linux/net/sunrpc/xprtrdma/rpc_rdma.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
   2/*
   3 * Copyright (c) 2014-2017 Oracle.  All rights reserved.
   4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the BSD-type
  10 * license below:
  11 *
  12 * Redistribution and use in source and binary forms, with or without
  13 * modification, are permitted provided that the following conditions
  14 * are met:
  15 *
  16 *      Redistributions of source code must retain the above copyright
  17 *      notice, this list of conditions and the following disclaimer.
  18 *
  19 *      Redistributions in binary form must reproduce the above
  20 *      copyright notice, this list of conditions and the following
  21 *      disclaimer in the documentation and/or other materials provided
  22 *      with the distribution.
  23 *
  24 *      Neither the name of the Network Appliance, Inc. nor the names of
  25 *      its contributors may be used to endorse or promote products
  26 *      derived from this software without specific prior written
  27 *      permission.
  28 *
  29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  40 */
  41
  42/*
  43 * rpc_rdma.c
  44 *
  45 * This file contains the guts of the RPC RDMA protocol, and
  46 * does marshaling/unmarshaling, etc. It is also where interfacing
  47 * to the Linux RPC framework lives.
  48 */
  49
  50#include <linux/highmem.h>
  51
  52#include <linux/sunrpc/svc_rdma.h>
  53
  54#include "xprt_rdma.h"
  55#include <trace/events/rpcrdma.h>
  56
  57#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
  58# define RPCDBG_FACILITY        RPCDBG_TRANS
  59#endif
  60
  61/* Returns size of largest RPC-over-RDMA header in a Call message
  62 *
  63 * The largest Call header contains a full-size Read list and a
  64 * minimal Reply chunk.
  65 */
  66static unsigned int rpcrdma_max_call_header_size(unsigned int maxsegs)
  67{
  68        unsigned int size;
  69
  70        /* Fixed header fields and list discriminators */
  71        size = RPCRDMA_HDRLEN_MIN;
  72
  73        /* Maximum Read list size */
  74        size = maxsegs * rpcrdma_readchunk_maxsz * sizeof(__be32);
  75
  76        /* Minimal Read chunk size */
  77        size += sizeof(__be32); /* segment count */
  78        size += rpcrdma_segment_maxsz * sizeof(__be32);
  79        size += sizeof(__be32); /* list discriminator */
  80
  81        dprintk("RPC:       %s: max call header size = %u\n",
  82                __func__, size);
  83        return size;
  84}
  85
  86/* Returns size of largest RPC-over-RDMA header in a Reply message
  87 *
  88 * There is only one Write list or one Reply chunk per Reply
  89 * message.  The larger list is the Write list.
  90 */
  91static unsigned int rpcrdma_max_reply_header_size(unsigned int maxsegs)
  92{
  93        unsigned int size;
  94
  95        /* Fixed header fields and list discriminators */
  96        size = RPCRDMA_HDRLEN_MIN;
  97
  98        /* Maximum Write list size */
  99        size = sizeof(__be32);          /* segment count */
 100        size += maxsegs * rpcrdma_segment_maxsz * sizeof(__be32);
 101        size += sizeof(__be32); /* list discriminator */
 102
 103        dprintk("RPC:       %s: max reply header size = %u\n",
 104                __func__, size);
 105        return size;
 106}
 107
 108/**
 109 * rpcrdma_set_max_header_sizes - Initialize inline payload sizes
 110 * @r_xprt: transport instance to initialize
 111 *
 112 * The max_inline fields contain the maximum size of an RPC message
 113 * so the marshaling code doesn't have to repeat this calculation
 114 * for every RPC.
 115 */
 116void rpcrdma_set_max_header_sizes(struct rpcrdma_xprt *r_xprt)
 117{
 118        unsigned int maxsegs = r_xprt->rx_ia.ri_max_segs;
 119        struct rpcrdma_ep *ep = &r_xprt->rx_ep;
 120
 121        ep->rep_max_inline_send =
 122                ep->rep_inline_send - rpcrdma_max_call_header_size(maxsegs);
 123        ep->rep_max_inline_recv =
 124                ep->rep_inline_recv - rpcrdma_max_reply_header_size(maxsegs);
 125}
 126
 127/* The client can send a request inline as long as the RPCRDMA header
 128 * plus the RPC call fit under the transport's inline limit. If the
 129 * combined call message size exceeds that limit, the client must use
 130 * a Read chunk for this operation.
 131 *
 132 * A Read chunk is also required if sending the RPC call inline would
 133 * exceed this device's max_sge limit.
 134 */
 135static bool rpcrdma_args_inline(struct rpcrdma_xprt *r_xprt,
 136                                struct rpc_rqst *rqst)
 137{
 138        struct xdr_buf *xdr = &rqst->rq_snd_buf;
 139        unsigned int count, remaining, offset;
 140
 141        if (xdr->len > r_xprt->rx_ep.rep_max_inline_send)
 142                return false;
 143
 144        if (xdr->page_len) {
 145                remaining = xdr->page_len;
 146                offset = offset_in_page(xdr->page_base);
 147                count = RPCRDMA_MIN_SEND_SGES;
 148                while (remaining) {
 149                        remaining -= min_t(unsigned int,
 150                                           PAGE_SIZE - offset, remaining);
 151                        offset = 0;
 152                        if (++count > r_xprt->rx_ia.ri_max_send_sges)
 153                                return false;
 154                }
 155        }
 156
 157        return true;
 158}
 159
 160/* The client can't know how large the actual reply will be. Thus it
 161 * plans for the largest possible reply for that particular ULP
 162 * operation. If the maximum combined reply message size exceeds that
 163 * limit, the client must provide a write list or a reply chunk for
 164 * this request.
 165 */
 166static bool rpcrdma_results_inline(struct rpcrdma_xprt *r_xprt,
 167                                   struct rpc_rqst *rqst)
 168{
 169        return rqst->rq_rcv_buf.buflen <= r_xprt->rx_ep.rep_max_inline_recv;
 170}
 171
 172/* The client is required to provide a Reply chunk if the maximum
 173 * size of the non-payload part of the RPC Reply is larger than
 174 * the inline threshold.
