linux/security/selinux/ss/services.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *           James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *      Support for enhanced MLS infrastructure.
  11 *      Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *      Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
  49#include <linux/mutex.h>
  50#include <linux/vmalloc.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68
  69/* Policy capability names */
  70const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
  71        "network_peer_controls",
  72        "open_perms",
  73        "extended_socket_class",
  74        "always_check_network",
  75        "cgroup_seclabel",
  76        "nnp_nosuid_transition"
  77};
  78
  79static struct selinux_ss selinux_ss;
  80
  81void selinux_ss_init(struct selinux_ss **ss)
  82{
  83        rwlock_init(&selinux_ss.policy_rwlock);
  84        mutex_init(&selinux_ss.status_lock);
  85        *ss = &selinux_ss;
  86}
  87
  88/* Forward declaration. */
  89static int context_struct_to_string(struct policydb *policydb,
  90                                    struct context *context,
  91                                    char **scontext,
  92                                    u32 *scontext_len);
  93
  94static void context_struct_compute_av(struct policydb *policydb,
  95                                      struct context *scontext,
  96                                      struct context *tcontext,
  97                                      u16 tclass,
  98                                      struct av_decision *avd,
  99                                      struct extended_perms *xperms);
 100
 101static int selinux_set_mapping(struct policydb *pol,
 102                               struct security_class_mapping *map,
 103                               struct selinux_map *out_map)
 104{
 105        u16 i, j;
 106        unsigned k;
 107        bool print_unknown_handle = false;
 108
 109        /* Find number of classes in the input mapping */
 110        if (!map)
 111                return -EINVAL;
 112        i = 0;
 113        while (map[i].name)
 114                i++;
 115
 116        /* Allocate space for the class records, plus one for class zero */
 117        out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 118        if (!out_map->mapping)
 119                return -ENOMEM;
 120
 121        /* Store the raw class and permission values */
 122        j = 0;
 123        while (map[j].name) {
 124                struct security_class_mapping *p_in = map + (j++);
 125                struct selinux_mapping *p_out = out_map->mapping + j;
 126
 127                /* An empty class string skips ahead */
 128                if (!strcmp(p_in->name, "")) {
 129                        p_out->num_perms = 0;
 130                        continue;
 131                }
 132
 133                p_out->value = string_to_security_class(pol, p_in->name);
 134                if (!p_out->value) {
 135                        pr_info("SELinux:  Class %s not defined in policy.\n",
 136                               p_in->name);
 137                        if (pol->reject_unknown)
 138                                goto err;
 139                        p_out->num_perms = 0;
 140                        print_unknown_handle = true;
 141                        continue;
 142                }
 143
 144                k = 0;
 145                while (p_in->perms[k]) {
 146                        /* An empty permission string skips ahead */
 147                        if (!*p_in->perms[k]) {
 148                                k++;
 149                                continue;
 150                        }
 151                        p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 152                                                            p_in->perms[k]);
 153                        if (!p_out->perms[k]) {
 154                                pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 155                                       p_in->perms[k], p_in->name);
 156                                if (pol->reject_unknown)
 157                                        goto err;
 158                                print_unknown_handle = true;
 159                        }
 160
 161                        k++;
 162                }
 163                p_out->num_perms = k;
 164        }
 165
 166        if (print_unknown_handle)
 167                pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 168                       pol->allow_unknown ? "allowed" : "denied");
 169
 170        out_map->size = i;
 171        return 0;
 172err:
 173        kfree(out_map->mapping);
 174        out_map->mapping = NULL;
 175        return -EINVAL;
 176}
 177
 178/*
 179 * Get real, policy values from mapped values
 180 */
 181
 182static u16 unmap_class(struct selinux_map *map, u16 tclass)
 183{
 184        if (tclass < map->size)
 185                return map->mapping[tclass].value;
 186
 187        return tclass;
 188}
 189
 190/*
 191 * Get kernel value for class from its policy value
 192 */
 193static u16 map_class(struct selinux_map *map, u16 pol_value)
 194{
 195        u16 i;
 196
 197        for (i = 1; i < map->size; i++) {
 198                if (map->mapping[i].value == pol_value)
 199                        return i;
 200        }
 201
 202        return SECCLASS_NULL;
 203}
 204
 205static void map_decision(struct selinux_map *map,
 206                         u16 tclass, struct av_decision *avd,
 207                         int allow_unknown)
 208{
 209        if (tclass < map->size) {
 210                struct selinux_mapping *mapping = &map->mapping[tclass];
 211                unsigned int i, n = mapping->num_perms;
 212                u32 result;
 213
 214                for (i = 0, result = 0; i < n; i++) {
 215                        if (avd->allowed & mapping->perms[i])
 216                                result |= 1<<i;
 217                        if (allow_unknown && !mapping->perms[i])
 218                                result |= 1<<i;
 219                }
 220                avd->allowed = result;
 221
 222                for (i = 0, result = 0; i < n; i++)
 223                        if (avd->auditallow & mapping->perms[i])
 224                                result |= 1<<i;
 225                avd->auditallow = result;
 226
 227                for (i = 0, result = 0; i < n; i++) {
 228                        if (avd->auditdeny & mapping->perms[i])
 229                                result |= 1<<i;
 230                        if (!allow_unknown && !mapping->perms[i])
 231                                result |= 1<<i;
 232                }
 233                /*
 234                 * In case the kernel has a bug and requests a permission
 235                 * between num_perms and the maximum permission number, we
 236                 * should audit that denial
 237                 */
 238                for (; i < (sizeof(u32)*8); i++)
 239                        result |= 1<<i;
 240                avd->auditdeny = result;
 241        }
 242}
 243
 244int security_mls_enabled(struct selinux_state *state)
 245{
 246        struct policydb *p = &state->ss->policydb;
 247
 248        return p->mls_enabled;
 249}
 250
 251/*
 252 * Return the boolean value of a constraint expression
 253 * when it is applied to the specified source and target
 254 * security contexts.
 255 *
 256 * xcontext is a special beast...  It is used by the validatetrans rules
 257 * only.  For these rules, scontext is the context before the transition,
 258 * tcontext is the context after the transition, and xcontext is the context
 259 * of the process performing the transition.  All other callers of
 260 * constraint_expr_eval should pass in NULL for xcontext.
 261 */
 262static int constraint_expr_eval(struct policydb *policydb,
 263                                struct context *scontext,
 264                                struct context *tcontext,
 265                                struct context *xcontext,
 266                                struct constraint_expr *cexpr)
 267{
 268        u32 val1, val2;
 269        struct context *c;
 270        struct role_datum *r1, *r2;
 271        struct mls_level *l1, *l2;
 272        struct constraint_expr *e;
 273        int s[CEXPR_MAXDEPTH];
 274        int sp = -1;
 275
 276        for (e = cexpr; e; e = e->next) {
 277                switch (e->expr_type) {
 278                case CEXPR_NOT:
 279                        BUG_ON(sp < 0);
 280                        s[sp] = !s[sp];
 281                        break;
 282                case CEXPR_AND:
 283                        BUG_ON(sp < 1);
 284                        sp--;
 285                        s[sp] &= s[sp + 1];
 286                        break;
 287                case CEXPR_OR:
 288                        BUG_ON(sp < 1);
 289                        sp--;
 290                        s[sp] |= s[sp + 1];
 291                        break;
 292                case CEXPR_ATTR:
 293                        if (sp == (CEXPR_MAXDEPTH - 1))
 294                                return 0;
 295                        switch (e->attr) {
 296                        case CEXPR_USER:
 297                                val1 = scontext->user;
 298                                val2 = tcontext->user;
 299                                break;
 300                        case CEXPR_TYPE:
 301                                val1 = scontext->type;
 302                                val2 = tcontext->type;
 303                                break;
 304                        case CEXPR_ROLE:
 305                                val1 = scontext->role;
 306                                val2 = tcontext->role;
 307                                r1 = policydb->role_val_to_struct[val1 - 1];
 308                                r2 = policydb->role_val_to_struct[val2 - 1];
 309                                switch (e->op) {
 310                                case CEXPR_DOM:
 311                                        s[++sp] = ebitmap_get_bit(&r1->dominates,
 312                                                                  val2 - 1);
 313                                        continue;
 314                                case CEXPR_DOMBY:
 315                                        s[++sp] = ebitmap_get_bit(&r2->dominates,
 316                                                                  val1 - 1);
 317                                        continue;
 318                                case CEXPR_INCOMP:
 319                                        s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 320                                                                    val2 - 1) &&
 321                                                   !ebitmap_get_bit(&r2->dominates,
 322                                                                    val1 - 1));
 323                                        continue;
 324                                default:
 325                                        break;
 326                                }
 327                                break;
 328                        case CEXPR_L1L2:
 329                                l1 = &(scontext->range.level[0]);
 330                                l2 = &(tcontext->range.level[0]);
 331                                goto mls_ops;
 332                        case CEXPR_L1H2:
 333                                l1 = &(scontext->range.level[0]);
 334                                l2 = &(tcontext->range.level[1]);
 335                                goto mls_ops;
 336                        case CEXPR_H1L2:
 337                                l1 = &(scontext->range.level[1]);
 338                                l2 = &(tcontext->range.level[0]);
 339                                goto mls_ops;
 340                        case CEXPR_H1H2:
 341                                l1 = &(scontext->range.level[1]);
 342                                l2 = &(tcontext->range.level[1]);
 343                                goto mls_ops;
 344                        case CEXPR_L1H1:
 345                                l1 = &(scontext->range.level[0]);
 346                                l2 = &(scontext->range.level[1]);
 347                                goto mls_ops;
 348                        case CEXPR_L2H2:
 349                                l1 = &(tcontext->range.level[0]);
 350                                l2 = &(tcontext->range.level[1]);
 351                                goto mls_ops;
 352mls_ops:
 353                        switch (e->op) {
 354                        case CEXPR_EQ:
 355                                s[++sp] = mls_level_eq(l1, l2);
 356                                continue;
 357                        case CEXPR_NEQ:
 358                                s[++sp] = !mls_level_eq(l1, l2);
 359                                continue;
 360                        case CEXPR_DOM:
 361                                s[++sp] = mls_level_dom(l1, l2);
 362                                continue;
 363                        case CEXPR_DOMBY:
 364                                s[++sp] = mls_level_dom(l2, l1);
 365                                continue;
 366                        case CEXPR_INCOMP:
 367                                s[++sp] = mls_level_incomp(l2, l1);
 368                                continue;
 369                        default:
 370                                BUG();
 371                                return 0;
 372                        }
 373                        break;
 374                        default:
 375                                BUG();
 376                                return 0;
 377                        }
 378
 379                        switch (e->op) {
 380                        case CEXPR_EQ:
 381                                s[++sp] = (val1 == val2);
 382                                break;
 383                        case CEXPR_NEQ:
 384                                s[++sp] = (val1 != val2);
 385                                break;
 386                        default:
 387                                BUG();
 388                                return 0;
 389                        }
 390                        break;
 391                case CEXPR_NAMES:
 392                        if (sp == (CEXPR_MAXDEPTH-1))
 393                                return 0;
 394                        c = scontext;
 395                        if (e->attr & CEXPR_TARGET)
 396                                c = tcontext;
 397                        else if (e->attr & CEXPR_XTARGET) {
 398                                c = xcontext;
 399                                if (!c) {
 400                                        BUG();
 401                                        return 0;
 402                                }
 403                        }
 404                        if (e->attr & CEXPR_USER)
 405                                val1 = c->user;
 406                        else if (e->attr & CEXPR_ROLE)
 407                                val1 = c->role;
 408                        else if (e->attr & CEXPR_TYPE)
 409                                val1 = c->type;
 410                        else {
 411                                BUG();
 412                                return 0;
 413                        }
 414
 415                        switch (e->op) {
 416                        case CEXPR_EQ:
 417                                s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 418                                break;
 419                        case CEXPR_NEQ:
 420                                s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 421                                break;
 422                        default:
 423                                BUG();
 424                                return 0;
 425                        }
 426                        break;
 427                default:
 428                        BUG();
 429                        return 0;
 430                }
 431        }
 432
 433        BUG_ON(sp != 0);
 434        return s[0];
 435}
 436
 437/*
 438 * security_dump_masked_av - dumps masked permissions during
 439 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 440 */
 441static int dump_masked_av_helper(void *k, void *d, void *args)
 442{
 443        struct perm_datum *pdatum = d;
 444        char **permission_names = args;
 445
 446        BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 447
 448        permission_names[pdatum->value - 1] = (char *)k;
 449
 450        return 0;
 451}
 452
 453static void security_dump_masked_av(struct policydb *policydb,
 454                                    struct context *scontext,
 455                                    struct context *tcontext,
 456                                    u16 tclass,
 457                                    u32 permissions,
 458                                    const char *reason)
 459{
 460        struct common_datum *common_dat;
 461        struct class_datum *tclass_dat;
 462        struct audit_buffer *ab;
 463        char *tclass_name;
 464        char *scontext_name = NULL;
 465        char *tcontext_name = NULL;
 466        char *permission_names[32];
 467        int index;
 468        u32 length;
 469        bool need_comma = false;
 470
 471        if (!permissions)
 472                return;
 473
 474        tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 475        tclass_dat = policydb->class_val_to_struct[tclass - 1];
 476        common_dat = tclass_dat->comdatum;
 477
 478        /* init permission_names */
 479        if (common_dat &&
 480            hashtab_map(common_dat->permissions.table,
 481                        dump_masked_av_helper, permission_names) < 0)
 482                goto out;
 483
 484        if (hashtab_map(tclass_dat->permissions.table,
 485                        dump_masked_av_helper, permission_names) < 0)
 486                goto out;
 487
 488        /* get scontext/tcontext in text form */
 489        if (context_struct_to_string(policydb, scontext,
 490                                     &scontext_name, &length) < 0)
 491                goto out;
 492
 493        if (context_struct_to_string(policydb, tcontext,
 494                                     &tcontext_name, &length) < 0)
 495                goto out;
 496
 497        /* audit a message */
 498        ab = audit_log_start(audit_context(),
 499                             GFP_ATOMIC, AUDIT_SELINUX_ERR);
 500        if (!ab)
 501                goto out;
 502
 503        audit_log_format(ab, "op=security_compute_av reason=%s "
 504                         "scontext=%s tcontext=%s tclass=%s perms=",
 505                         reason, scontext_name, tcontext_name, tclass_name);
 506
 507        for (index = 0; index < 32; index++) {
 508                u32 mask = (1 << index);
 509
 510                if ((mask & permissions) == 0)
 511                        continue;
 512
 513                audit_log_format(ab, "%s%s",
 514                                 need_comma ? "," : "",
 515                                 permission_names[index]
 516                                 ? permission_names[index] : "????");
 517                need_comma = true;
 518        }
 519        audit_log_end(ab);
 520out:
 521        /* release scontext/tcontext */
 522        kfree(tcontext_name);
 523        kfree(scontext_name);
 524
 525        return;
 526}
 527
 528/*
 529 * security_boundary_permission - drops violated permissions
 530 * on boundary constraint.
