linux/net/sunrpc/auth_gss/gss_krb5_crypto.c
<<
>>
Prefs
   1/*
   2 *  linux/net/sunrpc/gss_krb5_crypto.c
   3 *
   4 *  Copyright (c) 2000-2008 The Regents of the University of Michigan.
   5 *  All rights reserved.
   6 *
   7 *  Andy Adamson   <andros@umich.edu>
   8 *  Bruce Fields   <bfields@umich.edu>
   9 */
  10
  11/*
  12 * Copyright (C) 1998 by the FundsXpress, INC.
  13 *
  14 * All rights reserved.
  15 *
  16 * Export of this software from the United States of America may require
  17 * a specific license from the United States Government.  It is the
  18 * responsibility of any person or organization contemplating export to
  19 * obtain such a license before exporting.
  20 *
  21 * WITHIN THAT CONSTRAINT, permission to use, copy, modify, and
  22 * distribute this software and its documentation for any purpose and
  23 * without fee is hereby granted, provided that the above copyright
  24 * notice appear in all copies and that both that copyright notice and
  25 * this permission notice appear in supporting documentation, and that
  26 * the name of FundsXpress. not be used in advertising or publicity pertaining
  27 * to distribution of the software without specific, written prior
  28 * permission.  FundsXpress makes no representations about the suitability of
  29 * this software for any purpose.  It is provided "as is" without express
  30 * or implied warranty.
  31 *
  32 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
  33 * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
  34 * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
  35 */
  36
  37#include <crypto/algapi.h>
  38#include <crypto/hash.h>
  39#include <crypto/skcipher.h>
  40#include <linux/err.h>
  41#include <linux/types.h>
  42#include <linux/mm.h>
  43#include <linux/scatterlist.h>
  44#include <linux/highmem.h>
  45#include <linux/pagemap.h>
  46#include <linux/random.h>
  47#include <linux/sunrpc/gss_krb5.h>
  48#include <linux/sunrpc/xdr.h>
  49
  50#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  51# define RPCDBG_FACILITY        RPCDBG_AUTH
  52#endif
  53
  54u32
  55krb5_encrypt(
  56        struct crypto_sync_skcipher *tfm,
  57        void * iv,
  58        void * in,
  59        void * out,
  60        int length)
  61{
  62        u32 ret = -EINVAL;
  63        struct scatterlist sg[1];
  64        u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
  65        SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
  66
  67        if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
  68                goto out;
  69
  70        if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
  71                dprintk("RPC:       gss_k5encrypt: tfm iv size too large %d\n",
  72                        crypto_sync_skcipher_ivsize(tfm));
  73                goto out;
  74        }
  75
  76        if (iv)
  77                memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
  78
  79        memcpy(out, in, length);
  80        sg_init_one(sg, out, length);
  81
  82        skcipher_request_set_sync_tfm(req, tfm);
  83        skcipher_request_set_callback(req, 0, NULL, NULL);
  84        skcipher_request_set_crypt(req, sg, sg, length, local_iv);
  85
  86        ret = crypto_skcipher_encrypt(req);
  87        skcipher_request_zero(req);
  88out:
  89        dprintk("RPC:       krb5_encrypt returns %d\n", ret);
  90        return ret;
  91}
  92
  93u32
  94krb5_decrypt(
  95     struct crypto_sync_skcipher *tfm,
  96     void * iv,
  97     void * in,
  98     void * out,
  99     int length)
 100{
 101        u32 ret = -EINVAL;
 102        struct scatterlist sg[1];
 103        u8 local_iv[GSS_KRB5_MAX_BLOCKSIZE] = {0};
 104        SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 105
 106        if (length % crypto_sync_skcipher_blocksize(tfm) != 0)
 107                goto out;
 108
 109        if (crypto_sync_skcipher_ivsize(tfm) > GSS_KRB5_MAX_BLOCKSIZE) {
 110                dprintk("RPC:       gss_k5decrypt: tfm iv size too large %d\n",
 111                        crypto_sync_skcipher_ivsize(tfm));
 112                goto out;
 113        }
 114        if (iv)
 115                memcpy(local_iv, iv, crypto_sync_skcipher_ivsize(tfm));
 116
 117        memcpy(out, in, length);
 118        sg_init_one(sg, out, length);
 119
 120        skcipher_request_set_sync_tfm(req, tfm);
 121        skcipher_request_set_callback(req, 0, NULL, NULL);
 122        skcipher_request_set_crypt(req, sg, sg, length, local_iv);
 123
 124        ret = crypto_skcipher_decrypt(req);
 125        skcipher_request_zero(req);
 126out:
 127        dprintk("RPC:       gss_k5decrypt returns %d\n",ret);
 128        return ret;
 129}
 130
 131static int
 132checksummer(struct scatterlist *sg, void *data)
 133{
 134        struct ahash_request *req = data;
 135
 136        ahash_request_set_crypt(req, sg, NULL, sg->length);
 137
 138        return crypto_ahash_update(req);
 139}
 140
 141static int
