linux/net/tls/tls_device.c
<<
>>
Prefs
   1/* Copyright (c) 2018, Mellanox Technologies All rights reserved.
   2 *
   3 * This software is available to you under a choice of one of two
   4 * licenses.  You may choose to be licensed under the terms of the GNU
   5 * General Public License (GPL) Version 2, available from the file
   6 * COPYING in the main directory of this source tree, or the
   7 * OpenIB.org BSD license below:
   8 *
   9 *     Redistribution and use in source and binary forms, with or
  10 *     without modification, are permitted provided that the following
  11 *     conditions are met:
  12 *
  13 *      - Redistributions of source code must retain the above
  14 *        copyright notice, this list of conditions and the following
  15 *        disclaimer.
  16 *
  17 *      - Redistributions in binary form must reproduce the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer in the documentation and/or other materials
  20 *        provided with the distribution.
  21 *
  22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  29 * SOFTWARE.
  30 */
  31
  32#include <crypto/aead.h>
  33#include <linux/highmem.h>
  34#include <linux/module.h>
  35#include <linux/netdevice.h>
  36#include <net/dst.h>
  37#include <net/inet_connection_sock.h>
  38#include <net/tcp.h>
  39#include <net/tls.h>
  40
  41/* device_offload_lock is used to synchronize tls_dev_add
  42 * against NETDEV_DOWN notifications.
  43 */
  44static DECLARE_RWSEM(device_offload_lock);
  45
  46static void tls_device_gc_task(struct work_struct *work);
  47
  48static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
  49static LIST_HEAD(tls_device_gc_list);
  50static LIST_HEAD(tls_device_list);
  51static DEFINE_SPINLOCK(tls_device_lock);
  52
  53static void tls_device_free_ctx(struct tls_context *ctx)
  54{
  55        if (ctx->tx_conf == TLS_HW) {
  56                kfree(tls_offload_ctx_tx(ctx));
  57                kfree(ctx->tx.rec_seq);
  58                kfree(ctx->tx.iv);
  59        }
  60
  61        if (ctx->rx_conf == TLS_HW)
  62                kfree(tls_offload_ctx_rx(ctx));
  63
  64        tls_ctx_free(ctx);
  65}
  66
  67static void tls_device_gc_task(struct work_struct *work)
  68{
  69        struct tls_context *ctx, *tmp;
  70        unsigned long flags;
  71        LIST_HEAD(gc_list);
  72
  73        spin_lock_irqsave(&tls_device_lock, flags);
  74        list_splice_init(&tls_device_gc_list, &gc_list);
  75        spin_unlock_irqrestore(&tls_device_lock, flags);
  76
  77        list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
  78                struct net_device *netdev = ctx->netdev;
  79
  80                if (netdev && ctx->tx_conf == TLS_HW) {
  81                        netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
  82                                                        TLS_OFFLOAD_CTX_DIR_TX);
  83                        dev_put(netdev);
  84                        ctx->netdev = NULL;
  85                }
  86
  87                list_del(&ctx->list);
  88                tls_device_free_ctx(ctx);
  89        }
  90}
  91
  92static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
  93{
  94        unsigned long flags;
  95
  96        spin_lock_irqsave(&tls_device_lock, flags);
  97        list_move_tail(&ctx->list, &tls_device_gc_list);
  98
  99        /* schedule_work inside the spinlock
 100         * to make sure tls_device_down waits for that work.
 101         */
 102        schedule_work(&tls_device_gc_work);
 103
 104        spin_unlock_irqrestore(&tls_device_lock, flags);
 105}
 106
 107/* We assume that the socket is already connected */
 108static struct net_device *get_netdev_for_sock(struct sock *sk)
 109{
 110        struct dst_entry *dst = sk_dst_get(sk);
 111        struct net_device *netdev = NULL;
 112
 113        if (likely(dst)) {
 114                netdev = dst->dev;
 115                dev_hold(netdev);
 116        }
 117
 118        dst_release(dst);
 119
 120        return netdev;
 121}
 122
 123static void destroy_record(struct tls_record_info *record)
 124{
 125        int nr_frags = record->num_frags;
 126        skb_frag_t *frag;
 127
 128        while (nr_frags-- > 0) {
 129                frag = &record->frags[nr_frags];
 130                __skb_frag_unref(frag);
 131        }
 132        kfree(record);
 133}
 134
 135static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
 136{
 137        struct tls_record_info *info, *temp;
 138
 139        list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
 140                list_del(&info->list);
 141                destroy_record(info);
 142        }
 143
 144        offload_ctx->retransmit_hint = NULL;
 145}
 146
 147static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
 148{
 149        struct tls_context *tls_ctx = tls_get_ctx(sk);
 150        struct tls_record_info *info, *temp;
 151        struct tls_offload_context_tx *ctx;
 152        u64 deleted_records = 0;
 153        unsigned long flags;
 154
 155        if (!tls_ctx)
 156                return;
 157
 158        ctx = tls_offload_ctx_tx(tls_ctx);
 159
 160        spin_lock_irqsave(&ctx->lock, flags);
 161        info = ctx->retransmit_hint;
 162        if (info && !before(acked_seq, info->end_seq)) {
 163                ctx->retransmit_hint = NULL;
 164                list_del(&info->list);
 165                destroy_record(info);
 166                deleted_records++;
 167        }
 168
 169        list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
 170                if (before(acked_seq, info->end_seq))
 171                        break;
 172                list_del(&info->list);
 173
 174                destroy_record(info);
 175                deleted_records++;
 176        }
 177
 178        ctx->unacked_record_sn += deleted_records;
 179        spin_unlock_irqrestore(&ctx->lock, flags);
 180}
 181
 182/* At this point, there should be no references on this
 183 * socket and no in-flight SKBs associated with this
 184 * socket, so it is safe to free all the resources.
