linux/sound/firewire/digi00x/amdtp-dot.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * amdtp-dot.c - a part of driver for Digidesign Digi 002/003 family
   4 *
   5 * Copyright (c) 2014-2015 Takashi Sakamoto
   6 * Copyright (C) 2012 Robin Gareus <robin@gareus.org>
   7 * Copyright (C) 2012 Damien Zammit <damien@zamaudio.com>
   8 */
   9
  10#include <sound/pcm.h>
  11#include "digi00x.h"
  12
  13#define CIP_FMT_AM              0x10
  14
  15/* 'Clock-based rate control mode' is just supported. */
  16#define AMDTP_FDF_AM824         0x00
  17
  18/*
  19 * Nominally 3125 bytes/second, but the MIDI port's clock might be
  20 * 1% too slow, and the bus clock 100 ppm too fast.
  21 */
  22#define MIDI_BYTES_PER_SECOND   3093
  23
  24/*
  25 * Several devices look only at the first eight data blocks.
  26 * In any case, this is more than enough for the MIDI data rate.
  27 */
  28#define MAX_MIDI_RX_BLOCKS      8
  29
  30/* 3 = MAX(DOT_MIDI_IN_PORTS, DOT_MIDI_OUT_PORTS) + 1. */
  31#define MAX_MIDI_PORTS          3
  32
  33/*
  34 * The double-oh-three algorithm was discovered by Robin Gareus and Damien
  35 * Zammit in 2012, with reverse-engineering for Digi 003 Rack.
  36 */
  37struct dot_state {
  38        u8 carry;
  39        u8 idx;
  40        unsigned int off;
  41};
  42
  43struct amdtp_dot {
  44        unsigned int pcm_channels;
  45        struct dot_state state;
  46
  47        struct snd_rawmidi_substream *midi[MAX_MIDI_PORTS];
  48        int midi_fifo_used[MAX_MIDI_PORTS];
  49        int midi_fifo_limit;
  50};
  51
  52/*
  53 * double-oh-three look up table
  54 *
  55 * @param idx index byte (audio-sample data) 0x00..0xff
  56 * @param off channel offset shift
  57 * @return salt to XOR with given data
  58 */
  59#define BYTE_PER_SAMPLE (4)
  60#define MAGIC_DOT_BYTE (2)
  61#define MAGIC_BYTE_OFF(x) (((x) * BYTE_PER_SAMPLE) + MAGIC_DOT_BYTE)
  62static u8 dot_scrt(const u8 idx, const unsigned int off)
  63{
  64        /*
  65         * the length of the added pattern only depends on the lower nibble
  66         * of the last non-zero data
  67         */
  68        static const u8 len[16] = {0, 1, 3, 5, 7, 9, 11, 13, 14,
  69                                   12, 10, 8, 6, 4, 2, 0};
  70
  71        /*
  72         * the lower nibble of the salt. Interleaved sequence.
  73         * this is walked backwards according to len[]
  74         */
  75        static const u8 nib[15] = {0x8, 0x7, 0x9, 0x6, 0xa, 0x5, 0xb, 0x4,
  76                                   0xc, 0x3, 0xd, 0x2, 0xe, 0x1, 0xf};
  77
  78        /* circular list for the salt's hi nibble. */
  79        static const u8 hir[15] = {0x0, 0x6, 0xf, 0x8, 0x7, 0x5, 0x3, 0x4,
  80                                   0xc, 0xd, 0xe, 0x1, 0x2, 0xb, 0xa};
  81
  82        /*
  83         * start offset for upper nibble mapping.
  84         * note: 9 is /special/. In the case where the high nibble == 0x9,
  85         * hir[] is not used and - coincidentally - the salt's hi nibble is
  86         * 0x09 regardless of the offset.
  87         */
  88        static const u8 hio[16] = {0, 11, 12, 6, 7, 5, 1, 4,
  89                                   3, 0x00, 14, 13, 8, 9, 10, 2};
  90
  91        const u8 ln = idx & 0xf;
  92        const u8 hn = (idx >> 4) & 0xf;
  93        const u8 hr = (hn == 0x9) ? 0x9 : hir[(hio[hn] + off) % 15];
  94
  95        if (len[ln] < off)
  96                return 0x00;
  97
  98        return ((nib[14 + off - len[ln]]) | (hr << 4));
  99}
 100
 101static void dot_encode_step(struct dot_state *state, __be32 *const buffer)
 102{
 103        u8 * const data = (u8 *) buffer;
 104
 105        if (data[MAGIC_DOT_BYTE] != 0x00) {
 106                state->off = 0;
 107                state->idx = data[MAGIC_DOT_BYTE] ^ state->carry;
 108        }
 109        data[MAGIC_DOT_BYTE] ^= state->carry;
 110        state->carry = dot_scrt(state->idx, ++(state->off));
 111}
 112
 113int amdtp_dot_set_parameters(struct amdtp_stream *s, unsigned int rate,
 114                             unsigned int pcm_channels)
 115{
 116        struct amdtp_dot *p = s->protocol;
 117        int err;
 118
 119        if (amdtp_stream_running(s))
 120                return -EBUSY;
 121
 122        /*
 123         * A first data channel is for MIDI messages, the rest is Multi Bit
 124         * Linear Audio data channel.
