @err: pointer to an error code return
 434 *
 435 *      On failure returns %NULL and assigns -ENOTSOCK to @err.
 436 */
 437
 438struct socket *sock_from_file(struct file *file, int *err)
 439{
 440        if (file->f_op == &socket_file_ops)
 441                return file->private_data;      /* set in sock_map_fd */
 442
 443        *err = -ENOTSOCK;
 444        return NULL;
 445}
 446EXPORT_SYMBOL(sock_from_file);
 447
 448/**
 449 *      sockfd_lookup - Go from a file number to its socket slot
 450 *      @fd: file handle
 451 *      @err: pointer to an error code return
 452 *
 453 *      The file handle passed in is locked and the socket it is bound
 454 *      to is returned. If an error occurs the err pointer is overwritten
 455 *      with a negative errno code and NULL is returned. The function checks
 456 *      for both invalid handles and passing a handle which is not a socket.
 457 *
 458 *      On a success the socket object pointer is returned.
 459 */
 460
 461struct socket *sockfd_lookup(int fd, int *err)
 462{
 463        struct file *file;
 464        struct socket *sock;
 465
 466        file = fget(fd);
 467        if (!file) {
 468                *err = -EBADF;
 469                return NULL;
 470        }
 471
 472        sock = sock_from_file(file, err);
 473        if (!sock)
 474                fput(file);
 475        return sock;
 476}
 477EXPORT_SYMBOL(sockfd_lookup);
 478
 479static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 480{
 481        struct fd f = fdget(fd);
 482        struct socket *sock;
 483
 484        *err = -EBADF;
 485        if (f.file) {
 486                sock = sock_from_file(f.file, err);
 487                if (likely(sock)) {
 488                        *fput_needed = f.flags;
 489                        return sock;
 490                }
 491                fdput(f);
 492        }
 493        return NULL;
 494}
 495
 496static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 497                                size_t size)
 498{
 499        ssize_t len;
 500        ssize_t used = 0;
 501
 502        len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 503        if (len < 0)
 504                return len;
 505        used += len;
 506        if (buffer) {
 507                if (size < used)
 508                        return -ERANGE;
 509                buffer += len;
 510        }
 511
 512        len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 513        used += len;
 514        if (buffer) {
 515                if (size < used)
 516                        return -ERANGE;
 517                memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 518                buffer += len;
 519        }
 520
 521        return used;
 522}
 523
 524static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
 525{
 526        int err = simple_setattr(dentry, iattr);
 527
 528        if (!err && (iattr->ia_valid & ATTR_UID)) {
 529                struct socket *sock = SOCKET_I(d_inode(dentry));
 530
 531                if (sock->sk)
 532                        sock->sk->sk_uid = iattr->ia_uid;
 533                else
 534                        err = -ENOENT;
 535        }
 536
 537        return err;
 538}
 539
 540static const struct inode_operations sockfs_inode_ops = {
 541        .listxattr = sockfs_listxattr,
 542        .setattr = sockfs_setattr,
 543};
 544
 545/**
 546 *      sock_alloc - allocate a socket
 547 *
 548 *      Allocate a new inode and socket object. The two are bound together
 549 *      and initialised. The socket is then returned. If we are out of inodes
 550 *      NULL is returned. This functions uses GFP_KERNEL internally.
 551 */
 552
 553struct socket *sock_alloc(void)
 554{
 555        struct inode *inode;
 556        struct socket *sock;
 557
 558        inode = new_inode_pseudo(sock_mnt->mnt_sb);
 559        if (!inode)
 560                return NULL;
 561
 562        sock = SOCKET_I(inode);
 563
 564        inode->i_ino = get_next_ino();
 565        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 566        inode->i_uid = current_fsuid();
 567        inode->i_gid = current_fsgid();
 568        inode->i_op = &sockfs_inode_ops;
 569
 570        return sock;
 571}
 572EXPORT_SYMBOL(sock_alloc);
 573
 574/**
 575 *      sock_release - close a socket
 576 *      @sock: socket to close
 577 *
 578 *      The socket is released from the protocol stack if it has a release
 579 *      callback, and the inode is then released if the socket is bound to
 580 *      an inode not a file.
 581 */
 582
 583static void __sock_release(struct socket *sock, struct inode *inode)
 584{
 585        if (sock->ops) {
 586                struct module *owner = sock->ops->owner;
 587
 588                if (inode)
 589                        inode_lock(inode);
 590                sock->ops->release(sock);
 591                sock->sk = NULL;
 592                if (inode)
 593                        inode_unlock(inode);
 594                sock->ops = NULL;
 595                module_put(owner);
 596        }
 597
 598        if (sock->wq.fasync_list)
 599                pr_err("%s: fasync list not empty!\n", __func__);
 600
 601        if (!sock->file) {
 602                iput(SOCK_INODE(sock));
 603                return;
 604        }
 605        sock->file = NULL;
 606}
 607
 608void sock_release(struct socket *sock)
 609{
 610        __sock_release(sock, NULL);
 611}
 612EXPORT_SYMBOL(sock_release);
 613
 614void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 615{
 616        u8 flags = *tx_flags;
 617
 618        if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 619                flags |= SKBTX_HW_TSTAMP;
 620
 621        if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 622                flags |= SKBTX_SW_TSTAMP;
 623
 624        if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 625                flags |= SKBTX_SCHED_TSTAMP;
 626
 627        *tx_flags = flags;
 628}
 629EXPORT_SYMBOL(__sock_tx_timestamp);
 630
 631INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
 632                                           size_t));
 633INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
 634                                            size_t));
 635static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 636{
 637        int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
 638                                     inet_sendmsg, sock, msg,
 639                                     msg_data_left(msg));
 640        BUG_ON(ret == -EIOCBQUEUED);
 641        return ret;
 642}
 643
 644/**
 645 *      sock_sendmsg - send a message through @sock
 646 *      @sock: socket
 647 *      @msg: message to send
 648 *
 649 *      Sends @msg through @sock, passing through LSM.
 650 *      Returns the number of bytes sent, or an error code.
 651 */
 652int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 653{
 654        int err = security_socket_sendmsg(sock, msg,
 655                                          msg_data_left(msg));
 656
 657        return err ?: sock_sendmsg_nosec(sock, msg);
 658}
 659EXPORT_SYMBOL(sock_sendmsg);
 660
 661/**
 662 *      kernel_sendmsg - send a message through @sock (kernel-space)
 663 *      @sock: socket
 664 *      @msg: message header
 665 *      @vec: kernel vec
 666 *      @num: vec array length
 667 *      @size: total message data size
 668 *
 669 *      Builds the message data with @vec and sends it through @sock.
 670 *      Returns the number of bytes sent, or an error code.
 671 */
 672
 673int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 674                   struct kvec *vec, size_t num, size_t size)
 675{
 676        iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 677        return sock_sendmsg(sock, msg);
 678}
 679EXPORT_SYMBOL(kernel_sendmsg);
 680
 681/**
 682 *      kernel_sendmsg_locked - send a message through @sock (kernel-space)
 683 *      @sk: sock
 684 *      @msg: message header
 685 *      @vec: output s/g array
 686 *      @num: output s/g array length
 687 *      @size: total message data size
 688 *
 689 *      Builds the message data with @vec and sends it through @sock.
 690 *      Returns the number of bytes sent, or an error code.
 691 *      Caller must hold @sk.
 692 */
 693
 694int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
 695                          struct kvec *vec, size_t num, size_t size)
 696{
 697        struct socket *sock = sk->sk_socket;
 698
 699        if (!sock->ops->sendmsg_locked)
 700                return sock_no_sendmsg_locked(sk, msg, size);
 701
 702        iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
 703
 704        return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
 705}
 706EXPORT_SYMBOL(kernel_sendmsg_locked);
 707
 708static bool skb_is_err_queue(const struct sk_buff *skb)
 709{
 710        /* pkt_type of skbs enqueued on the error queue are set to
 711         * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
 712         * in recvmsg, since skbs received on a local socket will never
 713         * have a pkt_type of PACKET_OUTGOING.
 714         */
 715        return skb->pkt_type == PACKET_OUTGOING;
 716}
 717
 718/* On transmit, software and hardware timestamps are returned independently.
 719 * As the two skb clones share the hardware timestamp, which may be updated
 720 * before the software timestamp is received, a hardware TX timestamp may be
 721 * returned only if there is no software TX timestamp. Ignore false software
 722 * timestamps, which may be made in the __sock_recv_timestamp() call when the
 723 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
 724 * hardware timestamp.
 725 */
 726static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
 727{
 728        return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
 729}
 730
 731static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
 732{
 733        struct scm_ts_pktinfo ts_pktinfo;
 734        struct net_device *orig_dev;
 735
 736        if (!skb_mac_header_was_set(skb))
 737                return;
 738
 739        memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
 740
 741        rcu_read_lock();
 742        orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
 743        if (orig_dev)
 744                ts_pktinfo.if_index = orig_dev->ifindex;
 745        rcu_read_unlock();
 746
 747        ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
 748        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
 749                 sizeof(ts_pktinfo), &ts_pktinfo);
 750}
 751
 752/*
 753 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 754 */
 755void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 756        struct sk_buff *skb)
 757{
 758        int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 759        int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
 760        struct scm_timestamping_internal tss;
 761
 762        int empty = 1, false_tstamp = 0;
 763        struct skb_shared_hwtstamps *shhwtstamps =
 764                skb_hwtstamps(skb);
 765
 766        /* Race occurred between timestamp enabling and packet
 767           receiving.  Fill in the current time for now. */
 768        if (need_software_tstamp && skb->tstamp == 0) {
 769                __net_timestamp(skb);
 770                false_tstamp = 1;
 771        }
 772
 773        if (need_software_tstamp) {
 774                if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 775                        if (new_tstamp) {
 776                                struct __kernel_sock_timeval tv;
 777
 778                                skb_get_new_timestamp(skb, &tv);
 779                                put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
 780                                         sizeof(tv), &tv);
 781                        } else {
 782                                struct __kernel_old_timeval tv;
 783
 784                                skb_get_timestamp(skb, &tv);
 785                                put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
 786                                         sizeof(tv), &tv);
 787                        }
 788                } else {
 789                        if (new_tstamp) {
 790                                struct __kernel_timespec ts;
 791
 792                                skb_get_new_timestampns(skb, &ts);
 793                                put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
 794                                         sizeof(ts), &ts);
 795                        } else {
 796                                struct timespec ts;
 797
 798                                skb_get_timestampns(skb, &ts);
 799                                put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
 800                                         sizeof(ts), &ts);
 801                        }
 802                }
 803        }
 804
 805        memset(&tss, 0, sizeof(tss));
 806        if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 807            ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
 808                empty = 0;
 809        if (shhwtstamps &&
 810            (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 811            !skb_is_swtx_tstamp(skb, false_tstamp) &&
 812            ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
 813                empty = 0;
 814                if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
 815                    !skb_is_err_queue(skb))
 816                        put_ts_pktinfo(msg, skb);
 817        }
 818        if (!empty) {
 819                if (sock_flag(sk, SOCK_TSTAMP_NEW))
 820                        put_cmsg_scm_timestamping64(msg, &tss);
 821                else
 822                        put_cmsg_scm_timestamping(msg, &tss);
 823
 824                if (skb_is_err_queue(skb) && skb->len &&
 825                    SKB_EXT_ERR(skb)->opt_stats)
 826                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
 827                                 skb->len, skb->data);
 828        }
 829}
 830EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 831
 832void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 833        struct sk_buff *skb)
 834{
 835        int ack;
 836
 837        if (!sock_flag(sk, SOCK_WIFI_STATUS))
 838                return;
 839        if (!skb->wifi_acked_valid)
 840                return;
 841
 842        ack = skb->wifi_acked;
 843
 844        put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 845}
 846EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 847
 848static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 849                                   struct sk_buff *skb)
 850{
 851        if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 852                put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 853                        sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 854}
 855
 856void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 857        struct sk_buff *skb)
 858{
 859        sock_recv_timestamp(msg, sk, skb);
 860        sock_recv_drops(msg, sk, skb);
 861}
 862EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 863
 864INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
 865                                           size_t, int));
 866INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
 867                                            size_t, int));
 868static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 869                                     int flags)
 870{
 871        return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
 872                                  inet_recvmsg, sock, msg, msg_data_left(msg),
 873                                  flags);
 874}
 875
 876/**
 877 *      sock_recvmsg - receive a message from @sock
 878 *      @sock: socket
 879 *      @msg: message to receive
 880 *      @flags: message flags
 881 *
 882 *      Receives @msg from @sock, passing through LSM. Returns the total number
 883 *      of bytes received, or an error.