 531 */
 532static void type_attribute_bounds_av(struct policydb *policydb,
 533                                     struct context *scontext,
 534                                     struct context *tcontext,
 535                                     u16 tclass,
 536                                     struct av_decision *avd)
 537{
 538        struct context lo_scontext;
 539        struct context lo_tcontext, *tcontextp = tcontext;
 540        struct av_decision lo_avd;
 541        struct type_datum *source;
 542        struct type_datum *target;
 543        u32 masked = 0;
 544
 545        source = policydb->type_val_to_struct_array[scontext->type - 1];
 546        BUG_ON(!source);
 547
 548        if (!source->bounds)
 549                return;
 550
 551        target = policydb->type_val_to_struct_array[tcontext->type - 1];
 552        BUG_ON(!target);
 553
 554        memset(&lo_avd, 0, sizeof(lo_avd));
 555
 556        memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 557        lo_scontext.type = source->bounds;
 558
 559        if (target->bounds) {
 560                memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 561                lo_tcontext.type = target->bounds;
 562                tcontextp = &lo_tcontext;
 563        }
 564
 565        context_struct_compute_av(policydb, &lo_scontext,
 566                                  tcontextp,
 567                                  tclass,
 568                                  &lo_avd,
 569                                  NULL);
 570
 571        masked = ~lo_avd.allowed & avd->allowed;
 572
 573        if (likely(!masked))
 574                return;         /* no masked permission */
 575
 576        /* mask violated permissions */
 577        avd->allowed &= ~masked;
 578
 579        /* audit masked permissions */
 580        security_dump_masked_av(policydb, scontext, tcontext,
 581                                tclass, masked, "bounds");
 582}
 583
 584/*
 585 * flag which drivers have permissions
 586 * only looking for ioctl based extended permssions
 587 */
 588void services_compute_xperms_drivers(
 589                struct extended_perms *xperms,
 590                struct avtab_node *node)
 591{
 592        unsigned int i;
 593
 594        if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 595                /* if one or more driver has all permissions allowed */
 596                for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 597                        xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 598        } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 599                /* if allowing permissions within a driver */
 600                security_xperm_set(xperms->drivers.p,
 601                                        node->datum.u.xperms->driver);
 602        }
 603
 604        /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 605        if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 606                xperms->len = 1;
 607}
 608
 609/*
 610 * Compute access vectors and extended permissions based on a context
 611 * structure pair for the permissions in a particular class.
 612 */
 613static void context_struct_compute_av(struct policydb *policydb,
 614                                      struct context *scontext,
 615                                      struct context *tcontext,
 616                                      u16 tclass,
 617                                      struct av_decision *avd,
 618                                      struct extended_perms *xperms)
 619{
 620        struct constraint_node *constraint;
 621        struct role_allow *ra;
 622        struct avtab_key avkey;
 623        struct avtab_node *node;
 624        struct class_datum *tclass_datum;
 625        struct ebitmap *sattr, *tattr;
 626        struct ebitmap_node *snode, *tnode;
 627        unsigned int i, j;
 628
 629        avd->allowed = 0;
 630        avd->auditallow = 0;
 631        avd->auditdeny = 0xffffffff;
 632        if (xperms) {
 633                memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 634                xperms->len = 0;
 635        }
 636
 637        if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 638                if (printk_ratelimit())
 639                        pr_warn("SELinux:  Invalid class %hu\n", tclass);
 640                return;
 641        }
 642
 643        tclass_datum = policydb->class_val_to_struct[tclass - 1];
 644
 645        /*
 646         * If a specific type enforcement rule was defined for
 647         * this permission check, then use it.
 648         */
 649        avkey.target_class = tclass;
 650        avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 651        sattr = &policydb->type_attr_map_array[scontext->type - 1];
 652        tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 653        ebitmap_for_each_positive_bit(sattr, snode, i) {
 654                ebitmap_for_each_positive_bit(tattr, tnode, j) {
 655                        avkey.source_type = i + 1;
 656                        avkey.target_type = j + 1;
 657                        for (node = avtab_search_node(&policydb->te_avtab,
 658                                                      &avkey);
 659                             node;
 660                             node = avtab_search_node_next(node, avkey.specified)) {
 661                                if (node->key.specified == AVTAB_ALLOWED)
 662                                        avd->allowed |= node->datum.u.data;
 663                                else if (node->key.specified == AVTAB_AUDITALLOW)
 664                                        avd->auditallow |= node->datum.u.data;
 665                                else if (node->key.specified == AVTAB_AUDITDENY)
 666                                        avd->auditdeny &= node->datum.u.data;
 667                                else if (xperms && (node->key.specified & AVTAB_XPERMS))
 668                                        services_compute_xperms_drivers(xperms, node);
 669                        }
 670
 671                        /* Check conditional av table for additional permissions */
 672                        cond_compute_av(&policydb->te_cond_avtab, &avkey,
 673                                        avd, xperms);
 674
 675                }
 676        }
 677
 678        /*
 679         * Remove any permissions prohibited by a constraint (this includes
 680         * the MLS policy).
 681         */
 682        constraint = tclass_datum->constraints;
 683        while (constraint) {
 684                if ((constraint->permissions & (avd->allowed)) &&
 685                    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 686                                          constraint->expr)) {
 687                        avd->allowed &= ~(constraint->permissions);
 688                }
 689                constraint = constraint->next;
 690        }
 691
 692        /*
 693         * If checking process transition permission and the
 694         * role is changing, then check the (current_role, new_role)
 695         * pair.
 696         */
 697        if (tclass == policydb->process_class &&
 698            (avd->allowed & policydb->process_trans_perms) &&
 699            scontext->role != tcontext->role) {
 700                for (ra = policydb->role_allow; ra; ra = ra->next) {
 701                        if (scontext->role == ra->role &&
 702                            tcontext->role == ra->new_role)
 703                                break;
 704                }
 705                if (!ra)
 706                        avd->allowed &= ~policydb->process_trans_perms;
 707        }
 708
 709        /*
 710         * If the given source and target types have boundary
 711         * constraint, lazy checks have to mask any violated
 712         * permission and notice it to userspace via audit.
 713         */
 714        type_attribute_bounds_av(policydb, scontext, tcontext,
 715                                 tclass, avd);
 716}
 717
 718static int security_validtrans_handle_fail(struct selinux_state *state,
 719                                           struct context *ocontext,
 720                                           struct context *ncontext,
 721                                           struct context *tcontext,
 722                                           u16 tclass)
 723{
 724        struct policydb *p = &state->ss->policydb;
 725        char *o = NULL, *n = NULL, *t = NULL;
 726        u32 olen, nlen, tlen;
 727
 728        if (context_struct_to_string(p, ocontext, &o, &olen))
 729                goto out;
 730        if (context_struct_to_string(p, ncontext, &n, &nlen))
 731                goto out;
 732        if (context_struct_to_string(p, tcontext, &t, &tlen))
 733                goto out;
 734        audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 735                  "op=security_validate_transition seresult=denied"
 736                  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 737                  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 738out:
 739        kfree(o);
 740        kfree(n);
 741        kfree(t);
 742
 743        if (!enforcing_enabled(state))
 744                return 0;
 745        return -EPERM;
 746}
 747
 748static int security_compute_validatetrans(struct selinux_state *state,
 749                                          u32 oldsid, u32 newsid, u32 tasksid,
 750                                          u16 orig_tclass, bool user)
 751{
 752        struct policydb *policydb;
 753        struct sidtab *sidtab;
 754        struct context *ocontext;
 755        struct context *ncontext;
 756        struct context *tcontext;
 757        struct class_datum *tclass_datum;
 758        struct constraint_node *constraint;
 759        u16 tclass;
 760        int rc = 0;
 761
 762
 763        if (!state->initialized)
 764                return 0;
 765
 766        read_lock(&state->ss->policy_rwlock);
 767
 768        policydb = &state->ss->policydb;
 769        sidtab = state->ss->sidtab;
 770
 771        if (!user)
 772                tclass = unmap_class(&state->ss->map, orig_tclass);
 773        else
 774                tclass = orig_tclass;
 775
 776        if (!tclass || tclass > policydb->p_classes.nprim) {
 777                rc = -EINVAL;
 778                goto out;
 779        }
 780        tclass_datum = policydb->class_val_to_struct[tclass - 1];
 781
 782        ocontext = sidtab_search(sidtab, oldsid);
 783        if (!ocontext) {
 784                pr_err("SELinux: %s:  unrecognized SID %d\n",
 785                        __func__, oldsid);
 786                rc = -EINVAL;
 787                goto out;
 788        }
 789
 790        ncontext = sidtab_search(sidtab, newsid);
 791        if (!ncontext) {
 792                pr_err("SELinux: %s:  unrecognized SID %d\n",
 793                        __func__, newsid);
 794                rc = -EINVAL;
 795                goto out;
 796        }
 797
 798        tcontext = sidtab_search(sidtab, tasksid);
 799        if (!tcontext) {
 800                pr_err("SELinux: %s:  unrecognized SID %d\n",
 801                        __func__, tasksid);
 802                rc = -EINVAL;
 803                goto out;
 804        }
 805
 806        constraint = tclass_datum->validatetrans;
 807        while (constraint) {
 808                if (!constraint_expr_eval(policydb, ocontext, ncontext,
 809                                          tcontext, constraint->expr)) {
 810                        if (user)
 811                                rc = -EPERM;
 812                        else
 813                                rc = security_validtrans_handle_fail(state,
 814                                                                     ocontext,
 815                                                                     ncontext,
 816                                                                     tcontext,
 817                                                                     tclass);
 818                        goto out;
 819                }
 820                constraint = constraint->next;
 821        }
 822
 823out:
 824        read_unlock(&state->ss->policy_rwlock);
 825        return rc;
 826}
 827
 828int security_validate_transition_user(struct selinux_state *state,
 829                                      u32 oldsid, u32 newsid, u32 tasksid,
 830                                      u16 tclass)
 831{
 832        return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 833                                              tclass, true);
 834}
 835
 836int security_validate_transition(struct selinux_state *state,
 837                                 u32 oldsid, u32 newsid, u32 tasksid,
 838                                 u16 orig_tclass)
 839{
 840        return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 841                                              orig_tclass, false);
 842}
 843
 844/*
 845 * security_bounded_transition - check whether the given
 846 * transition is directed to bounded, or not.
 847 * It returns 0, if @newsid is bounded by @oldsid.
 848 * Otherwise, it returns error code.