 125         */
 126        err = amdtp_stream_set_parameters(s, rate, pcm_channels + 1);
 127        if (err < 0)
 128                return err;
 129
 130        s->ctx_data.rx.fdf = AMDTP_FDF_AM824 | s->sfc;
 131
 132        p->pcm_channels = pcm_channels;
 133
 134        /*
 135         * We do not know the actual MIDI FIFO size of most devices.  Just
 136         * assume two bytes, i.e., one byte can be received over the bus while
 137         * the previous one is transmitted over MIDI.
 138         * (The value here is adjusted for midi_ratelimit_per_packet().)
 139         */
 140        p->midi_fifo_limit = rate - MIDI_BYTES_PER_SECOND * s->syt_interval + 1;
 141
 142        return 0;
 143}
 144
 145static void write_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm,
 146                          __be32 *buffer, unsigned int frames)
 147{
 148        struct amdtp_dot *p = s->protocol;
 149        struct snd_pcm_runtime *runtime = pcm->runtime;
 150        unsigned int channels, remaining_frames, i, c;
 151        const u32 *src;
 152
 153        channels = p->pcm_channels;
 154        src = (void *)runtime->dma_area +
 155                        frames_to_bytes(runtime, s->pcm_buffer_pointer);
 156        remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
 157
 158        buffer++;
 159        for (i = 0; i < frames; ++i) {
 160                for (c = 0; c < channels; ++c) {
 161                        buffer[c] = cpu_to_be32((*src >> 8) | 0x40000000);
 162                        dot_encode_step(&p->state, &buffer[c]);
 163                        src++;
 164                }
 165                buffer += s->data_block_quadlets;
 166                if (--remaining_frames == 0)
 167                        src = (void *)runtime->dma_area;
 168        }
 169}
 170
 171static void read_pcm_s32(struct amdtp_stream *s, struct snd_pcm_substream *pcm,
 172                         __be32 *buffer, unsigned int frames)
 173{
 174        struct amdtp_dot *p = s->protocol;
 175        struct snd_pcm_runtime *runtime = pcm->runtime;
 176        unsigned int channels, remaining_frames, i, c;
 177        u32 *dst;
 178
 179        channels = p->pcm_channels;
 180        dst  = (void *)runtime->dma_area +
 181                        frames_to_bytes(runtime, s->pcm_buffer_pointer);
 182        remaining_frames = runtime->buffer_size - s->pcm_buffer_pointer;
 183
 184        buffer++;
 185        for (i = 0; i < frames; ++i) {
 186                for (c = 0; c < channels; ++c) {
 187                        *dst = be32_to_cpu(buffer[c]) << 8;
 188                        dst++;
 189                }
 190                buffer += s->data_block_quadlets;
 191                if (--remaining_frames == 0)
 192                        dst = (void *)runtime->dma_area;
 193        }
 194}
 195
 196static void write_pcm_silence(struct amdtp_stream *s, __be32 *buffer,
 197                              unsigned int data_blocks)
 198{
 199        struct amdtp_dot *p = s->protocol;
 200        unsigned int channels, i, c;
 201
 202        channels = p->pcm_channels;
 203
 204        buffer++;
 205        for (i = 0; i < data_blocks; ++i) {
 206                for (c = 0; c < channels; ++c)
 207                        buffer[c] = cpu_to_be32(0x40000000);
 208                buffer += s->data_block_quadlets;
 209        }
 210}
 211
 212static bool midi_ratelimit_per_packet(struct amdtp_stream *s, unsigned int port)
 213{
 214        struct amdtp_dot *p = s->protocol;
 215        int used;
 216
 217        used = p->midi_fifo_used[port];
 218        if (used == 0)
 219                return true;
 220
 221        used -= MIDI_BYTES_PER_SECOND * s->syt_interval;
 222        used = max(used, 0);
 223        p->midi_fifo_used[port] = used;
 224
 225        return used < p->midi_fifo_limit;
 226}
 227
 228static inline void midi_use_bytes(struct amdtp_stream *s,
 229                                  unsigned int port, unsigned int count)
 230{
 231        struct amdtp_dot *p = s->protocol;
 232
 233        p->midi_fifo_used[port] += amdtp_rate_table[s->sfc] * count;
 234}
 235
 236static void write_midi_messages(struct amdtp_stream *s, __be32 *buffer,
 237                                unsigned int data_blocks)
 238{
 239        struct amdtp_dot *p = s->protocol;
 240        unsigned int f, port;
 241        int len;
 242        u8 *b;
 243
 244        for (f = 0; f < data_blocks; f++) {
 245                port = (s->data_block_counter + f) % 8;
 246                b = (u8 *)&buffer[0];
 247
 248                len = 0;
 249                if (port < MAX_MIDI_PORTS &&
 250                    midi_ratelimit_per_packet(s, port) &&
 251                    p->midi[port] != NULL)
 252                        len = snd_rawmidi_transmit(p->midi[port], b + 1, 2);
 253
 254                if (len > 0) {
 255                        /*
 256                         * Upper 4 bits of LSB represent port number.
