linux/security/keys/big_key.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Large capacity key type
   3 *
   4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
   5 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
   6 * Written by David Howells (dhowells@redhat.com)
   7 */
   8
   9#define pr_fmt(fmt) "big_key: "fmt
  10#include <linux/init.h>
  11#include <linux/seq_file.h>
  12#include <linux/file.h>
  13#include <linux/shmem_fs.h>
  14#include <linux/err.h>
  15#include <linux/scatterlist.h>
  16#include <linux/random.h>
  17#include <linux/vmalloc.h>
  18#include <keys/user-type.h>
  19#include <keys/big_key-type.h>
  20#include <crypto/aead.h>
  21#include <crypto/gcm.h>
  22
  23struct big_key_buf {
  24        unsigned int            nr_pages;
  25        void                    *virt;
  26        struct scatterlist      *sg;
  27        struct page             *pages[];
  28};
  29
  30/*
  31 * Layout of key payload words.
  32 */
  33enum {
  34        big_key_data,
  35        big_key_path,
  36        big_key_path_2nd_part,
  37        big_key_len,
  38};
  39
  40/*
  41 * Crypto operation with big_key data
  42 */
  43enum big_key_op {
  44        BIG_KEY_ENC,
  45        BIG_KEY_DEC,
  46};
  47
  48/*
  49 * If the data is under this limit, there's no point creating a shm file to
  50 * hold it as the permanently resident metadata for the shmem fs will be at
  51 * least as large as the data.
  52 */
  53#define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry))
  54
  55/*
  56 * Key size for big_key data encryption
  57 */
  58#define ENC_KEY_SIZE 32
  59
  60/*
  61 * Authentication tag length
  62 */
  63#define ENC_AUTHTAG_SIZE 16
  64
  65/*
  66 * big_key defined keys take an arbitrary string as the description and an
  67 * arbitrary blob of data as the payload
  68 */
  69struct key_type key_type_big_key = {
  70        .name                   = "big_key",
  71        .preparse               = big_key_preparse,
  72        .free_preparse          = big_key_free_preparse,
  73        .instantiate            = generic_key_instantiate,
  74        .revoke                 = big_key_revoke,
  75        .destroy                = big_key_destroy,
  76        .describe               = big_key_describe,
  77        .read                   = big_key_read,
  78        /* no ->update(); don't add it without changing big_key_crypt() nonce */
  79};
  80
  81/*
  82 * Crypto names for big_key data authenticated encryption
  83 */
  84static const char big_key_alg_name[] = "gcm(aes)";
  85#define BIG_KEY_IV_SIZE         GCM_AES_IV_SIZE
  86
  87/*
  88 * Crypto algorithms for big_key data authenticated encryption
  89 */
  90static struct crypto_aead *big_key_aead;
  91
  92/*
  93 * Since changing the key affects the entire object, we need a mutex.
  94 */
  95static DEFINE_MUTEX(big_key_aead_lock);
  96
  97/*
  98 * Encrypt/decrypt big_key data
  99 */
 100static int big_key_crypt(enum big_key_op op, struct big_key_buf *buf, size_t datalen, u8 *key)
 101{
 102        int ret;
 103        struct aead_request *aead_req;
 104        /* We always use a zero nonce. The reason we can get away with this is
 105         * because we're using a different randomly generated key for every
 106         * different encryption. Notably, too, key_type_big_key doesn't define
 107         * an .update function, so there's no chance we'll wind up reusing the
 108         * key to encrypt updated data. Simply put: one key, one encryption.
 109         */
 110        u8 zero_nonce[BIG_KEY_IV_SIZE];
 111
 112        aead_req = aead_request_alloc(big_key_aead, GFP_KERNEL);
 113        if (!aead_req)
 114                return -ENOMEM;
 115
 116        memset(zero_nonce, 0, sizeof(zero_nonce));
 117        aead_request_set_crypt(aead_req, buf->sg, buf->sg, datalen, zero_nonce);
 118        aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 119        aead_request_set_ad(aead_req, 0);
 120
 121        mutex_lock(&big_key_aead_lock);
 122        if (crypto_aead_setkey(big_key_aead, key, ENC_KEY_SIZE)) {
 123                ret = -EAGAIN;
 124                goto error;
 125        }
 126        if (op == BIG_KEY_ENC)
 127                ret = crypto_aead_encrypt(aead_req);
 128        else
 129                ret = crypto_aead_decrypt(aead_req);
 130error:
 131        mutex_unlock(&big_key_aead_lock);
 132        aead_request_free(aead_req);
 133        return ret;
 134}
 135
 136/*
 137 * Free up the buffer.
 138 */
 139static void big_key_free_buffer(struct big_key_buf *buf)
 140{
 141        unsigned int i;
 142
 143        if (buf->virt) {
 144                memset(buf->virt, 0, buf->nr_pages * PAGE_SIZE);
 145                vunmap(buf->virt);
 146        }
 147
 148        for (i = 0; i < buf->nr_pages; i++)
 149                if (buf->pages[i])
 150                        __free_page(buf->pages[i]);
 151
 152        kfree(buf);
 153}
 154
 155/*
 156 * Allocate a buffer consisting of a set of pages with a virtual mapping
 157 * applied over them.