 185 */
 186static void tls_device_sk_destruct(struct sock *sk)
 187{
 188        struct tls_context *tls_ctx = tls_get_ctx(sk);
 189        struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
 190
 191        tls_ctx->sk_destruct(sk);
 192
 193        if (tls_ctx->tx_conf == TLS_HW) {
 194                if (ctx->open_record)
 195                        destroy_record(ctx->open_record);
 196                delete_all_records(ctx);
 197                crypto_free_aead(ctx->aead_send);
 198                clean_acked_data_disable(inet_csk(sk));
 199        }
 200
 201        if (refcount_dec_and_test(&tls_ctx->refcount))
 202                tls_device_queue_ctx_destruction(tls_ctx);
 203}
 204
 205void tls_device_free_resources_tx(struct sock *sk)
 206{
 207        struct tls_context *tls_ctx = tls_get_ctx(sk);
 208
 209        tls_free_partial_record(sk, tls_ctx);
 210}
 211
 212static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
 213                                 u32 seq)
 214{
 215        struct net_device *netdev;
 216        struct sk_buff *skb;
 217        int err = 0;
 218        u8 *rcd_sn;
 219
 220        skb = tcp_write_queue_tail(sk);
 221        if (skb)
 222                TCP_SKB_CB(skb)->eor = 1;
 223
 224        rcd_sn = tls_ctx->tx.rec_seq;
 225
 226        down_read(&device_offload_lock);
 227        netdev = tls_ctx->netdev;
 228        if (netdev)
 229                err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
 230                                                         rcd_sn,
 231                                                         TLS_OFFLOAD_CTX_DIR_TX);
 232        up_read(&device_offload_lock);
 233        if (err)
 234                return;
 235
 236        clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
 237}
 238
 239static void tls_append_frag(struct tls_record_info *record,
 240                            struct page_frag *pfrag,
 241                            int size)
 242{
 243        skb_frag_t *frag;
 244
 245        frag = &record->frags[record->num_frags - 1];
 246        if (frag->page.p == pfrag->page &&
 247            frag->page_offset + frag->size == pfrag->offset) {
 248                frag->size += size;
 249        } else {
 250                ++frag;
 251                frag->page.p = pfrag->page;
 252                frag->page_offset = pfrag->offset;
 253                frag->size = size;
 254                ++record->num_frags;
 255                get_page(pfrag->page);
 256        }
 257
 258        pfrag->offset += size;
 259        record->len += size;
 260}
 261
 262static int tls_push_record(struct sock *sk,
 263                           struct tls_context *ctx,
 264                           struct tls_offload_context_tx *offload_ctx,
 265                           struct tls_record_info *record,
 266                           struct page_frag *pfrag,
 267                           int flags,
 268                           unsigned char record_type)
 269{
 270        struct tls_prot_info *prot = &ctx->prot_info;
 271        struct tcp_sock *tp = tcp_sk(sk);
 272        struct page_frag dummy_tag_frag;
 273        skb_frag_t *frag;
 274        int i;
 275
 276        /* fill prepend */
 277        frag = &record->frags[0];
 278        tls_fill_prepend(ctx,
 279                         skb_frag_address(frag),
 280                         record->len - prot->prepend_size,
 281                         record_type,
 282                         prot->version);
 283
 284        /* HW doesn't care about the data in the tag, because it fills it. */
 285        dummy_tag_frag.page = skb_frag_page(frag);
 286        dummy_tag_frag.offset = 0;
 287
 288        tls_append_frag(record, &dummy_tag_frag, prot->tag_size);
 289        record->end_seq = tp->write_seq + record->len;
 290        spin_lock_irq(&offload_ctx->lock);
 291        list_add_tail(&record->list, &offload_ctx->records_list);
 292        spin_unlock_irq(&offload_ctx->lock);
 293        offload_ctx->open_record = NULL;
 294
 295        if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