 849 *
 850 * @oldsid : current security identifier
 851 * @newsid : destinated security identifier
 852 */
 853int security_bounded_transition(struct selinux_state *state,
 854                                u32 old_sid, u32 new_sid)
 855{
 856        struct policydb *policydb;
 857        struct sidtab *sidtab;
 858        struct context *old_context, *new_context;
 859        struct type_datum *type;
 860        int index;
 861        int rc;
 862
 863        if (!state->initialized)
 864                return 0;
 865
 866        read_lock(&state->ss->policy_rwlock);
 867
 868        policydb = &state->ss->policydb;
 869        sidtab = state->ss->sidtab;
 870
 871        rc = -EINVAL;
 872        old_context = sidtab_search(sidtab, old_sid);
 873        if (!old_context) {
 874                pr_err("SELinux: %s: unrecognized SID %u\n",
 875                       __func__, old_sid);
 876                goto out;
 877        }
 878
 879        rc = -EINVAL;
 880        new_context = sidtab_search(sidtab, new_sid);
 881        if (!new_context) {
 882                pr_err("SELinux: %s: unrecognized SID %u\n",
 883                       __func__, new_sid);
 884                goto out;
 885        }
 886
 887        rc = 0;
 888        /* type/domain unchanged */
 889        if (old_context->type == new_context->type)
 890                goto out;
 891
 892        index = new_context->type;
 893        while (true) {
 894                type = policydb->type_val_to_struct_array[index - 1];
 895                BUG_ON(!type);
 896
 897                /* not bounded anymore */
 898                rc = -EPERM;
 899                if (!type->bounds)
 900                        break;
 901
 902                /* @newsid is bounded by @oldsid */
 903                rc = 0;
 904                if (type->bounds == old_context->type)
 905                        break;
 906
 907                index = type->bounds;
 908        }
 909
 910        if (rc) {
 911                char *old_name = NULL;
 912                char *new_name = NULL;
 913                u32 length;
 914
 915                if (!context_struct_to_string(policydb, old_context,
 916                                              &old_name, &length) &&
 917                    !context_struct_to_string(policydb, new_context,
 918                                              &new_name, &length)) {
 919                        audit_log(audit_context(),
 920                                  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 921                                  "op=security_bounded_transition "
 922                                  "seresult=denied "
 923                                  "oldcontext=%s newcontext=%s",
 924                                  old_name, new_name);
 925                }
 926                kfree(new_name);
 927                kfree(old_name);
 928        }
 929out:
 930        read_unlock(&state->ss->policy_rwlock);
 931
 932        return rc;
 933}
 934
 935static void avd_init(struct selinux_state *state, struct av_decision *avd)
 936{
 937        avd->allowed = 0;
 938        avd->auditallow = 0;
 939        avd->auditdeny = 0xffffffff;
 940        avd->seqno = state->ss->latest_granting;
 941        avd->flags = 0;
 942}
 943
 944void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 945                                        struct avtab_node *node)
 946{
 947        unsigned int i;
 948
 949        if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 950                if (xpermd->driver != node->datum.u.xperms->driver)
 951                        return;
 952        } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 953                if (!security_xperm_test(node->datum.u.xperms->perms.p,
 954                                        xpermd->driver))
 955                        return;
 956        } else {
 957                BUG();
 958        }
 959
 960        if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 961                xpermd->used |= XPERMS_ALLOWED;
 962                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 963                        memset(xpermd->allowed->p, 0xff,
 964                                        sizeof(xpermd->allowed->p));
 965                }
 966                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 967                        for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 968                                xpermd->allowed->p[i] |=
 969                                        node->datum.u.xperms->perms.p[i];
 970                }
 971        } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 972                xpermd->used |= XPERMS_AUDITALLOW;
 973                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 974                        memset(xpermd->auditallow->p, 0xff,
 975                                        sizeof(xpermd->auditallow->p));
 976                }
 977                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 978                        for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 979                                xpermd->auditallow->p[i] |=
 980                                        node->datum.u.xperms->perms.p[i];
 981                }
 982        } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 983                xpermd->used |= XPERMS_DONTAUDIT;
 984                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 985                        memset(xpermd->dontaudit->p, 0xff,
 986                                        sizeof(xpermd->dontaudit->p));
 987                }
 988                if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 989                        for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 990                                xpermd->dontaudit->p[i] |=
 991                                        node->datum.u.xperms->perms.p[i];
 992                }
 993        } else {
 994                BUG();
 995        }
 996}
 997
 998void security_compute_xperms_decision(struct selinux_state *state,
 999                                      u32 ssid,
1000                                      u32 tsid,
1001                                      u16 orig_tclass,
1002                                      u8 driver,
1003                                      struct extended_perms_decision *xpermd)
1004{
1005        struct policydb *policydb;
1006        struct sidtab *sidtab;
1007        u16 tclass;
1008        struct context *scontext, *tcontext;
1009        struct avtab_key avkey;
1010        struct avtab_node *node;
1011        struct ebitmap *sattr, *tattr;
1012        struct ebitmap_node *snode, *tnode;
1013        unsigned int i, j;
1014
1015        xpermd->driver = driver;
1016        xpermd->used = 0;
1017        memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1018        memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1019        memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1020
1021        read_lock(&state->ss->policy_rwlock);
1022        if (!state->initialized)
1023                goto allow;
1024
1025        policydb = &state->ss->policydb;
1026        sidtab = state->ss->sidtab;
1027
1028        scontext = sidtab_search(sidtab, ssid);
1029        if (!scontext) {
1030                pr_err("SELinux: %s:  unrecognized SID %d\n",
1031                       __func__, ssid);
1032                goto out;
1033        }
1034
1035        tcontext = sidtab_search(sidtab, tsid);
1036        if (!tcontext) {
1037                pr_err("SELinux: %s:  unrecognized SID %d\n",
1038                       __func__, tsid);
1039                goto out;
1040        }
1041
1042        tclass = unmap_class(&state->ss->map, orig_tclass);
1043        if (unlikely(orig_tclass && !tclass)) {
1044                if (policydb->allow_unknown)
1045                        goto allow;
1046                goto out;
1047        }
1048
1049
1050        if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1051                pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1052                goto out;
1053        }
1054
1055        avkey.target_class = tclass;
1056        avkey.specified = AVTAB_XPERMS;
1057        sattr = &policydb->type_attr_map_array[scontext->type - 1];
1058        tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1059        ebitmap_for_each_positive_bit(sattr, snode, i) {
1060                ebitmap_for_each_positive_bit(tattr, tnode, j) {
1061                        avkey.source_type = i + 1;
1062                        avkey.target_type = j + 1;
1063                        for (node = avtab_search_node(&policydb->te_avtab,
1064                                                      &avkey);
1065                             node;
1066                             node = avtab_search_node_next(node, avkey.specified))
1067                                services_compute_xperms_decision(xpermd, node);
1068
1069                        cond_compute_xperms(&policydb->te_cond_avtab,
1070                                                &avkey, xpermd);
1071                }
1072        }
1073out:
1074        read_unlock(&state->ss->policy_rwlock);
1075        return;
1076allow:
1077        memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1078        goto out;
1079}
1080
1081/**
1082 * security_compute_av - Compute access vector decisions.
1083 * @ssid: source security identifier
1084 * @tsid: target security identifier
1085 * @tclass: target security class
1086 * @avd: access vector decisions
1087 * @xperms: extended permissions
1088 *
1089 * Compute a set of access vector decisions based on the
1090 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1091 */
1092void security_compute_av(struct selinux_state *state,
1093                         u32 ssid,
1094                         u32 tsid,
1095                         u16 orig_tclass,
1096                         struct av_decision *avd,
1097                         struct extended_perms *xperms)
1098{
1099        struct policydb *policydb;
1100        struct sidtab *sidtab;
1101        u16 tclass;
1102        struct context *scontext = NULL, *tcontext = NULL;
1103
1104        read_lock(&state->ss->policy_rwlock);
1105        avd_init(state, avd);
1106        xperms->len = 0;
1107        if (!state->initialized)
1108                goto allow;
1109
1110        policydb = &state->ss->policydb;
1111        sidtab = state->ss->sidtab;
1112
1113        scontext = sidtab_search(sidtab, ssid);
1114        if (!scontext) {
1115                pr_err("SELinux: %s:  unrecognized SID %d\n",
1116                       __func__, ssid);
1117                goto out;
1118        }
1119
1120        /* permissive domain? */
1121        if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1122                avd->flags |= AVD_FLAGS_PERMISSIVE;
1123
1124        tcontext = sidtab_search(sidtab, tsid);
1125        if (!tcontext) {
1126                pr_err("SELinux: %s:  unrecognized SID %d\n",
1127                       __func__, tsid);
1128                goto out;
1129        }
1130
1131        tclass = unmap_class(&state->ss->map, orig_tclass);
1132        if (unlikely(orig_tclass && !tclass)) {
1133                if (policydb->allow_unknown)
1134                        goto allow;
1135                goto out;
1136        }
1137        context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1138                                  xperms);
1139        map_decision(&state->ss->map, orig_tclass, avd,
1140                     policydb->allow_unknown);
1141out:
1142        read_unlock(&state->ss->policy_rwlock);
1143        return;
1144allow:
1145        avd->allowed = 0xffffffff;
1146        goto out;
1147}
1148
1149void security_compute_av_user(struct selinux_state *state,
1150                              u32 ssid,
1151                              u32 tsid,
1152                              u16 tclass,
1153                              struct av_decision *avd)
1154{
1155        struct policydb *policydb;
1156        struct sidtab *sidtab;
1157        struct context *scontext = NULL, *tcontext = NULL;
1158
1159        read_lock(&state->ss->policy_rwlock);
1160        avd_init(state, avd);
1161        if (!state->initialized)
1162                goto allow;
1163
1164        policydb = &state->ss->policydb;
1165        sidtab = state->ss->sidtab;
1166
1167        scontext = sidtab_search(sidtab, ssid);
1168        if (!scontext) {
1169                pr_err("SELinux: %s:  unrecognized SID %d\n",
1170                       __func__, ssid);
1171                goto out;
1172        }
1173
1174        /* permissive domain? */
1175        if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1176                avd->flags |= AVD_FLAGS_PERMISSIVE;
1177
1178        tcontext = sidtab_search(sidtab, tsid);
1179        if (!tcontext) {
1180                pr_err("SELinux: %s:  unrecognized SID %d\n",
1181                       __func__, tsid);
1182                goto out;
1183        }
1184
1185        if (unlikely(!tclass)) {
1186                if (policydb->allow_unknown)
1187                        goto allow;
1188                goto out;
1189        }
1190
1191        context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1192                                  NULL);
1193 out:
1194        read_unlock(&state->ss->policy_rwlock);
1195        return;
1196allow:
1197        avd->allowed = 0xffffffff;
1198        goto out;
1199}
1200
1201/*
1202 * Write the security context string representation of
1203 * the context structure `context' into a dynamically
1204 * allocated string of the correct size.  Set `*scontext'
1205 * to point to this string and set `*scontext_len' to
1206 * the length of the string.
1207 */
1208static int context_struct_to_string(struct policydb *p,
1209                                    struct context *context,
1210                                    char **scontext, u32 *scontext_len)
1211{
1212        char *scontextp;
1213
1214        if (scontext)
1215                *scontext = NULL;
1216        *scontext_len = 0;
1217
1218        if (context->len) {
1219                *scontext_len = context->len;
1220                if (scontext) {
1221                        *scontext = kstrdup(context->str, GFP_ATOMIC);
1222                        if (!(*scontext))
1223                                return -ENOMEM;
1224                }
1225                return 0;
1226        }
1227
1228        /* Compute the size of the context. */
1229        *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1230        *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1231        *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1232        *scontext_len += mls_compute_context_len(p, context);
1233
1234        if (!scontext)
1235                return 0;
1236
1237        /* Allocate space for the context; caller must free this space. */
1238        scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1239        if (!scontextp)
1240                return -ENOMEM;
1241        *scontext = scontextp;
1242
1243        /*
1244         * Copy the user name, role name and type name into the context.
1245         */
1246        scontextp += sprintf(scontextp, "%s:%s:%s",
1247                sym_name(p, SYM_USERS, context->user - 1),
1248                sym_name(p, SYM_ROLES, context->role - 1),
1249                sym_name(p, SYM_TYPES, context->type - 1));
1250
1251        mls_sid_to_context(p, context, &scontextp);
1252
1253        *scontextp = 0;
1254
1255        return 0;
1256}
1257
1258#include "initial_sid_to_string.h"
1259
1260const char *security_get_initial_sid_context(u32 sid)
1261{
1262        if (unlikely(sid > SECINITSID_NUM))
1263                return NULL;
1264        return initial_sid_to_string[sid];
1265}
1266
1267static int security_sid_to_context_core(struct selinux_state *state,
1268                                        u32 sid, char **scontext,
1269                                        u32 *scontext_len, int force,
1270                                        int only_invalid)
1271{
1272        struct policydb *policydb;
1273        struct sidtab *sidtab;
1274        struct context *context;
1275        int rc = 0;
1276
1277        if (scontext)
1278                *scontext = NULL;
1279        *scontext_len  = 0;
1280
1281        if (!state->initialized) {
1282                if (sid <= SECINITSID_NUM) {
1283                        char *scontextp;
1284
1285                        *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1286                        if (!scontext)
1287                                goto out;
1288                        scontextp = kmemdup(initial_sid_to_string[sid],
1289                                            *scontext_len, GFP_ATOMIC);
1290                        if (!scontextp) {
1291                                rc = -ENOMEM;
1292                                goto out;
1293                        }
1294                        *scontext = scontextp;
1295                        goto out;
1296                }
1297                pr_err("SELinux: %s:  called before initial "
1298                       "load_policy on unknown SID %d\n", __func__, sid);
1299                rc = -EINVAL;
1300                goto out;
1301        }
1302        read_lock(&state->ss->policy_rwlock);
1303        policydb = &state->ss->policydb;
1304        sidtab = state->ss->sidtab;
1305        if (force)
1306                context = sidtab_search_force(sidtab, sid);
1307        else
1308                context = sidtab_search(sidtab, sid);
1309        if (!context) {
1310                pr_err("SELinux: %s:  unrecognized SID %d\n",
1311                        __func__, sid);
1312                rc = -EINVAL;
1313                goto out_unlock;
1314        }
1315        if (only_invalid && !context->len)
1316                rc = 0;
1317        else
1318                rc = context_struct_to_string(policydb, context, scontext,
1319                                              scontext_len);
1320out_unlock:
1321        read_unlock(&state->ss->policy_rwlock);
1322out:
1323        return rc;
1324
1325}
1326
1327/**
1328 * security_sid_to_context - Obtain a context for a given SID.
1329 * @sid: security identifier, SID
1330 * @scontext: security context
1331 * @scontext_len: length in bytes
1332 *
1333 * Write the string representation of the context associated with @sid
1334 * into a dynamically allocated string of the correct size.  Set @scontext
1335 * to point to this string and set @scontext_len to the length of the string.
1336 */
1337int security_sid_to_context(struct selinux_state *state,
1338                            u32 sid, char **scontext, u32 *scontext_len)
1339{
1340        return security_sid_to_context_core(state, sid, scontext,
1341                                            scontext_len, 0, 0);
1342}
1343
1344int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1345                                  char **scontext, u32 *scontext_len)
1346{
1347        return security_sid_to_context_core(state, sid, scontext,
1348                                            scontext_len, 1, 0);
1349}
1350
1351/**
1352 * security_sid_to_context_inval - Obtain a context for a given SID if it
1353 *                                 is invalid.
1354 * @sid: security identifier, SID
1355 * @scontext: security context
1356 * @scontext_len: length in bytes
1357 *
1358 * Write the string representation of the context associated with @sid
1359 * into a dynamically allocated string of the correct size, but only if the
1360 * context is invalid in the current policy.  Set @scontext to point to
1361 * this string (or NULL if the context is valid) and set @scontext_len to
1362 * the length of the string (or 0 if the context is valid).
1363 */
1364int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1365                                  char **scontext, u32 *scontext_len)
1366{
1367        return security_sid_to_context_core(state, sid, scontext,
1368                                            scontext_len, 1, 1);
1369}
1370
1371/*
1372 * Caveat:  Mutates scontext.