 142arcfour_hmac_md5_usage_to_salt(unsigned int usage, u8 salt[4])
 143{
 144        unsigned int ms_usage;
 145
 146        switch (usage) {
 147        case KG_USAGE_SIGN:
 148                ms_usage = 15;
 149                break;
 150        case KG_USAGE_SEAL:
 151                ms_usage = 13;
 152                break;
 153        default:
 154                return -EINVAL;
 155        }
 156        salt[0] = (ms_usage >> 0) & 0xff;
 157        salt[1] = (ms_usage >> 8) & 0xff;
 158        salt[2] = (ms_usage >> 16) & 0xff;
 159        salt[3] = (ms_usage >> 24) & 0xff;
 160
 161        return 0;
 162}
 163
 164static u32
 165make_checksum_hmac_md5(struct krb5_ctx *kctx, char *header, int hdrlen,
 166                       struct xdr_buf *body, int body_offset, u8 *cksumkey,
 167                       unsigned int usage, struct xdr_netobj *cksumout)
 168{
 169        struct scatterlist              sg[1];
 170        int err = -1;
 171        u8 *checksumdata;
 172        u8 *rc4salt;
 173        struct crypto_ahash *md5;
 174        struct crypto_ahash *hmac_md5;
 175        struct ahash_request *req;
 176
 177        if (cksumkey == NULL)
 178                return GSS_S_FAILURE;
 179
 180        if (cksumout->len < kctx->gk5e->cksumlength) {
 181                dprintk("%s: checksum buffer length, %u, too small for %s\n",
 182                        __func__, cksumout->len, kctx->gk5e->name);
 183                return GSS_S_FAILURE;
 184        }
 185
 186        rc4salt = kmalloc_array(4, sizeof(*rc4salt), GFP_NOFS);
 187        if (!rc4salt)
 188                return GSS_S_FAILURE;
 189
 190        if (arcfour_hmac_md5_usage_to_salt(usage, rc4salt)) {
 191                dprintk("%s: invalid usage value %u\n", __func__, usage);
 192                goto out_free_rc4salt;
 193        }
 194
 195        checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
 196        if (!checksumdata)
 197                goto out_free_rc4salt;
 198
 199        md5 = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
 200        if (IS_ERR(md5))
 201                goto out_free_cksum;
 202
 203        hmac_md5 = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0,
 204                                      CRYPTO_ALG_ASYNC);
 205        if (IS_ERR(hmac_md5))
 206                goto out_free_md5;
 207
 208        req = ahash_request_alloc(md5, GFP_NOFS);
 209        if (!req)
 210                goto out_free_hmac_md5;
 211
 212        ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 213
 214        err = crypto_ahash_init(req);
 215        if (err)
 216                goto out;
 217        sg_init_one(sg, rc4salt, 4);
 218        ahash_request_set_crypt(req, sg, NULL, 4);
 219        err = crypto_ahash_update(req);
 220        if (err)
 221                goto out;
 222
 223        sg_init_one(sg, header, hdrlen);
 224        ahash_request_set_crypt(req, sg, NULL, hdrlen);
 225        err = crypto_ahash_update(req);
 226        if (err)
 227                goto out;
 228        err = xdr_process_buf(body, body_offset, body->len - body_offset,
 229                              checksummer, req);
 230        if (err)
 231                goto out;
 232        ahash_request_set_crypt(req, NULL, checksumdata, 0);
 233        err = crypto_ahash_final(req);
 234        if (err)
 235                goto out;
 236
 237        ahash_request_free(req);
 238        req = ahash_request_alloc(hmac_md5, GFP_NOFS);
 239        if (!req)
 240                goto out_free_hmac_md5;
 241
 242        ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 243
 244        err = crypto_ahash_setkey(hmac_md5, cksumkey, kctx->gk5e->keylength);
 245        if (err)
 246                goto out;
 247
 248        sg_init_one(sg, checksumdata, crypto_ahash_digestsize(md5));
 249        ahash_request_set_crypt(req, sg, checksumdata,
 250                                crypto_ahash_digestsize(md5));
 251        err = crypto_ahash_digest(req);
 252        if (err)
 253                goto out;
 254
 255        memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 256        cksumout->len = kctx->gk5e->cksumlength;
 257out:
 258        ahash_request_free(req);
 259out_free_hmac_md5:
 260        crypto_free_ahash(hmac_md5);
 261out_free_md5:
 262        crypto_free_ahash(md5);
 263out_free_cksum:
 264        kfree(checksumdata);
 265out_free_rc4salt:
 266        kfree(rc4salt);
 267        return err ? GSS_S_FAILURE : 0;
 268}
 269
 270/*
 271 * checksum the plaintext data and hdrlen bytes of the token header
 272 * The checksum is performed over the first 8 bytes of the
 273 * gss token header and then over the data body
 274 */
 275u32
 276make_checksum(struct krb5_ctx *kctx, char *header, int hdrlen,
 277              struct xdr_buf *body, int body_offset, u8 *cksumkey,
 278              unsigned int usage, struct xdr_netobj *cksumout)
 279{
 280        struct crypto_ahash *tfm;
 281        struct ahash_request *req;