 884 */
 885int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 886{
 887        int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 888
 889        return err ?: sock_recvmsg_nosec(sock, msg, flags);
 890}
 891EXPORT_SYMBOL(sock_recvmsg);
 892
 893/**
 894 *      kernel_recvmsg - Receive a message from a socket (kernel space)
 895 *      @sock: The socket to receive the message from
 896 *      @msg: Received message
 897 *      @vec: Input s/g array for message data
 898 *      @num: Size of input s/g array
 899 *      @size: Number of bytes to read
 900 *      @flags: Message flags (MSG_DONTWAIT, etc...)
 901 *
 902 *      On return the msg structure contains the scatter/gather array passed in the
 903 *      vec argument. The array is modified so that it consists of the unfilled
 904 *      portion of the original array.
 905 *
 906 *      The returned value is the total number of bytes received, or an error.
 907 */
 908
 909int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 910                   struct kvec *vec, size_t num, size_t size, int flags)
 911{
 912        mm_segment_t oldfs = get_fs();
 913        int result;
 914
 915        iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
 916        set_fs(KERNEL_DS);
 917        result = sock_recvmsg(sock, msg, flags);
 918        set_fs(oldfs);
 919        return result;
 920}
 921EXPORT_SYMBOL(kernel_recvmsg);
 922
 923static ssize_t sock_sendpage(struct file *file, struct page *page,
 924                             int offset, size_t size, loff_t *ppos, int more)
 925{
 926        struct socket *sock;
 927        int flags;
 928
 929        sock = file->private_data;
 930
 931        flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 932        /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 933        flags |= more;
 934
 935        return kernel_sendpage(sock, page, offset, size, flags);
 936}
 937
 938static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 939                                struct pipe_inode_info *pipe, size_t len,
 940                                unsigned int flags)
 941{
 942        struct socket *sock = file->private_data;
 943
 944        if (unlikely(!sock->ops->splice_read))
 945                return generic_file_splice_read(file, ppos, pipe, len, flags);
 946
 947        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 948}
 949
 950static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 951{
 952        struct file *file = iocb->ki_filp;
 953        struct socket *sock = file->private_data;
 954        struct msghdr msg = {.msg_iter = *to,
 955                             .msg_iocb = iocb};
 956        ssize_t res;
 957
 958        if (file->f_flags & O_NONBLOCK)
 959                msg.msg_flags = MSG_DONTWAIT;
 960
 961        if (iocb->ki_pos != 0)
 962                return -ESPIPE;
 963
 964        if (!iov_iter_count(to))        /* Match SYS5 behaviour */
 965                return 0;
 966
 967        res = sock_recvmsg(sock, &msg, msg.msg_flags);
 968        *to = msg.msg_iter;
 969        return res;
 970}
 971
 972static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 973{
 974        struct file *file = iocb->ki_filp;
 975        struct socket *sock = file->private_data;
 976        struct msghdr msg = {.msg_iter = *from,
 977                             .msg_iocb = iocb};
 978        ssize_t res;
 979
 980        if (iocb->ki_pos != 0)
 981                return -ESPIPE;
 982
 983        if (file->f_flags & O_NONBLOCK)
 984                msg.msg_flags = MSG_DONTWAIT;
 985
 986        if (sock->type == SOCK_SEQPACKET)
 987                msg.msg_flags |= MSG_EOR;
 988
 989        res = sock_sendmsg(sock, &msg);
 990        *from = msg.msg_iter;
 991        return res;
 992}
 993
 994/*
 995 * Atomic setting of ioctl hooks to avoid race
 996 * with module unload.
 997 */
 998
 999static DEFINE_MUTEX(br_ioctl_mutex);
1000static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1001
1002void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1003{
1004        mutex_lock(&br_ioctl_mutex);
1005        br_ioctl_hook = hook;
1006        mutex_unlock(&br_ioctl_mutex);
1007}
1008EXPORT_SYMBOL(brioctl_set);
1009
1010static DEFINE_MUTEX(vlan_ioctl_mutex);
1011static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1012
1013void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1014{
1015        mutex_lock(&vlan_ioctl_mutex);
1016        vlan_ioctl_hook = hook;
1017        mutex_unlock(&vlan_ioctl_mutex);
1018}
1019EXPORT_SYMBOL(vlan_ioctl_set);
1020
1021static DEFINE_MUTEX(dlci_ioctl_mutex);
1022static int (*dlci_ioctl_hook) (unsigned int, void __user *);
1023
1024void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
1025{
1026        mutex_lock(&dlci_ioctl_mutex);
1027        dlci_ioctl_hook = hook;
1028        mutex_unlock(&dlci_ioctl_mutex);
1029}
1030EXPORT_SYMBOL(dlci_ioctl_set);
1031
1032static long sock_do_ioctl(struct net *net, struct socket *sock,
1033                          unsigned int cmd, unsigned long arg)
1034{
1035        int err;
1036        void __user *argp = (void __user *)arg;
1037
1038        err = sock->ops->ioctl(sock, cmd, arg);
1039
1040        /*
1041         * If this ioctl is unknown try to hand it down
1042         * to the NIC driver.
1043         */
1044        if (err != -ENOIOCTLCMD)
1045                return err;
1046
1047        if (cmd == SIOCGIFCONF) {
1048                struct ifconf ifc;
1049                if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1050                        return -EFAULT;
1051                rtnl_lock();
1052                err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1053                rtnl_unlock();
1054                if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1055                        err = -EFAULT;
1056        } else {
1057                struct ifreq ifr;
1058                bool need_copyout;
1059                if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1060                        return -EFAULT;
1061                err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1062                if (!err && need_copyout)
1063                        if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1064                                return -EFAULT;
1065        }
1066        return err;
1067}
1068
1069/*
1070 *      With an ioctl, arg may well be a user mode pointer, but we don't know
1071 *      what to do with it - that's up to the protocol still.
1072 */
1073
1074/**
1075 *      get_net_ns - increment the refcount of the network namespace
1076 *      @ns: common namespace (net)
1077 *
1078 *      Returns the net's common namespace.
1079 */
1080
1081struct ns_common *get_net_ns(struct ns_common *ns)
1082{
1083        return &get_net(container_of(ns, struct net, ns))->ns;
1084}
1085EXPORT_SYMBOL_GPL(get_net_ns);
1086
1087static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1088{
1089        struct socket *sock;
1090        struct sock *sk;
1091        void __user *argp = (void __user *)arg;
1092        int pid, err;
1093        struct net *net;
1094
1095        sock = file->private_data;
1096        sk = sock->sk;
1097        net = sock_net(sk);
1098        if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1099                struct ifreq ifr;
1100                bool need_copyout;
1101                if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1102                        return -EFAULT;
1103                err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1104                if (!err && need_copyout)
1105                        if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1106                                return -EFAULT;
1107        } else
1108#ifdef CONFIG_WEXT_CORE
1109        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1110                err = wext_handle_ioctl(net, cmd, argp);
1111        } else
1112#endif
1113                switch (cmd) {
1114                case FIOSETOWN:
1115                case SIOCSPGRP:
1116                        err = -EFAULT;
1117                        if (get_user(pid, (int __user *)argp))
1118                                break;
1119                        err = f_setown(sock->file, pid, 1);
1120                        break;
1121                case FIOGETOWN:
1122                case SIOCGPGRP:
1123                        err = put_user(f_getown(sock->file),
1124                                       (int __user *)argp);
1125                        break;
1126                case SIOCGIFBR:
1127                case SIOCSIFBR:
1128                case SIOCBRADDBR:
1129                case SIOCBRDELBR:
1130                        err = -ENOPKG;
1131                        if (!br_ioctl_hook)
1132                                request_module("bridge");
1133
1134                        mutex_lock(&br_ioctl_mutex);
1135                        if (br_ioctl_hook)
1136                                err = br_ioctl_hook(net, cmd, argp);
1137                        mutex_unlock(&br_ioctl_mutex);
1138                        break;
1139                case SIOCGIFVLAN:
1140                case SIOCSIFVLAN:
1141                        err = -ENOPKG;
1142                        if (!vlan_ioctl_hook)
1143                                request_module("8021q");
1144
1145                        mutex_lock(&vlan_ioctl_mutex);
1146                        if (vlan_ioctl_hook)
1147                                err = vlan_ioctl_hook(net, argp);
1148                        mutex_unlock(&vlan_ioctl_mutex);
1149                        break;
1150                case SIOCADDDLCI:
1151                case SIOCDELDLCI:
1152                        err = -ENOPKG;
1153                        if (!dlci_ioctl_hook)
1154                                request_module("dlci");
1155
1156                        mutex_lock(&dlci_ioctl_mutex);
1157                        if (dlci_ioctl_hook)
1158                                err = dlci_ioctl_hook(cmd, argp);
1159                        mutex_unlock(&dlci_ioctl_mutex);
1160                        break;
1161                case SIOCGSKNS:
1162                        err = -EPERM;
1163                        if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1164                                break;
1165
1166                        err = open_related_ns(&net->ns, get_net_ns);
1167                        break;
1168                case SIOCGSTAMP_OLD:
1169                case SIOCGSTAMPNS_OLD:
1170                        if (!sock->ops->gettstamp) {
1171                                err = -ENOIOCTLCMD;
1172                                break;
1173                        }
1174                        err = sock->ops->gettstamp(sock, argp,
1175                                                   cmd == SIOCGSTAMP_OLD,
1176                                                   !IS_ENABLED(CONFIG_64BIT));
1177                        break;
1178                case SIOCGSTAMP_NEW:
1179                case SIOCGSTAMPNS_NEW:
1180                        if (!sock->ops->gettstamp) {
1181                                err = -ENOIOCTLCMD;
1182                                break;
1183                        }
1184                        err = sock->ops->gettstamp(sock, argp,
1185                                                   cmd == SIOCGSTAMP_NEW,
1186                                                   false);
1187                        break;
1188                default:
1189                        err = sock_do_ioctl(net, sock, cmd, arg);
1190                        break;
1191                }
1192        return err;
1193}
1194
1195/**
1196 *      sock_create_lite - creates a socket
1197 *      @family: protocol family (AF_INET, ...)
1198 *      @type: communication type (SOCK_STREAM, ...)
1199 *      @protocol: protocol (0, ...)
1200 *      @res: new socket
1201 *
1202 *      Creates a new socket and assigns it to @res, passing through LSM.
1203 *      The new socket initialization is not complete, see kernel_accept().
1204 *      Returns 0 or an error. On failure @res is set to %NULL.
1205 *      This function internally uses GFP_KERNEL.
1206 */
1207
1208int sock_create_lite(int family, int type, int protocol, struct socket **res)
1209{
1210        int err;
1211        struct socket *sock = NULL;
1212
1213        err = security_socket_create(family, type, protocol, 1);
1214        if (err)
1215                goto out;
1216
1217        sock = sock_alloc();
1218        if (!sock) {
1219                err = -ENOMEM;
1220                goto out;
1221        }
1222
1223        sock->type = type;
1224        err = security_socket_post_create(sock, family, type, protocol, 1);
1225        if (err)
1226                goto out_release;
1227
1228out:
1229        *res = sock;
1230        return err;
1231out_release:
1232        sock_release(sock);
1233        sock = NULL;
1234        goto out;
1235}
1236EXPORT_SYMBOL(sock_create_lite);
1237
1238/* No kernel lock held - perfect */
1239static __poll_t sock_poll(struct file *file, poll_table *wait)
1240{
1241        struct socket *sock = file->private_data;
1242        __poll_t events = poll_requested_events(wait), flag = 0;
1243
1244        if (!sock->ops->poll)
1245                return 0;
1246
1247        if (sk_can_busy_loop(sock->sk)) {
1248                /* poll once if requested by the syscall */
1249                if (events & POLL_BUSY_LOOP)
1250                        sk_busy_loop(sock->sk, 1);
1251
1252                /* if this socket can poll_ll, tell the system call */
1253                flag = POLL_BUSY_LOOP;
1254        }
1255
1256        return sock->ops->poll(file, sock, wait) | flag;
1257}
1258
1259static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1260{
1261        struct socket *sock = file->private_data;
1262
1263        return sock->ops->mmap(file, sock, vma);
1264}
1265
1266static int sock_close(struct inode *inode, struct file *filp)
1267{
1268        __sock_release(SOCKET_I(inode), inode);
1269        return 0;
1270}
1271
1272/*
1273 *      Update the socket async list
1274 *
1275 *      Fasync_list locking strategy.