 296                tls_device_resync_tx(sk, ctx, tp->write_seq);
 297
 298        tls_advance_record_sn(sk, prot, &ctx->tx);
 299
 300        for (i = 0; i < record->num_frags; i++) {
 301                frag = &record->frags[i];
 302                sg_unmark_end(&offload_ctx->sg_tx_data[i]);
 303                sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
 304                            frag->size, frag->page_offset);
 305                sk_mem_charge(sk, frag->size);
 306                get_page(skb_frag_page(frag));
 307        }
 308        sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
 309
 310        /* all ready, send */
 311        return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
 312}
 313
 314static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
 315                                 struct page_frag *pfrag,
 316                                 size_t prepend_size)
 317{
 318        struct tls_record_info *record;
 319        skb_frag_t *frag;
 320
 321        record = kmalloc(sizeof(*record), GFP_KERNEL);
 322        if (!record)
 323                return -ENOMEM;
 324
 325        frag = &record->frags[0];
 326        __skb_frag_set_page(frag, pfrag->page);
 327        frag->page_offset = pfrag->offset;
 328        skb_frag_size_set(frag, prepend_size);
 329
 330        get_page(pfrag->page);
 331        pfrag->offset += prepend_size;
 332
 333        record->num_frags = 1;
 334        record->len = prepend_size;
 335        offload_ctx->open_record = record;
 336        return 0;
 337}
 338
 339static int tls_do_allocation(struct sock *sk,
 340                             struct tls_offload_context_tx *offload_ctx,
 341                             struct page_frag *pfrag,
 342                             size_t prepend_size)
 343{
 344        int ret;
 345
 346        if (!offload_ctx->open_record) {
 347                if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
 348                                                   sk->sk_allocation))) {
 349                        sk->sk_prot->enter_memory_pressure(sk);
 350                        sk_stream_moderate_sndbuf(sk);
 351                        return -ENOMEM;
 352                }
 353
 354                ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
 355                if (ret)
 356                        return ret;
 357
 358                if (pfrag->size > pfrag->offset)
 359                        return 0;
 360        }
 361
 362        if (!sk_page_frag_refill(sk, pfrag))
 363                return -ENOMEM;
 364
 365        return 0;
 366}
 367
 368static int tls_push_data(struct sock *sk,
 369                         struct iov_iter *msg_iter,
 370                         size_t size, int flags,
 371                         unsigned char record_type)
 372{
 373        struct tls_context *tls_ctx = tls_get_ctx(sk);
 374        struct tls_prot_info *prot = &tls_ctx->prot_info;
 375        struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
 376        int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
 377        struct tls_record_info *record = ctx->open_record;
 378        int tls_push_record_flags;
 379        struct page_frag *pfrag;
 380        size_t orig_size = size;
 381        u32 max_open_record_len;
 382        int copy, rc = 0;
 383        bool done = false;
 384        long timeo;
 385
 386        if (flags &
 387            ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
 388                return -ENOTSUPP;
 389
 390        if (sk->sk_err)
 391                return -sk->sk_err;
 392
 393        flags |= MSG_SENDPAGE_DECRYPTED;
 394        tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
 395
 396        timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 397        if (tls_is_partially_sent_record(tls_ctx)) {
 398                rc = tls_push_partial_record(sk, tls_ctx, flags);
 399                if (rc < 0)
 400                        return rc;
 401        }
 402
 403        pfrag = sk_page_frag(sk);
 404
 405        /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
 406         * we need to leave room for an authentication tag.