1373 */
1374static int string_to_context_struct(struct policydb *pol,
1375                                    struct sidtab *sidtabp,
1376                                    char *scontext,
1377                                    struct context *ctx,
1378                                    u32 def_sid)
1379{
1380        struct role_datum *role;
1381        struct type_datum *typdatum;
1382        struct user_datum *usrdatum;
1383        char *scontextp, *p, oldc;
1384        int rc = 0;
1385
1386        context_init(ctx);
1387
1388        /* Parse the security context. */
1389
1390        rc = -EINVAL;
1391        scontextp = (char *) scontext;
1392
1393        /* Extract the user. */
1394        p = scontextp;
1395        while (*p && *p != ':')
1396                p++;
1397
1398        if (*p == 0)
1399                goto out;
1400
1401        *p++ = 0;
1402
1403        usrdatum = hashtab_search(pol->p_users.table, scontextp);
1404        if (!usrdatum)
1405                goto out;
1406
1407        ctx->user = usrdatum->value;
1408
1409        /* Extract role. */
1410        scontextp = p;
1411        while (*p && *p != ':')
1412                p++;
1413
1414        if (*p == 0)
1415                goto out;
1416
1417        *p++ = 0;
1418
1419        role = hashtab_search(pol->p_roles.table, scontextp);
1420        if (!role)
1421                goto out;
1422        ctx->role = role->value;
1423
1424        /* Extract type. */
1425        scontextp = p;
1426        while (*p && *p != ':')
1427                p++;
1428        oldc = *p;
1429        *p++ = 0;
1430
1431        typdatum = hashtab_search(pol->p_types.table, scontextp);
1432        if (!typdatum || typdatum->attribute)
1433                goto out;
1434
1435        ctx->type = typdatum->value;
1436
1437        rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1438        if (rc)
1439                goto out;
1440
1441        /* Check the validity of the new context. */
1442        rc = -EINVAL;
1443        if (!policydb_context_isvalid(pol, ctx))
1444                goto out;
1445        rc = 0;
1446out:
1447        if (rc)
1448                context_destroy(ctx);
1449        return rc;
1450}
1451
1452static int security_context_to_sid_core(struct selinux_state *state,
1453                                        const char *scontext, u32 scontext_len,
1454                                        u32 *sid, u32 def_sid, gfp_t gfp_flags,
1455                                        int force)
1456{
1457        struct policydb *policydb;
1458        struct sidtab *sidtab;
1459        char *scontext2, *str = NULL;
1460        struct context context;
1461        int rc = 0;
1462
1463        /* An empty security context is never valid. */
1464        if (!scontext_len)
1465                return -EINVAL;
1466
1467        /* Copy the string to allow changes and ensure a NUL terminator */
1468        scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1469        if (!scontext2)
1470                return -ENOMEM;
1471
1472        if (!state->initialized) {
1473                int i;
1474
1475                for (i = 1; i < SECINITSID_NUM; i++) {
1476                        if (!strcmp(initial_sid_to_string[i], scontext2)) {
1477                                *sid = i;
1478                                goto out;
1479                        }
1480                }
1481                *sid = SECINITSID_KERNEL;
1482                goto out;
1483        }
1484        *sid = SECSID_NULL;
1485
1486        if (force) {
1487                /* Save another copy for storing in uninterpreted form */
1488                rc = -ENOMEM;
1489                str = kstrdup(scontext2, gfp_flags);
1490                if (!str)
1491                        goto out;
1492        }
1493        read_lock(&state->ss->policy_rwlock);
1494        policydb = &state->ss->policydb;
1495        sidtab = state->ss->sidtab;
1496        rc = string_to_context_struct(policydb, sidtab, scontext2,
1497                                      &context, def_sid);
1498        if (rc == -EINVAL && force) {
1499                context.str = str;
1500                context.len = strlen(str) + 1;
1501                str = NULL;
1502        } else if (rc)
1503                goto out_unlock;
1504        rc = sidtab_context_to_sid(sidtab, &context, sid);
1505        context_destroy(&context);
1506out_unlock:
1507        read_unlock(&state->ss->policy_rwlock);
1508out:
1509        kfree(scontext2);
1510        kfree(str);
1511        return rc;
1512}
1513
1514/**
1515 * security_context_to_sid - Obtain a SID for a given security context.
1516 * @scontext: security context
1517 * @scontext_len: length in bytes
1518 * @sid: security identifier, SID
1519 * @gfp: context for the allocation
1520 *
1521 * Obtains a SID associated with the security context that
1522 * has the string representation specified by @scontext.
1523 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1524 * memory is available, or 0 on success.
1525 */
1526int security_context_to_sid(struct selinux_state *state,
1527                            const char *scontext, u32 scontext_len, u32 *sid,
1528                            gfp_t gfp)
1529{
1530        return security_context_to_sid_core(state, scontext, scontext_len,
1531                                            sid, SECSID_NULL, gfp, 0);
1532}
1533
1534int security_context_str_to_sid(struct selinux_state *state,
1535                                const char *scontext, u32 *sid, gfp_t gfp)
1536{
1537        return security_context_to_sid(state, scontext, strlen(scontext),
1538                                       sid, gfp);
1539}
1540
1541/**
1542 * security_context_to_sid_default - Obtain a SID for a given security context,
1543 * falling back to specified default if needed.
1544 *
1545 * @scontext: security context
1546 * @scontext_len: length in bytes
1547 * @sid: security identifier, SID
1548 * @def_sid: default SID to assign on error
1549 *
1550 * Obtains a SID associated with the security context that
1551 * has the string representation specified by @scontext.
1552 * The default SID is passed to the MLS layer to be used to allow
1553 * kernel labeling of the MLS field if the MLS field is not present
1554 * (for upgrading to MLS without full relabel).
1555 * Implicitly forces adding of the context even if it cannot be mapped yet.
1556 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1557 * memory is available, or 0 on success.
1558 */
1559int security_context_to_sid_default(struct selinux_state *state,
1560                                    const char *scontext, u32 scontext_len,
1561                                    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1562{
1563        return security_context_to_sid_core(state, scontext, scontext_len,
1564                                            sid, def_sid, gfp_flags, 1);
1565}
1566
1567int security_context_to_sid_force(struct selinux_state *state,
1568                                  const char *scontext, u32 scontext_len,
1569                                  u32 *sid)
1570{
1571        return security_context_to_sid_core(state, scontext, scontext_len,
1572                                            sid, SECSID_NULL, GFP_KERNEL, 1);
1573}
1574
1575static int compute_sid_handle_invalid_context(
1576        struct selinux_state *state,
1577        struct context *scontext,
1578        struct context *tcontext,
1579        u16 tclass,
1580        struct context *newcontext)
1581{
1582        struct policydb *policydb = &state->ss->policydb;
1583        char *s = NULL, *t = NULL, *n = NULL;
1584        u32 slen, tlen, nlen;
1585        struct audit_buffer *ab;
1586
1587        if (context_struct_to_string(policydb, scontext, &s, &slen))
1588                goto out;
1589        if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1590                goto out;
1591        if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1592                goto out;
1593        ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1594        audit_log_format(ab,
1595                         "op=security_compute_sid invalid_context=");
1596        /* no need to record the NUL with untrusted strings */
1597        audit_log_n_untrustedstring(ab, n, nlen - 1);
1598        audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1599                         s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1600        audit_log_end(ab);
1601out:
1602        kfree(s);
1603        kfree(t);
1604        kfree(n);
1605        if (!enforcing_enabled(state))
1606                return 0;
1607        return -EACCES;
1608}
1609
1610static void filename_compute_type(struct policydb *policydb,
1611                                  struct context *newcontext,
1612                                  u32 stype, u32 ttype, u16 tclass,
1613                                  const char *objname)
1614{
1615        struct filename_trans ft;
1616        struct filename_trans_datum *otype;
1617
1618        /*
1619         * Most filename trans rules are going to live in specific directories
1620         * like /dev or /var/run.  This bitmap will quickly skip rule searches
1621         * if the ttype does not contain any rules.
1622         */
1623        if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1624                return;
1625
1626        ft.stype = stype;
1627        ft.ttype = ttype;
1628        ft.tclass = tclass;
1629        ft.name = objname;
1630
1631        otype = hashtab_search(policydb->filename_trans, &ft);
1632        if (otype)
1633                newcontext->type = otype->otype;
1634}
1635
1636static int security_compute_sid(struct selinux_state *state,
1637                                u32 ssid,
1638                                u32 tsid,
1639                                u16 orig_tclass,
1640                                u32 specified,
1641                                const char *objname,
1642                                u32 *out_sid,
1643                                bool kern)
1644{
1645        struct policydb *policydb;
1646        struct sidtab *sidtab;
1647        struct class_datum *cladatum = NULL;
1648        struct context *scontext = NULL, *tcontext = NULL, newcontext;
1649        struct role_trans *roletr = NULL;
1650        struct avtab_key avkey;
1651        struct avtab_datum *avdatum;
1652        struct avtab_node *node;
1653        u16 tclass;
1654        int rc = 0;
1655        bool sock;
1656
1657        if (!state->initialized) {
1658                switch (orig_tclass) {
1659                case SECCLASS_PROCESS: /* kernel value */
1660                        *out_sid = ssid;
1661                        break;
1662                default:
1663                        *out_sid = tsid;
1664                        break;
1665                }
1666                goto out;
1667        }
1668
1669        context_init(&newcontext);
1670
1671        read_lock(&state->ss->policy_rwlock);
1672
1673        if (kern) {
1674                tclass = unmap_class(&state->ss->map, orig_tclass);
1675                sock = security_is_socket_class(orig_tclass);
1676        } else {
1677                tclass = orig_tclass;
1678                sock = security_is_socket_class(map_class(&state->ss->map,
1679                                                          tclass));
1680        }
1681
1682        policydb = &state->ss->policydb;
1683        sidtab = state->ss->sidtab;
1684
1685        scontext = sidtab_search(sidtab, ssid);
1686        if (!scontext) {
1687                pr_err("SELinux: %s:  unrecognized SID %d\n",
1688                       __func__, ssid);
1689                rc = -EINVAL;
1690                goto out_unlock;
1691        }
1692        tcontext = sidtab_search(sidtab, tsid);
1693        if (!tcontext) {
1694                pr_err("SELinux: %s:  unrecognized SID %d\n",
1695                       __func__, tsid);
1696                rc = -EINVAL;
1697                goto out_unlock;
1698        }
1699
1700        if (tclass && tclass <= policydb->p_classes.nprim)
1701                cladatum = policydb->class_val_to_struct[tclass - 1];
1702
1703        /* Set the user identity. */
1704        switch (specified) {
1705        case AVTAB_TRANSITION:
1706        case AVTAB_CHANGE:
1707                if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1708                        newcontext.user = tcontext->user;
1709                } else {
1710                        /* notice this gets both DEFAULT_SOURCE and unset */
1711                        /* Use the process user identity. */
1712                        newcontext.user = scontext->user;
1713                }
1714                break;
1715        case AVTAB_MEMBER:
1716                /* Use the related object owner. */
1717                newcontext.user = tcontext->user;
1718                break;
1719        }
1720
1721        /* Set the role to default values. */
1722        if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1723                newcontext.role = scontext->role;
1724        } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1725                newcontext.role = tcontext->role;
1726        } else {
1727                if ((tclass == policydb->process_class) || (sock == true))
1728                        newcontext.role = scontext->role;
1729                else
1730                        newcontext.role = OBJECT_R_VAL;
1731        }
1732
1733        /* Set the type to default values. */
1734        if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1735                newcontext.type = scontext->type;
1736        } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1737                newcontext.type = tcontext->type;
1738        } else {
1739                if ((tclass == policydb->process_class) || (sock == true)) {
1740                        /* Use the type of process. */
1741                        newcontext.type = scontext->type;
1742                } else {
1743                        /* Use the type of the related object. */
1744                        newcontext.type = tcontext->type;
1745                }
1746        }
1747
1748        /* Look for a type transition/member/change rule. */
1749        avkey.source_type = scontext->type;
1750        avkey.target_type = tcontext->type;
1751        avkey.target_class = tclass;
1752        avkey.specified = specified;
1753        avdatum = avtab_search(&policydb->te_avtab, &avkey);
1754
1755        /* If no permanent rule, also check for enabled conditional rules */
1756        if (!avdatum) {
1757                node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1758                for (; node; node = avtab_search_node_next(node, specified)) {
1759                        if (node->key.specified & AVTAB_ENABLED) {
1760                                avdatum = &node->datum;
1761                                break;
1762                        }
1763                }
1764        }
1765
1766        if (avdatum) {
1767                /* Use the type from the type transition/member/change rule. */
1768                newcontext.type = avdatum->u.data;
1769        }
1770
1771        /* if we have a objname this is a file trans check so check those rules */
1772        if (objname)
1773                filename_compute_type(policydb, &newcontext, scontext->type,
1774                                      tcontext->type, tclass, objname);
1775
1776        /* Check for class-specific changes. */
1777        if (specified & AVTAB_TRANSITION) {
1778                /* Look for a role transition rule. */
1779                for (roletr = policydb->role_tr; roletr;
1780                     roletr = roletr->next) {
1781                        if ((roletr->role == scontext->role) &&
1782                            (roletr->type == tcontext->type) &&
1783                            (roletr->tclass == tclass)) {
1784                                /* Use the role transition rule. */
1785                                newcontext.role = roletr->new_role;
1786                                break;
1787                        }
1788                }
1789        }
1790
1791        /* Set the MLS attributes.
1792           This is done last because it may allocate memory. */
1793        rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1794                             &newcontext, sock);
1795        if (rc)
1796                goto out_unlock;
1797
1798        /* Check the validity of the context. */
1799        if (!policydb_context_isvalid(policydb, &newcontext)) {
1800                rc = compute_sid_handle_invalid_context(state, scontext,
1801                                                        tcontext,
1802                                                        tclass,
1803                                                        &newcontext);
1804                if (rc)
1805                        goto out_unlock;
1806        }
1807        /* Obtain the sid for the context. */
1808        rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1809out_unlock:
1810        read_unlock(&state->ss->policy_rwlock);
1811        context_destroy(&newcontext);
1812out:
1813        return rc;
1814}
1815
1816/**
1817 * security_transition_sid - Compute the SID for a new subject/object.
1818 * @ssid: source security identifier
1819 * @tsid: target security identifier
1820 * @tclass: target security class
1821 * @out_sid: security identifier for new subject/object
1822 *
1823 * Compute a SID to use for labeling a new subject or object in the
1824 * class @tclass based on a SID pair (@ssid, @tsid).
1825 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1826 * if insufficient memory is available, or %0 if the new SID was
1827 * computed successfully.
1828 */
1829int security_transition_sid(struct selinux_state *state,
1830                            u32 ssid, u32 tsid, u16 tclass,
1831                            const struct qstr *qstr, u32 *out_sid)
1832{
1833        return security_compute_sid(state, ssid, tsid, tclass,
1834                                    AVTAB_TRANSITION,
1835                                    qstr ? qstr->name : NULL, out_sid, true);
1836}
1837
1838int security_transition_sid_user(struct selinux_state *state,
1839                                 u32 ssid, u32 tsid, u16 tclass,
1840                                 const char *objname, u32 *out_sid)
1841{
1842        return security_compute_sid(state, ssid, tsid, tclass,
1843                                    AVTAB_TRANSITION,
1844                                    objname, out_sid, false);
1845}
1846
1847/**
1848 * security_member_sid - Compute the SID for member selection.