 175 */
 176static bool
 177rpcrdma_nonpayload_inline(const struct rpcrdma_xprt *r_xprt,
 178                          const struct rpc_rqst *rqst)
 179{
 180        const struct xdr_buf *buf = &rqst->rq_rcv_buf;
 181
 182        return (buf->head[0].iov_len + buf->tail[0].iov_len) <
 183                r_xprt->rx_ep.rep_max_inline_recv;
 184}
 185
 186/* Split @vec on page boundaries into SGEs. FMR registers pages, not
 187 * a byte range. Other modes coalesce these SGEs into a single MR
 188 * when they can.
 189 *
 190 * Returns pointer to next available SGE, and bumps the total number
 191 * of SGEs consumed.
 192 */
 193static struct rpcrdma_mr_seg *
 194rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
 195                     unsigned int *n)
 196{
 197        u32 remaining, page_offset;
 198        char *base;
 199
 200        base = vec->iov_base;
 201        page_offset = offset_in_page(base);
 202        remaining = vec->iov_len;
 203        while (remaining) {
 204                seg->mr_page = NULL;
 205                seg->mr_offset = base;
 206                seg->mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
 207                remaining -= seg->mr_len;
 208                base += seg->mr_len;
 209                ++seg;
 210                ++(*n);
 211                page_offset = 0;
 212        }
 213        return seg;
 214}
 215
 216/* Convert @xdrbuf into SGEs no larger than a page each. As they
 217 * are registered, these SGEs are then coalesced into RDMA segments
 218 * when the selected memreg mode supports it.
 219 *
 220 * Returns positive number of SGEs consumed, or a negative errno.
 221 */
 222
 223static int
 224rpcrdma_convert_iovs(struct rpcrdma_xprt *r_xprt, struct xdr_buf *xdrbuf,
 225                     unsigned int pos, enum rpcrdma_chunktype type,
 226                     struct rpcrdma_mr_seg *seg)
 227{
 228        unsigned long page_base;
 229        unsigned int len, n;
 230        struct page **ppages;
 231
 232        n = 0;
 233        if (pos == 0)
 234                seg = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, &n);
 235
 236        len = xdrbuf->page_len;
 237        ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
 238        page_base = offset_in_page(xdrbuf->page_base);
 239        while (len) {
 240                /* ACL likes to be lazy in allocating pages - ACLs
 241                 * are small by default but can get huge.
 242                 */
 243                if (unlikely(xdrbuf->flags & XDRBUF_SPARSE_PAGES)) {
 244                        if (!*ppages)
 245                                *ppages = alloc_page(GFP_NOWAIT | __GFP_NOWARN);
 246                        if (!*ppages)
 247                                return -ENOBUFS;
 248                }
 249                seg->mr_page = *ppages;
 250                seg->mr_offset = (char *)page_base;
 251                seg->mr_len = min_t(u32, PAGE_SIZE - page_base, len);
 252                len -= seg->mr_len;
 253                ++ppages;
 254                ++seg;
 255                ++n;
 256                page_base = 0;
 257        }
 258
 259        /* When encoding a Read chunk, the tail iovec contains an
 260         * XDR pad and may be omitted.
 261         */
 262        if (type == rpcrdma_readch && r_xprt->rx_ia.ri_implicit_roundup)
 263                goto out;
 264
 265        /* When encoding a Write chunk, some servers need to see an
 266         * extra segment for non-XDR-aligned Write chunks. The upper
 267         * layer provides space in the tail iovec that may be used
 268         * for this purpose.
 269         */
 270        if (type == rpcrdma_writech && r_xprt->rx_ia.ri_implicit_roundup)
 271                goto out;
 272
 273        if (xdrbuf->tail[0].iov_len)
 274                seg = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, &n);
 275
 276out:
 277        if (unlikely(n > RPCRDMA_MAX_SEGS))
 278                return -EIO;
 279        return n;
 280}
 281
 282static inline int
 283encode_item_present(struct xdr_stream *xdr)
 284{
 285        __be32 *p;
 286
 287        p = xdr_reserve_space(xdr, sizeof(*p));
 288        if (unlikely(!p))
 289                return -EMSGSIZE;
 290
 291        *p = xdr_one;
 292        return 0;
 293}
 294
 295static inline int
 296encode_item_not_present(struct xdr_stream *xdr)
 297{
 298        __be32 *p;
 299
 300        p = xdr_reserve_space(xdr, sizeof(*p));
 301        if (unlikely(!p))
 302                return -EMSGSIZE;
 303
 304        *p = xdr_zero;
 305        return 0;
 306}
 307
 308static void
 309xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mr *mr)
 310{
 311        *iptr++ = cpu_to_be32(mr->mr_handle);
 312        *iptr++ = cpu_to_be32(mr->mr_length);
 313        xdr_encode_hyper(iptr, mr->mr_offset);
 314}
 315
 316static int
 317encode_rdma_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr)
 318{
 319        __be32 *p;
 320
 321        p = xdr_reserve_space(xdr, 4 * sizeof(*p));
 322        if (unlikely(!p))
 323                return -EMSGSIZE;
 324
 325        xdr_encode_rdma_segment(p, mr);
 326        return 0;
 327}
 328
 329static int
 330encode_read_segment(struct xdr_stream *xdr, struct rpcrdma_mr *mr,
 331                    u32 position)
 332{
 333        __be32 *p;
 334
 335        p = xdr_reserve_space(xdr, 6 * sizeof(*p));
 336        if (unlikely(!p))
 337                return -EMSGSIZE;
 338
 339        *p++ = xdr_one;                 /* Item present */
 340        *p++ = cpu_to_be32(position);
 341        xdr_encode_rdma_segment(p, mr);
 342        return 0;
 343}
 344
 345/* Register and XDR encode the Read list. Supports encoding a list of read
 346 * segments that belong to a single read chunk.
 347 *
 348 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
 349 *
 350 *  Read chunklist (a linked list):
 351 *   N elements, position P (same P for all chunks of same arg!):
 352 *    1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
 353 *
 354 * Returns zero on success, or a negative errno if a failure occurred.
 355 * @xdr is advanced to the next position in the stream.
 356 *
 357 * Only a single @pos value is currently supported.