 407         */
 408        max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
 409                              prot->prepend_size;
 410        do {
 411                rc = tls_do_allocation(sk, ctx, pfrag,
 412                                       prot->prepend_size);
 413                if (rc) {
 414                        rc = sk_stream_wait_memory(sk, &timeo);
 415                        if (!rc)
 416                                continue;
 417
 418                        record = ctx->open_record;
 419                        if (!record)
 420                                break;
 421handle_error:
 422                        if (record_type != TLS_RECORD_TYPE_DATA) {
 423                                /* avoid sending partial
 424                                 * record with type !=
 425                                 * application_data
 426                                 */
 427                                size = orig_size;
 428                                destroy_record(record);
 429                                ctx->open_record = NULL;
 430                        } else if (record->len > prot->prepend_size) {
 431                                goto last_record;
 432                        }
 433
 434                        break;
 435                }
 436
 437                record = ctx->open_record;
 438                copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
 439                copy = min_t(size_t, copy, (max_open_record_len - record->len));
 440
 441                if (copy_from_iter_nocache(page_address(pfrag->page) +
 442                                               pfrag->offset,
 443                                           copy, msg_iter) != copy) {
 444                        rc = -EFAULT;
 445                        goto handle_error;
 446                }
 447                tls_append_frag(record, pfrag, copy);
 448
 449                size -= copy;
 450                if (!size) {
 451last_record:
 452                        tls_push_record_flags = flags;
 453                        if (more) {
 454                                tls_ctx->pending_open_record_frags =
 455                                                !!record->num_frags;
 456                                break;
 457                        }
 458
 459                        done = true;
 460                }
 461
 462                if (done || record->len >= max_open_record_len ||
 463                    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
 464                        rc = tls_push_record(sk,
 465                                             tls_ctx,
 466                                             ctx,
 467                                             record,
 468                                             pfrag,
 469                                             tls_push_record_flags,
 470                                             record_type);
 471                        if (rc < 0)
 472                                break;
 473                }
 474        } while (!done);
 475
 476        if (orig_size - size > 0)
 477                rc = orig_size - size;
 478
 479        return rc;
 480}
 481
 482int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
 483{
 484        unsigned char record_type = TLS_RECORD_TYPE_DATA;
 485        int rc;
 486
 487        lock_sock(sk);
 488
 489        if (unlikely(msg->msg_controllen)) {
 490                rc = tls_proccess_cmsg(sk, msg, &record_type);
 491                if (rc)
 492                        goto out;
 493        }
 494
 495        rc = tls_push_data(sk, &msg->msg_iter, size,
 496                           msg->msg_flags, record_type);
 497
 498out:
 499        release_sock(sk);
 500        return rc;
 501}
 502
 503int tls_device_sendpage(struct sock *sk, struct page *page,
 504                        int offset, size_t size, int flags)
 505{
 506        struct iov_iter msg_iter;
 507        char *kaddr = kmap(page);
 508        struct kvec iov;
 509        int rc;
 510
 511        if (flags & MSG_SENDPAGE_NOTLAST)
 512                flags |= MSG_MORE;
 513
 514        lock_sock(sk);
 515
 516        if (flags & MSG_OOB) {
 517                rc = -ENOTSUPP;
 518                goto out;
 519        }
 520
 521        iov.iov_base = kaddr + offset;
 522        iov.iov_len = size;
 523        iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
 524        rc = tls_push_data(sk, &msg_iter, size,
 525                           flags, TLS_RECORD_TYPE_DATA);
 526        kunmap(page);
 527
 528out:
 529        release_sock(sk);
 530        return rc;
 531}
 532
 533struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
 534                                       u32 seq, u64 *p_record_sn)
 535{
 536        u64 record_sn = context->hint_record_sn;
 537        struct tls_record_info *info;
 538
 539        info = context->retransmit_hint;
 540        if (!info ||
 541            before(seq, info->end_seq - info->len)) {
 542                /* if retransmit_hint is irrelevant start
 543                 * from the beggining of the list
 544                 */
 545                info = list_first_entry(&context->records_list,
 546                                        struct tls_record_info, list);
 547                record_sn = context->unacked_record_sn;
 548        }
 549
 550        list_for_each_entry_from(info, &context->records_list, list) {
 551                if (before(seq, info->end_seq)) {
 552                        if (!context->retransmit_hint ||
 553                            after(info->end_seq,
 554                                  context->retransmit_hint->end_seq)) {
 555                                context->hint_record_sn = record_sn;
 556                                context->retransmit_hint = info;
 557                        }
 558                        *p_record_sn = record_sn;
 559                        return info;
 560                }
 561                record_sn++;
 562        }
 563
 564        return NULL;
 565}
 566EXPORT_SYMBOL(tls_get_record);
 567
 568static int tls_device_push_pending_record(struct sock *sk, int flags)
 569{
 570        struct iov_iter msg_iter;
 571
 572        iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
 573        return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
 574}
 575
 576void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
 577{
 578        if (!sk->sk_write_pending && tls_is_partially_sent_record(ctx)) {
 579                gfp_t sk_allocation = sk->sk_allocation;
 580
 581                sk->sk_allocation = GFP_ATOMIC;
 582                tls_push_partial_record(sk, ctx,
 583                                        MSG_DONTWAIT | MSG_NOSIGNAL |