1849 * @ssid: source security identifier
1850 * @tsid: target security identifier
1851 * @tclass: target security class
1852 * @out_sid: security identifier for selected member
1853 *
1854 * Compute a SID to use when selecting a member of a polyinstantiated
1855 * object of class @tclass based on a SID pair (@ssid, @tsid).
1856 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1857 * if insufficient memory is available, or %0 if the SID was
1858 * computed successfully.
1859 */
1860int security_member_sid(struct selinux_state *state,
1861                        u32 ssid,
1862                        u32 tsid,
1863                        u16 tclass,
1864                        u32 *out_sid)
1865{
1866        return security_compute_sid(state, ssid, tsid, tclass,
1867                                    AVTAB_MEMBER, NULL,
1868                                    out_sid, false);
1869}
1870
1871/**
1872 * security_change_sid - Compute the SID for object relabeling.
1873 * @ssid: source security identifier
1874 * @tsid: target security identifier
1875 * @tclass: target security class
1876 * @out_sid: security identifier for selected member
1877 *
1878 * Compute a SID to use for relabeling an object of class @tclass
1879 * based on a SID pair (@ssid, @tsid).
1880 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1881 * if insufficient memory is available, or %0 if the SID was
1882 * computed successfully.
1883 */
1884int security_change_sid(struct selinux_state *state,
1885                        u32 ssid,
1886                        u32 tsid,
1887                        u16 tclass,
1888                        u32 *out_sid)
1889{
1890        return security_compute_sid(state,
1891                                    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1892                                    out_sid, false);
1893}
1894
1895static inline int convert_context_handle_invalid_context(
1896        struct selinux_state *state,
1897        struct context *context)
1898{
1899        struct policydb *policydb = &state->ss->policydb;
1900        char *s;
1901        u32 len;
1902
1903        if (enforcing_enabled(state))
1904                return -EINVAL;
1905
1906        if (!context_struct_to_string(policydb, context, &s, &len)) {
1907                pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1908                        s);
1909                kfree(s);
1910        }
1911        return 0;
1912}
1913
1914struct convert_context_args {
1915        struct selinux_state *state;
1916        struct policydb *oldp;
1917        struct policydb *newp;
1918};
1919
1920/*
1921 * Convert the values in the security context
1922 * structure `oldc' from the values specified
1923 * in the policy `p->oldp' to the values specified
1924 * in the policy `p->newp', storing the new context
1925 * in `newc'.  Verify that the context is valid
1926 * under the new policy.
1927 */
1928static int convert_context(struct context *oldc, struct context *newc, void *p)
1929{
1930        struct convert_context_args *args;
1931        struct ocontext *oc;
1932        struct role_datum *role;
1933        struct type_datum *typdatum;
1934        struct user_datum *usrdatum;
1935        char *s;
1936        u32 len;
1937        int rc;
1938
1939        args = p;
1940
1941        if (oldc->str) {
1942                s = kstrdup(oldc->str, GFP_KERNEL);
1943                if (!s)
1944                        return -ENOMEM;
1945
1946                rc = string_to_context_struct(args->newp, NULL, s,
1947                                              newc, SECSID_NULL);
1948                if (rc == -EINVAL) {
1949                        /* Retain string representation for later mapping. */
1950                        context_init(newc);
1951                        newc->str = s;
1952                        newc->len = oldc->len;
1953                        return 0;
1954                }
1955                kfree(s);
1956                if (rc) {
1957                        /* Other error condition, e.g. ENOMEM. */
1958                        pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
1959                               oldc->str, -rc);
1960                        return rc;
1961                }
1962                pr_info("SELinux:  Context %s became valid (mapped).\n",
1963                        oldc->str);
1964                return 0;
1965        }
1966
1967        context_init(newc);
1968
1969        /* Convert the user. */
1970        rc = -EINVAL;
1971        usrdatum = hashtab_search(args->newp->p_users.table,
1972                                  sym_name(args->oldp,
1973                                           SYM_USERS, oldc->user - 1));
1974        if (!usrdatum)
1975                goto bad;
1976        newc->user = usrdatum->value;
1977
1978        /* Convert the role. */
1979        rc = -EINVAL;
1980        role = hashtab_search(args->newp->p_roles.table,
1981                              sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
1982        if (!role)
1983                goto bad;
1984        newc->role = role->value;
1985
1986        /* Convert the type. */
1987        rc = -EINVAL;
1988        typdatum = hashtab_search(args->newp->p_types.table,
1989                                  sym_name(args->oldp,
1990                                           SYM_TYPES, oldc->type - 1));
1991        if (!typdatum)
1992                goto bad;
1993        newc->type = typdatum->value;
1994
1995        /* Convert the MLS fields if dealing with MLS policies */
1996        if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1997                rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
1998                if (rc)
1999                        goto bad;
2000        } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2001                /*
2002                 * Switching between non-MLS and MLS policy:
2003                 * ensure that the MLS fields of the context for all
2004                 * existing entries in the sidtab are filled in with a
2005                 * suitable default value, likely taken from one of the
2006                 * initial SIDs.
2007                 */
2008                oc = args->newp->ocontexts[OCON_ISID];
2009                while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2010                        oc = oc->next;
2011                rc = -EINVAL;
2012                if (!oc) {
2013                        pr_err("SELinux:  unable to look up"
2014                                " the initial SIDs list\n");
2015                        goto bad;
2016                }
2017                rc = mls_range_set(newc, &oc->context[0].range);
2018                if (rc)
2019                        goto bad;
2020        }
2021
2022        /* Check the validity of the new context. */
2023        if (!policydb_context_isvalid(args->newp, newc)) {
2024                rc = convert_context_handle_invalid_context(args->state, oldc);
2025                if (rc)
2026                        goto bad;
2027        }
2028
2029        return 0;
2030bad:
2031        /* Map old representation to string and save it. */
2032        rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2033        if (rc)
2034                return rc;
2035        context_destroy(newc);
2036        newc->str = s;
2037        newc->len = len;
2038        pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2039                newc->str);
2040        return 0;
2041}
2042
2043static void security_load_policycaps(struct selinux_state *state)
2044{
2045        struct policydb *p = &state->ss->policydb;
2046        unsigned int i;
2047        struct ebitmap_node *node;
2048
2049        for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2050                state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2051
2052        for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2053                pr_info("SELinux:  policy capability %s=%d\n",
2054                        selinux_policycap_names[i],
2055                        ebitmap_get_bit(&p->policycaps, i));
2056
2057        ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2058                if (i >= ARRAY_SIZE(selinux_policycap_names))
2059                        pr_info("SELinux:  unknown policy capability %u\n",
2060                                i);
2061        }
2062}
2063
2064static int security_preserve_bools(struct selinux_state *state,
2065                                   struct policydb *newpolicydb);
2066
2067/**
2068 * security_load_policy - Load a security policy configuration.
2069 * @data: binary policy data
2070 * @len: length of data in bytes
2071 *
2072 * Load a new set of security policy configuration data,
2073 * validate it and convert the SID table as necessary.
2074 * This function will flush the access vector cache after
2075 * loading the new policy.
2076 */
2077int security_load_policy(struct selinux_state *state, void *data, size_t len)
2078{
2079        struct policydb *policydb;
2080        struct sidtab *oldsidtab, *newsidtab;
2081        struct policydb *oldpolicydb, *newpolicydb;
2082        struct selinux_mapping *oldmapping;
2083        struct selinux_map newmap;
2084        struct sidtab_convert_params convert_params;
2085        struct convert_context_args args;
2086        u32 seqno;
2087        int rc = 0;
2088        struct policy_file file = { data, len }, *fp = &file;
2089
2090        oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2091        if (!oldpolicydb) {
2092                rc = -ENOMEM;
2093                goto out;
2094        }
2095        newpolicydb = oldpolicydb + 1;
2096
2097        policydb = &state->ss->policydb;
2098
2099        newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2100        if (!newsidtab) {
2101                rc = -ENOMEM;
2102                goto out;
2103        }
2104
2105        if (!state->initialized) {
2106                rc = policydb_read(policydb, fp);
2107                if (rc) {
2108                        kfree(newsidtab);
2109                        goto out;
2110                }
2111
2112                policydb->len = len;
2113                rc = selinux_set_mapping(policydb, secclass_map,
2114                                         &state->ss->map);
2115                if (rc) {
2116                        kfree(newsidtab);
2117                        policydb_destroy(policydb);
2118                        goto out;
2119                }
2120
2121                rc = policydb_load_isids(policydb, newsidtab);
2122                if (rc) {
2123                        kfree(newsidtab);
2124                        policydb_destroy(policydb);
2125                        goto out;
2126                }
2127
2128                state->ss->sidtab = newsidtab;
2129                security_load_policycaps(state);
2130                state->initialized = 1;
2131                seqno = ++state->ss->latest_granting;
2132                selinux_complete_init();
2133                avc_ss_reset(state->avc, seqno);
2134                selnl_notify_policyload(seqno);
2135                selinux_status_update_policyload(state, seqno);
2136                selinux_netlbl_cache_invalidate();
2137                selinux_xfrm_notify_policyload();
2138                goto out;
2139        }
2140
2141        rc = policydb_read(newpolicydb, fp);
2142        if (rc) {
2143                kfree(newsidtab);
2144                goto out;
2145        }
2146
2147        newpolicydb->len = len;
2148        /* If switching between different policy types, log MLS status */
2149        if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2150                pr_info("SELinux: Disabling MLS support...\n");
2151        else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2152                pr_info("SELinux: Enabling MLS support...\n");
2153
2154        rc = policydb_load_isids(newpolicydb, newsidtab);
2155        if (rc) {
2156                pr_err("SELinux:  unable to load the initial SIDs\n");
2157                policydb_destroy(newpolicydb);
2158                kfree(newsidtab);
2159                goto out;
2160        }
2161
2162        rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2163        if (rc)
2164                goto err;
2165
2166        rc = security_preserve_bools(state, newpolicydb);
2167        if (rc) {
2168                pr_err("SELinux:  unable to preserve booleans\n");
2169                goto err;
2170        }
2171
2172        oldsidtab = state->ss->sidtab;
2173
2174        /*
2175         * Convert the internal representations of contexts
2176         * in the new SID table.
2177         */
2178        args.state = state;
2179        args.oldp = policydb;
2180        args.newp = newpolicydb;
2181
2182        convert_params.func = convert_context;
2183        convert_params.args = &args;
2184        convert_params.target = newsidtab;
2185
2186        rc = sidtab_convert(oldsidtab, &convert_params);
2187        if (rc) {
2188                pr_err("SELinux:  unable to convert the internal"
2189                        " representation of contexts in the new SID"
2190                        " table\n");
2191                goto err;
2192        }
2193
2194        /* Save the old policydb and SID table to free later. */
2195        memcpy(oldpolicydb, policydb, sizeof(*policydb));
2196
2197        /* Install the new policydb and SID table. */
2198        write_lock_irq(&state->ss->policy_rwlock);
2199        memcpy(policydb, newpolicydb, sizeof(*policydb));
2200        state->ss->sidtab = newsidtab;
2201        security_load_policycaps(state);
2202        oldmapping = state->ss->map.mapping;
2203        state->ss->map.mapping = newmap.mapping;
2204        state->ss->map.size = newmap.size;
2205        seqno = ++state->ss->latest_granting;
2206        write_unlock_irq(&state->ss->policy_rwlock);
2207
2208        /* Free the old policydb and SID table. */
2209        policydb_destroy(oldpolicydb);
2210        sidtab_destroy(oldsidtab);
2211        kfree(oldsidtab);
2212        kfree(oldmapping);
2213
2214        avc_ss_reset(state->avc, seqno);
2215        selnl_notify_policyload(seqno);
2216        selinux_status_update_policyload(state, seqno);
2217        selinux_netlbl_cache_invalidate();
2218        selinux_xfrm_notify_policyload();
2219
2220        rc = 0;
2221        goto out;
2222
2223err:
2224        kfree(newmap.mapping);
2225        sidtab_destroy(newsidtab);
2226        kfree(newsidtab);
2227        policydb_destroy(newpolicydb);
2228
2229out:
2230        kfree(oldpolicydb);
2231        return rc;
2232}
2233
2234size_t security_policydb_len(struct selinux_state *state)
2235{
2236        struct policydb *p = &state->ss->policydb;
2237        size_t len;
2238
2239        read_lock(&state->ss->policy_rwlock);
2240        len = p->len;
2241        read_unlock(&state->ss->policy_rwlock);
2242
2243        return len;
2244}
2245
2246/**
2247 * security_port_sid - Obtain the SID for a port.
2248 * @protocol: protocol number
2249 * @port: port number
2250 * @out_sid: security identifier
2251 */
2252int security_port_sid(struct selinux_state *state,
2253                      u8 protocol, u16 port, u32 *out_sid)
2254{
2255        struct policydb *policydb;
2256        struct sidtab *sidtab;
2257        struct ocontext *c;
2258        int rc = 0;
2259
2260        read_lock(&state->ss->policy_rwlock);
2261
2262        policydb = &state->ss->policydb;
2263        sidtab = state->ss->sidtab;
2264
2265        c = policydb->ocontexts[OCON_PORT];
2266        while (c) {
2267                if (c->u.port.protocol == protocol &&
2268                    c->u.port.low_port <= port &&
2269                    c->u.port.high_port >= port)
2270                        break;
2271                c = c->next;
2272        }
2273
2274        if (c) {
2275                if (!c->sid[0]) {
2276                        rc = sidtab_context_to_sid(sidtab,
2277                                                   &c->context[0],
2278                                                   &c->sid[0]);
2279                        if (rc)
2280                                goto out;
2281                }
2282                *out_sid = c->sid[0];
2283        } else {
2284                *out_sid = SECINITSID_PORT;
2285        }
2286
2287out:
2288        read_unlock(&state->ss->policy_rwlock);
2289        return rc;
2290}
2291
2292/**
2293 * security_pkey_sid - Obtain the SID for a pkey.