1276 *
1277 *      1. fasync_list is modified only under process context socket lock
1278 *         i.e. under semaphore.
1279 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1280 *         or under socket lock
1281 */
1282
1283static int sock_fasync(int fd, struct file *filp, int on)
1284{
1285        struct socket *sock = filp->private_data;
1286        struct sock *sk = sock->sk;
1287        struct socket_wq *wq = &sock->wq;
1288
1289        if (sk == NULL)
1290                return -EINVAL;
1291
1292        lock_sock(sk);
1293        fasync_helper(fd, filp, on, &wq->fasync_list);
1294
1295        if (!wq->fasync_list)
1296                sock_reset_flag(sk, SOCK_FASYNC);
1297        else
1298                sock_set_flag(sk, SOCK_FASYNC);
1299
1300        release_sock(sk);
1301        return 0;
1302}
1303
1304/* This function may be called only under rcu_lock */
1305
1306int sock_wake_async(struct socket_wq *wq, int how, int band)
1307{
1308        if (!wq || !wq->fasync_list)
1309                return -1;
1310
1311        switch (how) {
1312        case SOCK_WAKE_WAITD:
1313                if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1314                        break;
1315                goto call_kill;
1316        case SOCK_WAKE_SPACE:
1317                if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1318                        break;
1319                /* fall through */
1320        case SOCK_WAKE_IO:
1321call_kill:
1322                kill_fasync(&wq->fasync_list, SIGIO, band);
1323                break;
1324        case SOCK_WAKE_URG:
1325                kill_fasync(&wq->fasync_list, SIGURG, band);
1326        }
1327
1328        return 0;
1329}
1330EXPORT_SYMBOL(sock_wake_async);
1331
1332/**
1333 *      __sock_create - creates a socket
1334 *      @net: net namespace
1335 *      @family: protocol family (AF_INET, ...)
1336 *      @type: communication type (SOCK_STREAM, ...)
1337 *      @protocol: protocol (0, ...)
1338 *      @res: new socket
1339 *      @kern: boolean for kernel space sockets
1340 *
1341 *      Creates a new socket and assigns it to @res, passing through LSM.
1342 *      Returns 0 or an error. On failure @res is set to %NULL. @kern must
1343 *      be set to true if the socket resides in kernel space.
1344 *      This function internally uses GFP_KERNEL.
1345 */
1346
1347int __sock_create(struct net *net, int family, int type, int protocol,
1348                         struct socket **res, int kern)
1349{
1350        int err;
1351        struct socket *sock;
1352        const struct net_proto_family *pf;
1353
1354        /*
1355         *      Check protocol is in range
1356         */
1357        if (family < 0 || family >= NPROTO)
1358                return -EAFNOSUPPORT;
1359        if (type < 0 || type >= SOCK_MAX)
1360                return -EINVAL;
1361
1362        /* Compatibility.
1363
1364           This uglymoron is moved from INET layer to here to avoid
1365           deadlock in module load.
1366         */
1367        if (family == PF_INET && type == SOCK_PACKET) {
1368                pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1369                             current->comm);
1370                family = PF_PACKET;
1371        }
1372
1373        err = security_socket_create(family, type, protocol, kern);
1374        if (err)
1375                return err;
1376
1377        /*
1378         *      Allocate the socket and allow the family to set things up. if
1379         *      the protocol is 0, the family is instructed to select an appropriate
1380         *      default.
1381         */
1382        sock = sock_alloc();
1383        if (!sock) {
1384                net_warn_ratelimited("socket: no more sockets\n");
1385                return -ENFILE; /* Not exactly a match, but its the
1386                                   closest posix thing */
1387        }
1388
1389        sock->type = type;
1390
1391#ifdef CONFIG_MODULES
1392        /* Attempt to load a protocol module if the find failed.
1393         *
1394         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1395         * requested real, full-featured networking support upon configuration.
1396         * Otherwise module support will break!
1397         */
1398        if (rcu_access_pointer(net_families[family]) == NULL)
1399                request_module("net-pf-%d", family);
1400#endif
1401
1402        rcu_read_lock();
1403        pf = rcu_dereference(net_families[family]);
1404        err = -EAFNOSUPPORT;
1405        if (!pf)
1406                goto out_release;
1407
1408        /*
1409         * We will call the ->create function, that possibly is in a loadable
1410         * module, so we have to bump that loadable module refcnt first.
1411         */
1412        if (!try_module_get(pf->owner))
1413                goto out_release;
1414
1415        /* Now protected by module ref count */
1416        rcu_read_unlock();
1417
1418        err = pf->create(net, sock, protocol, kern);
1419        if (err < 0)
1420                goto out_module_put;
1421
1422        /*
1423         * Now to bump the refcnt of the [loadable] module that owns this
1424         * socket at sock_release time we decrement its refcnt.
1425         */
1426        if (!try_module_get(sock->ops->owner))
1427                goto out_module_busy;
1428
1429        /*
1430         * Now that we're done with the ->create function, the [loadable]
1431         * module can have its refcnt decremented
1432         */
1433        module_put(pf->owner);
1434        err = security_socket_post_create(sock, family, type, protocol, kern);
1435        if (err)
1436                goto out_sock_release;
1437        *res = sock;
1438
1439        return 0;
1440
1441out_module_busy:
1442        err = -EAFNOSUPPORT;
1443out_module_put:
1444        sock->ops = NULL;
1445        module_put(pf->owner);
1446out_sock_release:
1447        sock_release(sock);
1448        return err;
1449
1450out_release:
1451        rcu_read_unlock();
1452        goto out_sock_release;
1453}
1454EXPORT_SYMBOL(__sock_create);
1455
1456/**
1457 *      sock_create - creates a socket
1458 *      @family: protocol family (AF_INET, ...)
1459 *      @type: communication type (SOCK_STREAM, ...)
1460 *      @protocol: protocol (0, ...)
1461 *      @res: new socket
1462 *
1463 *      A wrapper around __sock_create().
1464 *      Returns 0 or an error. This function internally uses GFP_KERNEL.
1465 */
1466
1467int sock_create(int family, int type, int protocol, struct socket **res)
1468{
1469        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1470}
1471EXPORT_SYMBOL(sock_create);
1472
1473/**
1474 *      sock_create_kern - creates a socket (kernel space)
1475 *      @net: net namespace
1476 *      @family: protocol family (AF_INET, ...)
1477 *      @type: communication type (SOCK_STREAM, ...)
1478 *      @protocol: protocol (0, ...)
1479 *      @res: new socket
1480 *
1481 *      A wrapper around __sock_create().
1482 *      Returns 0 or an error. This function internally uses GFP_KERNEL.
1483 */
1484
1485int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1486{
1487        return __sock_create(net, family, type, protocol, res, 1);
1488}
1489EXPORT_SYMBOL(sock_create_kern);
1490
1491int __sys_socket(int family, int type, int protocol)
1492{
1493        int retval;
1494        struct socket *sock;
1495        int flags;
1496
1497        /* Check the SOCK_* constants for consistency.  */
1498        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1499        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1500        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1501        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1502
1503        flags = type & ~SOCK_TYPE_MASK;
1504        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1505                return -EINVAL;
1506        type &= SOCK_TYPE_MASK;
1507
1508        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1509                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1510
1511        retval = sock_create(family, type, protocol, &sock);
1512        if (retval < 0)
1513                return retval;
1514
1515        return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1516}
1517
1518SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1519{
1520        return __sys_socket(family, type, protocol);
1521}
1522
1523/*
1524 *      Create a pair of connected sockets.
1525 */
1526
1527int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1528{
1529        struct socket *sock1, *sock2;
1530        int fd1, fd2, err;
1531        struct file *newfile1, *newfile2;
1532        int flags;
1533
1534        flags = type & ~SOCK_TYPE_MASK;
1535        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1536                return -EINVAL;
1537        type &= SOCK_TYPE_MASK;
1538
1539        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1540                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1541
1542        /*
1543         * reserve descriptors and make sure we won't fail
1544         * to return them to userland.
1545         */
1546        fd1 = get_unused_fd_flags(flags);
1547        if (unlikely(fd1 < 0))
1548                return fd1;
1549
1550        fd2 = get_unused_fd_flags(flags);
1551        if (unlikely(fd2 < 0)) {
1552                put_unused_fd(fd1);
1553                return fd2;
1554        }
1555
1556        err = put_user(fd1, &usockvec[0]);
1557        if (err)
1558                goto out;
1559
1560        err = put_user(fd2, &usockvec[1]);
1561        if (err)
1562                goto out;
1563
1564        /*
1565         * Obtain the first socket and check if the underlying protocol
1566         * supports the socketpair call.
1567         */
1568
1569        err = sock_create(family, type, protocol, &sock1);
1570        if (unlikely(err < 0))
1571                goto out;
1572
1573        err = sock_create(family, type, protocol, &sock2);
1574        if (unlikely(err < 0)) {
1575                sock_release(sock1);
1576                goto out;
1577        }
1578
1579        err = security_socket_socketpair(sock1, sock2);
1580        if (unlikely(err)) {
1581                sock_release(sock2);
1582                sock_release(sock1);
1583                goto out;
1584        }
1585
1586        err = sock1->ops->socketpair(sock1, sock2);
1587        if (unlikely(err < 0)) {
1588                sock_release(sock2);
1589                sock_release(sock1);
1590                goto out;
1591        }
1592
1593        newfile1 = sock_alloc_file(sock1, flags, NULL);
1594        if (IS_ERR(newfile1)) {
1595                err = PTR_ERR(newfile1);
1596                sock_release(sock2);
1597                goto out;
1598        }
1599
1600        newfile2 = sock_alloc_file(sock2, flags, NULL);
1601        if (IS_ERR(newfile2)) {
1602                err = PTR_ERR(newfile2);
1603                fput(newfile1);
1604                goto out;
1605        }
1606
1607        audit_fd_pair(fd1, fd2);
1608
1609        fd_install(fd1, newfile1);
1610        fd_install(fd2, newfile2);
1611        return 0;
1612
1613out:
1614        put_unused_fd(fd2);
1615        put_unused_fd(fd1);
1616        return err;
1617}
1618
1619SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1620                int __user *, usockvec)
1621{
1622        return __sys_socketpair(family, type, protocol, usockvec);
1623}
1624
1625/*
1626 *      Bind a name to a socket. Nothing much to do here since it's
1627 *      the protocol's responsibility to handle the local address.
1628 *
1629 *      We move the socket address to kernel space before we call
1630 *      the protocol layer (having also checked the address is ok).
1631 */
1632
1633int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1634{
1635        struct socket *sock;
1636        struct sockaddr_storage address;
1637        int err, fput_needed;
1638
1639        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1640        if (sock) {
1641                err = move_addr_to_kernel(umyaddr, addrlen, &address);
1642                if (!err) {
1643                        err = security_socket_bind(sock,
1644                                                   (struct sockaddr *)&address,
1645                                                   addrlen);
1646                        if (!err)
1647                                err = sock->ops->bind(sock,
1648                                                      (struct sockaddr *)
1649                                                      &address, addrlen);
1650                }
1651                fput_light(sock->file, fput_needed);
1652        }
1653        return err;
1654}
1655
1656SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1657{
1658        return __sys_bind(fd, umyaddr, addrlen);
1659}
1660
1661/*
1662 *      Perform a listen. Basically, we allow the protocol to do anything
1663 *      necessary for a listen, and if that works, we mark the socket as
1664 *      ready for listening.
1665 */
1666
1667int __sys_listen(int fd, int backlog)
1668{
1669        struct socket *sock;
1670        int err, fput_needed;
1671        int somaxconn;
1672
1673        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1674        if (sock) {
1675                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1676                if ((unsigned int)backlog > somaxconn)
1677                        backlog = somaxconn;
1678
1679                err = security_socket_listen(sock, backlog);
1680                if (!err)
1681                        err = sock->ops->listen(sock, backlog);
1682
1683                fput_light(sock->file, fput_needed);
1684        }
1685        return err;
1686}
1687
1688SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1689{
1690        return __sys_listen(fd, backlog);
1691}
1692
1693/*
1694 *      For accept, we attempt to create a new socket, set up the link
1695 *      with the client, wake up the client, then return the new
1696 *      connected fd. We collect the address of the connector in kernel
1697 *      space and move it to user at the very end. This is unclean because
1698 *      we open the socket then return an error.