 584                                        MSG_SENDPAGE_DECRYPTED);
 585                sk->sk_allocation = sk_allocation;
 586        }
 587}
 588
 589static void tls_device_resync_rx(struct tls_context *tls_ctx,
 590                                 struct sock *sk, u32 seq, u8 *rcd_sn)
 591{
 592        struct net_device *netdev;
 593
 594        if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
 595                return;
 596        netdev = READ_ONCE(tls_ctx->netdev);
 597        if (netdev)
 598                netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
 599                                                   TLS_OFFLOAD_CTX_DIR_RX);
 600        clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
 601}
 602
 603void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
 604{
 605        struct tls_context *tls_ctx = tls_get_ctx(sk);
 606        struct tls_offload_context_rx *rx_ctx;
 607        u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
 608        struct tls_prot_info *prot;
 609        u32 is_req_pending;
 610        s64 resync_req;
 611        u32 req_seq;
 612
 613        if (tls_ctx->rx_conf != TLS_HW)
 614                return;
 615
 616        prot = &tls_ctx->prot_info;
 617        rx_ctx = tls_offload_ctx_rx(tls_ctx);
 618        memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
 619
 620        switch (rx_ctx->resync_type) {
 621        case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
 622                resync_req = atomic64_read(&rx_ctx->resync_req);
 623                req_seq = resync_req >> 32;
 624                seq += TLS_HEADER_SIZE - 1;
 625                is_req_pending = resync_req;
 626
 627                if (likely(!is_req_pending) || req_seq != seq ||
 628                    !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
 629                        return;
 630                break;
 631        case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
 632                if (likely(!rx_ctx->resync_nh_do_now))
 633                        return;
 634
 635                /* head of next rec is already in, note that the sock_inq will
 636                 * include the currently parsed message when called from parser
 637                 */
 638                if (tcp_inq(sk) > rcd_len)
 639                        return;
 640
 641                rx_ctx->resync_nh_do_now = 0;
 642                seq += rcd_len;
 643                tls_bigint_increment(rcd_sn, prot->rec_seq_size);
 644                break;
 645        }
 646
 647        tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
 648}
 649
 650static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
 651                                           struct tls_offload_context_rx *ctx,
 652                                           struct sock *sk, struct sk_buff *skb)
 653{
 654        struct strp_msg *rxm;
 655
 656        /* device will request resyncs by itself based on stream scan */
 657        if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
 658                return;
 659        /* already scheduled */
 660        if (ctx->resync_nh_do_now)
 661                return;
 662        /* seen decrypted fragments since last fully-failed record */
 663        if (ctx->resync_nh_reset) {
 664                ctx->resync_nh_reset = 0;
 665                ctx->resync_nh.decrypted_failed = 1;
 666                ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
 667                return;
 668        }
 669
 670        if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
 671                return;
 672
 673        /* doing resync, bump the next target in case it fails */
 674        if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
 675                ctx->resync_nh.decrypted_tgt *= 2;
 676        else
 677                ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
 678
 679        rxm = strp_msg(skb);
 680
 681        /* head of next rec is already in, parser will sync for us */
 682        if (tcp_inq(sk) > rxm->full_len) {
 683                ctx->resync_nh_do_now = 1;
 684        } else {
 685                struct tls_prot_info *prot = &tls_ctx->prot_info;
 686                u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
 687
 688                memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
 689                tls_bigint_increment(rcd_sn, prot->rec_seq_size);
 690
 691                tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
 692                                     rcd_sn);
 693        }
 694}
 695
 696static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
 697{
 698        struct strp_msg *rxm = strp_msg(skb);
 699        int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
 700        struct sk_buff *skb_iter, *unused;
 701        struct scatterlist sg[1];
 702        char *orig_buf, *buf;
 703
 704        orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
 705                           TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
 706        if (!orig_buf)
 707                return -ENOMEM;
 708        buf = orig_buf;
 709
 710        nsg = skb_cow_data(skb, 0, &unused);
 711        if (unlikely(nsg < 0)) {
 712                err = nsg;
 713                goto free_buf;
 714        }
 715
 716        sg_init_table(sg, 1);
 717        sg_set_buf(&sg[0], buf,
 718                   rxm->full_len + TLS_HEADER_SIZE +
 719                   TLS_CIPHER_AES_GCM_128_IV_SIZE);
 720        err = skb_copy_bits(skb, offset, buf,
 721                            TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
 722        if (err)
 723                goto free_buf;
 724
 725        /* We are interested only in the decrypted data not the auth */
 726        err = decrypt_skb(sk, skb, sg);
 727        if (err != -EBADMSG)
 728                goto free_buf;
 729        else
 730                err = 0;
 731
 732        data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
 733
 734        if (skb_pagelen(skb) > offset) {
 735                copy = min_t(int, skb_pagelen(skb) - offset, data_len);
 736
 737                if (skb->decrypted) {
 738                        err = skb_store_bits(skb, offset, buf, copy);
 739                        if (err)
 740                                goto free_buf;
 741                }
 742
 743                offset += copy;
 744                buf += copy;
 745        }
 746
 747        pos = skb_pagelen(skb);
 748        skb_walk_frags(skb, skb_iter) {
 749                int frag_pos;
 750
 751                /* Practically all frags must belong to msg if reencrypt
 752                 * is needed with current strparser and coalescing logic,
 753                 * but strparser may "get optimized", so let's be safe.