2294 * @subnet_prefix: Subnet Prefix
2295 * @pkey_num: pkey number
2296 * @out_sid: security identifier
2297 */
2298int security_ib_pkey_sid(struct selinux_state *state,
2299                         u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2300{
2301        struct policydb *policydb;
2302        struct sidtab *sidtab;
2303        struct ocontext *c;
2304        int rc = 0;
2305
2306        read_lock(&state->ss->policy_rwlock);
2307
2308        policydb = &state->ss->policydb;
2309        sidtab = state->ss->sidtab;
2310
2311        c = policydb->ocontexts[OCON_IBPKEY];
2312        while (c) {
2313                if (c->u.ibpkey.low_pkey <= pkey_num &&
2314                    c->u.ibpkey.high_pkey >= pkey_num &&
2315                    c->u.ibpkey.subnet_prefix == subnet_prefix)
2316                        break;
2317
2318                c = c->next;
2319        }
2320
2321        if (c) {
2322                if (!c->sid[0]) {
2323                        rc = sidtab_context_to_sid(sidtab,
2324                                                   &c->context[0],
2325                                                   &c->sid[0]);
2326                        if (rc)
2327                                goto out;
2328                }
2329                *out_sid = c->sid[0];
2330        } else
2331                *out_sid = SECINITSID_UNLABELED;
2332
2333out:
2334        read_unlock(&state->ss->policy_rwlock);
2335        return rc;
2336}
2337
2338/**
2339 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2340 * @dev_name: device name
2341 * @port: port number
2342 * @out_sid: security identifier
2343 */
2344int security_ib_endport_sid(struct selinux_state *state,
2345                            const char *dev_name, u8 port_num, u32 *out_sid)
2346{
2347        struct policydb *policydb;
2348        struct sidtab *sidtab;
2349        struct ocontext *c;
2350        int rc = 0;
2351
2352        read_lock(&state->ss->policy_rwlock);
2353
2354        policydb = &state->ss->policydb;
2355        sidtab = state->ss->sidtab;
2356
2357        c = policydb->ocontexts[OCON_IBENDPORT];
2358        while (c) {
2359                if (c->u.ibendport.port == port_num &&
2360                    !strncmp(c->u.ibendport.dev_name,
2361                             dev_name,
2362                             IB_DEVICE_NAME_MAX))
2363                        break;
2364
2365                c = c->next;
2366        }
2367
2368        if (c) {
2369                if (!c->sid[0]) {
2370                        rc = sidtab_context_to_sid(sidtab,
2371                                                   &c->context[0],
2372                                                   &c->sid[0]);
2373                        if (rc)
2374                                goto out;
2375                }
2376                *out_sid = c->sid[0];
2377        } else
2378                *out_sid = SECINITSID_UNLABELED;
2379
2380out:
2381        read_unlock(&state->ss->policy_rwlock);
2382        return rc;
2383}
2384
2385/**
2386 * security_netif_sid - Obtain the SID for a network interface.
2387 * @name: interface name
2388 * @if_sid: interface SID
2389 */
2390int security_netif_sid(struct selinux_state *state,
2391                       char *name, u32 *if_sid)
2392{
2393        struct policydb *policydb;
2394        struct sidtab *sidtab;
2395        int rc = 0;
2396        struct ocontext *c;
2397
2398        read_lock(&state->ss->policy_rwlock);
2399
2400        policydb = &state->ss->policydb;
2401        sidtab = state->ss->sidtab;
2402
2403        c = policydb->ocontexts[OCON_NETIF];
2404        while (c) {
2405                if (strcmp(name, c->u.name) == 0)
2406                        break;
2407                c = c->next;
2408        }
2409
2410        if (c) {
2411                if (!c->sid[0] || !c->sid[1]) {
2412                        rc = sidtab_context_to_sid(sidtab,
2413                                                  &c->context[0],
2414                                                  &c->sid[0]);
2415                        if (rc)
2416                                goto out;
2417                        rc = sidtab_context_to_sid(sidtab,
2418                                                   &c->context[1],
2419                                                   &c->sid[1]);
2420                        if (rc)
2421                                goto out;
2422                }
2423                *if_sid = c->sid[0];
2424        } else
2425                *if_sid = SECINITSID_NETIF;
2426
2427out:
2428        read_unlock(&state->ss->policy_rwlock);
2429        return rc;
2430}
2431
2432static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2433{
2434        int i, fail = 0;
2435
2436        for (i = 0; i < 4; i++)
2437                if (addr[i] != (input[i] & mask[i])) {
2438                        fail = 1;
2439                        break;
2440                }
2441
2442        return !fail;
2443}
2444
2445/**
2446 * security_node_sid - Obtain the SID for a node (host).
2447 * @domain: communication domain aka address family
2448 * @addrp: address
2449 * @addrlen: address length in bytes
2450 * @out_sid: security identifier
2451 */
2452int security_node_sid(struct selinux_state *state,
2453                      u16 domain,
2454                      void *addrp,
2455                      u32 addrlen,
2456                      u32 *out_sid)
2457{
2458        struct policydb *policydb;
2459        struct sidtab *sidtab;
2460        int rc;
2461        struct ocontext *c;
2462
2463        read_lock(&state->ss->policy_rwlock);
2464
2465        policydb = &state->ss->policydb;
2466        sidtab = state->ss->sidtab;
2467
2468        switch (domain) {
2469        case AF_INET: {
2470                u32 addr;
2471
2472                rc = -EINVAL;
2473                if (addrlen != sizeof(u32))
2474                        goto out;
2475
2476                addr = *((u32 *)addrp);
2477
2478                c = policydb->ocontexts[OCON_NODE];
2479                while (c) {
2480                        if (c->u.node.addr == (addr & c->u.node.mask))
2481                                break;
2482                        c = c->next;
2483                }
2484                break;
2485        }
2486
2487        case AF_INET6:
2488                rc = -EINVAL;
2489                if (addrlen != sizeof(u64) * 2)
2490                        goto out;
2491                c = policydb->ocontexts[OCON_NODE6];
2492                while (c) {
2493                        if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2494                                                c->u.node6.mask))
2495                                break;
2496                        c = c->next;
2497                }
2498                break;
2499
2500        default:
2501                rc = 0;
2502                *out_sid = SECINITSID_NODE;
2503                goto out;
2504        }
2505
2506        if (c) {
2507                if (!c->sid[0]) {
2508                        rc = sidtab_context_to_sid(sidtab,
2509                                                   &c->context[0],
2510                                                   &c->sid[0]);
2511                        if (rc)
2512                                goto out;
2513                }
2514                *out_sid = c->sid[0];
2515        } else {
2516                *out_sid = SECINITSID_NODE;
2517        }
2518
2519        rc = 0;
2520out:
2521        read_unlock(&state->ss->policy_rwlock);
2522        return rc;
2523}
2524
2525#define SIDS_NEL 25
2526
2527/**
2528 * security_get_user_sids - Obtain reachable SIDs for a user.
2529 * @fromsid: starting SID
2530 * @username: username
2531 * @sids: array of reachable SIDs for user
2532 * @nel: number of elements in @sids
2533 *
2534 * Generate the set of SIDs for legal security contexts
2535 * for a given user that can be reached by @fromsid.
2536 * Set *@sids to point to a dynamically allocated
2537 * array containing the set of SIDs.  Set *@nel to the
2538 * number of elements in the array.
2539 */
2540
2541int security_get_user_sids(struct selinux_state *state,
2542                           u32 fromsid,
2543                           char *username,
2544                           u32 **sids,
2545                           u32 *nel)
2546{
2547        struct policydb *policydb;
2548        struct sidtab *sidtab;
2549        struct context *fromcon, usercon;
2550        u32 *mysids = NULL, *mysids2, sid;
2551        u32 mynel = 0, maxnel = SIDS_NEL;
2552        struct user_datum *user;
2553        struct role_datum *role;
2554        struct ebitmap_node *rnode, *tnode;
2555        int rc = 0, i, j;
2556
2557        *sids = NULL;
2558        *nel = 0;
2559
2560        if (!state->initialized)
2561                goto out;
2562
2563        read_lock(&state->ss->policy_rwlock);
2564
2565        policydb = &state->ss->policydb;
2566        sidtab = state->ss->sidtab;
2567
2568        context_init(&usercon);
2569
2570        rc = -EINVAL;
2571        fromcon = sidtab_search(sidtab, fromsid);
2572        if (!fromcon)
2573                goto out_unlock;
2574
2575        rc = -EINVAL;
2576        user = hashtab_search(policydb->p_users.table, username);
2577        if (!user)
2578                goto out_unlock;
2579
2580        usercon.user = user->value;
2581
2582        rc = -ENOMEM;
2583        mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2584        if (!mysids)
2585                goto out_unlock;
2586
2587        ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2588                role = policydb->role_val_to_struct[i];
2589                usercon.role = i + 1;
2590                ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2591                        usercon.type = j + 1;
2592
2593                        if (mls_setup_user_range(policydb, fromcon, user,
2594                                                 &usercon))
2595                                continue;
2596
2597                        rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2598                        if (rc)
2599                                goto out_unlock;
2600                        if (mynel < maxnel) {
2601                                mysids[mynel++] = sid;
2602                        } else {
2603                                rc = -ENOMEM;
2604                                maxnel += SIDS_NEL;
2605                                mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2606                                if (!mysids2)
2607                                        goto out_unlock;
2608                                memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2609                                kfree(mysids);
2610                                mysids = mysids2;
2611                                mysids[mynel++] = sid;
2612                        }
2613                }
2614        }
2615        rc = 0;
2616out_unlock:
2617        read_unlock(&state->ss->policy_rwlock);
2618        if (rc || !mynel) {
2619                kfree(mysids);
2620                goto out;
2621        }
2622
2623        rc = -ENOMEM;
2624        mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2625        if (!mysids2) {
2626                kfree(mysids);
2627                goto out;
2628        }
2629        for (i = 0, j = 0; i < mynel; i++) {
2630                struct av_decision dummy_avd;
2631                rc = avc_has_perm_noaudit(state,
2632                                          fromsid, mysids[i],
2633                                          SECCLASS_PROCESS, /* kernel value */
2634                                          PROCESS__TRANSITION, AVC_STRICT,
2635                                          &dummy_avd);
2636                if (!rc)
2637                        mysids2[j++] = mysids[i];
2638                cond_resched();
2639        }
2640        rc = 0;
2641        kfree(mysids);
2642        *sids = mysids2;
2643        *nel = j;
2644out:
2645        return rc;
2646}
2647
2648/**
2649 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2650 * @fstype: filesystem type
2651 * @path: path from root of mount
2652 * @sclass: file security class
2653 * @sid: SID for path
2654 *
2655 * Obtain a SID to use for a file in a filesystem that
2656 * cannot support xattr or use a fixed labeling behavior like
2657 * transition SIDs or task SIDs.
2658 *
2659 * The caller must acquire the policy_rwlock before calling this function.
2660 */
2661static inline int __security_genfs_sid(struct selinux_state *state,
2662                                       const char *fstype,
2663                                       char *path,
2664                                       u16 orig_sclass,
2665                                       u32 *sid)
2666{
2667        struct policydb *policydb = &state->ss->policydb;
2668        struct sidtab *sidtab = state->ss->sidtab;
2669        int len;
2670        u16 sclass;
2671        struct genfs *genfs;
2672        struct ocontext *c;
2673        int rc, cmp = 0;
2674
2675        while (path[0] == '/' && path[1] == '/')
2676                path++;
2677
2678        sclass = unmap_class(&state->ss->map, orig_sclass);
2679        *sid = SECINITSID_UNLABELED;
2680
2681        for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2682                cmp = strcmp(fstype, genfs->fstype);
2683                if (cmp <= 0)
2684                        break;
2685        }
2686
2687        rc = -ENOENT;
2688        if (!genfs || cmp)
2689                goto out;
2690
2691        for (c = genfs->head; c; c = c->next) {
2692                len = strlen(c->u.name);
2693                if ((!c->v.sclass || sclass == c->v.sclass) &&
2694                    (strncmp(c->u.name, path, len) == 0))
2695                        break;
2696        }
2697
2698        rc = -ENOENT;
2699        if (!c)
2700                goto out;
2701
2702        if (!c->sid[0]) {
2703                rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2704                if (rc)
2705                        goto out;
2706        }
2707
2708        *sid = c->sid[0];
2709        rc = 0;
2710out:
2711        return rc;
2712}
2713
2714/**
2715 * security_genfs_sid - Obtain a SID for a file in a filesystem
2716 * @fstype: filesystem type
2717 * @path: path from root of mount
2718 * @sclass: file security class
2719 * @sid: SID for path
2720 *
2721 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2722 * it afterward.
2723 */
2724int security_genfs_sid(struct selinux_state *state,
2725                       const char *fstype,
2726                       char *path,
2727                       u16 orig_sclass,
2728                       u32 *sid)
2729{
2730        int retval;
2731
2732        read_lock(&state->ss->policy_rwlock);
2733        retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2734        read_unlock(&state->ss->policy_rwlock);
2735        return retval;
2736}
2737
2738/**
2739 * security_fs_use - Determine how to handle labeling for a filesystem.