1699 *
1700 *      1003.1g adds the ability to recvmsg() to query connection pending
1701 *      status to recvmsg. We need to add that support in a way thats
1702 *      clean when we restructure accept also.
1703 */
1704
1705int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1706                  int __user *upeer_addrlen, int flags)
1707{
1708        struct socket *sock, *newsock;
1709        struct file *newfile;
1710        int err, len, newfd, fput_needed;
1711        struct sockaddr_storage address;
1712
1713        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1714                return -EINVAL;
1715
1716        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1717                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1718
1719        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1720        if (!sock)
1721                goto out;
1722
1723        err = -ENFILE;
1724        newsock = sock_alloc();
1725        if (!newsock)
1726                goto out_put;
1727
1728        newsock->type = sock->type;
1729        newsock->ops = sock->ops;
1730
1731        /*
1732         * We don't need try_module_get here, as the listening socket (sock)
1733         * has the protocol module (sock->ops->owner) held.
1734         */
1735        __module_get(newsock->ops->owner);
1736
1737        newfd = get_unused_fd_flags(flags);
1738        if (unlikely(newfd < 0)) {
1739                err = newfd;
1740                sock_release(newsock);
1741                goto out_put;
1742        }
1743        newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1744        if (IS_ERR(newfile)) {
1745                err = PTR_ERR(newfile);
1746                put_unused_fd(newfd);
1747                goto out_put;
1748        }
1749
1750        err = security_socket_accept(sock, newsock);
1751        if (err)
1752                goto out_fd;
1753
1754        err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1755        if (err < 0)
1756                goto out_fd;
1757
1758        if (upeer_sockaddr) {
1759                len = newsock->ops->getname(newsock,
1760                                        (struct sockaddr *)&address, 2);
1761                if (len < 0) {
1762                        err = -ECONNABORTED;
1763                        goto out_fd;
1764                }
1765                err = move_addr_to_user(&address,
1766                                        len, upeer_sockaddr, upeer_addrlen);
1767                if (err < 0)
1768                        goto out_fd;
1769        }
1770
1771        /* File flags are not inherited via accept() unlike another OSes. */
1772
1773        fd_install(newfd, newfile);
1774        err = newfd;
1775
1776out_put:
1777        fput_light(sock->file, fput_needed);
1778out:
1779        return err;
1780out_fd:
1781        fput(newfile);
1782        put_unused_fd(newfd);
1783        goto out_put;
1784}
1785
1786SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1787                int __user *, upeer_addrlen, int, flags)
1788{
1789        return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1790}
1791
1792SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1793                int __user *, upeer_addrlen)
1794{
1795        return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1796}
1797
1798/*
1799 *      Attempt to connect to a socket with the server address.  The address
1800 *      is in user space so we verify it is OK and move it to kernel space.
1801 *
1802 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1803 *      break bindings
1804 *
1805 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1806 *      other SEQPACKET protocols that take time to connect() as it doesn't
1807 *      include the -EINPROGRESS status for such sockets.
1808 */
1809
1810int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1811{
1812        struct socket *sock;
1813        struct sockaddr_storage address;
1814        int err, fput_needed;
1815
1816        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1817        if (!sock)
1818                goto out;
1819        err = move_addr_to_kernel(uservaddr, addrlen, &address);
1820        if (err < 0)
1821                goto out_put;
1822
1823        err =
1824            security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1825        if (err)
1826                goto out_put;
1827
1828        err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1829                                 sock->file->f_flags);
1830out_put:
1831        fput_light(sock->file, fput_needed);
1832out:
1833        return err;
1834}
1835
1836SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1837                int, addrlen)
1838{
1839        return __sys_connect(fd, uservaddr, addrlen);
1840}
1841
1842/*
1843 *      Get the local address ('name') of a socket object. Move the obtained
1844 *      name to user space.
1845 */
1846
1847int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1848                      int __user *usockaddr_len)
1849{
1850        struct socket *sock;
1851        struct sockaddr_storage address;
1852        int err, fput_needed;
1853
1854        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1855        if (!sock)
1856                goto out;
1857
1858        err = security_socket_getsockname(sock);
1859        if (err)
1860                goto out_put;
1861
1862        err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1863        if (err < 0)
1864                goto out_put;
1865        /* "err" is actually length in this case */
1866        err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1867
1868out_put:
1869        fput_light(sock->file, fput_needed);
1870out:
1871        return err;
1872}
1873
1874SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1875                int __user *, usockaddr_len)
1876{
1877        return __sys_getsockname(fd, usockaddr, usockaddr_len);
1878}
1879
1880/*
1881 *      Get the remote address ('name') of a socket object. Move the obtained
1882 *      name to user space.
1883 */
1884
1885int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1886                      int __user *usockaddr_len)
1887{
1888        struct socket *sock;
1889        struct sockaddr_storage address;
1890        int err, fput_needed;
1891
1892        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1893        if (sock != NULL) {
1894                err = security_socket_getpeername(sock);
1895                if (err) {
1896                        fput_light(sock->file, fput_needed);
1897                        return err;
1898                }
1899
1900                err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1901                if (err >= 0)
1902                        /* "err" is actually length in this case */
1903                        err = move_addr_to_user(&address, err, usockaddr,
1904                                                usockaddr_len);
1905                fput_light(sock->file, fput_needed);
1906        }
1907        return err;
1908}
1909
1910SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1911                int __user *, usockaddr_len)
1912{
1913        return __sys_getpeername(fd, usockaddr, usockaddr_len);
1914}
1915
1916/*
1917 *      Send a datagram to a given address. We move the address into kernel
1918 *      space and check the user space data area is readable before invoking
1919 *      the protocol.
1920 */
1921int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1922                 struct sockaddr __user *addr,  int addr_len)
1923{
1924        struct socket *sock;
1925        struct sockaddr_storage address;
1926        int err;
1927        struct msghdr msg;
1928        struct iovec iov;
1929        int fput_needed;
1930
1931        err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1932        if (unlikely(err))
1933                return err;
1934        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1935        if (!sock)
1936                goto out;
1937
1938        msg.msg_name = NULL;
1939        msg.msg_control = NULL;
1940        msg.msg_controllen = 0;
1941        msg.msg_namelen = 0;
1942        if (addr) {
1943                err = move_addr_to_kernel(addr, addr_len, &address);
1944                if (err < 0)
1945                        goto out_put;
1946                msg.msg_name = (struct sockaddr *)&address;
1947                msg.msg_namelen = addr_len;
1948        }
1949        if (sock->file->f_flags & O_NONBLOCK)
1950                flags |= MSG_DONTWAIT;
1951        msg.msg_flags = flags;
1952        err = sock_sendmsg(sock, &msg);
1953
1954out_put:
1955        fput_light(sock->file, fput_needed);
1956out:
1957        return err;
1958}
1959
1960SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1961                unsigned int, flags, struct sockaddr __user *, addr,
1962                int, addr_len)
1963{
1964        return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1965}
1966
1967/*
1968 *      Send a datagram down a socket.
1969 */
1970
1971SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1972                unsigned int, flags)
1973{
1974        return __sys_sendto(fd, buff, len, flags, NULL, 0);
1975}
1976
1977/*
1978 *      Receive a frame from the socket and optionally record the address of the
1979 *      sender. We verify the buffers are writable and if needed move the
1980 *      sender address from kernel to user space.
1981 */
1982int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1983                   struct sockaddr __user *addr, int __user *addr_len)
1984{
1985        struct socket *sock;
1986        struct iovec iov;
1987        struct msghdr msg;
1988        struct sockaddr_storage address;
1989        int err, err2;
1990        int fput_needed;
1991
1992        err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1993        if (unlikely(err))
1994                return err;
1995        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1996        if (!sock)
1997                goto out;
1998
1999        msg.msg_control = NULL;
2000        msg.msg_controllen = 0;
2001        /* Save some cycles and don't copy the address if not needed */
2002        msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2003        /* We assume all kernel code knows the size of sockaddr_storage */
2004        msg.msg_namelen = 0;
2005        msg.msg_iocb = NULL;
2006        msg.msg_flags = 0;
2007        if (sock->file->f_flags & O_NONBLOCK)
2008                flags |= MSG_DONTWAIT;
2009        err = sock_recvmsg(sock, &msg, flags);
2010
2011        if (err >= 0 && addr != NULL) {
2012                err2 = move_addr_to_user(&address,
2013                                         msg.msg_namelen, addr, addr_len);
2014                if (err2 < 0)
2015                        err = err2;
2016        }
2017
2018        fput_light(sock->file, fput_needed);
2019out:
2020        return err;
2021}
2022
2023SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2024                unsigned int, flags, struct sockaddr __user *, addr,
2025                int __user *, addr_len)
2026{
2027        return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2028}
2029
2030/*
2031 *      Receive a datagram from a socket.
2032 */
2033
2034SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2035                unsigned int, flags)
2036{
2037        return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2038}
2039
2040/*
2041 *      Set a socket option. Because we don't know the option lengths we have
2042 *      to pass the user mode parameter for the protocols to sort out.
2043 */
2044
2045static int __sys_setsockopt(int fd, int level, int optname,
2046                            char __user *optval, int optlen)
2047{
2048        mm_segment_t oldfs = get_fs();
2049        char *kernel_optval = NULL;
2050        int err, fput_needed;
2051        struct socket *sock;
2052
2053        if (optlen < 0)
2054                return -EINVAL;
2055
2056        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2057        if (sock != NULL) {
2058                err = security_socket_setsockopt(sock, level, optname);
2059                if (err)
2060                        goto out_put;
2061
2062                err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level,
2063                                                     &optname, optval, &optlen,
2064                                                     &kernel_optval);
2065
2066                if (err < 0) {
2067                        goto out_put;
2068                } else if (err > 0) {
2069                        err = 0;
2070                        goto out_put;
2071                }
2072
2073                if (kernel_optval) {
2074                        set_fs(KERNEL_DS);
2075                        optval = (char __user __force *)kernel_optval;
2076                }
2077
2078                if (level == SOL_SOCKET)
2079                        err =
2080                            sock_setsockopt(sock, level, optname, optval,
2081                                            optlen);
2082                else
2083                        err =
2084                            sock->ops->setsockopt(sock, level, optname, optval,
2085                                                  optlen);
2086
2087                if (kernel_optval) {
2088                        set_fs(oldfs);
2089                        kfree(kernel_optval);
2090                }
2091out_put:
2092                fput_light(sock->file, fput_needed);
2093        }
2094        return err;
2095}
2096
2097SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2098                char __user *, optval, int, optlen)
2099{
2100        return __sys_setsockopt(fd, level, optname, optval, optlen);
2101}
2102
2103/*
2104 *      Get a socket option. Because we don't know the option lengths we have
2105 *      to pass a user mode parameter for the protocols to sort out.
2106 */
2107
2108static int __sys_getsockopt(int fd, int level, int optname,
2109                            char __user *optval, int __user *optlen)
2110{
2111        int err, fput_needed;
2112        struct socket *sock;
2113        int max_optlen;
2114
2115        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2116        if (sock != NULL) {
2117                err = security_socket_getsockopt(sock, level, optname);
2118                if (err)
2119                        goto out_put;
2120
2121                max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2122
2123                if (level == SOL_SOCKET)
2124                        err =
2125                            sock_getsockopt(sock, level, optname, optval,
2126                                            optlen);
2127                else
2128                        err =
2129                            sock->ops->getsockopt(sock, level, optname, optval,
2130                                                  optlen);
2131
2132                err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2133                                                     optval, optlen,
2134                                                     max_optlen, err);
2135out_put:
2136                fput_light(sock->file, fput_needed);
2137        }
2138        return err;
2139}
2140
2141SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2142                char __user *, optval, int __user *, optlen)
2143{
2144        return __sys_getsockopt(fd, level, optname, optval, optlen);
2145}
2146
2147/*
2148 *      Shutdown a socket.