 754                 */
 755                if (pos + skb_iter->len <= offset)
 756                        goto done_with_frag;
 757                if (pos >= data_len + rxm->offset)
 758                        break;
 759
 760                frag_pos = offset - pos;
 761                copy = min_t(int, skb_iter->len - frag_pos,
 762                             data_len + rxm->offset - offset);
 763
 764                if (skb_iter->decrypted) {
 765                        err = skb_store_bits(skb_iter, frag_pos, buf, copy);
 766                        if (err)
 767                                goto free_buf;
 768                }
 769
 770                offset += copy;
 771                buf += copy;
 772done_with_frag:
 773                pos += skb_iter->len;
 774        }
 775
 776free_buf:
 777        kfree(orig_buf);
 778        return err;
 779}
 780
 781int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
 782{
 783        struct tls_context *tls_ctx = tls_get_ctx(sk);
 784        struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
 785        int is_decrypted = skb->decrypted;
 786        int is_encrypted = !is_decrypted;
 787        struct sk_buff *skb_iter;
 788
 789        /* Check if all the data is decrypted already */
 790        skb_walk_frags(skb, skb_iter) {
 791                is_decrypted &= skb_iter->decrypted;
 792                is_encrypted &= !skb_iter->decrypted;
 793        }
 794
 795        ctx->sw.decrypted |= is_decrypted;
 796
 797        /* Return immediately if the record is either entirely plaintext or
 798         * entirely ciphertext. Otherwise handle reencrypt partially decrypted
 799         * record.
 800         */
 801        if (is_decrypted) {
 802                ctx->resync_nh_reset = 1;
 803                return 0;
 804        }
 805        if (is_encrypted) {
 806                tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
 807                return 0;
 808        }
 809
 810        ctx->resync_nh_reset = 1;
 811        return tls_device_reencrypt(sk, skb);
 812}
 813
 814static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
 815                              struct net_device *netdev)
 816{
 817        if (sk->sk_destruct != tls_device_sk_destruct) {
 818                refcount_set(&ctx->refcount, 1);
 819                dev_hold(netdev);
 820                ctx->netdev = netdev;
 821                spin_lock_irq(&tls_device_lock);
 822                list_add_tail(&ctx->list, &tls_device_list);
 823                spin_unlock_irq(&tls_device_lock);
 824
 825                ctx->sk_destruct = sk->sk_destruct;
 826                sk->sk_destruct = tls_device_sk_destruct;
 827        }
 828}
 829
 830int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
 831{
 832        u16 nonce_size, tag_size, iv_size, rec_seq_size;
 833        struct tls_context *tls_ctx = tls_get_ctx(sk);
 834        struct tls_prot_info *prot = &tls_ctx->prot_info;
 835        struct tls_record_info *start_marker_record;
 836        struct tls_offload_context_tx *offload_ctx;
 837        struct tls_crypto_info *crypto_info;
 838        struct net_device *netdev;
 839        char *iv, *rec_seq;
 840        struct sk_buff *skb;
 841        int rc = -EINVAL;
 842        __be64 rcd_sn;
 843
 844        if (!ctx)
 845                goto out;
 846
 847        if (ctx->priv_ctx_tx) {
 848                rc = -EEXIST;
 849                goto out;
 850        }
 851
 852        start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
 853        if (!start_marker_record) {
 854                rc = -ENOMEM;
 855                goto out;
 856        }
 857
 858        offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
 859        if (!offload_ctx) {
 860                rc = -ENOMEM;
 861                goto free_marker_record;
 862        }
 863
 864        crypto_info = &ctx->crypto_send.info;
 865        if (crypto_info->version != TLS_1_2_VERSION) {
 866                rc = -EOPNOTSUPP;
 867                goto free_offload_ctx;
 868        }
 869
 870        switch (crypto_info->cipher_type) {
 871        case TLS_CIPHER_AES_GCM_128:
 872                nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
 873                tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
 874                iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
 875                iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
 876                rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
 877                rec_seq =
 878                 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
 879                break;
 880        default:
 881                rc = -EINVAL;
 882                goto free_offload_ctx;
 883        }
 884
 885        /* Sanity-check the rec_seq_size for stack allocations */
 886        if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
 887                rc = -EINVAL;
 888                goto free_offload_ctx;
 889        }
 890
 891        prot->version = crypto_info->version;
 892        prot->cipher_type = crypto_info->cipher_type;
 893        prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
 894        prot->tag_size = tag_size;
 895        prot->overhead_size = prot->prepend_size + prot->tag_size;
 896        prot->iv_size = iv_size;
 897        ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
 898                             GFP_KERNEL);
 899        if (!ctx->tx.iv) {
 900                rc = -ENOMEM;
 901                goto free_offload_ctx;
 902        }
 903
 904        memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
 905
 906        prot->rec_seq_size = rec_seq_size;
 907        ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
 908        if (!ctx->tx.rec_seq) {
 909                rc = -ENOMEM;
 910                goto free_iv;
 911        }
 912
 913        rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
 914        if (rc)
 915                goto free_rec_seq;
 916
 917        /* start at rec_seq - 1 to account for the start marker record */
 918        memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
 919        offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
 920
 921        start_marker_record->end_seq = tcp_sk(sk)->write_seq;
 922        start_marker_record->len = 0;
 923        start_marker_record->num_frags = 0;
 924
 925        INIT_LIST_HEAD(&offload_ctx->records_list);
 926        list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
 927        spin_lock_init(&offload_ctx->lock);
 928        sg_init_table(offload_ctx->sg_tx_data,
 929                      ARRAY_SIZE(offload_ctx->sg_tx_data));
 930
 931        clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
 932        ctx->push_pending_record = tls_device_push_pending_record;
 933
 934        /* TLS offload is greatly simplified if we don't send
 935         * SKBs where only part of the payload needs to be encrypted.