 358 */
 359static noinline int
 360rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
 361                         struct rpc_rqst *rqst, enum rpcrdma_chunktype rtype)
 362{
 363        struct xdr_stream *xdr = &req->rl_stream;
 364        struct rpcrdma_mr_seg *seg;
 365        struct rpcrdma_mr *mr;
 366        unsigned int pos;
 367        int nsegs;
 368
 369        if (rtype == rpcrdma_noch)
 370                goto done;
 371
 372        pos = rqst->rq_snd_buf.head[0].iov_len;
 373        if (rtype == rpcrdma_areadch)
 374                pos = 0;
 375        seg = req->rl_segments;
 376        nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_snd_buf, pos,
 377                                     rtype, seg);
 378        if (nsegs < 0)
 379                return nsegs;
 380
 381        do {
 382                seg = frwr_map(r_xprt, seg, nsegs, false, rqst->rq_xid, &mr);
 383                if (IS_ERR(seg))
 384                        return PTR_ERR(seg);
 385                rpcrdma_mr_push(mr, &req->rl_registered);
 386
 387                if (encode_read_segment(xdr, mr, pos) < 0)
 388                        return -EMSGSIZE;
 389
 390                trace_xprtrdma_chunk_read(rqst->rq_task, pos, mr, nsegs);
 391                r_xprt->rx_stats.read_chunk_count++;
 392                nsegs -= mr->mr_nents;
 393        } while (nsegs);
 394
 395done:
 396        return encode_item_not_present(xdr);
 397}
 398
 399/* Register and XDR encode the Write list. Supports encoding a list
 400 * containing one array of plain segments that belong to a single
 401 * write chunk.
 402 *
 403 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
 404 *
 405 *  Write chunklist (a list of (one) counted array):
 406 *   N elements:
 407 *    1 - N - HLOO - HLOO - ... - HLOO - 0
 408 *
 409 * Returns zero on success, or a negative errno if a failure occurred.
 410 * @xdr is advanced to the next position in the stream.
 411 *
 412 * Only a single Write chunk is currently supported.
 413 */
 414static noinline int
 415rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
 416                          struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype)
 417{
 418        struct xdr_stream *xdr = &req->rl_stream;
 419        struct rpcrdma_mr_seg *seg;
 420        struct rpcrdma_mr *mr;
 421        int nsegs, nchunks;
 422        __be32 *segcount;
 423
 424        if (wtype != rpcrdma_writech)
 425                goto done;
 426
 427        seg = req->rl_segments;
 428        nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf,
 429                                     rqst->rq_rcv_buf.head[0].iov_len,
 430                                     wtype, seg);
 431        if (nsegs < 0)
 432                return nsegs;
 433
 434        if (encode_item_present(xdr) < 0)
 435                return -EMSGSIZE;
 436        segcount = xdr_reserve_space(xdr, sizeof(*segcount));
 437        if (unlikely(!segcount))
 438                return -EMSGSIZE;
 439        /* Actual value encoded below */
 440
 441        nchunks = 0;
 442        do {
 443                seg = frwr_map(r_xprt, seg, nsegs, true, rqst->rq_xid, &mr);
 444                if (IS_ERR(seg))
 445                        return PTR_ERR(seg);
 446                rpcrdma_mr_push(mr, &req->rl_registered);
 447
 448                if (encode_rdma_segment(xdr, mr) < 0)
 449                        return -EMSGSIZE;
 450
 451                trace_xprtrdma_chunk_write(rqst->rq_task, mr, nsegs);
 452                r_xprt->rx_stats.write_chunk_count++;
 453                r_xprt->rx_stats.total_rdma_request += mr->mr_length;
 454                nchunks++;
 455                nsegs -= mr->mr_nents;
 456        } while (nsegs);
 457
 458        /* Update count of segments in this Write chunk */
 459        *segcount = cpu_to_be32(nchunks);
 460
 461done:
 462        return encode_item_not_present(xdr);
 463}
 464
 465/* Register and XDR encode the Reply chunk. Supports encoding an array
 466 * of plain segments that belong to a single write (reply) chunk.
 467 *
 468 * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
 469 *
 470 *  Reply chunk (a counted array):
 471 *   N elements:
 472 *    1 - N - HLOO - HLOO - ... - HLOO
 473 *
 474 * Returns zero on success, or a negative errno if a failure occurred.
 475 * @xdr is advanced to the next position in the stream.
 476 */
 477static noinline int
 478rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
 479                           struct rpc_rqst *rqst, enum rpcrdma_chunktype wtype)
 480{
 481        struct xdr_stream *xdr = &req->rl_stream;
 482        struct rpcrdma_mr_seg *seg;
 483        struct rpcrdma_mr *mr;
 484        int nsegs, nchunks;
 485        __be32 *segcount;
 486
 487        if (wtype != rpcrdma_replych)
 488                return encode_item_not_present(xdr);
 489
 490        seg = req->rl_segments;
 491        nsegs = rpcrdma_convert_iovs(r_xprt, &rqst->rq_rcv_buf, 0, wtype, seg);
 492        if (nsegs < 0)
 493                return nsegs;
 494
 495        if (encode_item_present(xdr) < 0)
 496                return -EMSGSIZE;
 497        segcount = xdr_reserve_space(xdr, sizeof(*segcount));
 498        if (unlikely(!segcount))
 499                return -EMSGSIZE;
 500        /* Actual value encoded below */
 501
 502        nchunks = 0;
 503        do {
 504                seg = frwr_map(r_xprt, seg, nsegs, true, rqst->rq_xid, &mr);
 505                if (IS_ERR(seg))
 506                        return PTR_ERR(seg);
 507                rpcrdma_mr_push(mr, &req->rl_registered);
 508
 509                if (encode_rdma_segment(xdr, mr) < 0)
 510                        return -EMSGSIZE;
 511
 512                trace_xprtrdma_chunk_reply(rqst->rq_task, mr, nsegs);
 513                r_xprt->rx_stats.reply_chunk_count++;
 514                r_xprt->rx_stats.total_rdma_request += mr->mr_length;
 515                nchunks++;
 516                nsegs -= mr->mr_nents;
 517        } while (nsegs);
 518
 519        /* Update count of segments in the Reply chunk */
 520        *segcount = cpu_to_be32(nchunks);
 521
 522        return 0;
 523}
 524
 525static void rpcrdma_sendctx_done(struct kref *kref)
 526{
 527        struct rpcrdma_req *req =
 528                container_of(kref, struct rpcrdma_req, rl_kref);
 529        struct rpcrdma_rep *rep = req->rl_reply;
 530
 531        rpcrdma_complete_rqst(rep);
 532        rep->rr_rxprt->rx_stats.reply_waits_for_send++;
 533}
 534
 535/**
 536 * rpcrdma_sendctx_unmap - DMA-unmap Send buffer
 537 * @sc: sendctx containing SGEs to unmap
 538 *
 539 */
 540void rpcrdma_sendctx_unmap(struct rpcrdma_sendctx *sc)
 541{
 542        struct ib_sge *sge;
 543
 544        if (!sc->sc_unmap_count)
 545                return;
 546
 547        /* The first two SGEs contain the transport header and
 548         * the inline buffer. These are always left mapped so
 549         * they can be cheaply re-used.