2149 */
2150
2151int __sys_shutdown(int fd, int how)
2152{
2153        int err, fput_needed;
2154        struct socket *sock;
2155
2156        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2157        if (sock != NULL) {
2158                err = security_socket_shutdown(sock, how);
2159                if (!err)
2160                        err = sock->ops->shutdown(sock, how);
2161                fput_light(sock->file, fput_needed);
2162        }
2163        return err;
2164}
2165
2166SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2167{
2168        return __sys_shutdown(fd, how);
2169}
2170
2171/* A couple of helpful macros for getting the address of the 32/64 bit
2172 * fields which are the same type (int / unsigned) on our platforms.
2173 */
2174#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2175#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
2176#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
2177
2178struct used_address {
2179        struct sockaddr_storage name;
2180        unsigned int name_len;
2181};
2182
2183static int copy_msghdr_from_user(struct msghdr *kmsg,
2184                                 struct user_msghdr __user *umsg,
2185                                 struct sockaddr __user **save_addr,
2186                                 struct iovec **iov)
2187{
2188        struct user_msghdr msg;
2189        ssize_t err;
2190
2191        if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2192                return -EFAULT;
2193
2194        kmsg->msg_control = (void __force *)msg.msg_control;
2195        kmsg->msg_controllen = msg.msg_controllen;
2196        kmsg->msg_flags = msg.msg_flags;
2197
2198        kmsg->msg_namelen = msg.msg_namelen;
2199        if (!msg.msg_name)
2200                kmsg->msg_namelen = 0;
2201
2202        if (kmsg->msg_namelen < 0)
2203                return -EINVAL;
2204
2205        if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2206                kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2207
2208        if (save_addr)
2209                *save_addr = msg.msg_name;
2210
2211        if (msg.msg_name && kmsg->msg_namelen) {
2212                if (!save_addr) {
2213                        err = move_addr_to_kernel(msg.msg_name,
2214                                                  kmsg->msg_namelen,
2215                                                  kmsg->msg_name);
2216                        if (err < 0)
2217                                return err;
2218                }
2219        } else {
2220                kmsg->msg_name = NULL;
2221                kmsg->msg_namelen = 0;
2222        }
2223
2224        if (msg.msg_iovlen > UIO_MAXIOV)
2225                return -EMSGSIZE;
2226
2227        kmsg->msg_iocb = NULL;
2228
2229        err = import_iovec(save_addr ? READ : WRITE,
2230                            msg.msg_iov, msg.msg_iovlen,
2231                            UIO_FASTIOV, iov, &kmsg->msg_iter);
2232        return err < 0 ? err : 0;
2233}
2234
2235static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2236                         struct msghdr *msg_sys, unsigned int flags,
2237                         struct used_address *used_address,
2238                         unsigned int allowed_msghdr_flags)
2239{
2240        struct compat_msghdr __user *msg_compat =
2241            (struct compat_msghdr __user *)msg;
2242        struct sockaddr_storage address;
2243        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2244        unsigned char ctl[sizeof(struct cmsghdr) + 20]
2245                                __aligned(sizeof(__kernel_size_t));
2246        /* 20 is size of ipv6_pktinfo */
2247        unsigned char *ctl_buf = ctl;
2248        int ctl_len;
2249        ssize_t err;
2250
2251        msg_sys->msg_name = &address;
2252
2253        if (MSG_CMSG_COMPAT & flags)
2254                err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
2255        else
2256                err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
2257        if (err < 0)
2258                return err;
2259
2260        err = -ENOBUFS;
2261
2262        if (msg_sys->msg_controllen > INT_MAX)
2263                goto out_freeiov;
2264        flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2265        ctl_len = msg_sys->msg_controllen;
2266        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2267                err =
2268                    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2269                                                     sizeof(ctl));
2270                if (err)
2271                        goto out_freeiov;
2272                ctl_buf = msg_sys->msg_control;
2273                ctl_len = msg_sys->msg_controllen;
2274        } else if (ctl_len) {
2275                BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2276                             CMSG_ALIGN(sizeof(struct cmsghdr)));
2277                if (ctl_len > sizeof(ctl)) {
2278                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2279                        if (ctl_buf == NULL)
2280                                goto out_freeiov;
2281                }
2282                err = -EFAULT;
2283                /*
2284                 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2285                 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2286                 * checking falls down on this.
2287                 */
2288                if (copy_from_user(ctl_buf,
2289                                   (void __user __force *)msg_sys->msg_control,
2290                                   ctl_len))
2291                        goto out_freectl;
2292                msg_sys->msg_control = ctl_buf;
2293        }
2294        msg_sys->msg_flags = flags;
2295
2296        if (sock->file->f_flags & O_NONBLOCK)
2297                msg_sys->msg_flags |= MSG_DONTWAIT;
2298        /*
2299         * If this is sendmmsg() and current destination address is same as
2300         * previously succeeded address, omit asking LSM's decision.
2301         * used_address->name_len is initialized to UINT_MAX so that the first
2302         * destination address never matches.
2303         */
2304        if (used_address && msg_sys->msg_name &&
2305            used_address->name_len == msg_sys->msg_namelen &&
2306            !memcmp(&used_address->name, msg_sys->msg_name,
2307                    used_address->name_len)) {
2308                err = sock_sendmsg_nosec(sock, msg_sys);
2309                goto out_freectl;
2310        }
2311        err = sock_sendmsg(sock, msg_sys);
2312        /*
2313         * If this is sendmmsg() and sending to current destination address was
2314         * successful, remember it.
2315         */
2316        if (used_address && err >= 0) {
2317                used_address->name_len = msg_sys->msg_namelen;
2318                if (msg_sys->msg_name)
2319                        memcpy(&used_address->name, msg_sys->msg_name,
2320                               used_address->name_len);
2321        }
2322
2323out_freectl:
2324        if (ctl_buf != ctl)
2325                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2326out_freeiov:
2327        kfree(iov);
2328        return err;
2329}
2330
2331/*
2332 *      BSD sendmsg interface
2333 */
2334long __sys_sendmsg_sock(struct socket *sock, struct user_msghdr __user *msg,
2335                        unsigned int flags)
2336{
2337        struct msghdr msg_sys;
2338
2339        return ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2340}
2341
2342long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2343                   bool forbid_cmsg_compat)
2344{
2345        int fput_needed, err;
2346        struct msghdr msg_sys;
2347        struct socket *sock;
2348
2349        if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2350                return -EINVAL;
2351
2352        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2353        if (!sock)
2354                goto out;
2355
2356        err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2357
2358        fput_light(sock->file, fput_needed);
2359out:
2360        return err;
2361}
2362
2363SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2364{
2365        return __sys_sendmsg(fd, msg, flags, true);
2366}
2367
2368/*
2369 *      Linux sendmmsg interface
2370 */
2371
2372int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2373                   unsigned int flags, bool forbid_cmsg_compat)
2374{
2375        int fput_needed, err, datagrams;
2376        struct socket *sock;
2377        struct mmsghdr __user *entry;
2378        struct compat_mmsghdr __user *compat_entry;
2379        struct msghdr msg_sys;
2380        struct used_address used_address;
2381        unsigned int oflags = flags;
2382
2383        if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2384                return -EINVAL;
2385
2386        if (vlen > UIO_MAXIOV)
2387                vlen = UIO_MAXIOV;
2388
2389        datagrams = 0;
2390
2391        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2392        if (!sock)
2393                return err;
2394
2395        used_address.name_len = UINT_MAX;
2396        entry = mmsg;
2397        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2398        err = 0;
2399        flags |= MSG_BATCH;
2400
2401        while (datagrams < vlen) {
2402                if (datagrams == vlen - 1)
2403                        flags = oflags;
2404
2405                if (MSG_CMSG_COMPAT & flags) {
2406                        err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2407                                             &msg_sys, flags, &used_address, MSG_EOR);
2408                        if (err < 0)
2409                                break;
2410                        err = __put_user(err, &compat_entry->msg_len);
2411                        ++compat_entry;
2412                } else {
2413                        err = ___sys_sendmsg(sock,
2414                                             (struct user_msghdr __user *)entry,
2415                                             &msg_sys, flags, &used_address, MSG_EOR);
2416                        if (err < 0)
2417                                break;
2418                        err = put_user(err, &entry->msg_len);
2419                        ++entry;
2420                }
2421
2422                if (err)
2423                        break;
2424                ++datagrams;
2425                if (msg_data_left(&msg_sys))
2426                        break;
2427                cond_resched();
2428        }
2429
2430        fput_light(sock->file, fput_needed);
2431
2432        /* We only return an error if no datagrams were able to be sent */
2433        if (datagrams != 0)
2434                return datagrams;
2435
2436        return err;
2437}
2438
2439SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2440                unsigned int, vlen, unsigned int, flags)
2441{
2442        return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2443}
2444
2445static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2446                         struct msghdr *msg_sys, unsigned int flags, int nosec)
2447{
2448        struct compat_msghdr __user *msg_compat =
2449            (struct compat_msghdr __user *)msg;
2450        struct iovec iovstack[UIO_FASTIOV];
2451        struct iovec *iov = iovstack;
2452        unsigned long cmsg_ptr;
2453        int len;
2454        ssize_t err;
2455
2456        /* kernel mode address */
2457        struct sockaddr_storage addr;
2458
2459        /* user mode address pointers */
2460        struct sockaddr __user *uaddr;
2461        int __user *uaddr_len = COMPAT_NAMELEN(msg);
2462
2463        msg_sys->msg_name = &addr;
2464
2465        if (MSG_CMSG_COMPAT & flags)
2466                err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2467        else
2468                err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2469        if (err < 0)
2470                return err;
2471
2472        cmsg_ptr = (unsigned long)msg_sys->msg_control;
2473        msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2474
2475        /* We assume all kernel code knows the size of sockaddr_storage */
2476        msg_sys->msg_namelen = 0;
2477
2478        if (sock->file->f_flags & O_NONBLOCK)
2479                flags |= MSG_DONTWAIT;
2480        err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2481        if (err < 0)
2482                goto out_freeiov;
2483        len = err;
2484
2485        if (uaddr != NULL) {
2486                err = move_addr_to_user(&addr,
2487                                        msg_sys->msg_namelen, uaddr,
2488                                        uaddr_len);
2489                if (err < 0)
2490                        goto out_freeiov;
2491        }
2492        err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2493                         COMPAT_FLAGS(msg));
2494        if (err)
2495                goto out_freeiov;
2496        if (MSG_CMSG_COMPAT & flags)
2497                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2498                                 &msg_compat->msg_controllen);
2499        else
2500                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2501                                 &msg->msg_controllen);
2502        if (err)
2503                goto out_freeiov;
2504        err = len;
2505
2506out_freeiov:
2507        kfree(iov);
2508        return err;
2509}
2510
2511/*
2512 *      BSD recvmsg interface
2513 */
2514
2515long __sys_recvmsg_sock(struct socket *sock, struct user_msghdr __user *msg,
2516                        unsigned int flags)
2517{
2518        struct msghdr msg_sys;
2519
2520        return ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2521}
2522
2523long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2524                   bool forbid_cmsg_compat)
2525{
2526        int fput_needed, err;
2527        struct msghdr msg_sys;
2528        struct socket *sock;
2529
2530        if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2531                return -EINVAL;
2532
2533        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2534        if (!sock)
2535                goto out;
2536
2537        err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2538
2539        fput_light(sock->file, fput_needed);
2540out:
2541        return err;
2542}
2543
2544SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2545                unsigned int, flags)
2546{
2547        return __sys_recvmsg(fd, msg, flags, true);
2548}
2549
2550/*
2551 *     Linux recvmmsg interface
2552 */
2553
2554static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2555                          unsigned int vlen, unsigned int flags,
2556                          struct timespec64 *timeout)
2557{
2558        int fput_needed, err, datagrams;
2559        struct socket *sock;
2560        struct mmsghdr __user *entry;
2561        struct compat_mmsghdr __user *compat_entry;
2562        struct msghdr msg_sys;
2563        struct timespec64 end_time;
2564        struct timespec64 timeout64;
2565
2566        if (timeout &&
2567            poll_select_set_timeout(&end_time, timeout->tv_sec,
2568                                    timeout->tv_nsec))
2569                return -EINVAL;
2570
2571        datagrams = 0;
2572
2573        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2574        if (!sock)
2575                return err;
2576
2577        if (likely(!(flags & MSG_ERRQUEUE))) {
2578                err = sock_error(sock->sk);
2579                if (err) {
2580                        datagrams = err;
2581                        goto out_put;
2582                }
2583        }
2584
2585        entry = mmsg;
2586        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2587
2588        while (datagrams < vlen) {
2589                /*
2590                 * No need to ask LSM for more than the first datagram.