 282        struct scatterlist              sg[1];
 283        int err = -1;
 284        u8 *checksumdata;
 285        unsigned int checksumlen;
 286
 287        if (kctx->gk5e->ctype == CKSUMTYPE_HMAC_MD5_ARCFOUR)
 288                return make_checksum_hmac_md5(kctx, header, hdrlen,
 289                                              body, body_offset,
 290                                              cksumkey, usage, cksumout);
 291
 292        if (cksumout->len < kctx->gk5e->cksumlength) {
 293                dprintk("%s: checksum buffer length, %u, too small for %s\n",
 294                        __func__, cksumout->len, kctx->gk5e->name);
 295                return GSS_S_FAILURE;
 296        }
 297
 298        checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
 299        if (checksumdata == NULL)
 300                return GSS_S_FAILURE;
 301
 302        tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
 303        if (IS_ERR(tfm))
 304                goto out_free_cksum;
 305
 306        req = ahash_request_alloc(tfm, GFP_NOFS);
 307        if (!req)
 308                goto out_free_ahash;
 309
 310        ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 311
 312        checksumlen = crypto_ahash_digestsize(tfm);
 313
 314        if (cksumkey != NULL) {
 315                err = crypto_ahash_setkey(tfm, cksumkey,
 316                                          kctx->gk5e->keylength);
 317                if (err)
 318                        goto out;
 319        }
 320
 321        err = crypto_ahash_init(req);
 322        if (err)
 323                goto out;
 324        sg_init_one(sg, header, hdrlen);
 325        ahash_request_set_crypt(req, sg, NULL, hdrlen);
 326        err = crypto_ahash_update(req);
 327        if (err)
 328                goto out;
 329        err = xdr_process_buf(body, body_offset, body->len - body_offset,
 330                              checksummer, req);
 331        if (err)
 332                goto out;
 333        ahash_request_set_crypt(req, NULL, checksumdata, 0);
 334        err = crypto_ahash_final(req);
 335        if (err)
 336                goto out;
 337
 338        switch (kctx->gk5e->ctype) {
 339        case CKSUMTYPE_RSA_MD5:
 340                err = kctx->gk5e->encrypt(kctx->seq, NULL, checksumdata,
 341                                          checksumdata, checksumlen);
 342                if (err)
 343                        goto out;
 344                memcpy(cksumout->data,
 345                       checksumdata + checksumlen - kctx->gk5e->cksumlength,
 346                       kctx->gk5e->cksumlength);
 347                break;
 348        case CKSUMTYPE_HMAC_SHA1_DES3:
 349                memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 350                break;
 351        default:
 352                BUG();
 353                break;
 354        }
 355        cksumout->len = kctx->gk5e->cksumlength;
 356out:
 357        ahash_request_free(req);
 358out_free_ahash:
 359        crypto_free_ahash(tfm);
 360out_free_cksum:
 361        kfree(checksumdata);
 362        return err ? GSS_S_FAILURE : 0;
 363}
 364
 365/*
 366 * checksum the plaintext data and hdrlen bytes of the token header
 367 * Per rfc4121, sec. 4.2.4, the checksum is performed over the data
 368 * body then over the first 16 octets of the MIC token
 369 * Inclusion of the header data in the calculation of the
 370 * checksum is optional.
 371 */
 372u32
 373make_checksum_v2(struct krb5_ctx *kctx, char *header, int hdrlen,
 374                 struct xdr_buf *body, int body_offset, u8 *cksumkey,
 375                 unsigned int usage, struct xdr_netobj *cksumout)
 376{
 377        struct crypto_ahash *tfm;
 378        struct ahash_request *req;
 379        struct scatterlist sg[1];
 380        int err = -1;
 381        u8 *checksumdata;
 382
 383        if (kctx->gk5e->keyed_cksum == 0) {
 384                dprintk("%s: expected keyed hash for %s\n",
 385                        __func__, kctx->gk5e->name);
 386                return GSS_S_FAILURE;
 387        }
 388        if (cksumkey == NULL) {
 389                dprintk("%s: no key supplied for %s\n",
 390                        __func__, kctx->gk5e->name);
 391                return GSS_S_FAILURE;
 392        }
 393
 394        checksumdata = kmalloc(GSS_KRB5_MAX_CKSUM_LEN, GFP_NOFS);
 395        if (!checksumdata)
 396                return GSS_S_FAILURE;
 397
 398        tfm = crypto_alloc_ahash(kctx->gk5e->cksum_name, 0, CRYPTO_ALG_ASYNC);
 399        if (IS_ERR(tfm))
 400                goto out_free_cksum;
 401
 402        req = ahash_request_alloc(tfm, GFP_NOFS);
 403        if (!req)
 404                goto out_free_ahash;
 405
 406        ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 407
 408        err = crypto_ahash_setkey(tfm, cksumkey, kctx->gk5e->keylength);
 409        if (err)
 410                goto out;
 411
 412        err = crypto_ahash_init(req);
 413        if (err)