2740 * @sb: superblock in question
2741 */
2742int security_fs_use(struct selinux_state *state, struct super_block *sb)
2743{
2744        struct policydb *policydb;
2745        struct sidtab *sidtab;
2746        int rc = 0;
2747        struct ocontext *c;
2748        struct superblock_security_struct *sbsec = sb->s_security;
2749        const char *fstype = sb->s_type->name;
2750
2751        read_lock(&state->ss->policy_rwlock);
2752
2753        policydb = &state->ss->policydb;
2754        sidtab = state->ss->sidtab;
2755
2756        c = policydb->ocontexts[OCON_FSUSE];
2757        while (c) {
2758                if (strcmp(fstype, c->u.name) == 0)
2759                        break;
2760                c = c->next;
2761        }
2762
2763        if (c) {
2764                sbsec->behavior = c->v.behavior;
2765                if (!c->sid[0]) {
2766                        rc = sidtab_context_to_sid(sidtab, &c->context[0],
2767                                                   &c->sid[0]);
2768                        if (rc)
2769                                goto out;
2770                }
2771                sbsec->sid = c->sid[0];
2772        } else {
2773                rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2774                                          &sbsec->sid);
2775                if (rc) {
2776                        sbsec->behavior = SECURITY_FS_USE_NONE;
2777                        rc = 0;
2778                } else {
2779                        sbsec->behavior = SECURITY_FS_USE_GENFS;
2780                }
2781        }
2782
2783out:
2784        read_unlock(&state->ss->policy_rwlock);
2785        return rc;
2786}
2787
2788int security_get_bools(struct selinux_state *state,
2789                       int *len, char ***names, int **values)
2790{
2791        struct policydb *policydb;
2792        int i, rc;
2793
2794        if (!state->initialized) {
2795                *len = 0;
2796                *names = NULL;
2797                *values = NULL;
2798                return 0;
2799        }
2800
2801        read_lock(&state->ss->policy_rwlock);
2802
2803        policydb = &state->ss->policydb;
2804
2805        *names = NULL;
2806        *values = NULL;
2807
2808        rc = 0;
2809        *len = policydb->p_bools.nprim;
2810        if (!*len)
2811                goto out;
2812
2813        rc = -ENOMEM;
2814        *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2815        if (!*names)
2816                goto err;
2817
2818        rc = -ENOMEM;
2819        *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2820        if (!*values)
2821                goto err;
2822
2823        for (i = 0; i < *len; i++) {
2824                (*values)[i] = policydb->bool_val_to_struct[i]->state;
2825
2826                rc = -ENOMEM;
2827                (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2828                                      GFP_ATOMIC);
2829                if (!(*names)[i])
2830                        goto err;
2831        }
2832        rc = 0;
2833out:
2834        read_unlock(&state->ss->policy_rwlock);
2835        return rc;
2836err:
2837        if (*names) {
2838                for (i = 0; i < *len; i++)
2839                        kfree((*names)[i]);
2840        }
2841        kfree(*values);
2842        goto out;
2843}
2844
2845
2846int security_set_bools(struct selinux_state *state, int len, int *values)
2847{
2848        struct policydb *policydb;
2849        int i, rc;
2850        int lenp, seqno = 0;
2851        struct cond_node *cur;
2852
2853        write_lock_irq(&state->ss->policy_rwlock);
2854
2855        policydb = &state->ss->policydb;
2856
2857        rc = -EFAULT;
2858        lenp = policydb->p_bools.nprim;
2859        if (len != lenp)
2860                goto out;
2861
2862        for (i = 0; i < len; i++) {
2863                if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2864                        audit_log(audit_context(), GFP_ATOMIC,
2865                                AUDIT_MAC_CONFIG_CHANGE,
2866                                "bool=%s val=%d old_val=%d auid=%u ses=%u",
2867                                sym_name(policydb, SYM_BOOLS, i),
2868                                !!values[i],
2869                                policydb->bool_val_to_struct[i]->state,
2870                                from_kuid(&init_user_ns, audit_get_loginuid(current)),
2871                                audit_get_sessionid(current));
2872                }
2873                if (values[i])
2874                        policydb->bool_val_to_struct[i]->state = 1;
2875                else
2876                        policydb->bool_val_to_struct[i]->state = 0;
2877        }
2878
2879        for (cur = policydb->cond_list; cur; cur = cur->next) {
2880                rc = evaluate_cond_node(policydb, cur);
2881                if (rc)
2882                        goto out;
2883        }
2884
2885        seqno = ++state->ss->latest_granting;
2886        rc = 0;
2887out:
2888        write_unlock_irq(&state->ss->policy_rwlock);
2889        if (!rc) {
2890                avc_ss_reset(state->avc, seqno);
2891                selnl_notify_policyload(seqno);
2892                selinux_status_update_policyload(state, seqno);
2893                selinux_xfrm_notify_policyload();
2894        }
2895        return rc;
2896}
2897
2898int security_get_bool_value(struct selinux_state *state,
2899                            int index)
2900{
2901        struct policydb *policydb;
2902        int rc;
2903        int len;
2904
2905        read_lock(&state->ss->policy_rwlock);
2906
2907        policydb = &state->ss->policydb;
2908
2909        rc = -EFAULT;
2910        len = policydb->p_bools.nprim;
2911        if (index >= len)
2912                goto out;
2913
2914        rc = policydb->bool_val_to_struct[index]->state;
2915out:
2916        read_unlock(&state->ss->policy_rwlock);
2917        return rc;
2918}
2919
2920static int security_preserve_bools(struct selinux_state *state,
2921                                   struct policydb *policydb)
2922{
2923        int rc, nbools = 0, *bvalues = NULL, i;
2924        char **bnames = NULL;
2925        struct cond_bool_datum *booldatum;
2926        struct cond_node *cur;
2927
2928        rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2929        if (rc)
2930                goto out;
2931        for (i = 0; i < nbools; i++) {
2932                booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2933                if (booldatum)
2934                        booldatum->state = bvalues[i];
2935        }
2936        for (cur = policydb->cond_list; cur; cur = cur->next) {
2937                rc = evaluate_cond_node(policydb, cur);
2938                if (rc)
2939                        goto out;
2940        }
2941
2942out:
2943        if (bnames) {
2944                for (i = 0; i < nbools; i++)
2945                        kfree(bnames[i]);
2946        }
2947        kfree(bnames);
2948        kfree(bvalues);
2949        return rc;
2950}
2951
2952/*
2953 * security_sid_mls_copy() - computes a new sid based on the given
2954 * sid and the mls portion of mls_sid.
2955 */
2956int security_sid_mls_copy(struct selinux_state *state,
2957                          u32 sid, u32 mls_sid, u32 *new_sid)
2958{
2959        struct policydb *policydb = &state->ss->policydb;
2960        struct sidtab *sidtab = state->ss->sidtab;
2961        struct context *context1;
2962        struct context *context2;
2963        struct context newcon;
2964        char *s;
2965        u32 len;
2966        int rc;
2967
2968        rc = 0;
2969        if (!state->initialized || !policydb->mls_enabled) {
2970                *new_sid = sid;
2971                goto out;
2972        }
2973
2974        context_init(&newcon);
2975
2976        read_lock(&state->ss->policy_rwlock);
2977
2978        rc = -EINVAL;
2979        context1 = sidtab_search(sidtab, sid);
2980        if (!context1) {
2981                pr_err("SELinux: %s:  unrecognized SID %d\n",
2982                        __func__, sid);
2983                goto out_unlock;
2984        }
2985
2986        rc = -EINVAL;
2987        context2 = sidtab_search(sidtab, mls_sid);
2988        if (!context2) {
2989                pr_err("SELinux: %s:  unrecognized SID %d\n",
2990                        __func__, mls_sid);
2991                goto out_unlock;
2992        }
2993
2994        newcon.user = context1->user;
2995        newcon.role = context1->role;
2996        newcon.type = context1->type;
2997        rc = mls_context_cpy(&newcon, context2);
2998        if (rc)
2999                goto out_unlock;
3000
3001        /* Check the validity of the new context. */
3002        if (!policydb_context_isvalid(policydb, &newcon)) {
3003                rc = convert_context_handle_invalid_context(state, &newcon);
3004                if (rc) {
3005                        if (!context_struct_to_string(policydb, &newcon, &s,
3006                                                      &len)) {
3007                                struct audit_buffer *ab;
3008
3009                                ab = audit_log_start(audit_context(),
3010                                                     GFP_ATOMIC,
3011                                                     AUDIT_SELINUX_ERR);
3012                                audit_log_format(ab,
3013                                                 "op=security_sid_mls_copy invalid_context=");
3014                                /* don't record NUL with untrusted strings */
3015                                audit_log_n_untrustedstring(ab, s, len - 1);
3016                                audit_log_end(ab);
3017                                kfree(s);
3018                        }
3019                        goto out_unlock;
3020                }
3021        }
3022
3023        rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3024out_unlock:
3025        read_unlock(&state->ss->policy_rwlock);
3026        context_destroy(&newcon);
3027out:
3028        return rc;
3029}
3030
3031/**
3032 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3033 * @nlbl_sid: NetLabel SID
3034 * @nlbl_type: NetLabel labeling protocol type
3035 * @xfrm_sid: XFRM SID
3036 *
3037 * Description:
3038 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3039 * resolved into a single SID it is returned via @peer_sid and the function
3040 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3041 * returns a negative value.  A table summarizing the behavior is below:
3042 *
3043 *                                 | function return |      @sid
3044 *   ------------------------------+-----------------+-----------------
3045 *   no peer labels                |        0        |    SECSID_NULL
3046 *   single peer label             |        0        |    <peer_label>
3047 *   multiple, consistent labels   |        0        |    <peer_label>
3048 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3049 *
3050 */
3051int security_net_peersid_resolve(struct selinux_state *state,
3052                                 u32 nlbl_sid, u32 nlbl_type,
3053                                 u32 xfrm_sid,
3054                                 u32 *peer_sid)
3055{
3056        struct policydb *policydb = &state->ss->policydb;
3057        struct sidtab *sidtab = state->ss->sidtab;
3058        int rc;
3059        struct context *nlbl_ctx;
3060        struct context *xfrm_ctx;
3061
3062        *peer_sid = SECSID_NULL;
3063
3064        /* handle the common (which also happens to be the set of easy) cases
3065         * right away, these two if statements catch everything involving a
3066         * single or absent peer SID/label */
3067        if (xfrm_sid == SECSID_NULL) {
3068                *peer_sid = nlbl_sid;
3069                return 0;
3070        }
3071        /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3072         * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3073         * is present */
3074        if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3075                *peer_sid = xfrm_sid;
3076                return 0;
3077        }
3078
3079        /*
3080         * We don't need to check initialized here since the only way both
3081         * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3082         * security server was initialized and state->initialized was true.
3083         */
3084        if (!policydb->mls_enabled)
3085                return 0;
3086
3087        read_lock(&state->ss->policy_rwlock);
3088
3089        rc = -EINVAL;
3090        nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3091        if (!nlbl_ctx) {
3092                pr_err("SELinux: %s:  unrecognized SID %d\n",
3093                       __func__, nlbl_sid);
3094                goto out;
3095        }
3096        rc = -EINVAL;
3097        xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3098        if (!xfrm_ctx) {
3099                pr_err("SELinux: %s:  unrecognized SID %d\n",
3100                       __func__, xfrm_sid);
3101                goto out;
3102        }
3103        rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3104        if (rc)
3105                goto out;
3106
3107        /* at present NetLabel SIDs/labels really only carry MLS
3108         * information so if the MLS portion of the NetLabel SID
3109         * matches the MLS portion of the labeled XFRM SID/label
3110         * then pass along the XFRM SID as it is the most
3111         * expressive */
3112        *peer_sid = xfrm_sid;
3113out:
3114        read_unlock(&state->ss->policy_rwlock);
3115        return rc;
3116}
3117
3118static int get_classes_callback(void *k, void *d, void *args)
3119{
3120        struct class_datum *datum = d;
3121        char *name = k, **classes = args;
3122        int value = datum->value - 1;
3123
3124        classes[value] = kstrdup(name, GFP_ATOMIC);
3125        if (!classes[value])
3126                return -ENOMEM;
3127
3128        return 0;
3129}
3130
3131int security_get_classes(struct selinux_state *state,
3132                         char ***classes, int *nclasses)
3133{
3134        struct policydb *policydb = &state->ss->policydb;
3135        int rc;
3136
3137        if (!state->initialized) {
3138                *nclasses = 0;
3139                *classes = NULL;
3140                return 0;
3141        }
3142
3143        read_lock(&state->ss->policy_rwlock);
3144
3145        rc = -ENOMEM;
3146        *nclasses = policydb->p_classes.nprim;
3147        *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3148        if (!*classes)
3149                goto out;
3150
3151        rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3152                        *classes);
3153        if (rc) {
3154                int i;
3155                for (i = 0; i < *nclasses; i++)
3156                        kfree((*classes)[i]);
3157                kfree(*classes);
3158        }
3159
3160out:
3161        read_unlock(&state->ss->policy_rwlock);
3162        return rc;
3163}
3164
3165static int get_permissions_callback(void *k, void *d, void *args)
3166{
3167        struct perm_datum *datum = d;
3168        char *name = k, **perms = args;
3169        int value = datum->value - 1;
3170
3171        perms[value] = kstrdup(name, GFP_ATOMIC);
3172        if (!perms[value])
3173                return -ENOMEM;
3174
3175        return 0;
3176}
3177
3178int security_get_permissions(struct selinux_state *state,
3179                             char *class, char ***perms, int *nperms)
3180{
3181        struct policydb *policydb = &state->ss->policydb;
3182        int rc, i;
3183        struct class_datum *match;
3184
3185        read_lock(&state->ss->policy_rwlock);
3186
3187        rc = -EINVAL;
3188        match = hashtab_search(policydb->p_classes.table, class);
3189        if (!match) {
3190                pr_err("SELinux: %s:  unrecognized class %s\n",
3191                        __func__, class);
3192                goto out;
3193        }
3194
3195        rc = -ENOMEM;
3196        *nperms = match->permissions.nprim;
3197        *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3198        if (!*perms)
3199                goto out;
3200
3201        if (match->comdatum) {
3202                rc = hashtab_map(match->comdatum->permissions.table,
3203                                get_permissions_callback, *perms);
3204                if (rc)
3205                        goto err;
3206        }
3207
3208        rc = hashtab_map(match->permissions.table, get_permissions_callback,
3209                        *perms);
3210        if (rc)
3211                goto err;
3212
3213out:
3214        read_unlock(&state->ss->policy_rwlock);
3215        return rc;
3216
3217err:
3218        read_unlock(&state->ss->policy_rwlock);
3219        for (i = 0; i < *nperms; i++)
3220                kfree((*perms)[i]);
3221        kfree(*perms);
3222        return rc;
3223}
3224
3225int security_get_reject_unknown(struct selinux_state *state)
3226{
3227        return state->ss->policydb.reject_unknown;
3228}
3229
3230int security_get_allow_unknown(struct selinux_state *state)
3231{
3232        return state->ss->policydb.allow_unknown;
3233}
3234
3235/**
3236 * security_policycap_supported - Check for a specific policy capability
3237 * @req_cap: capability
3238 *
3239 * Description:
3240 * This function queries the currently loaded policy to see if it supports the
3241 * capability specified by @req_cap.  Returns true (1) if the capability is
3242 * supported, false (0) if it isn't supported.