2591                 */
2592                if (MSG_CMSG_COMPAT & flags) {
2593                        err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2594                                             &msg_sys, flags & ~MSG_WAITFORONE,
2595                                             datagrams);
2596                        if (err < 0)
2597                                break;
2598                        err = __put_user(err, &compat_entry->msg_len);
2599                        ++compat_entry;
2600                } else {
2601                        err = ___sys_recvmsg(sock,
2602                                             (struct user_msghdr __user *)entry,
2603                                             &msg_sys, flags & ~MSG_WAITFORONE,
2604                                             datagrams);
2605                        if (err < 0)
2606                                break;
2607                        err = put_user(err, &entry->msg_len);
2608                        ++entry;
2609                }
2610
2611                if (err)
2612                        break;
2613                ++datagrams;
2614
2615                /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2616                if (flags & MSG_WAITFORONE)
2617                        flags |= MSG_DONTWAIT;
2618
2619                if (timeout) {
2620                        ktime_get_ts64(&timeout64);
2621                        *timeout = timespec64_sub(end_time, timeout64);
2622                        if (timeout->tv_sec < 0) {
2623                                timeout->tv_sec = timeout->tv_nsec = 0;
2624                                break;
2625                        }
2626
2627                        /* Timeout, return less than vlen datagrams */
2628                        if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2629                                break;
2630                }
2631
2632                /* Out of band data, return right away */
2633                if (msg_sys.msg_flags & MSG_OOB)
2634                        break;
2635                cond_resched();
2636        }
2637
2638        if (err == 0)
2639                goto out_put;
2640
2641        if (datagrams == 0) {
2642                datagrams = err;
2643                goto out_put;
2644        }
2645
2646        /*
2647         * We may return less entries than requested (vlen) if the
2648         * sock is non block and there aren't enough datagrams...
2649         */
2650        if (err != -EAGAIN) {
2651                /*
2652                 * ... or  if recvmsg returns an error after we
2653                 * received some datagrams, where we record the
2654                 * error to return on the next call or if the
2655                 * app asks about it using getsockopt(SO_ERROR).
2656                 */
2657                sock->sk->sk_err = -err;
2658        }
2659out_put:
2660        fput_light(sock->file, fput_needed);
2661
2662        return datagrams;
2663}
2664
2665int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2666                   unsigned int vlen, unsigned int flags,
2667                   struct __kernel_timespec __user *timeout,
2668                   struct old_timespec32 __user *timeout32)
2669{
2670        int datagrams;
2671        struct timespec64 timeout_sys;
2672
2673        if (timeout && get_timespec64(&timeout_sys, timeout))
2674                return -EFAULT;
2675
2676        if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2677                return -EFAULT;
2678
2679        if (!timeout && !timeout32)
2680                return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2681
2682        datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2683
2684        if (datagrams <= 0)
2685                return datagrams;
2686
2687        if (timeout && put_timespec64(&timeout_sys, timeout))
2688                datagrams = -EFAULT;
2689
2690        if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2691                datagrams = -EFAULT;
2692
2693        return datagrams;
2694}
2695
2696SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2697                unsigned int, vlen, unsigned int, flags,
2698                struct __kernel_timespec __user *, timeout)
2699{
2700        if (flags & MSG_CMSG_COMPAT)
2701                return -EINVAL;
2702
2703        return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2704}
2705
2706#ifdef CONFIG_COMPAT_32BIT_TIME
2707SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2708                unsigned int, vlen, unsigned int, flags,
2709                struct old_timespec32 __user *, timeout)
2710{
2711        if (flags & MSG_CMSG_COMPAT)
2712                return -EINVAL;
2713
2714        return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2715}
2716#endif
2717
2718#ifdef __ARCH_WANT_SYS_SOCKETCALL
2719/* Argument list sizes for sys_socketcall */
2720#define AL(x) ((x) * sizeof(unsigned long))
2721static const unsigned char nargs[21] = {
2722        AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2723        AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2724        AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2725        AL(4), AL(5), AL(4)
2726};
2727
2728#undef AL
2729
2730/*
2731 *      System call vectors.
2732 *
2733 *      Argument checking cleaned up. Saved 20% in size.
2734 *  This function doesn't need to set the kernel lock because
2735 *  it is set by the callees.
2736 */
2737
2738SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2739{
2740        unsigned long a[AUDITSC_ARGS];
2741        unsigned long a0, a1;
2742        int err;
2743        unsigned int len;
2744
2745        if (call < 1 || call > SYS_SENDMMSG)
2746                return -EINVAL;
2747        call = array_index_nospec(call, SYS_SENDMMSG + 1);
2748
2749        len = nargs[call];
2750        if (len > sizeof(a))
2751                return -EINVAL;
2752
2753        /* copy_from_user should be SMP safe. */
2754        if (copy_from_user(a, args, len))
2755                return -EFAULT;
2756
2757        err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2758        if (err)
2759                return err;
2760
2761        a0 = a[0];
2762        a1 = a[1];
2763
2764        switch (call) {
2765        case SYS_SOCKET:
2766                err = __sys_socket(a0, a1, a[2]);
2767                break;
2768        case SYS_BIND:
2769                err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2770                break;
2771        case SYS_CONNECT:
2772                err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2773                break;
2774        case SYS_LISTEN:
2775                err = __sys_listen(a0, a1);
2776                break;
2777        case SYS_ACCEPT:
2778                err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2779                                    (int __user *)a[2], 0);
2780                break;
2781        case SYS_GETSOCKNAME:
2782                err =
2783                    __sys_getsockname(a0, (struct sockaddr __user *)a1,
2784                                      (int __user *)a[2]);
2785                break;
2786        case SYS_GETPEERNAME:
2787                err =
2788                    __sys_getpeername(a0, (struct sockaddr __user *)a1,
2789                                      (int __user *)a[2]);
2790                break;
2791        case SYS_SOCKETPAIR:
2792                err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2793                break;
2794        case SYS_SEND:
2795                err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2796                                   NULL, 0);
2797                break;
2798        case SYS_SENDTO:
2799                err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2800                                   (struct sockaddr __user *)a[4], a[5]);
2801                break;
2802        case SYS_RECV:
2803                err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2804                                     NULL, NULL);
2805                break;
2806        case SYS_RECVFROM:
2807                err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2808                                     (struct sockaddr __user *)a[4],
2809                                     (int __user *)a[5]);
2810                break;
2811        case SYS_SHUTDOWN:
2812                err = __sys_shutdown(a0, a1);
2813                break;
2814        case SYS_SETSOCKOPT:
2815                err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2816                                       a[4]);
2817                break;
2818        case SYS_GETSOCKOPT:
2819                err =
2820                    __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2821                                     (int __user *)a[4]);
2822                break;
2823        case SYS_SENDMSG:
2824                err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2825                                    a[2], true);
2826                break;
2827        case SYS_SENDMMSG:
2828                err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2829                                     a[3], true);
2830                break;
2831        case SYS_RECVMSG:
2832                err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2833                                    a[2], true);
2834                break;
2835        case SYS_RECVMMSG:
2836                if (IS_ENABLED(CONFIG_64BIT) || !IS_ENABLED(CONFIG_64BIT_TIME))
2837                        err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2838                                             a[2], a[3],
2839                                             (struct __kernel_timespec __user *)a[4],
2840                                             NULL);
2841                else
2842                        err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2843                                             a[2], a[3], NULL,
2844                                             (struct old_timespec32 __user *)a[4]);
2845                break;
2846        case SYS_ACCEPT4:
2847                err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2848                                    (int __user *)a[2], a[3]);
2849                break;
2850        default:
2851                err = -EINVAL;
2852                break;
2853        }
2854        return err;
2855}
2856
2857#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2858
2859/**
2860 *      sock_register - add a socket protocol handler
2861 *      @ops: description of protocol
2862 *
2863 *      This function is called by a protocol handler that wants to
2864 *      advertise its address family, and have it linked into the
2865 *      socket interface. The value ops->family corresponds to the
2866 *      socket system call protocol family.
2867 */
2868int sock_register(const struct net_proto_family *ops)
2869{
2870        int err;
2871
2872        if (ops->family >= NPROTO) {
2873                pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2874                return -ENOBUFS;
2875        }
2876
2877        spin_lock(&net_family_lock);
2878        if (rcu_dereference_protected(net_families[ops->family],
2879                                      lockdep_is_held(&net_family_lock)))
2880                err = -EEXIST;
2881        else {
2882                rcu_assign_pointer(net_families[ops->family], ops);
2883                err = 0;
2884        }
2885        spin_unlock(&net_family_lock);
2886
2887        pr_info("NET: Registered protocol family %d\n", ops->family);
2888        return err;
2889}
2890EXPORT_SYMBOL(sock_register);
2891
2892/**
2893 *      sock_unregister - remove a protocol handler
2894 *      @family: protocol family to remove
2895 *
2896 *      This function is called by a protocol handler that wants to
2897 *      remove its address family, and have it unlinked from the
2898 *      new socket creation.
2899 *
2900 *      If protocol handler is a module, then it can use module reference
2901 *      counts to protect against new references. If protocol handler is not
2902 *      a module then it needs to provide its own protection in
2903 *      the ops->create routine.
2904 */
2905void sock_unregister(int family)
2906{
2907        BUG_ON(family < 0 || family >= NPROTO);
2908
2909        spin_lock(&net_family_lock);
2910        RCU_INIT_POINTER(net_families[family], NULL);
2911        spin_unlock(&net_family_lock);
2912
2913        synchronize_rcu();
2914
2915        pr_info("NET: Unregistered protocol family %d\n", family);
2916}
2917EXPORT_SYMBOL(sock_unregister);
2918
2919bool sock_is_registered(int family)
2920{
2921        return family < NPROTO && rcu_access_pointer(net_families[family]);
2922}
2923
2924static int __init sock_init(void)
2925{
2926        int err;
2927        /*
2928         *      Initialize the network sysctl infrastructure.
2929         */
2930        err = net_sysctl_init();
2931        if (err)
2932                goto out;
2933
2934        /*
2935         *      Initialize skbuff SLAB cache
2936         */
2937        skb_init();
2938
2939        /*
2940         *      Initialize the protocols module.
2941         */
2942
2943        init_inodecache();
2944
2945        err = register_filesystem(&sock_fs_type);
2946        if (err)
2947                goto out_fs;
2948        sock_mnt = kern_mount(&sock_fs_type);
2949        if (IS_ERR(sock_mnt)) {
2950                err = PTR_ERR(sock_mnt);
2951                goto out_mount;
2952        }
2953
2954        /* The real protocol initialization is performed in later initcalls.
2955         */
2956
2957#ifdef CONFIG_NETFILTER
2958        err = netfilter_init();
2959        if (err)
2960                goto out;
2961#endif
2962
2963        ptp_classifier_init();
2964
2965out:
2966        return err;
2967
2968out_mount:
2969        unregister_filesystem(&sock_fs_type);
2970out_fs:
2971        goto out;
2972}
2973
2974core_initcall(sock_init);       /* early initcall */
2975
2976#ifdef CONFIG_PROC_FS
2977void socket_seq_show(struct seq_file *seq)
2978{
2979        seq_printf(seq, "sockets: used %d\n",
2980                   sock_inuse_get(seq->private));
2981}
2982#endif                          /* CONFIG_PROC_FS */
2983
2984#ifdef CONFIG_COMPAT
2985static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2986{
2987        struct compat_ifconf ifc32;
2988        struct ifconf ifc;
2989        int err;
2990
2991        if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2992                return -EFAULT;
2993
2994        ifc.ifc_len = ifc32.ifc_len;
2995        ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
2996
2997        rtnl_lock();
2998        err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
2999        rtnl_unlock();
3000        if (err)
3001                return err;
3002
3003        ifc32.ifc_len = ifc.ifc_len;
3004        if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3005                return -EFAULT;
3006
3007        return 0;
3008}
3009
3010static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3011{
3012        struct compat_ethtool_rxnfc __user *compat_rxnfc;
3013        bool convert_in = false, convert_out = false;
3014        size_t buf_size = 0;
3015        struct ethtool_rxnfc __user *rxnfc = NULL;
3016        struct ifreq ifr;
3017        u32 rule_cnt = 0, actual_rule_cnt;
3018        u32 ethcmd;
3019        u32 data;
3020        int ret;
3021
3022        if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3023                return -EFAULT;
3024
3025        compat_rxnfc = compat_ptr(data);
3026
3027        if (get_user(ethcmd, &compat_rxnfc->cmd))
3028                return -EFAULT;
3029
3030        /* Most ethtool structures are defined without padding.