 158 */
 159static void *big_key_alloc_buffer(size_t len)
 160{
 161        struct big_key_buf *buf;
 162        unsigned int npg = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
 163        unsigned int i, l;
 164
 165        buf = kzalloc(sizeof(struct big_key_buf) +
 166                      sizeof(struct page) * npg +
 167                      sizeof(struct scatterlist) * npg,
 168                      GFP_KERNEL);
 169        if (!buf)
 170                return NULL;
 171
 172        buf->nr_pages = npg;
 173        buf->sg = (void *)(buf->pages + npg);
 174        sg_init_table(buf->sg, npg);
 175
 176        for (i = 0; i < buf->nr_pages; i++) {
 177                buf->pages[i] = alloc_page(GFP_KERNEL);
 178                if (!buf->pages[i])
 179                        goto nomem;
 180
 181                l = min_t(size_t, len, PAGE_SIZE);
 182                sg_set_page(&buf->sg[i], buf->pages[i], l, 0);
 183                len -= l;
 184        }
 185
 186        buf->virt = vmap(buf->pages, buf->nr_pages, VM_MAP, PAGE_KERNEL);
 187        if (!buf->virt)
 188                goto nomem;
 189
 190        return buf;
 191
 192nomem:
 193        big_key_free_buffer(buf);
 194        return NULL;
 195}
 196
 197/*
 198 * Preparse a big key
 199 */
 200int big_key_preparse(struct key_preparsed_payload *prep)
 201{
 202        struct big_key_buf *buf;
 203        struct path *path = (struct path *)&prep->payload.data[big_key_path];
 204        struct file *file;
 205        u8 *enckey;
 206        ssize_t written;
 207        size_t datalen = prep->datalen, enclen = datalen + ENC_AUTHTAG_SIZE;
 208        int ret;
 209
 210        if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
 211                return -EINVAL;
 212
 213        /* Set an arbitrary quota */
 214        prep->quotalen = 16;
 215
 216        prep->payload.data[big_key_len] = (void *)(unsigned long)datalen;
 217
 218        if (datalen > BIG_KEY_FILE_THRESHOLD) {
 219                /* Create a shmem file to store the data in.  This will permit the data
 220                 * to be swapped out if needed.
 221                 *
 222                 * File content is stored encrypted with randomly generated key.
 223                 */
 224                loff_t pos = 0;
 225
 226                buf = big_key_alloc_buffer(enclen);
 227                if (!buf)
 228                        return -ENOMEM;
 229                memcpy(buf->virt, prep->data, datalen);
 230
 231                /* generate random key */
 232                enckey = kmalloc(ENC_KEY_SIZE, GFP_KERNEL);
 233                if (!enckey) {
 234                        ret = -ENOMEM;
 235                        goto error;
 236                }
 237                ret = get_random_bytes_wait(enckey, ENC_KEY_SIZE);
 238                if (unlikely(ret))
 239                        goto err_enckey;
 240
 241                /* encrypt aligned data */
 242                ret = big_key_crypt(BIG_KEY_ENC, buf, datalen, enckey);
 243                if (ret)
 244                        goto err_enckey;
 245
 246                /* save aligned data to file */
 247                file = shmem_kernel_file_setup("", enclen, 0);
 248                if (IS_ERR(file)) {
 249                        ret = PTR_ERR(file);
 250                        goto err_enckey;
 251                }
 252
 253                written = kernel_write(file, buf->virt, enclen, &pos);
 254                if (written != enclen) {
 255                        ret = written;
 256                        if (written >= 0)
 257                                ret = -ENOMEM;
 258                        goto err_fput;
 259                }
 260
 261                /* Pin the mount and dentry to the key so that we can open it again
 262                 * later
 263                 */
 264                prep->payload.data[big_key_data] = enckey;
 265                *path = file->f_path;
 266                path_get(path);
 267                fput(file);
 268                big_key_free_buffer(buf);
 269        } else {
 270                /* Just store the data in a buffer */
 271                void *data = kmalloc(datalen, GFP_KERNEL);
 272
 273                if (!data)
 274                        return -ENOMEM;
 275
 276                prep->payload.data[big_key_data] = data;
 277                memcpy(data, prep->data, prep->datalen);
 278        }
 279        return 0;
 280
 281err_fput:
 282        fput(file);
 283err_enckey:
 284        kzfree(enckey);
 285error:
 286        big_key_free_buffer(buf);
 287        return ret;
 288}
 289
 290/*
 291 * Clear preparsement.