 550         */
 551        for (sge = &sc->sc_sges[2]; sc->sc_unmap_count;
 552             ++sge, --sc->sc_unmap_count)
 553                ib_dma_unmap_page(sc->sc_device, sge->addr, sge->length,
 554                                  DMA_TO_DEVICE);
 555
 556        kref_put(&sc->sc_req->rl_kref, rpcrdma_sendctx_done);
 557}
 558
 559/* Prepare an SGE for the RPC-over-RDMA transport header.
 560 */
 561static bool rpcrdma_prepare_hdr_sge(struct rpcrdma_xprt *r_xprt,
 562                                    struct rpcrdma_req *req, u32 len)
 563{
 564        struct rpcrdma_sendctx *sc = req->rl_sendctx;
 565        struct rpcrdma_regbuf *rb = req->rl_rdmabuf;
 566        struct ib_sge *sge = sc->sc_sges;
 567
 568        if (!rpcrdma_regbuf_dma_map(r_xprt, rb))
 569                goto out_regbuf;
 570        sge->addr = rdmab_addr(rb);
 571        sge->length = len;
 572        sge->lkey = rdmab_lkey(rb);
 573
 574        ib_dma_sync_single_for_device(rdmab_device(rb), sge->addr, sge->length,
 575                                      DMA_TO_DEVICE);
 576        sc->sc_wr.num_sge++;
 577        return true;
 578
 579out_regbuf:
 580        pr_err("rpcrdma: failed to DMA map a Send buffer\n");
 581        return false;
 582}
 583
 584/* Prepare the Send SGEs. The head and tail iovec, and each entry
 585 * in the page list, gets its own SGE.
 586 */
 587static bool rpcrdma_prepare_msg_sges(struct rpcrdma_xprt *r_xprt,
 588                                     struct rpcrdma_req *req,
 589                                     struct xdr_buf *xdr,
 590                                     enum rpcrdma_chunktype rtype)
 591{
 592        struct rpcrdma_sendctx *sc = req->rl_sendctx;
 593        unsigned int sge_no, page_base, len, remaining;
 594        struct rpcrdma_regbuf *rb = req->rl_sendbuf;
 595        struct ib_sge *sge = sc->sc_sges;
 596        struct page *page, **ppages;
 597
 598        /* The head iovec is straightforward, as it is already
 599         * DMA-mapped. Sync the content that has changed.
 600         */
 601        if (!rpcrdma_regbuf_dma_map(r_xprt, rb))
 602                goto out_regbuf;
 603        sc->sc_device = rdmab_device(rb);
 604        sge_no = 1;
 605        sge[sge_no].addr = rdmab_addr(rb);
 606        sge[sge_no].length = xdr->head[0].iov_len;
 607        sge[sge_no].lkey = rdmab_lkey(rb);
 608        ib_dma_sync_single_for_device(rdmab_device(rb), sge[sge_no].addr,
 609                                      sge[sge_no].length, DMA_TO_DEVICE);
 610
 611        /* If there is a Read chunk, the page list is being handled
 612         * via explicit RDMA, and thus is skipped here. However, the
 613         * tail iovec may include an XDR pad for the page list, as
 614         * well as additional content, and may not reside in the
 615         * same page as the head iovec.
 616         */
 617        if (rtype == rpcrdma_readch) {
 618                len = xdr->tail[0].iov_len;
 619
 620                /* Do not include the tail if it is only an XDR pad */
 621                if (len < 4)
 622                        goto out;
 623
 624                page = virt_to_page(xdr->tail[0].iov_base);
 625                page_base = offset_in_page(xdr->tail[0].iov_base);
 626
 627                /* If the content in the page list is an odd length,
 628                 * xdr_write_pages() has added a pad at the beginning
 629                 * of the tail iovec. Force the tail's non-pad content
 630                 * to land at the next XDR position in the Send message.
 631                 */
 632                page_base += len & 3;
 633                len -= len & 3;
 634                goto map_tail;
 635        }
 636
 637        /* If there is a page list present, temporarily DMA map
 638         * and prepare an SGE for each page to be sent.
 639         */
 640        if (xdr->page_len) {
 641                ppages = xdr->pages + (xdr->page_base >> PAGE_SHIFT);
 642                page_base = offset_in_page(xdr->page_base);
 643                remaining = xdr->page_len;
 644                while (remaining) {
 645                        sge_no++;
 646                        if (sge_no > RPCRDMA_MAX_SEND_SGES - 2)
 647                                goto out_mapping_overflow;
 648
 649                        len = min_t(u32, PAGE_SIZE - page_base, remaining);
 650                        sge[sge_no].addr =
 651                                ib_dma_map_page(rdmab_device(rb), *ppages,
 652                                                page_base, len, DMA_TO_DEVICE);
 653                        if (ib_dma_mapping_error(rdmab_device(rb),
 654                                                 sge[sge_no].addr))
 655                                goto out_mapping_err;
 656                        sge[sge_no].length = len;
 657                        sge[sge_no].lkey = rdmab_lkey(rb);
 658
 659                        sc->sc_unmap_count++;
 660                        ppages++;
 661                        remaining -= len;
 662                        page_base = 0;
 663                }
 664        }
 665
 666        /* The tail iovec is not always constructed in the same
 667         * page where the head iovec resides (see, for example,
 668         * gss_wrap_req_priv). To neatly accommodate that case,
 669         * DMA map it separately.