 414                goto out;
 415        err = xdr_process_buf(body, body_offset, body->len - body_offset,
 416                              checksummer, req);
 417        if (err)
 418                goto out;
 419        if (header != NULL) {
 420                sg_init_one(sg, header, hdrlen);
 421                ahash_request_set_crypt(req, sg, NULL, hdrlen);
 422                err = crypto_ahash_update(req);
 423                if (err)
 424                        goto out;
 425        }
 426        ahash_request_set_crypt(req, NULL, checksumdata, 0);
 427        err = crypto_ahash_final(req);
 428        if (err)
 429                goto out;
 430
 431        cksumout->len = kctx->gk5e->cksumlength;
 432
 433        switch (kctx->gk5e->ctype) {
 434        case CKSUMTYPE_HMAC_SHA1_96_AES128:
 435        case CKSUMTYPE_HMAC_SHA1_96_AES256:
 436                /* note that this truncates the hash */
 437                memcpy(cksumout->data, checksumdata, kctx->gk5e->cksumlength);
 438                break;
 439        default:
 440                BUG();
 441                break;
 442        }
 443out:
 444        ahash_request_free(req);
 445out_free_ahash:
 446        crypto_free_ahash(tfm);
 447out_free_cksum:
 448        kfree(checksumdata);
 449        return err ? GSS_S_FAILURE : 0;
 450}
 451
 452struct encryptor_desc {
 453        u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
 454        struct skcipher_request *req;
 455        int pos;
 456        struct xdr_buf *outbuf;
 457        struct page **pages;
 458        struct scatterlist infrags[4];
 459        struct scatterlist outfrags[4];
 460        int fragno;
 461        int fraglen;
 462};
 463
 464static int
 465encryptor(struct scatterlist *sg, void *data)
 466{
 467        struct encryptor_desc *desc = data;
 468        struct xdr_buf *outbuf = desc->outbuf;
 469        struct crypto_sync_skcipher *tfm =
 470                crypto_sync_skcipher_reqtfm(desc->req);
 471        struct page *in_page;
 472        int thislen = desc->fraglen + sg->length;
 473        int fraglen, ret;
 474        int page_pos;
 475
 476        /* Worst case is 4 fragments: head, end of page 1, start
 477         * of page 2, tail.  Anything more is a bug. */
 478        BUG_ON(desc->fragno > 3);
 479
 480        page_pos = desc->pos - outbuf->head[0].iov_len;
 481        if (page_pos >= 0 && page_pos < outbuf->page_len) {
 482                /* pages are not in place: */
 483                int i = (page_pos + outbuf->page_base) >> PAGE_SHIFT;
 484                in_page = desc->pages[i];
 485        } else {
 486                in_page = sg_page(sg);
 487        }
 488        sg_set_page(&desc->infrags[desc->fragno], in_page, sg->length,
 489                    sg->offset);
 490        sg_set_page(&desc->outfrags[desc->fragno], sg_page(sg), sg->length,
 491                    sg->offset);
 492        desc->fragno++;
 493        desc->fraglen += sg->length;
 494        desc->pos += sg->length;
 495
 496        fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
 497        thislen -= fraglen;
 498
 499        if (thislen == 0)
 500                return 0;
 501
 502        sg_mark_end(&desc->infrags[desc->fragno - 1]);
 503        sg_mark_end(&desc->outfrags[desc->fragno - 1]);
 504
 505        skcipher_request_set_crypt(desc->req, desc->infrags, desc->outfrags,
 506                                   thislen, desc->iv);
 507
 508        ret = crypto_skcipher_encrypt(desc->req);
 509        if (ret)
 510                return ret;
 511
 512        sg_init_table(desc->infrags, 4);
 513        sg_init_table(desc->outfrags, 4);
 514
 515        if (fraglen) {
 516                sg_set_page(&desc->outfrags[0], sg_page(sg), fraglen,
 517                                sg->offset + sg->length - fraglen);
 518                desc->infrags[0] = desc->outfrags[0];
 519                sg_assign_page(&desc->infrags[0], in_page);
 520                desc->fragno = 1;
 521                desc->fraglen = fraglen;
 522        } else {
 523                desc->fragno = 0;
 524                desc->fraglen = 0;
 525        }
 526        return 0;
 527}
 528
 529int
 530gss_encrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
 531                    int offset, struct page **pages)
 532{
 533        int ret;
 534        struct encryptor_desc desc;
 535        SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 536
 537        BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
 538
 539        skcipher_request_set_sync_tfm(req, tfm);
 540        skcipher_request_set_callback(req, 0, NULL, NULL);
 541
 542        memset(desc.iv, 0, sizeof(desc.iv));
 543        desc.req = req;
 544        desc.pos = offset;
 545        desc.outbuf = buf;
 546        desc.pages = pages;
 547        desc.fragno = 0;
 548        desc.fraglen = 0;
 549
 550        sg_init_table(desc.infrags, 4);
 551        sg_init_table(desc.outfrags, 4);
 552