 936         * So mark the last skb in the write queue as end of record.
 937         */
 938        skb = tcp_write_queue_tail(sk);
 939        if (skb)
 940                TCP_SKB_CB(skb)->eor = 1;
 941
 942        /* We support starting offload on multiple sockets
 943         * concurrently, so we only need a read lock here.
 944         * This lock must precede get_netdev_for_sock to prevent races between
 945         * NETDEV_DOWN and setsockopt.
 946         */
 947        down_read(&device_offload_lock);
 948        netdev = get_netdev_for_sock(sk);
 949        if (!netdev) {
 950                pr_err_ratelimited("%s: netdev not found\n", __func__);
 951                rc = -EINVAL;
 952                goto release_lock;
 953        }
 954
 955        if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
 956                rc = -ENOTSUPP;
 957                goto release_netdev;
 958        }
 959
 960        /* Avoid offloading if the device is down
 961         * We don't want to offload new flows after
 962         * the NETDEV_DOWN event
 963         */
 964        if (!(netdev->flags & IFF_UP)) {
 965                rc = -EINVAL;
 966                goto release_netdev;
 967        }
 968
 969        ctx->priv_ctx_tx = offload_ctx;
 970        rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
 971                                             &ctx->crypto_send.info,
 972                                             tcp_sk(sk)->write_seq);
 973        if (rc)
 974                goto release_netdev;
 975
 976        tls_device_attach(ctx, sk, netdev);
 977
 978        /* following this assignment tls_is_sk_tx_device_offloaded
 979         * will return true and the context might be accessed
 980         * by the netdev's xmit function.
 981         */
 982        smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
 983        dev_put(netdev);
 984        up_read(&device_offload_lock);
 985        goto out;
 986
 987release_netdev:
 988        dev_put(netdev);
 989release_lock:
 990        up_read(&device_offload_lock);
 991        clean_acked_data_disable(inet_csk(sk));
 992        crypto_free_aead(offload_ctx->aead_send);
 993free_rec_seq:
 994        kfree(ctx->tx.rec_seq);
 995free_iv:
 996        kfree(ctx->tx.iv);
 997free_offload_ctx:
 998        kfree(offload_ctx);
 999        ctx->priv_ctx_tx = NULL;
1000free_marker_record:
1001        kfree(start_marker_record);
1002out:
1003        return rc;
1004}
1005
1006int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1007{
1008        struct tls_offload_context_rx *context;
1009        struct net_device *netdev;
1010        int rc = 0;
1011
1012        if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1013                return -EOPNOTSUPP;
1014
1015        /* We support starting offload on multiple sockets
1016         * concurrently, so we only need a read lock here.
1017         * This lock must precede get_netdev_for_sock to prevent races between
1018         * NETDEV_DOWN and setsockopt.