 670         */
 671        if (xdr->tail[0].iov_len) {
 672                page = virt_to_page(xdr->tail[0].iov_base);
 673                page_base = offset_in_page(xdr->tail[0].iov_base);
 674                len = xdr->tail[0].iov_len;
 675
 676map_tail:
 677                sge_no++;
 678                sge[sge_no].addr =
 679                        ib_dma_map_page(rdmab_device(rb), page, page_base, len,
 680                                        DMA_TO_DEVICE);
 681                if (ib_dma_mapping_error(rdmab_device(rb), sge[sge_no].addr))
 682                        goto out_mapping_err;
 683                sge[sge_no].length = len;
 684                sge[sge_no].lkey = rdmab_lkey(rb);
 685                sc->sc_unmap_count++;
 686        }
 687
 688out:
 689        sc->sc_wr.num_sge += sge_no;
 690        if (sc->sc_unmap_count)
 691                kref_get(&req->rl_kref);
 692        return true;
 693
 694out_regbuf:
 695        pr_err("rpcrdma: failed to DMA map a Send buffer\n");
 696        return false;
 697
 698out_mapping_overflow:
 699        rpcrdma_sendctx_unmap(sc);
 700        pr_err("rpcrdma: too many Send SGEs (%u)\n", sge_no);
 701        return false;
 702
 703out_mapping_err:
 704        rpcrdma_sendctx_unmap(sc);
 705        trace_xprtrdma_dma_maperr(sge[sge_no].addr);
 706        return false;
 707}
 708
 709/**
 710 * rpcrdma_prepare_send_sges - Construct SGEs for a Send WR
 711 * @r_xprt: controlling transport
 712 * @req: context of RPC Call being marshalled
 713 * @hdrlen: size of transport header, in bytes
 714 * @xdr: xdr_buf containing RPC Call
 715 * @rtype: chunk type being encoded
 716 *
 717 * Returns 0 on success; otherwise a negative errno is returned.
 718 */
 719int
 720rpcrdma_prepare_send_sges(struct rpcrdma_xprt *r_xprt,
 721                          struct rpcrdma_req *req, u32 hdrlen,
 722                          struct xdr_buf *xdr, enum rpcrdma_chunktype rtype)
 723{
 724        int ret;
 725
 726        ret = -EAGAIN;
 727        req->rl_sendctx = rpcrdma_sendctx_get_locked(r_xprt);
 728        if (!req->rl_sendctx)
 729                goto err;
 730        req->rl_sendctx->sc_wr.num_sge = 0;
 731        req->rl_sendctx->sc_unmap_count = 0;
 732        req->rl_sendctx->sc_req = req;
 733        kref_init(&req->rl_kref);
 734
 735        ret = -EIO;
 736        if (!rpcrdma_prepare_hdr_sge(r_xprt, req, hdrlen))
 737                goto err;
 738        if (rtype != rpcrdma_areadch)
 739                if (!rpcrdma_prepare_msg_sges(r_xprt, req, xdr, rtype))
 740                        goto err;
 741        return 0;
 742
 743err:
 744        trace_xprtrdma_prepsend_failed(&req->rl_slot, ret);
 745        return ret;
 746}
 747
 748/**
 749 * rpcrdma_marshal_req - Marshal and send one RPC request
 750 * @r_xprt: controlling transport
 751 * @rqst: RPC request to be marshaled
 752 *
 753 * For the RPC in "rqst", this function:
 754 *  - Chooses the transfer mode (eg., RDMA_MSG or RDMA_NOMSG)
 755 *  - Registers Read, Write, and Reply chunks
 756 *  - Constructs the transport header
 757 *  - Posts a Send WR to send the transport header and request
 758 *
 759 * Returns:
 760 *      %0 if the RPC was sent successfully,
 761 *      %-ENOTCONN if the connection was lost,
 762 *      %-EAGAIN if the caller should call again with the same arguments,
 763 *      %-ENOBUFS if the caller should call again after a delay,
 764 *      %-EMSGSIZE if the transport header is too small,
 765 *      %-EIO if a permanent problem occurred while marshaling.
 766 */
 767int
 768rpcrdma_marshal_req(struct rpcrdma_xprt *r_xprt, struct rpc_rqst *rqst)
 769{
 770        struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
 771        struct xdr_stream *xdr = &req->rl_stream;
 772        enum rpcrdma_chunktype rtype, wtype;
 773        bool ddp_allowed;
 774        __be32 *p;
 775        int ret;
 776
 777        rpcrdma_set_xdrlen(&req->rl_hdrbuf, 0);
 778        xdr_init_encode(xdr, &req->rl_hdrbuf, rdmab_data(req->rl_rdmabuf),
 779                        rqst);
 780
 781        /* Fixed header fields */
 782        ret = -EMSGSIZE;
 783        p = xdr_reserve_space(xdr, 4 * sizeof(*p));
 784        if (!p)
 785                goto out_err;
 786        *p++ = rqst->rq_xid;
 787        *p++ = rpcrdma_version;
 788        *p++ = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
 789
 790        /* When the ULP employs a GSS flavor that guarantees integrity
 791         * or privacy, direct data placement of individual data items
 792         * is not allowed.
 793         */
 794        ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
 795                                                RPCAUTH_AUTH_DATATOUCH);
 796
 797        /*
 798         * Chunks needed for results?
 799         *
 800         * o If the expected result is under the inline threshold, all ops
 801         *   return as inline.
 802         * o Large read ops return data as write chunk(s), header as
 803         *   inline.
 804         * o Large non-read ops return as a single reply chunk.
 805         */
 806        if (rpcrdma_results_inline(r_xprt, rqst))
 807                wtype = rpcrdma_noch;
 808        else if ((ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ) &&
 809                 rpcrdma_nonpayload_inline(r_xprt, rqst))
 810                wtype = rpcrdma_writech;
 811        else
 812                wtype = rpcrdma_replych;
 813
 814        /*
 815         * Chunks needed for arguments?
 816         *
 817         * o If the total request is under the inline threshold, all ops
 818         *   are sent as inline.
 819         * o Large write ops transmit data as read chunk(s), header as
 820         *   inline.
 821         * o Large non-write ops are sent with the entire message as a
 822         *   single read chunk (protocol 0-position special case).
 823         *
 824         * This assumes that the upper layer does not present a request
 825         * that both has a data payload, and whose non-data arguments
 826         * by themselves are larger than the inline threshold.
 827         */
 828        if (rpcrdma_args_inline(r_xprt, rqst)) {
 829                *p++ = rdma_msg;
 830                rtype = rpcrdma_noch;
 831        } else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
 832                *p++ = rdma_msg;
 833                rtype = rpcrdma_readch;
 834        } else {
 835                r_xprt->rx_stats.nomsg_call_count++;
 836                *p++ = rdma_nomsg;
 837                rtype = rpcrdma_areadch;
 838        }
 839
 840        /* If this is a retransmit, discard previously registered
 841         * chunks. Very likely the connection has been replaced,
 842         * so these registrations are invalid and unusable.