 553        ret = xdr_process_buf(buf, offset, buf->len - offset, encryptor, &desc);
 554        skcipher_request_zero(req);
 555        return ret;
 556}
 557
 558struct decryptor_desc {
 559        u8 iv[GSS_KRB5_MAX_BLOCKSIZE];
 560        struct skcipher_request *req;
 561        struct scatterlist frags[4];
 562        int fragno;
 563        int fraglen;
 564};
 565
 566static int
 567decryptor(struct scatterlist *sg, void *data)
 568{
 569        struct decryptor_desc *desc = data;
 570        int thislen = desc->fraglen + sg->length;
 571        struct crypto_sync_skcipher *tfm =
 572                crypto_sync_skcipher_reqtfm(desc->req);
 573        int fraglen, ret;
 574
 575        /* Worst case is 4 fragments: head, end of page 1, start
 576         * of page 2, tail.  Anything more is a bug. */
 577        BUG_ON(desc->fragno > 3);
 578        sg_set_page(&desc->frags[desc->fragno], sg_page(sg), sg->length,
 579                    sg->offset);
 580        desc->fragno++;
 581        desc->fraglen += sg->length;
 582
 583        fraglen = thislen & (crypto_sync_skcipher_blocksize(tfm) - 1);
 584        thislen -= fraglen;
 585
 586        if (thislen == 0)
 587                return 0;
 588
 589        sg_mark_end(&desc->frags[desc->fragno - 1]);
 590
 591        skcipher_request_set_crypt(desc->req, desc->frags, desc->frags,
 592                                   thislen, desc->iv);
 593
 594        ret = crypto_skcipher_decrypt(desc->req);
 595        if (ret)
 596                return ret;
 597
 598        sg_init_table(desc->frags, 4);
 599
 600        if (fraglen) {
 601                sg_set_page(&desc->frags[0], sg_page(sg), fraglen,
 602                                sg->offset + sg->length - fraglen);
 603                desc->fragno = 1;
 604                desc->fraglen = fraglen;
 605        } else {
 606                desc->fragno = 0;
 607                desc->fraglen = 0;
 608        }
 609        return 0;
 610}
 611
 612int
 613gss_decrypt_xdr_buf(struct crypto_sync_skcipher *tfm, struct xdr_buf *buf,
 614                    int offset)
 615{
 616        int ret;
 617        struct decryptor_desc desc;
 618        SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm);
 619
 620        /* XXXJBF: */
 621        BUG_ON((buf->len - offset) % crypto_sync_skcipher_blocksize(tfm) != 0);
 622
 623        skcipher_request_set_sync_tfm(req, tfm);
 624        skcipher_request_set_callback(req, 0, NULL, NULL);
 625
 626        memset(desc.iv, 0, sizeof(desc.iv));
 627        desc.req = req;
 628        desc.fragno = 0;
 629        desc.fraglen = 0;
 630
 631        sg_init_table(desc.frags, 4);
 632
 633        ret = xdr_process_buf(buf, offset, buf->len - offset, decryptor, &desc);
 634        skcipher_request_zero(req);
 635        return ret;
 636}
 637
 638/*
 639 * This function makes the assumption that it was ultimately called
 640 * from gss_wrap().
 641 *
 642 * The client auth_gss code moves any existing tail data into a
 643 * separate page before calling gss_wrap.
 644 * The server svcauth_gss code ensures that both the head and the
 645 * tail have slack space of RPC_MAX_AUTH_SIZE before calling gss_wrap.
 646 *
 647 * Even with that guarantee, this function may be called more than
 648 * once in the processing of gss_wrap().  The best we can do is
 649 * verify at compile-time (see GSS_KRB5_SLACK_CHECK) that the
 650 * largest expected shift will fit within RPC_MAX_AUTH_SIZE.
 651 * At run-time we can verify that a single invocation of this
 652 * function doesn't attempt to use more the RPC_MAX_AUTH_SIZE.
 653 */
 654
 655int
 656xdr_extend_head(struct xdr_buf *buf, unsigned int base, unsigned int shiftlen)
 657{
 658        u8 *p;
 659
 660        if (shiftlen == 0)
 661                return 0;
 662
 663        BUILD_BUG_ON(GSS_KRB5_MAX_SLACK_NEEDED > RPC_MAX_AUTH_SIZE);
 664        BUG_ON(shiftlen > RPC_MAX_AUTH_SIZE);
 665
 666        p = buf->head[0].iov_base + base;
 667
 668        memmove(p + shiftlen, p, buf->head[0].iov_len - base);
 669
 670        buf->head[0].iov_len += shiftlen;
 671        buf->len += shiftlen;
 672
 673        return 0;
 674}
 675
 676static u32
 677gss_krb5_cts_crypt(struct crypto_sync_skcipher *cipher, struct xdr_buf *buf,
 678                   u32 offset, u8 *iv, struct page **pages, int encrypt)
 679{
 680        u32 ret;
 681        struct scatterlist sg[1];
 682        SYNC_SKCIPHER_REQUEST_ON_STACK(req, cipher);
 683        u8 *data;
 684        struct page **save_pages;
 685        u32 len = buf->len - offset;
 686
 687        if (len > GSS_KRB5_MAX_BLOCKSIZE * 2) {
 688                WARN_ON(0);
 689                return -ENOMEM;
 690        }
 691        data = kmalloc(GSS_KRB5_MAX_BLOCKSIZE * 2, GFP_NOFS);
 692        if (!data)
 693                return -ENOMEM;
 694
 695        /*
 696         * For encryption, we want to read from the cleartext
 697         * page cache pages, and write the encrypted data to
 698         * the supplied xdr_buf pages.