 292 */
 293void big_key_free_preparse(struct key_preparsed_payload *prep)
 294{
 295        if (prep->datalen > BIG_KEY_FILE_THRESHOLD) {
 296                struct path *path = (struct path *)&prep->payload.data[big_key_path];
 297
 298                path_put(path);
 299        }
 300        kzfree(prep->payload.data[big_key_data]);
 301}
 302
 303/*
 304 * dispose of the links from a revoked keyring
 305 * - called with the key sem write-locked
 306 */
 307void big_key_revoke(struct key *key)
 308{
 309        struct path *path = (struct path *)&key->payload.data[big_key_path];
 310
 311        /* clear the quota */
 312        key_payload_reserve(key, 0);
 313        if (key_is_positive(key) &&
 314            (size_t)key->payload.data[big_key_len] > BIG_KEY_FILE_THRESHOLD)
 315                vfs_truncate(path, 0);
 316}
 317
 318/*
 319 * dispose of the data dangling from the corpse of a big_key key
 320 */
 321void big_key_destroy(struct key *key)
 322{
 323        size_t datalen = (size_t)key->payload.data[big_key_len];
 324
 325        if (datalen > BIG_KEY_FILE_THRESHOLD) {
 326                struct path *path = (struct path *)&key->payload.data[big_key_path];
 327
 328                path_put(path);
 329                path->mnt = NULL;
 330                path->dentry = NULL;
 331        }
 332        kzfree(key->payload.data[big_key_data]);
 333        key->payload.data[big_key_data] = NULL;
 334}
 335
 336/*
 337 * describe the big_key key
 338 */
 339void big_key_describe(const struct key *key, struct seq_file *m)
 340{
 341        size_t datalen = (size_t)key->payload.data[big_key_len];
 342
 343        seq_puts(m, key->description);
 344
 345        if (key_is_positive(key))
 346                seq_printf(m, ": %zu [%s]",
 347                           datalen,
 348                           datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff");
 349}
 350
 351/*
 352 * read the key data
 353 * - the key's semaphore is read-locked
 354 */
 355long big_key_read(const struct key *key, char __user *buffer, size_t buflen)
 356{
 357        size_t datalen = (size_t)key->payload.data[big_key_len];
 358        long ret;
 359
 360        if (!buffer || buflen < datalen)
 361                return datalen;
 362
 363        if (datalen > BIG_KEY_FILE_THRESHOLD) {
 364                struct big_key_buf *buf;
 365                struct path *path = (struct path *)&key->payload.data[big_key_path];
 366                struct file *file;
 367                u8 *enckey = (u8 *)key->payload.data[big_key_data];
 368                size_t enclen = datalen + ENC_AUTHTAG_SIZE;
 369                loff_t pos = 0;
 370
 371                buf = big_key_alloc_buffer(enclen);
 372                if (!buf)
 373                        return -ENOMEM;
 374
 375                file = dentry_open(path, O_RDONLY, current_cred());
 376                if (IS_ERR(file)) {
 377                        ret = PTR_ERR(file);
 378                        goto error;
 379                }
 380
 381                /* read file to kernel and decrypt */
 382                ret = kernel_read(file, buf->virt, enclen, &pos);
 383                if (ret >= 0 && ret != enclen) {
 384                        ret = -EIO;
 385                        goto err_fput;
 386                }
 387
 388                ret = big_key_crypt(BIG_KEY_DEC, buf, enclen, enckey);
 389                if (ret)
 390                        goto err_fput;
 391
 392                ret = datalen;
 393
 394                /* copy decrypted data to user */
 395                if (copy_to_user(buffer, buf->virt, datalen) != 0)
 396                        ret = -EFAULT;
 397
 398err_fput:
 399                fput(file);
 400error:
 401                big_key_free_buffer(buf);
 402        } else {
 403                ret = datalen;
 404                if (copy_to_user(buffer, key->payload.data[big_key_data],
 405                                 datalen) != 0)
 406                        ret = -EFAULT;
 407        }
 408
 409        return ret;
 410}
 411
 412/*
 413 * Register key type
 414 */
 415static int __init big_key_init(void)
 416{
 417        int ret;
 418
 419        /* init block cipher */
 420        big_key_aead = crypto_alloc_aead(big_key_alg_name, 0, CRYPTO_ALG_ASYNC);
 421        if (IS_ERR(big_key_aead)) {
 422                ret = PTR_ERR(big_key_aead);
 423                pr_err("Can't alloc crypto: %d\n", ret);
 424                return ret;
 425        }
 426
 427        if (unlikely(crypto_aead_ivsize(big_key_aead) != BIG_KEY_IV_SIZE)) {
 428                WARN(1, "big key algorithm changed?");
 429                ret = -EINVAL;
 430                goto free_aead;
 431        }
 432
 433        ret = crypto_aead_setauthsize(big_key_aead, ENC_AUTHTAG_SIZE);
 434        if (ret < 0) {
 435                pr_err("Can't set crypto auth tag len: %d\n", ret);
 436                goto free_aead;
 437        }
 438
 439        ret = register_key_type(&key_type_big_key);
 440        if (ret < 0) {
 441                pr_err("Can't register type: %d\n", ret);
 442                goto free_aead;
 443        }
 444
 445        return 0;
 446
 447free_aead:
 448        crypto_free_aead(big_key_aead);
 449        return ret;
 450}
 451
 452late_initcall(big_key_init);
 453