 843         */
 844        while (unlikely(!list_empty(&req->rl_registered))) {
 845                struct rpcrdma_mr *mr;
 846
 847                mr = rpcrdma_mr_pop(&req->rl_registered);
 848                rpcrdma_mr_recycle(mr);
 849        }
 850
 851        /* This implementation supports the following combinations
 852         * of chunk lists in one RPC-over-RDMA Call message:
 853         *
 854         *   - Read list
 855         *   - Write list
 856         *   - Reply chunk
 857         *   - Read list + Reply chunk
 858         *
 859         * It might not yet support the following combinations:
 860         *
 861         *   - Read list + Write list
 862         *
 863         * It does not support the following combinations:
 864         *
 865         *   - Write list + Reply chunk
 866         *   - Read list + Write list + Reply chunk
 867         *
 868         * This implementation supports only a single chunk in each
 869         * Read or Write list. Thus for example the client cannot
 870         * send a Call message with a Position Zero Read chunk and a
 871         * regular Read chunk at the same time.
 872         */
 873        ret = rpcrdma_encode_read_list(r_xprt, req, rqst, rtype);
 874        if (ret)
 875                goto out_err;
 876        ret = rpcrdma_encode_write_list(r_xprt, req, rqst, wtype);
 877        if (ret)
 878                goto out_err;
 879        ret = rpcrdma_encode_reply_chunk(r_xprt, req, rqst, wtype);
 880        if (ret)
 881                goto out_err;
 882
 883        ret = rpcrdma_prepare_send_sges(r_xprt, req, req->rl_hdrbuf.len,
 884                                        &rqst->rq_snd_buf, rtype);
 885        if (ret)
 886                goto out_err;
 887
 888        trace_xprtrdma_marshal(req, rtype, wtype);
 889        return 0;
 890
 891out_err:
 892        trace_xprtrdma_marshal_failed(rqst, ret);
 893        r_xprt->rx_stats.failed_marshal_count++;
 894        frwr_reset(req);
 895        return ret;
 896}
 897
 898/**
 899 * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
 900 * @rqst: controlling RPC request
 901 * @srcp: points to RPC message payload in receive buffer
 902 * @copy_len: remaining length of receive buffer content
 903 * @pad: Write chunk pad bytes needed (zero for pure inline)
 904 *
 905 * The upper layer has set the maximum number of bytes it can
 906 * receive in each component of rq_rcv_buf. These values are set in
 907 * the head.iov_len, page_len, tail.iov_len, and buflen fields.
 908 *
 909 * Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
 910 * many cases this function simply updates iov_base pointers in
 911 * rq_rcv_buf to point directly to the received reply data, to
 912 * avoid copying reply data.
 913 *
 914 * Returns the count of bytes which had to be memcopied.
 915 */
 916static unsigned long
 917rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
 918{
 919        unsigned long fixup_copy_count;
 920        int i, npages, curlen;
 921        char *destp;
 922        struct page **ppages;
 923        int page_base;
 924
 925        /* The head iovec is redirected to the RPC reply message
 926         * in the receive buffer, to avoid a memcopy.
 927         */
 928        rqst->rq_rcv_buf.head[0].iov_base = srcp;
 929        rqst->rq_private_buf.head[0].iov_base = srcp;
 930
 931        /* The contents of the receive buffer that follow
 932         * head.iov_len bytes are copied into the page list.
 933         */
 934        curlen = rqst->rq_rcv_buf.head[0].iov_len;
 935        if (curlen > copy_len)
 936                curlen = copy_len;
 937        trace_xprtrdma_fixup(rqst, copy_len, curlen);
 938        srcp += curlen;
 939        copy_len -= curlen;
 940
 941        ppages = rqst->rq_rcv_buf.pages +
 942                (rqst->rq_rcv_buf.page_base >> PAGE_SHIFT);
 943        page_base = offset_in_page(rqst->rq_rcv_buf.page_base);
 944        fixup_copy_count = 0;
 945        if (copy_len && rqst->rq_rcv_buf.page_len) {
 946                int pagelist_len;
 947
 948                pagelist_len = rqst->rq_rcv_buf.page_len;
 949                if (pagelist_len > copy_len)
 950                        pagelist_len = copy_len;
 951                npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
 952                for (i = 0; i < npages; i++) {
 953                        curlen = PAGE_SIZE - page_base;
 954                        if (curlen > pagelist_len)
 955                                curlen = pagelist_len;
 956
 957                        trace_xprtrdma_fixup_pg(rqst, i, srcp,
 958                                                copy_len, curlen);
 959                        destp = kmap_atomic(ppages[i]);
 960                        memcpy(destp + page_base, srcp, curlen);
 961                        flush_dcache_page(ppages[i]);
 962                        kunmap_atomic(destp);
 963                        srcp += curlen;
 964                        copy_len -= curlen;
 965                        fixup_copy_count += curlen;
 966                        pagelist_len -= curlen;
 967                        if (!pagelist_len)
 968                                break;
 969                        page_base = 0;
 970                }
 971
 972                /* Implicit padding for the last segment in a Write
 973                 * chunk is inserted inline at the front of the tail
 974                 * iovec. The upper layer ignores the content of
 975                 * the pad. Simply ensure inline content in the tail
 976                 * that follows the Write chunk is properly aligned.
 977                 */
 978                if (pad)
 979                        srcp -= pad;
 980        }
 981
 982        /* The tail iovec is redirected to the remaining data
 983         * in the receive buffer, to avoid a memcopy.
 984         */
 985        if (copy_len || pad) {
 986                rqst->rq_rcv_buf.tail[0].iov_base = srcp;
 987                rqst->rq_private_buf.tail[0].iov_base = srcp;
 988        }
 989
 990        return fixup_copy_count;
 991}
 992
 993/* By convention, backchannel calls arrive via rdma_msg type
 994 * messages, and never populate the chunk lists. This makes
 995 * the RPC/RDMA header small and fixed in size, so it is
 996 * straightforward to check the RPC header's direction field.
 997 */
 998static bool
 999rpcrdma_is_bcall(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1000#if defined(CONFIG_SUNRPC_BACKCHANNEL)
1001{
1002        struct xdr_stream *xdr = &rep->rr_stream;
1003        __be32 *p;
1004
1005        if (rep->rr_proc != rdma_msg)
1006                return false;
1007
1008        /* Peek at stream contents without advancing. */
1009        p = xdr_inline_decode(xdr, 0);
1010
1011        /* Chunk lists */
1012        if (*p++ != xdr_zero)
1013                return false;
1014        if (*p++ != xdr_zero)
1015                return false;
1016        if (*p++ != xdr_zero)
1017                return false;
1018
1019        /* RPC header */
1020        if (*p++ != rep->rr_xid)
1021                return false;
1022        if (*p != cpu_to_be32(RPC_CALL))
1023                return false;
1024
1025        /* Now that we are sure this is a backchannel call,
1026         * advance to the RPC header.