 699         */
 700        save_pages = buf->pages;
 701        if (encrypt)
 702                buf->pages = pages;
 703
 704        ret = read_bytes_from_xdr_buf(buf, offset, data, len);
 705        buf->pages = save_pages;
 706        if (ret)
 707                goto out;
 708
 709        sg_init_one(sg, data, len);
 710
 711        skcipher_request_set_sync_tfm(req, cipher);
 712        skcipher_request_set_callback(req, 0, NULL, NULL);
 713        skcipher_request_set_crypt(req, sg, sg, len, iv);
 714
 715        if (encrypt)
 716                ret = crypto_skcipher_encrypt(req);
 717        else
 718                ret = crypto_skcipher_decrypt(req);
 719
 720        skcipher_request_zero(req);
 721
 722        if (ret)
 723                goto out;
 724
 725        ret = write_bytes_to_xdr_buf(buf, offset, data, len);
 726
 727out:
 728        kfree(data);
 729        return ret;
 730}
 731
 732u32
 733gss_krb5_aes_encrypt(struct krb5_ctx *kctx, u32 offset,
 734                     struct xdr_buf *buf, struct page **pages)
 735{
 736        u32 err;
 737        struct xdr_netobj hmac;
 738        u8 *cksumkey;
 739        u8 *ecptr;
 740        struct crypto_sync_skcipher *cipher, *aux_cipher;
 741        int blocksize;
 742        struct page **save_pages;
 743        int nblocks, nbytes;
 744        struct encryptor_desc desc;
 745        u32 cbcbytes;
 746        unsigned int usage;
 747
 748        if (kctx->initiate) {
 749                cipher = kctx->initiator_enc;
 750                aux_cipher = kctx->initiator_enc_aux;
 751                cksumkey = kctx->initiator_integ;
 752                usage = KG_USAGE_INITIATOR_SEAL;
 753        } else {
 754                cipher = kctx->acceptor_enc;
 755                aux_cipher = kctx->acceptor_enc_aux;
 756                cksumkey = kctx->acceptor_integ;
 757                usage = KG_USAGE_ACCEPTOR_SEAL;
 758        }
 759        blocksize = crypto_sync_skcipher_blocksize(cipher);
 760
 761        /* hide the gss token header and insert the confounder */
 762        offset += GSS_KRB5_TOK_HDR_LEN;
 763        if (xdr_extend_head(buf, offset, kctx->gk5e->conflen))
 764                return GSS_S_FAILURE;
 765        gss_krb5_make_confounder(buf->head[0].iov_base + offset, kctx->gk5e->conflen);
 766        offset -= GSS_KRB5_TOK_HDR_LEN;
 767
 768        if (buf->tail[0].iov_base != NULL) {
 769                ecptr = buf->tail[0].iov_base + buf->tail[0].iov_len;
 770        } else {
 771                buf->tail[0].iov_base = buf->head[0].iov_base
 772                                                        + buf->head[0].iov_len;
 773                buf->tail[0].iov_len = 0;
 774                ecptr = buf->tail[0].iov_base;
 775        }
 776
 777        /* copy plaintext gss token header after filler (if any) */
 778        memcpy(ecptr, buf->head[0].iov_base + offset, GSS_KRB5_TOK_HDR_LEN);
 779        buf->tail[0].iov_len += GSS_KRB5_TOK_HDR_LEN;
 780        buf->len += GSS_KRB5_TOK_HDR_LEN;
 781
 782        /* Do the HMAC */
 783        hmac.len = GSS_KRB5_MAX_CKSUM_LEN;
 784        hmac.data = buf->tail[0].iov_base + buf->tail[0].iov_len;
 785
 786        /*
 787         * When we are called, pages points to the real page cache
 788         * data -- which we can't go and encrypt!  buf->pages points
 789         * to scratch pages which we are going to send off to the
 790         * client/server.  Swap in the plaintext pages to calculate
 791         * the hmac.