3031         * Unfortunately struct ethtool_rxnfc is an exception.
3032         */
3033        switch (ethcmd) {
3034        default:
3035                break;
3036        case ETHTOOL_GRXCLSRLALL:
3037                /* Buffer size is variable */
3038                if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3039                        return -EFAULT;
3040                if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3041                        return -ENOMEM;
3042                buf_size += rule_cnt * sizeof(u32);
3043                /* fall through */
3044        case ETHTOOL_GRXRINGS:
3045        case ETHTOOL_GRXCLSRLCNT:
3046        case ETHTOOL_GRXCLSRULE:
3047        case ETHTOOL_SRXCLSRLINS:
3048                convert_out = true;
3049                /* fall through */
3050        case ETHTOOL_SRXCLSRLDEL:
3051                buf_size += sizeof(struct ethtool_rxnfc);
3052                convert_in = true;
3053                rxnfc = compat_alloc_user_space(buf_size);
3054                break;
3055        }
3056
3057        if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3058                return -EFAULT;
3059
3060        ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3061
3062        if (convert_in) {
3063                /* We expect there to be holes between fs.m_ext and
3064                 * fs.ring_cookie and at the end of fs, but nowhere else.
3065                 */
3066                BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3067                             sizeof(compat_rxnfc->fs.m_ext) !=
3068                             offsetof(struct ethtool_rxnfc, fs.m_ext) +
3069                             sizeof(rxnfc->fs.m_ext));
3070                BUILD_BUG_ON(
3071                        offsetof(struct compat_ethtool_rxnfc, fs.location) -
3072                        offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3073                        offsetof(struct ethtool_rxnfc, fs.location) -
3074                        offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3075
3076                if (copy_in_user(rxnfc, compat_rxnfc,
3077                                 (void __user *)(&rxnfc->fs.m_ext + 1) -
3078                                 (void __user *)rxnfc) ||
3079                    copy_in_user(&rxnfc->fs.ring_cookie,
3080                                 &compat_rxnfc->fs.ring_cookie,
3081                                 (void __user *)(&rxnfc->fs.location + 1) -
3082                                 (void __user *)&rxnfc->fs.ring_cookie))
3083                        return -EFAULT;
3084                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3085                        if (put_user(rule_cnt, &rxnfc->rule_cnt))
3086                                return -EFAULT;
3087                } else if (copy_in_user(&rxnfc->rule_cnt,
3088                                        &compat_rxnfc->rule_cnt,
3089                                        sizeof(rxnfc->rule_cnt)))
3090                        return -EFAULT;
3091        }
3092
3093        ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3094        if (ret)
3095                return ret;
3096
3097        if (convert_out) {
3098                if (copy_in_user(compat_rxnfc, rxnfc,
3099                                 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3100                                 (const void __user *)rxnfc) ||
3101                    copy_in_user(&compat_rxnfc->fs.ring_cookie,
3102                                 &rxnfc->fs.ring_cookie,
3103                                 (const void __user *)(&rxnfc->fs.location + 1) -
3104                                 (const void __user *)&rxnfc->fs.ring_cookie) ||
3105                    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3106                                 sizeof(rxnfc->rule_cnt)))
3107                        return -EFAULT;
3108
3109                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3110                        /* As an optimisation, we only copy the actual
3111                         * number of rules that the underlying
3112                         * function returned.  Since Mallory might
3113                         * change the rule count in user memory, we
3114                         * check that it is less than the rule count
3115                         * originally given (as the user buffer size),
3116                         * which has been range-checked.
3117                         */
3118                        if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3119                                return -EFAULT;
3120                        if (actual_rule_cnt < rule_cnt)
3121                                rule_cnt = actual_rule_cnt;
3122                        if (copy_in_user(&compat_rxnfc->rule_locs[0],
3123                                         &rxnfc->rule_locs[0],
3124                                         rule_cnt * sizeof(u32)))
3125                                return -EFAULT;
3126                }
3127        }
3128
3129        return 0;
3130}
3131
3132static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3133{
3134        compat_uptr_t uptr32;
3135        struct ifreq ifr;
3136        void __user *saved;
3137        int err;
3138
3139        if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3140                return -EFAULT;
3141
3142        if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3143                return -EFAULT;
3144
3145        saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3146        ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3147
3148        err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3149        if (!err) {
3150                ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3151                if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3152                        err = -EFAULT;
3153        }
3154        return err;
3155}
3156
3157/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3158static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3159                                 struct compat_ifreq __user *u_ifreq32)
3160{
3161        struct ifreq ifreq;
3162        u32 data32;
3163
3164        if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3165                return -EFAULT;
3166        if (get_user(data32, &u_ifreq32->ifr_data))
3167                return -EFAULT;
3168        ifreq.ifr_data = compat_ptr(data32);
3169
3170        return dev_ioctl(net, cmd, &ifreq, NULL);
3171}
3172
3173static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3174                              unsigned int cmd,
3175                              struct compat_ifreq __user *uifr32)
3176{
3177        struct ifreq __user *uifr;
3178        int err;
3179
3180        /* Handle the fact that while struct ifreq has the same *layout* on
3181         * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3182         * which are handled elsewhere, it still has different *size* due to
3183         * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3184         * resulting in struct ifreq being 32 and 40 bytes respectively).
3185         * As a result, if the struct happens to be at the end of a page and
3186         * the next page isn't readable/writable, we get a fault. To prevent
3187         * that, copy back and forth to the full size.
3188         */
3189
3190        uifr = compat_alloc_user_space(sizeof(*uifr));
3191        if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3192                return -EFAULT;
3193
3194        err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3195
3196        if (!err) {
3197                switch (cmd) {
3198                case SIOCGIFFLAGS:
3199                case SIOCGIFMETRIC:
3200                case SIOCGIFMTU:
3201                case SIOCGIFMEM:
3202                case SIOCGIFHWADDR:
3203                case SIOCGIFINDEX:
3204                case SIOCGIFADDR:
3205                case SIOCGIFBRDADDR:
3206                case SIOCGIFDSTADDR:
3207                case SIOCGIFNETMASK:
3208                case SIOCGIFPFLAGS:
3209                case SIOCGIFTXQLEN:
3210                case SIOCGMIIPHY:
3211                case SIOCGMIIREG:
3212                case SIOCGIFNAME:
3213                        if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3214                                err = -EFAULT;
3215                        break;
3216                }
3217        }
3218        return err;
3219}
3220
3221static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3222                        struct compat_ifreq __user *uifr32)
3223{
3224        struct ifreq ifr;
3225        struct compat_ifmap __user *uifmap32;
3226        int err;
3227
3228        uifmap32 = &uifr32->ifr_ifru.ifru_map;
3229        err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3230        err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3231        err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3232        err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3233        err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3234        err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3235        err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3236        if (err)
3237                return -EFAULT;
3238
3239        err = dev_ioctl(net, cmd, &ifr, NULL);
3240
3241        if (cmd == SIOCGIFMAP && !err) {
3242                err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3243                err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3244                err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3245                err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3246                err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3247                err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3248                err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3249                if (err)
3250                        err = -EFAULT;
3251        }
3252        return err;
3253}
3254
3255struct rtentry32 {
3256        u32             rt_pad1;
3257        struct sockaddr rt_dst;         /* target address               */
3258        struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
3259        struct sockaddr rt_genmask;     /* target network mask (IP)     */
3260        unsigned short  rt_flags;
3261        short           rt_pad2;
3262        u32             rt_pad3;
3263        unsigned char   rt_tos;
3264        unsigned char   rt_class;
3265        short           rt_pad4;
3266        short           rt_metric;      /* +1 for binary compatibility! */
3267        /* char * */ u32 rt_dev;        /* forcing the device at add    */
3268        u32             rt_mtu;         /* per route MTU/Window         */
3269        u32             rt_window;      /* Window clamping              */
3270        unsigned short  rt_irtt;        /* Initial RTT                  */
3271};
3272
3273struct in6_rtmsg32 {
3274        struct in6_addr         rtmsg_dst;
3275        struct in6_addr         rtmsg_src;
3276        struct in6_addr         rtmsg_gateway;
3277        u32                     rtmsg_type;
3278        u16                     rtmsg_dst_len;
3279        u16                     rtmsg_src_len;
3280        u32                     rtmsg_metric;
3281        u32                     rtmsg_info;
3282        u32                     rtmsg_flags;
3283        s32                     rtmsg_ifindex;
3284};
3285
3286static int routing_ioctl(struct net *net, struct socket *sock,
3287                         unsigned int cmd, void __user *argp)
3288{
3289        int ret;
3290        void *r = NULL;
3291        struct in6_rtmsg r6;
3292        struct rtentry r4;
3293        char devname[16];
3294        u32 rtdev;
3295        mm_segment_t old_fs = get_fs();
3296
3297        if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3298                struct in6_rtmsg32 __user *ur6 = argp;
3299                ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3300                        3 * sizeof(struct in6_addr));
3301                ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3302                ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3303                ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3304                ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3305                ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3306                ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3307                ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3308
3309                r = (void *) &r6;
3310        } else { /* ipv4 */
3311                struct rtentry32 __user *ur4 = argp;
3312                ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3313                                        3 * sizeof(struct sockaddr));
3314                ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3315                ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3316                ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3317                ret |= get_user(r4.rt_window, &(ur4->rt_window));
3318                ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3319                ret |= get_user(rtdev, &(ur4->rt_dev));
3320                if (rtdev) {
3321                        ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3322                        r4.rt_dev = (char __user __force *)devname;
3323                        devname[15] = 0;
3324                } else
3325                        r4.rt_dev = NULL;
3326
3327                r = (void *) &r4;
3328        }
3329
3330        if (ret) {
3331                ret = -EFAULT;
3332                goto out;
3333        }
3334
3335        set_fs(KERNEL_DS);
3336        ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3337        set_fs(old_fs);
3338
3339out:
3340        return ret;
3341}
3342
3343/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3344 * for some operations; this forces use of the newer bridge-utils that
3345 * use compatible ioctls
3346 */
3347static int old_bridge_ioctl(compat_ulong_t __user *argp)
3348{
3349        compat_ulong_t tmp;
3350
3351        if (get_user(tmp, argp))
3352                return -EFAULT;
3353        if (tmp == BRCTL_GET_VERSION)
3354                return BRCTL_VERSION + 1;
3355        return -EINVAL;
3356}
3357
3358static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3359                         unsigned int cmd, unsigned long arg)
3360{
3361        void __user *argp = compat_ptr(arg);
3362        struct sock *sk = sock->sk;
3363        struct net *net = sock_net(sk);
3364
3365        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3366                return compat_ifr_data_ioctl(net, cmd, argp);
3367
3368        switch (cmd) {
3369        case SIOCSIFBR:
3370        case SIOCGIFBR:
3371                return old_bridge_ioctl(argp);
3372        case SIOCGIFCONF:
3373                return compat_dev_ifconf(net, argp);
3374        case SIOCETHTOOL:
3375                return ethtool_ioctl(net, argp);
3376        case SIOCWANDEV:
3377                return compat_siocwandev(net, argp);
3378        case SIOCGIFMAP:
3379        case SIOCSIFMAP:
3380                return compat_sioc_ifmap(net, cmd, argp);
3381        case SIOCADDRT:
3382        case SIOCDELRT:
3383                return routing_ioctl(net, sock, cmd, argp);
3384        case SIOCGSTAMP_OLD:
3385        case SIOCGSTAMPNS_OLD:
3386                if (!sock->ops->gettstamp)
3387                        return -ENOIOCTLCMD;
3388                return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3389                                            !COMPAT_USE_64BIT_TIME);
3390
3391        case SIOCBONDSLAVEINFOQUERY:
3392        case SIOCBONDINFOQUERY:
3393        case SIOCSHWTSTAMP:
3394        case SIOCGHWTSTAMP:
3395                return compat_ifr_data_ioctl(net, cmd, argp);
3396
3397        case FIOSETOWN:
3398        case SIOCSPGRP:
3399        case FIOGETOWN:
3400        case SIOCGPGRP:
3401        case SIOCBRADDBR:
3402        case SIOCBRDELBR:
3403        case SIOCGIFVLAN:
3404        case SIOCSIFVLAN:
3405        case SIOCADDDLCI:
3406        case SIOCDELDLCI:
3407        case SIOCGSKNS:
3408        case SIOCGSTAMP_NEW:
3409        case SIOCGSTAMPNS_NEW:
3410                return sock_ioctl(file, cmd, arg);
3411
3412        case SIOCGIFFLAGS:
3413        case SIOCSIFFLAGS:
3414        case SIOCGIFMETRIC:
3415        case SIOCSIFMETRIC:
3416        case SIOCGIFMTU:
3417        case SIOCSIFMTU:
3418        case SIOCGIFMEM:
3419        case SIOCSIFMEM:
3420        case SIOCGIFHWADDR:
3421        case SIOCSIFHWADDR:
3422        case SIOCADDMULTI:
3423        case SIOCDELMULTI:
3424        case SIOCGIFINDEX:
3425        case SIOCGIFADDR:
3426        case SIOCSIFADDR:
3427        case SIOCSIFHWBROADCAST:
3428        case SIOCDIFADDR:
3429        case SIOCGIFBRDADDR:
3430        case SIOCSIFBRDADDR:
3431        case SIOCGIFDSTADDR:
3432        case SIOCSIFDSTADDR:
3433        case SIOCGIFNETMASK:
3434        case SIOCSIFNETMASK:
3435        case SIOCSIFPFLAGS:
3436        case SIOCGIFPFLAGS:
3437        case SIOCGIFTXQLEN:
3438        case SIOCSIFTXQLEN:
3439        case SIOCBRADDIF:
3440        case SIOCBRDELIF:
3441        case SIOCGIFNAME:
3442        case SIOCSIFNAME:
3443        case SIOCGMIIPHY:
3444        case SIOCGMIIREG:
3445        case SIOCSMIIREG:
3446        case SIOCBONDENSLAVE:
3447        case SIOCBONDRELEASE:
3448        case SIOCBONDSETHWADDR:
3449        case SIOCBONDCHANGEACTIVE:
3450                return compat_ifreq_ioctl(net, sock, cmd, argp);
3451
3452        case SIOCSARP:
3453        case SIOCGARP:
3454        case SIOCDARP:
3455        case SIOCATMARK:
3456                return sock_do_ioctl(net, sock, cmd, arg);
3457        }
3458
3459        return -ENOIOCTLCMD;
3460}
3461
3462static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3463                              unsigned long arg)
3464{
3465        struct socket *sock = file->private_data;
3466        int ret = -ENOIOCTLCMD;
3467        struct sock *sk;
3468        struct net *net;
3469
3470        sk = sock->sk;
3471        net = sock_net(sk);
3472
3473        if (sock->ops->compat_ioctl)
3474                ret = sock->ops->compat_ioctl(sock, cmd, arg);
3475
3476        if (ret == -ENOIOCTLCMD &&
3477            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3478                ret = compat_wext_handle_ioctl(net, cmd, arg);
3479
3480        if (ret == -ENOIOCTLCMD)
3481                ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3482
3483        return ret;
3484}
3485#endif
3486
3487/**
3488 *      kernel_bind - bind an address to a socket (kernel space)
3489 *      @sock: socket
3490 *      @addr: address
3491 *      @addrlen: length of address
3492 *
3493 *      Returns 0 or an error.