1027         */
1028        p = xdr_inline_decode(xdr, 3 * sizeof(*p));
1029        if (unlikely(!p))
1030                goto out_short;
1031
1032        rpcrdma_bc_receive_call(r_xprt, rep);
1033        return true;
1034
1035out_short:
1036        pr_warn("RPC/RDMA short backward direction call\n");
1037        return true;
1038}
1039#else   /* CONFIG_SUNRPC_BACKCHANNEL */
1040{
1041        return false;
1042}
1043#endif  /* CONFIG_SUNRPC_BACKCHANNEL */
1044
1045static int decode_rdma_segment(struct xdr_stream *xdr, u32 *length)
1046{
1047        u32 handle;
1048        u64 offset;
1049        __be32 *p;
1050
1051        p = xdr_inline_decode(xdr, 4 * sizeof(*p));
1052        if (unlikely(!p))
1053                return -EIO;
1054
1055        handle = be32_to_cpup(p++);
1056        *length = be32_to_cpup(p++);
1057        xdr_decode_hyper(p, &offset);
1058
1059        trace_xprtrdma_decode_seg(handle, *length, offset);
1060        return 0;
1061}
1062
1063static int decode_write_chunk(struct xdr_stream *xdr, u32 *length)
1064{
1065        u32 segcount, seglength;
1066        __be32 *p;
1067
1068        p = xdr_inline_decode(xdr, sizeof(*p));
1069        if (unlikely(!p))
1070                return -EIO;
1071
1072        *length = 0;
1073        segcount = be32_to_cpup(p);
1074        while (segcount--) {
1075                if (decode_rdma_segment(xdr, &seglength))
1076                        return -EIO;
1077                *length += seglength;
1078        }
1079
1080        return 0;
1081}
1082
1083/* In RPC-over-RDMA Version One replies, a Read list is never
1084 * expected. This decoder is a stub that returns an error if
1085 * a Read list is present.
1086 */
1087static int decode_read_list(struct xdr_stream *xdr)
1088{
1089        __be32 *p;
1090
1091        p = xdr_inline_decode(xdr, sizeof(*p));
1092        if (unlikely(!p))
1093                return -EIO;
1094        if (unlikely(*p != xdr_zero))
1095                return -EIO;
1096        return 0;
1097}
1098
1099/* Supports only one Write chunk in the Write list
1100 */
1101static int decode_write_list(struct xdr_stream *xdr, u32 *length)
1102{
1103        u32 chunklen;
1104        bool first;
1105        __be32 *p;
1106
1107        *length = 0;
1108        first = true;
1109        do {
1110                p = xdr_inline_decode(xdr, sizeof(*p));
1111                if (unlikely(!p))
1112                        return -EIO;
1113                if (*p == xdr_zero)
1114                        break;
1115                if (!first)
1116                        return -EIO;
1117
1118                if (decode_write_chunk(xdr, &chunklen))
1119                        return -EIO;
1120                *length += chunklen;
1121                first = false;
1122        } while (true);
1123        return 0;
1124}
1125
1126static int decode_reply_chunk(struct xdr_stream *xdr, u32 *length)
1127{
1128        __be32 *p;
1129
1130        p = xdr_inline_decode(xdr, sizeof(*p));
1131        if (unlikely(!p))
1132                return -EIO;
1133
1134        *length = 0;
1135        if (*p != xdr_zero)
1136                if (decode_write_chunk(xdr, length))
1137                        return -EIO;
1138        return 0;
1139}
1140
1141static int
1142rpcrdma_decode_msg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1143                   struct rpc_rqst *rqst)
1144{
1145        struct xdr_stream *xdr = &rep->rr_stream;
1146        u32 writelist, replychunk, rpclen;
1147        char *base;
1148
1149        /* Decode the chunk lists */
1150        if (decode_read_list(xdr))
1151                return -EIO;
1152        if (decode_write_list(xdr, &writelist))
1153                return -EIO;
1154        if (decode_reply_chunk(xdr, &replychunk))
1155                return -EIO;
1156
1157        /* RDMA_MSG sanity checks */
1158        if (unlikely(replychunk))
1159                return -EIO;
1160
1161        /* Build the RPC reply's Payload stream in rqst->rq_rcv_buf */
1162        base = (char *)xdr_inline_decode(xdr, 0);
1163        rpclen = xdr_stream_remaining(xdr);
1164        r_xprt->rx_stats.fixup_copy_count +=
1165                rpcrdma_inline_fixup(rqst, base, rpclen, writelist & 3);
1166
1167        r_xprt->rx_stats.total_rdma_reply += writelist;
1168        return rpclen + xdr_align_size(writelist);
1169}
1170
1171static noinline int
1172rpcrdma_decode_nomsg(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep)
1173{
1174        struct xdr_stream *xdr = &rep->rr_stream;
1175        u32 writelist, replychunk;
1176
1177        /* Decode the chunk lists */
1178        if (decode_read_list(xdr))
1179                return -EIO;
1180        if (decode_write_list(xdr, &writelist))
1181                return -EIO;
1182        if (decode_reply_chunk(xdr, &replychunk))
1183                return -EIO;
1184
1185        /* RDMA_NOMSG sanity checks */
1186        if (unlikely(writelist))
1187                return -EIO;
1188        if (unlikely(!replychunk))
1189                return -EIO;
1190
1191        /* Reply chunk buffer already is the reply vector */
1192        r_xprt->rx_stats.total_rdma_reply += replychunk;
1193        return replychunk;
1194}
1195
1196static noinline int
1197rpcrdma_decode_error(struct rpcrdma_xprt *r_xprt, struct rpcrdma_rep *rep,
1198                     struct rpc_rqst *rqst)
1199{
1200        struct xdr_stream *xdr = &rep->rr_stream;
1201        __be32 *p;
1202
1203        p = xdr_inline_decode(xdr, sizeof(*p));
1204        if (unlikely(!p))
1205                return -EIO;
1206
1207        switch (*p) {
1208        case err_vers:
1209                p = xdr_inline_decode(xdr, 2 * sizeof(*p));
1210                if (!p)
1211                        break;
1212                dprintk("RPC:       %s: server reports "
1213                        "version error (%u-%u), xid %08x\n", __func__,
1214                        be32_to_cpup(p), be32_to_cpu(*(p + 1)),
1215                        be32_to_cpu(rep->rr_xid));
1216                break;
1217        case err_chunk:
1218                dprintk("RPC:       %s: server reports "
1219                        "header decoding error, xid %08x\n", __func__,
1220                        be32_to_cpu(rep->rr_xid));
1221                break;
1222        default:
1223                dprintk("RPC:       %s: server reports "
1224                        "unrecognized error %d, xid %08x\n", __func__,
1225                        be32_to_cpup(p), be32_to_cpu(rep->rr_xid));
1226        }
1227
1228        r_xprt->rx_stats.bad_reply_count++;
1229        return -EREMOTEIO;
1230}
1231
1232/* Perform XID lookup, reconstruction of the RPC reply, and
1233 * RPC completion while holding the transport lock to ensure
1234 * the rep, rqst, and rq_task pointers remain stable.