 792         */
 793        save_pages = buf->pages;
 794        buf->pages = pages;
 795
 796        err = make_checksum_v2(kctx, NULL, 0, buf,
 797                               offset + GSS_KRB5_TOK_HDR_LEN,
 798                               cksumkey, usage, &hmac);
 799        buf->pages = save_pages;
 800        if (err)
 801                return GSS_S_FAILURE;
 802
 803        nbytes = buf->len - offset - GSS_KRB5_TOK_HDR_LEN;
 804        nblocks = (nbytes + blocksize - 1) / blocksize;
 805        cbcbytes = 0;
 806        if (nblocks > 2)
 807                cbcbytes = (nblocks - 2) * blocksize;
 808
 809        memset(desc.iv, 0, sizeof(desc.iv));
 810
 811        if (cbcbytes) {
 812                SYNC_SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
 813
 814                desc.pos = offset + GSS_KRB5_TOK_HDR_LEN;
 815                desc.fragno = 0;
 816                desc.fraglen = 0;
 817                desc.pages = pages;
 818                desc.outbuf = buf;
 819                desc.req = req;
 820
 821                skcipher_request_set_sync_tfm(req, aux_cipher);
 822                skcipher_request_set_callback(req, 0, NULL, NULL);
 823
 824                sg_init_table(desc.infrags, 4);
 825                sg_init_table(desc.outfrags, 4);
 826
 827                err = xdr_process_buf(buf, offset + GSS_KRB5_TOK_HDR_LEN,
 828                                      cbcbytes, encryptor, &desc);
 829                skcipher_request_zero(req);
 830                if (err)
 831                        goto out_err;
 832        }
 833
 834        /* Make sure IV carries forward from any CBC results. */
 835        err = gss_krb5_cts_crypt(cipher, buf,
 836                                 offset + GSS_KRB5_TOK_HDR_LEN + cbcbytes,
 837                                 desc.iv, pages, 1);
 838        if (err) {
 839                err = GSS_S_FAILURE;
 840                goto out_err;
 841        }
 842
 843        /* Now update buf to account for HMAC */
 844        buf->tail[0].iov_len += kctx->gk5e->cksumlength;
 845        buf->len += kctx->gk5e->cksumlength;
 846
 847out_err:
 848        if (err)
 849                err = GSS_S_FAILURE;
 850        return err;
 851}
 852
 853u32
 854gss_krb5_aes_decrypt(struct krb5_ctx *kctx, u32 offset, struct xdr_buf *buf,
 855                     u32 *headskip, u32 *tailskip)
 856{
 857        struct xdr_buf subbuf;
 858        u32 ret = 0;
 859        u8 *cksum_key;
 860        struct crypto_sync_skcipher *cipher, *aux_cipher;
 861        struct xdr_netobj our_hmac_obj;
 862        u8 our_hmac[GSS_KRB5_MAX_CKSUM_LEN];
 863        u8 pkt_hmac[GSS_KRB5_MAX_CKSUM_LEN];
 864        int nblocks, blocksize, cbcbytes;
 865        struct decryptor_desc desc;
 866        unsigned int usage;
 867
 868        if (kctx->initiate) {
 869                cipher = kctx->acceptor_enc;
 870                aux_cipher = kctx->acceptor_enc_aux;
 871                cksum_key = kctx->acceptor_integ;
 872                usage = KG_USAGE_ACCEPTOR_SEAL;
 873        } else {
 874                cipher = kctx->initiator_enc;
 875                aux_cipher = kctx->initiator_enc_aux;
 876                cksum_key = kctx->initiator_integ;
 877                usage = KG_USAGE_INITIATOR_SEAL;
 878        }
 879        blocksize = crypto_sync_skcipher_blocksize(cipher);
 880
 881
 882        /* create a segment skipping the header and leaving out the checksum */
 883        xdr_buf_subsegment(buf, &subbuf, offset + GSS_KRB5_TOK_HDR_LEN,
 884                                    (buf->len - offset - GSS_KRB5_TOK_HDR_LEN -
 885                                     kctx->gk5e->cksumlength));
 886
 887        nblocks = (subbuf.len + blocksize - 1) / blocksize;
 888
 889        cbcbytes = 0;
 890        if (nblocks > 2)
 891                cbcbytes = (nblocks - 2) * blocksize;
 892
 893        memset(desc.iv, 0, sizeof(desc.iv));
 894
 895        if (cbcbytes) {
 896                SYNC_SKCIPHER_REQUEST_ON_STACK(req, aux_cipher);
 897
 898                desc.fragno = 0;
 899                desc.fraglen = 0;
 900                desc.req = req;
 901
 902                skcipher_request_set_sync_tfm(req, aux_cipher);
 903                skcipher_request_set_callback(req, 0, NULL, NULL);
 904
 905                sg_init_table(desc.frags, 4);
 906
 907                ret = xdr_process_buf(&subbuf, 0, cbcbytes, decryptor, &desc);
 908                skcipher_request_zero(req);
 909                if (ret)
 910                        goto out_err;
 911        }
 912
 913        /* Make sure IV carries forward from any CBC results. */
 914        ret = gss_krb5_cts_crypt(cipher, &subbuf, cbcbytes, desc.iv, NULL, 0);
 915        if (ret)
 916                goto out_err;
 917
 918
 919        /* Calculate our hmac over the plaintext data */
 920        our_hmac_obj.len = sizeof(our_hmac);
 921        our_hmac_obj.data = our_hmac;
 922
 923        ret = make_checksum_v2(kctx, NULL, 0, &subbuf, 0,
 924                               cksum_key, usage, &our_hmac_obj);
 925        if (ret)
 926                goto out_err;
 927
 928        /* Get the packet's hmac value */
 929        ret = read_bytes_from_xdr_buf(buf, buf->len - kctx->gk5e->cksumlength,
 930                                      pkt_hmac, kctx->gk5e->cksumlength);
 931        if (ret)
 932                goto out_err;
 933
 934        if (crypto_memneq(pkt_hmac, our_hmac, kctx->gk5e->cksumlength) != 0) {
 935                ret = GSS_S_BAD_SIG;
 936                goto out_err;
 937        }
 938        *headskip = kctx->gk5e->conflen;
 939        *tailskip = kctx->gk5e->cksumlength;
 940out_err:
 941        if (ret && ret != GSS_S_BAD_SIG)
 942                ret = GSS_S_FAILURE;
 943        return ret;
 944}
 945
 946/*
 947 * Compute Kseq given the initial session key and the checksum.
 948 * Set the key of the given cipher.