3243 *
3244 */
3245int security_policycap_supported(struct selinux_state *state,
3246                                 unsigned int req_cap)
3247{
3248        struct policydb *policydb = &state->ss->policydb;
3249        int rc;
3250
3251        read_lock(&state->ss->policy_rwlock);
3252        rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3253        read_unlock(&state->ss->policy_rwlock);
3254
3255        return rc;
3256}
3257
3258struct selinux_audit_rule {
3259        u32 au_seqno;
3260        struct context au_ctxt;
3261};
3262
3263void selinux_audit_rule_free(void *vrule)
3264{
3265        struct selinux_audit_rule *rule = vrule;
3266
3267        if (rule) {
3268                context_destroy(&rule->au_ctxt);
3269                kfree(rule);
3270        }
3271}
3272
3273int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3274{
3275        struct selinux_state *state = &selinux_state;
3276        struct policydb *policydb = &state->ss->policydb;
3277        struct selinux_audit_rule *tmprule;
3278        struct role_datum *roledatum;
3279        struct type_datum *typedatum;
3280        struct user_datum *userdatum;
3281        struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3282        int rc = 0;
3283
3284        *rule = NULL;
3285
3286        if (!state->initialized)
3287                return -EOPNOTSUPP;
3288
3289        switch (field) {
3290        case AUDIT_SUBJ_USER:
3291        case AUDIT_SUBJ_ROLE:
3292        case AUDIT_SUBJ_TYPE:
3293        case AUDIT_OBJ_USER:
3294        case AUDIT_OBJ_ROLE:
3295        case AUDIT_OBJ_TYPE:
3296                /* only 'equals' and 'not equals' fit user, role, and type */
3297                if (op != Audit_equal && op != Audit_not_equal)
3298                        return -EINVAL;
3299                break;
3300        case AUDIT_SUBJ_SEN:
3301        case AUDIT_SUBJ_CLR:
3302        case AUDIT_OBJ_LEV_LOW:
3303        case AUDIT_OBJ_LEV_HIGH:
3304                /* we do not allow a range, indicated by the presence of '-' */
3305                if (strchr(rulestr, '-'))
3306                        return -EINVAL;
3307                break;
3308        default:
3309                /* only the above fields are valid */
3310                return -EINVAL;
3311        }
3312
3313        tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3314        if (!tmprule)
3315                return -ENOMEM;
3316
3317        context_init(&tmprule->au_ctxt);
3318
3319        read_lock(&state->ss->policy_rwlock);
3320
3321        tmprule->au_seqno = state->ss->latest_granting;
3322
3323        switch (field) {
3324        case AUDIT_SUBJ_USER:
3325        case AUDIT_OBJ_USER:
3326                rc = -EINVAL;
3327                userdatum = hashtab_search(policydb->p_users.table, rulestr);
3328                if (!userdatum)
3329                        goto out;
3330                tmprule->au_ctxt.user = userdatum->value;
3331                break;
3332        case AUDIT_SUBJ_ROLE:
3333        case AUDIT_OBJ_ROLE:
3334                rc = -EINVAL;
3335                roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3336                if (!roledatum)
3337                        goto out;
3338                tmprule->au_ctxt.role = roledatum->value;
3339                break;
3340        case AUDIT_SUBJ_TYPE:
3341        case AUDIT_OBJ_TYPE:
3342                rc = -EINVAL;
3343                typedatum = hashtab_search(policydb->p_types.table, rulestr);
3344                if (!typedatum)
3345                        goto out;
3346                tmprule->au_ctxt.type = typedatum->value;
3347                break;
3348        case AUDIT_SUBJ_SEN:
3349        case AUDIT_SUBJ_CLR:
3350        case AUDIT_OBJ_LEV_LOW:
3351        case AUDIT_OBJ_LEV_HIGH:
3352                rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3353                                     GFP_ATOMIC);
3354                if (rc)
3355                        goto out;
3356                break;
3357        }
3358        rc = 0;
3359out:
3360        read_unlock(&state->ss->policy_rwlock);
3361
3362        if (rc) {
3363                selinux_audit_rule_free(tmprule);
3364                tmprule = NULL;
3365        }
3366
3367        *rule = tmprule;
3368
3369        return rc;
3370}
3371
3372/* Check to see if the rule contains any selinux fields */
3373int selinux_audit_rule_known(struct audit_krule *rule)
3374{
3375        int i;
3376
3377        for (i = 0; i < rule->field_count; i++) {
3378                struct audit_field *f = &rule->fields[i];
3379                switch (f->type) {
3380                case AUDIT_SUBJ_USER:
3381                case AUDIT_SUBJ_ROLE:
3382                case AUDIT_SUBJ_TYPE:
3383                case AUDIT_SUBJ_SEN:
3384                case AUDIT_SUBJ_CLR:
3385                case AUDIT_OBJ_USER:
3386                case AUDIT_OBJ_ROLE:
3387                case AUDIT_OBJ_TYPE:
3388                case AUDIT_OBJ_LEV_LOW:
3389                case AUDIT_OBJ_LEV_HIGH:
3390                        return 1;
3391                }
3392        }
3393
3394        return 0;
3395}
3396
3397int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3398{
3399        struct selinux_state *state = &selinux_state;
3400        struct context *ctxt;
3401        struct mls_level *level;
3402        struct selinux_audit_rule *rule = vrule;
3403        int match = 0;
3404
3405        if (unlikely(!rule)) {
3406                WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3407                return -ENOENT;
3408        }
3409
3410        read_lock(&state->ss->policy_rwlock);
3411
3412        if (rule->au_seqno < state->ss->latest_granting) {
3413                match = -ESTALE;
3414                goto out;
3415        }
3416
3417        ctxt = sidtab_search(state->ss->sidtab, sid);
3418        if (unlikely(!ctxt)) {
3419                WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3420                          sid);
3421                match = -ENOENT;
3422                goto out;
3423        }
3424
3425        /* a field/op pair that is not caught here will simply fall through
3426           without a match */
3427        switch (field) {
3428        case AUDIT_SUBJ_USER:
3429        case AUDIT_OBJ_USER:
3430                switch (op) {
3431                case Audit_equal:
3432                        match = (ctxt->user == rule->au_ctxt.user);
3433                        break;
3434                case Audit_not_equal:
3435                        match = (ctxt->user != rule->au_ctxt.user);
3436                        break;
3437                }
3438                break;
3439        case AUDIT_SUBJ_ROLE:
3440        case AUDIT_OBJ_ROLE:
3441                switch (op) {
3442                case Audit_equal:
3443                        match = (ctxt->role == rule->au_ctxt.role);
3444                        break;
3445                case Audit_not_equal:
3446                        match = (ctxt->role != rule->au_ctxt.role);
3447                        break;
3448                }
3449                break;
3450        case AUDIT_SUBJ_TYPE:
3451        case AUDIT_OBJ_TYPE:
3452                switch (op) {
3453                case Audit_equal:
3454                        match = (ctxt->type == rule->au_ctxt.type);
3455                        break;
3456                case Audit_not_equal:
3457                        match = (ctxt->type != rule->au_ctxt.type);
3458                        break;
3459                }
3460                break;
3461        case AUDIT_SUBJ_SEN:
3462        case AUDIT_SUBJ_CLR:
3463        case AUDIT_OBJ_LEV_LOW:
3464        case AUDIT_OBJ_LEV_HIGH:
3465                level = ((field == AUDIT_SUBJ_SEN ||
3466                          field == AUDIT_OBJ_LEV_LOW) ?
3467                         &ctxt->range.level[0] : &ctxt->range.level[1]);
3468                switch (op) {
3469                case Audit_equal:
3470                        match = mls_level_eq(&rule->au_ctxt.range.level[0],
3471                                             level);
3472                        break;
3473                case Audit_not_equal:
3474                        match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3475                                              level);
3476                        break;
3477                case Audit_lt:
3478                        match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3479                                               level) &&
3480                                 !mls_level_eq(&rule->au_ctxt.range.level[0],
3481                                               level));
3482                        break;
3483                case Audit_le:
3484                        match = mls_level_dom(&rule->au_ctxt.range.level[0],
3485                                              level);
3486                        break;
3487                case Audit_gt:
3488                        match = (mls_level_dom(level,
3489                                              &rule->au_ctxt.range.level[0]) &&
3490                                 !mls_level_eq(level,
3491                                               &rule->au_ctxt.range.level[0]));
3492                        break;
3493                case Audit_ge:
3494                        match = mls_level_dom(level,
3495                                              &rule->au_ctxt.range.level[0]);
3496                        break;
3497                }
3498        }
3499
3500out:
3501        read_unlock(&state->ss->policy_rwlock);
3502        return match;
3503}
3504
3505static int (*aurule_callback)(void) = audit_update_lsm_rules;
3506
3507static int aurule_avc_callback(u32 event)
3508{
3509        int err = 0;
3510
3511        if (event == AVC_CALLBACK_RESET && aurule_callback)
3512                err = aurule_callback();
3513        return err;
3514}
3515
3516static int __init aurule_init(void)
3517{
3518        int err;
3519
3520        err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3521        if (err)
3522                panic("avc_add_callback() failed, error %d\n", err);
3523
3524        return err;
3525}
3526__initcall(aurule_init);
3527
3528#ifdef CONFIG_NETLABEL
3529/**
3530 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3531 * @secattr: the NetLabel packet security attributes
3532 * @sid: the SELinux SID
3533 *
3534 * Description:
3535 * Attempt to cache the context in @ctx, which was derived from the packet in
3536 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3537 * already been initialized.
3538 *
3539 */
3540static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3541                                      u32 sid)
3542{
3543        u32 *sid_cache;
3544
3545        sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3546        if (sid_cache == NULL)
3547                return;
3548        secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3549        if (secattr->cache == NULL) {
3550                kfree(sid_cache);
3551                return;
3552        }
3553
3554        *sid_cache = sid;
3555        secattr->cache->free = kfree;
3556        secattr->cache->data = sid_cache;
3557        secattr->flags |= NETLBL_SECATTR_CACHE;
3558}
3559
3560/**
3561 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3562 * @secattr: the NetLabel packet security attributes
3563 * @sid: the SELinux SID
3564 *
3565 * Description:
3566 * Convert the given NetLabel security attributes in @secattr into a
3567 * SELinux SID.  If the @secattr field does not contain a full SELinux
3568 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3569 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3570 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3571 * conversion for future lookups.  Returns zero on success, negative values on
3572 * failure.
3573 *
3574 */
3575int security_netlbl_secattr_to_sid(struct selinux_state *state,
3576                                   struct netlbl_lsm_secattr *secattr,
3577                                   u32 *sid)
3578{
3579        struct policydb *policydb = &state->ss->policydb;
3580        struct sidtab *sidtab = state->ss->sidtab;
3581        int rc;
3582        struct context *ctx;
3583        struct context ctx_new;
3584
3585        if (!state->initialized) {
3586                *sid = SECSID_NULL;
3587                return 0;
3588        }
3589
3590        read_lock(&state->ss->policy_rwlock);
3591
3592        if (secattr->flags & NETLBL_SECATTR_CACHE)
3593                *sid = *(u32 *)secattr->cache->data;
3594        else if (secattr->flags & NETLBL_SECATTR_SECID)
3595                *sid = secattr->attr.secid;
3596        else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3597                rc = -EIDRM;
3598                ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3599                if (ctx == NULL)
3600                        goto out;
3601
3602                context_init(&ctx_new);
3603                ctx_new.user = ctx->user;
3604                ctx_new.role = ctx->role;
3605                ctx_new.type = ctx->type;
3606                mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3607                if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3608                        rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3609                        if (rc)
3610                                goto out;
3611                }
3612                rc = -EIDRM;
3613                if (!mls_context_isvalid(policydb, &ctx_new))
3614                        goto out_free;
3615
3616                rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3617                if (rc)
3618                        goto out_free;
3619
3620                security_netlbl_cache_add(secattr, *sid);
3621
3622                ebitmap_destroy(&ctx_new.range.level[0].cat);
3623        } else
3624                *sid = SECSID_NULL;
3625
3626        read_unlock(&state->ss->policy_rwlock);
3627        return 0;
3628out_free:
3629        ebitmap_destroy(&ctx_new.range.level[0].cat);
3630out:
3631        read_unlock(&state->ss->policy_rwlock);
3632        return rc;
3633}
3634
3635/**
3636 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3637 * @sid: the SELinux SID
3638 * @secattr: the NetLabel packet security attributes
3639 *
3640 * Description:
3641 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3642 * Returns zero on success, negative values on failure.
3643 *
3644 */
3645int security_netlbl_sid_to_secattr(struct selinux_state *state,
3646                                   u32 sid, struct netlbl_lsm_secattr *secattr)
3647{
3648        struct policydb *policydb = &state->ss->policydb;
3649        int rc;
3650        struct context *ctx;
3651
3652        if (!state->initialized)
3653                return 0;
3654
3655        read_lock(&state->ss->policy_rwlock);
3656
3657        rc = -ENOENT;
3658        ctx = sidtab_search(state->ss->sidtab, sid);
3659        if (ctx == NULL)
3660                goto out;
3661
3662        rc = -ENOMEM;
3663        secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3664                                  GFP_ATOMIC);
3665        if (secattr->domain == NULL)
3666                goto out;
3667
3668        secattr->attr.secid = sid;
3669        secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3670        mls_export_netlbl_lvl(policydb, ctx, secattr);
3671        rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3672out:
3673        read_unlock(&state->ss->policy_rwlock);
3674        return rc;
3675}
3676#endif /* CONFIG_NETLABEL */
3677
3678/**
3679 * security_read_policy - read the policy.
3680 * @data: binary policy data
3681 * @len: length of data in bytes
3682 *
3683 */
3684int security_read_policy(struct selinux_state *state,
3685                         void **data, size_t *len)
3686{
3687        struct policydb *policydb = &state->ss->policydb;
3688        int rc;
3689        struct policy_file fp;
3690
3691        if (!state->initialized)
3692                return -EINVAL;
3693
3694        *len = security_policydb_len(state);
3695
3696        *data = vmalloc_user(*len);
3697        if (!*data)
3698                return -ENOMEM;
3699
3700        fp.data = *data;
3701        fp.len = *len;
3702
3703        read_lock(&state->ss->policy_rwlock);
3704        rc = policydb_write(policydb, &fp);
3705        read_unlock(&state->ss->policy_rwlock);
3706
3707        if (rc)
3708                return rc;
3709
3710        *len = (unsigned long)fp.data - (unsigned long)*data;
3711        return 0;
3712
3713}
3714