1019         */
1020        down_read(&device_offload_lock);
1021        netdev = get_netdev_for_sock(sk);
1022        if (!netdev) {
1023                pr_err_ratelimited("%s: netdev not found\n", __func__);
1024                rc = -EINVAL;
1025                goto release_lock;
1026        }
1027
1028        if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1029                rc = -ENOTSUPP;
1030                goto release_netdev;
1031        }
1032
1033        /* Avoid offloading if the device is down
1034         * We don't want to offload new flows after
1035         * the NETDEV_DOWN event
1036         */
1037        if (!(netdev->flags & IFF_UP)) {
1038                rc = -EINVAL;
1039                goto release_netdev;
1040        }
1041
1042        context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1043        if (!context) {
1044                rc = -ENOMEM;
1045                goto release_netdev;
1046        }
1047        context->resync_nh_reset = 1;
1048
1049        ctx->priv_ctx_rx = context;
1050        rc = tls_set_sw_offload(sk, ctx, 0);
1051        if (rc)
1052                goto release_ctx;
1053
1054        rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1055                                             &ctx->crypto_recv.info,
1056                                             tcp_sk(sk)->copied_seq);
1057        if (rc)
1058                goto free_sw_resources;
1059
1060        tls_device_attach(ctx, sk, netdev);
1061        goto release_netdev;
1062
1063free_sw_resources:
1064        up_read(&device_offload_lock);
1065        tls_sw_free_resources_rx(sk);
1066        down_read(&device_offload_lock);
1067release_ctx:
1068        ctx->priv_ctx_rx = NULL;
1069release_netdev:
1070        dev_put(netdev);
1071release_lock:
1072        up_read(&device_offload_lock);
1073        return rc;
1074}
1075
1076void tls_device_offload_cleanup_rx(struct sock *sk)
1077{
1078        struct tls_context *tls_ctx = tls_get_ctx(sk);
1079        struct net_device *netdev;
1080
1081        down_read(&device_offload_lock);
1082        netdev = tls_ctx->netdev;
1083        if (!netdev)
1084                goto out;
1085
1086        netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1087                                        TLS_OFFLOAD_CTX_DIR_RX);
1088
1089        if (tls_ctx->tx_conf != TLS_HW) {
1090                dev_put(netdev);
1091                tls_ctx->netdev = NULL;
1092        }
1093out:
1094        up_read(&device_offload_lock);
1095        tls_sw_release_resources_rx(sk);
1096}
1097
1098static int tls_device_down(struct net_device *netdev)
1099{
1100        struct tls_context *ctx, *tmp;
1101        unsigned long flags;
1102        LIST_HEAD(list);
1103
1104        /* Request a write lock to block new offload attempts */
1105        down_write(&device_offload_lock);
1106
1107        spin_lock_irqsave(&tls_device_lock, flags);
1108        list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1109                if (ctx->netdev != netdev ||
1110                    !refcount_inc_not_zero(&ctx->refcount))
1111                        continue;
1112
1113                list_move(&ctx->list, &list);
1114        }
1115        spin_unlock_irqrestore(&tls_device_lock, flags);
1116
1117        list_for_each_entry_safe(ctx, tmp, &list, list) {
1118                if (ctx->tx_conf == TLS_HW)
1119                        netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1120                                                        TLS_OFFLOAD_CTX_DIR_TX);
1121                if (ctx->rx_conf == TLS_HW)
1122                        netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1123                                                        TLS_OFFLOAD_CTX_DIR_RX);
1124                WRITE_ONCE(ctx->netdev, NULL);
1125                smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
1126                while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
1127                        usleep_range(10, 200);
1128                dev_put(netdev);
1129                list_del_init(&ctx->list);
1130
1131                if (refcount_dec_and_test(&ctx->refcount))
1132                        tls_device_free_ctx(ctx);
1133        }
1134
1135        up_write(&device_offload_lock);
1136
1137        flush_work(&tls_device_gc_work);
1138
1139        return NOTIFY_DONE;
1140}
1141
1142static int tls_dev_event(struct notifier_block *this, unsigned long event,
1143                         void *ptr)
1144{
1145        struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1146
1147        if (!dev->tlsdev_ops &&
1148            !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1149                return NOTIFY_DONE;
1150
1151        switch (event) {
1152        case NETDEV_REGISTER:
1153        case NETDEV_FEAT_CHANGE:
1154                if ((dev->features & NETIF_F_HW_TLS_RX) &&
1155                    !dev->tlsdev_ops->tls_dev_resync)
1156                        return NOTIFY_BAD;
1157
1158                if  (dev->tlsdev_ops &&
1159                     dev->tlsdev_ops->tls_dev_add &&
1160                     dev->tlsdev_ops->tls_dev_del)
1161                        return NOTIFY_DONE;
1162                else
1163                        return NOTIFY_BAD;
1164        case NETDEV_DOWN:
1165                return tls_device_down(dev);
1166        }
1167        return NOTIFY_DONE;
1168}
1169
1170static struct notifier_block tls_dev_notifier = {
1171        .notifier_call  = tls_dev_event,
1172};
1173
1174void __init tls_device_init(void)
1175{
1176        register_netdevice_notifier(&tls_dev_notifier);
1177}
1178
1179void __exit tls_device_cleanup(void)
1180{
1181        unregister_netdevice_notifier(&tls_dev_notifier);
1182        flush_work(&tls_device_gc_work);
1183        clean_acked_data_flush();
1184}
1185