 949 */
 950int
 951krb5_rc4_setup_seq_key(struct krb5_ctx *kctx,
 952                       struct crypto_sync_skcipher *cipher,
 953                       unsigned char *cksum)
 954{
 955        struct crypto_shash *hmac;
 956        struct shash_desc *desc;
 957        u8 Kseq[GSS_KRB5_MAX_KEYLEN];
 958        u32 zeroconstant = 0;
 959        int err;
 960
 961        dprintk("%s: entered\n", __func__);
 962
 963        hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
 964        if (IS_ERR(hmac)) {
 965                dprintk("%s: error %ld, allocating hash '%s'\n",
 966                        __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
 967                return PTR_ERR(hmac);
 968        }
 969
 970        desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
 971                       GFP_NOFS);
 972        if (!desc) {
 973                dprintk("%s: failed to allocate shash descriptor for '%s'\n",
 974                        __func__, kctx->gk5e->cksum_name);
 975                crypto_free_shash(hmac);
 976                return -ENOMEM;
 977        }
 978
 979        desc->tfm = hmac;
 980
 981        /* Compute intermediate Kseq from session key */
 982        err = crypto_shash_setkey(hmac, kctx->Ksess, kctx->gk5e->keylength);
 983        if (err)
 984                goto out_err;
 985
 986        err = crypto_shash_digest(desc, (u8 *)&zeroconstant, 4, Kseq);
 987        if (err)
 988                goto out_err;
 989
 990        /* Compute final Kseq from the checksum and intermediate Kseq */
 991        err = crypto_shash_setkey(hmac, Kseq, kctx->gk5e->keylength);
 992        if (err)
 993                goto out_err;
 994
 995        err = crypto_shash_digest(desc, cksum, 8, Kseq);
 996        if (err)
 997                goto out_err;
 998
 999        err = crypto_sync_skcipher_setkey(cipher, Kseq, kctx->gk5e->keylength);
1000        if (err)
1001                goto out_err;
1002
1003        err = 0;
1004
1005out_err:
1006        kzfree(desc);
1007        crypto_free_shash(hmac);
1008        dprintk("%s: returning %d\n", __func__, err);
1009        return err;
1010}
1011
1012/*
1013 * Compute Kcrypt given the initial session key and the plaintext seqnum.
1014 * Set the key of cipher kctx->enc.
1015 */
1016int
1017krb5_rc4_setup_enc_key(struct krb5_ctx *kctx,
1018                       struct crypto_sync_skcipher *cipher,
1019                       s32 seqnum)
1020{
1021        struct crypto_shash *hmac;
1022        struct shash_desc *desc;
1023        u8 Kcrypt[GSS_KRB5_MAX_KEYLEN];
1024        u8 zeroconstant[4] = {0};
1025        u8 seqnumarray[4];
1026        int err, i;
1027
1028        dprintk("%s: entered, seqnum %u\n", __func__, seqnum);
1029
1030        hmac = crypto_alloc_shash(kctx->gk5e->cksum_name, 0, 0);
1031        if (IS_ERR(hmac)) {
1032                dprintk("%s: error %ld, allocating hash '%s'\n",
1033                        __func__, PTR_ERR(hmac), kctx->gk5e->cksum_name);
1034                return PTR_ERR(hmac);
1035        }
1036
1037        desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(hmac),
1038                       GFP_NOFS);
1039        if (!desc) {
1040                dprintk("%s: failed to allocate shash descriptor for '%s'\n",
1041                        __func__, kctx->gk5e->cksum_name);
1042                crypto_free_shash(hmac);
1043                return -ENOMEM;
1044        }
1045
1046        desc->tfm = hmac;
1047
1048        /* Compute intermediate Kcrypt from session key */
1049        for (i = 0; i < kctx->gk5e->keylength; i++)
1050                Kcrypt[i] = kctx->Ksess[i] ^ 0xf0;
1051
1052        err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1053        if (err)
1054                goto out_err;
1055
1056        err = crypto_shash_digest(desc, zeroconstant, 4, Kcrypt);
1057        if (err)
1058                goto out_err;
1059
1060        /* Compute final Kcrypt from the seqnum and intermediate Kcrypt */
1061        err = crypto_shash_setkey(hmac, Kcrypt, kctx->gk5e->keylength);
1062        if (err)
1063                goto out_err;
1064
1065        seqnumarray[0] = (unsigned char) ((seqnum >> 24) & 0xff);
1066        seqnumarray[1] = (unsigned char) ((seqnum >> 16) & 0xff);
1067        seqnumarray[2] = (unsigned char) ((seqnum >> 8) & 0xff);
1068        seqnumarray[3] = (unsigned char) ((seqnum >> 0) & 0xff);
1069
1070        err = crypto_shash_digest(desc, seqnumarray, 4, Kcrypt);
1071        if (err)
1072                goto out_err;
1073
1074        err = crypto_sync_skcipher_setkey(cipher, Kcrypt,
1075                                          kctx->gk5e->keylength);
1076        if (err)
1077                goto out_err;
1078
1079        err = 0;
1080
1081out_err:
1082        kzfree(desc);
1083        crypto_free_shash(hmac);
1084        dprintk("%s: returning %d\n", __func__, err);
1085        return err;
1086}
1087