3494 */
3495
3496int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3497{
3498        return sock->ops->bind(sock, addr, addrlen);
3499}
3500EXPORT_SYMBOL(kernel_bind);
3501
3502/**
3503 *      kernel_listen - move socket to listening state (kernel space)
3504 *      @sock: socket
3505 *      @backlog: pending connections queue size
3506 *
3507 *      Returns 0 or an error.
3508 */
3509
3510int kernel_listen(struct socket *sock, int backlog)
3511{
3512        return sock->ops->listen(sock, backlog);
3513}
3514EXPORT_SYMBOL(kernel_listen);
3515
3516/**
3517 *      kernel_accept - accept a connection (kernel space)
3518 *      @sock: listening socket
3519 *      @newsock: new connected socket
3520 *      @flags: flags
3521 *
3522 *      @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3523 *      If it fails, @newsock is guaranteed to be %NULL.
3524 *      Returns 0 or an error.
3525 */
3526
3527int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3528{
3529        struct sock *sk = sock->sk;
3530        int err;
3531
3532        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3533                               newsock);
3534        if (err < 0)
3535                goto done;
3536
3537        err = sock->ops->accept(sock, *newsock, flags, true);
3538        if (err < 0) {
3539                sock_release(*newsock);
3540                *newsock = NULL;
3541                goto done;
3542        }
3543
3544        (*newsock)->ops = sock->ops;
3545        __module_get((*newsock)->ops->owner);
3546
3547done:
3548        return err;
3549}
3550EXPORT_SYMBOL(kernel_accept);
3551
3552/**
3553 *      kernel_connect - connect a socket (kernel space)
3554 *      @sock: socket
3555 *      @addr: address
3556 *      @addrlen: address length
3557 *      @flags: flags (O_NONBLOCK, ...)
3558 *
3559 *      For datagram sockets, @addr is the addres to which datagrams are sent
3560 *      by default, and the only address from which datagrams are received.
3561 *      For stream sockets, attempts to connect to @addr.
3562 *      Returns 0 or an error code.
3563 */
3564
3565int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3566                   int flags)
3567{
3568        return sock->ops->connect(sock, addr, addrlen, flags);
3569}
3570EXPORT_SYMBOL(kernel_connect);
3571
3572/**
3573 *      kernel_getsockname - get the address which the socket is bound (kernel space)
3574 *      @sock: socket
3575 *      @addr: address holder
3576 *
3577 *      Fills the @addr pointer with the address which the socket is bound.
3578 *      Returns 0 or an error code.
3579 */
3580
3581int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3582{
3583        return sock->ops->getname(sock, addr, 0);
3584}
3585EXPORT_SYMBOL(kernel_getsockname);
3586
3587/**
3588 *      kernel_peername - get the address which the socket is connected (kernel space)
3589 *      @sock: socket
3590 *      @addr: address holder
3591 *
3592 *      Fills the @addr pointer with the address which the socket is connected.
3593 *      Returns 0 or an error code.
3594 */
3595
3596int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3597{
3598        return sock->ops->getname(sock, addr, 1);
3599}
3600EXPORT_SYMBOL(kernel_getpeername);
3601
3602/**
3603 *      kernel_getsockopt - get a socket option (kernel space)
3604 *      @sock: socket
3605 *      @level: API level (SOL_SOCKET, ...)
3606 *      @optname: option tag
3607 *      @optval: option value
3608 *      @optlen: option length
3609 *
3610 *      Assigns the option length to @optlen.
3611 *      Returns 0 or an error.
3612 */
3613
3614int kernel_getsockopt(struct socket *sock, int level, int optname,
3615                        char *optval, int *optlen)
3616{
3617        mm_segment_t oldfs = get_fs();
3618        char __user *uoptval;
3619        int __user *uoptlen;
3620        int err;
3621
3622        uoptval = (char __user __force *) optval;
3623        uoptlen = (int __user __force *) optlen;
3624
3625        set_fs(KERNEL_DS);
3626        if (level == SOL_SOCKET)
3627                err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3628        else
3629                err = sock->ops->getsockopt(sock, level, optname, uoptval,
3630                                            uoptlen);
3631        set_fs(oldfs);
3632        return err;
3633}
3634EXPORT_SYMBOL(kernel_getsockopt);
3635
3636/**
3637 *      kernel_setsockopt - set a socket option (kernel space)
3638 *      @sock: socket
3639 *      @level: API level (SOL_SOCKET, ...)
3640 *      @optname: option tag
3641 *      @optval: option value
3642 *      @optlen: option length
3643 *
3644 *      Returns 0 or an error.
3645 */
3646
3647int kernel_setsockopt(struct socket *sock, int level, int optname,
3648                        char *optval, unsigned int optlen)
3649{
3650        mm_segment_t oldfs = get_fs();
3651        char __user *uoptval;
3652        int err;
3653
3654        uoptval = (char __user __force *) optval;
3655
3656        set_fs(KERNEL_DS);
3657        if (level == SOL_SOCKET)
3658                err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3659        else
3660                err = sock->ops->setsockopt(sock, level, optname, uoptval,
3661                                            optlen);
3662        set_fs(oldfs);
3663        return err;
3664}
3665EXPORT_SYMBOL(kernel_setsockopt);
3666
3667/**
3668 *      kernel_sendpage - send a &page through a socket (kernel space)
3669 *      @sock: socket
3670 *      @page: page
3671 *      @offset: page offset
3672 *      @size: total size in bytes
3673 *      @flags: flags (MSG_DONTWAIT, ...)
3674 *
3675 *      Returns the total amount sent in bytes or an error.
3676 */
3677
3678int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3679                    size_t size, int flags)
3680{
3681        if (sock->ops->sendpage)
3682                return sock->ops->sendpage(sock, page, offset, size, flags);
3683
3684        return sock_no_sendpage(sock, page, offset, size, flags);
3685}
3686EXPORT_SYMBOL(kernel_sendpage);
3687
3688/**
3689 *      kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3690 *      @sk: sock
3691 *      @page: page
3692 *      @offset: page offset
3693 *      @size: total size in bytes
3694 *      @flags: flags (MSG_DONTWAIT, ...)
3695 *
3696 *      Returns the total amount sent in bytes or an error.
3697 *      Caller must hold @sk.
3698 */
3699
3700int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3701                           size_t size, int flags)
3702{
3703        struct socket *sock = sk->sk_socket;
3704
3705        if (sock->ops->sendpage_locked)
3706                return sock->ops->sendpage_locked(sk, page, offset, size,
3707                                                  flags);
3708
3709        return sock_no_sendpage_locked(sk, page, offset, size, flags);
3710}
3711EXPORT_SYMBOL(kernel_sendpage_locked);
3712
3713/**
3714 *      kernel_shutdown - shut down part of a full-duplex connection (kernel space)
3715 *      @sock: socket
3716 *      @how: connection part
3717 *
3718 *      Returns 0 or an error.
3719 */
3720
3721int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3722{
3723        return sock->ops->shutdown(sock, how);
3724}
3725EXPORT_SYMBOL(kernel_sock_shutdown);
3726
3727/**
3728 *      kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3729 *      @sk: socket
3730 *
3731 *      This routine returns the IP overhead imposed by a socket i.e.
3732 *      the length of the underlying IP header, depending on whether
3733 *      this is an IPv4 or IPv6 socket and the length from IP options turned
3734 *      on at the socket. Assumes that the caller has a lock on the socket.
3735 */
3736
3737u32 kernel_sock_ip_overhead(struct sock *sk)
3738{
3739        struct inet_sock *inet;
3740        struct ip_options_rcu *opt;
3741        u32 overhead = 0;
3742#if IS_ENABLED(CONFIG_IPV6)
3743        struct ipv6_pinfo *np;
3744        struct ipv6_txoptions *optv6 = NULL;
3745#endif /* IS_ENABLED(CONFIG_IPV6) */
3746
3747        if (!sk)
3748                return overhead;
3749
3750        switch (sk->sk_family) {
3751        case AF_INET:
3752                inet = inet_sk(sk);
3753                overhead += sizeof(struct iphdr);
3754                opt = rcu_dereference_protected(inet->inet_opt,
3755                                                sock_owned_by_user(sk));
3756                if (opt)
3757                        overhead += opt->opt.optlen;
3758                return overhead;
3759#if IS_ENABLED(CONFIG_IPV6)
3760        case AF_INET6:
3761                np = inet6_sk(sk);
3762                overhead += sizeof(struct ipv6hdr);
3763                if (np)
3764                        optv6 = rcu_dereference_protected(np->opt,
3765                                                          sock_owned_by_user(sk));
3766                if (optv6)
3767                        overhead += (optv6->opt_flen + optv6->opt_nflen);
3768                return overhead;
3769#endif /* IS_ENABLED(CONFIG_IPV6) */
3770        default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3771                return overhead;
3772        }
3773}
3774EXPORT_SYMBOL(kernel_sock_ip_overhead);
3775