1235 */
1236void rpcrdma_complete_rqst(struct rpcrdma_rep *rep)
1237{
1238        struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1239        struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1240        struct rpc_rqst *rqst = rep->rr_rqst;
1241        int status;
1242
1243        xprt->reestablish_timeout = 0;
1244
1245        switch (rep->rr_proc) {
1246        case rdma_msg:
1247                status = rpcrdma_decode_msg(r_xprt, rep, rqst);
1248                break;
1249        case rdma_nomsg:
1250                status = rpcrdma_decode_nomsg(r_xprt, rep);
1251                break;
1252        case rdma_error:
1253                status = rpcrdma_decode_error(r_xprt, rep, rqst);
1254                break;
1255        default:
1256                status = -EIO;
1257        }
1258        if (status < 0)
1259                goto out_badheader;
1260
1261out:
1262        spin_lock(&xprt->queue_lock);
1263        xprt_complete_rqst(rqst->rq_task, status);
1264        xprt_unpin_rqst(rqst);
1265        spin_unlock(&xprt->queue_lock);
1266        return;
1267
1268/* If the incoming reply terminated a pending RPC, the next
1269 * RPC call will post a replacement receive buffer as it is
1270 * being marshaled.
1271 */
1272out_badheader:
1273        trace_xprtrdma_reply_hdr(rep);
1274        r_xprt->rx_stats.bad_reply_count++;
1275        goto out;
1276}
1277
1278static void rpcrdma_reply_done(struct kref *kref)
1279{
1280        struct rpcrdma_req *req =
1281                container_of(kref, struct rpcrdma_req, rl_kref);
1282
1283        rpcrdma_complete_rqst(req->rl_reply);
1284}
1285
1286/**
1287 * rpcrdma_reply_handler - Process received RPC/RDMA messages
1288 * @rep: Incoming rpcrdma_rep object to process
1289 *
1290 * Errors must result in the RPC task either being awakened, or
1291 * allowed to timeout, to discover the errors at that time.
1292 */
1293void rpcrdma_reply_handler(struct rpcrdma_rep *rep)
1294{
1295        struct rpcrdma_xprt *r_xprt = rep->rr_rxprt;
1296        struct rpc_xprt *xprt = &r_xprt->rx_xprt;
1297        struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1298        struct rpcrdma_req *req;
1299        struct rpc_rqst *rqst;
1300        u32 credits;
1301        __be32 *p;
1302
1303        /* Fixed transport header fields */
1304        xdr_init_decode(&rep->rr_stream, &rep->rr_hdrbuf,
1305                        rep->rr_hdrbuf.head[0].iov_base, NULL);
1306        p = xdr_inline_decode(&rep->rr_stream, 4 * sizeof(*p));
1307        if (unlikely(!p))
1308                goto out_shortreply;
1309        rep->rr_xid = *p++;
1310        rep->rr_vers = *p++;
1311        credits = be32_to_cpu(*p++);
1312        rep->rr_proc = *p++;
1313
1314        if (rep->rr_vers != rpcrdma_version)
1315                goto out_badversion;
1316
1317        if (rpcrdma_is_bcall(r_xprt, rep))
1318                return;
1319
1320        /* Match incoming rpcrdma_rep to an rpcrdma_req to
1321         * get context for handling any incoming chunks.
1322         */
1323        spin_lock(&xprt->queue_lock);
1324        rqst = xprt_lookup_rqst(xprt, rep->rr_xid);
1325        if (!rqst)
1326                goto out_norqst;
1327        xprt_pin_rqst(rqst);
1328        spin_unlock(&xprt->queue_lock);
1329
1330        if (credits == 0)
1331                credits = 1;    /* don't deadlock */
1332        else if (credits > buf->rb_max_requests)
1333                credits = buf->rb_max_requests;
1334        if (buf->rb_credits != credits) {
1335                spin_lock(&xprt->transport_lock);
1336                buf->rb_credits = credits;
1337                xprt->cwnd = credits << RPC_CWNDSHIFT;
1338                spin_unlock(&xprt->transport_lock);
1339        }
1340
1341        req = rpcr_to_rdmar(rqst);
1342        if (req->rl_reply) {
1343                trace_xprtrdma_leaked_rep(rqst, req->rl_reply);
1344                rpcrdma_recv_buffer_put(req->rl_reply);
1345        }
1346        req->rl_reply = rep;
1347        rep->rr_rqst = rqst;
1348
1349        trace_xprtrdma_reply(rqst->rq_task, rep, req, credits);
1350
1351        if (rep->rr_wc_flags & IB_WC_WITH_INVALIDATE)
1352                frwr_reminv(rep, &req->rl_registered);
1353        if (!list_empty(&req->rl_registered))
1354                frwr_unmap_async(r_xprt, req);
1355                /* LocalInv completion will complete the RPC */
1356        else
1357                kref_put(&req->rl_kref, rpcrdma_reply_done);
1358        return;
1359
1360out_badversion:
1361        trace_xprtrdma_reply_vers(rep);
1362        goto out;
1363
1364out_norqst:
1365        spin_unlock(&xprt->queue_lock);
1366        trace_xprtrdma_reply_rqst(rep);
1367        goto out;
1368
1369out_shortreply:
1370        trace_xprtrdma_reply_short(rep);
1371
1372out:
1373        rpcrdma_recv_buffer_put(rep);
1374}
1375