 257                         * - 0000b: physical MIDI port 1.
 258                         * - 0010b: physical MIDI port 2.
 259                         * - 1110b: console MIDI port.
 260                         */
 261                        if (port == 2)
 262                                b[3] = 0xe0;
 263                        else if (port == 1)
 264                                b[3] = 0x20;
 265                        else
 266                                b[3] = 0x00;
 267                        b[3] |= len;
 268                        midi_use_bytes(s, port, len);
 269                } else {
 270                        b[1] = 0;
 271                        b[2] = 0;
 272                        b[3] = 0;
 273                }
 274                b[0] = 0x80;
 275
 276                buffer += s->data_block_quadlets;
 277        }
 278}
 279
 280static void read_midi_messages(struct amdtp_stream *s, __be32 *buffer,
 281                               unsigned int data_blocks)
 282{
 283        struct amdtp_dot *p = s->protocol;
 284        unsigned int f, port, len;
 285        u8 *b;
 286
 287        for (f = 0; f < data_blocks; f++) {
 288                b = (u8 *)&buffer[0];
 289
 290                len = b[3] & 0x0f;
 291                if (len > 0) {
 292                        /*
 293                         * Upper 4 bits of LSB represent port number.
 294                         * - 0000b: physical MIDI port 1. Use port 0.
 295                         * - 1110b: console MIDI port. Use port 2.
 296                         */
 297                        if (b[3] >> 4 > 0)
 298                                port = 2;
 299                        else
 300                                port = 0;
 301
 302                        if (port < MAX_MIDI_PORTS && p->midi[port])
 303                                snd_rawmidi_receive(p->midi[port], b + 1, len);
 304                }
 305
 306                buffer += s->data_block_quadlets;
 307        }
 308}
 309
 310int amdtp_dot_add_pcm_hw_constraints(struct amdtp_stream *s,
 311                                     struct snd_pcm_runtime *runtime)
 312{
 313        int err;
 314
 315        /* This protocol delivers 24 bit data in 32bit data channel. */
 316        err = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
 317        if (err < 0)
 318                return err;
 319
 320        return amdtp_stream_add_pcm_hw_constraints(s, runtime);
 321}
 322
 323void amdtp_dot_midi_trigger(struct amdtp_stream *s, unsigned int port,
 324                          struct snd_rawmidi_substream *midi)
 325{
 326        struct amdtp_dot *p = s->protocol;
 327
 328        if (port < MAX_MIDI_PORTS)
 329                WRITE_ONCE(p->midi[port], midi);
 330}
 331
 332static unsigned int process_tx_data_blocks(struct amdtp_stream *s,
 333                                           __be32 *buffer,
 334                                           unsigned int data_blocks,
 335                                           unsigned int *syt)
 336{
 337        struct snd_pcm_substream *pcm;
 338        unsigned int pcm_frames;
 339
 340        pcm = READ_ONCE(s->pcm);
 341        if (pcm) {
 342                read_pcm_s32(s, pcm, buffer, data_blocks);
 343                pcm_frames = data_blocks;
 344        } else {
 345                pcm_frames = 0;
 346        }
 347
 348        read_midi_messages(s, buffer, data_blocks);
 349
 350        return pcm_frames;
 351}
 352
 353static unsigned int process_rx_data_blocks(struct amdtp_stream *s,
 354                                           __be32 *buffer,
 355                                           unsigned int data_blocks,
 356                                           unsigned int *syt)
 357{
 358        struct snd_pcm_substream *pcm;
 359        unsigned int pcm_frames;
 360
 361        pcm = READ_ONCE(s->pcm);
 362        if (pcm) {
 363                write_pcm_s32(s, pcm, buffer, data_blocks);
 364                pcm_frames = data_blocks;
 365        } else {
 366                write_pcm_silence(s, buffer, data_blocks);
 367                pcm_frames = 0;
 368        }
 369
 370        write_midi_messages(s, buffer, data_blocks);
 371
 372        return pcm_frames;
 373}
 374
 375int amdtp_dot_init(struct amdtp_stream *s, struct fw_unit *unit,
 376                 enum amdtp_stream_direction dir)
 377{
 378        amdtp_stream_process_data_blocks_t process_data_blocks;
 379        enum cip_flags flags;
 380
 381        /* Use different mode between incoming/outgoing. */
 382        if (dir == AMDTP_IN_STREAM) {
 383                flags = CIP_NONBLOCKING;
 384                process_data_blocks = process_tx_data_blocks;
 385        } else {
 386                flags = CIP_BLOCKING;
 387                process_data_blocks = process_rx_data_blocks;
 388        }
 389
 390        return amdtp_stream_init(s, unit, dir, flags, CIP_FMT_AM,
 391                                 process_data_blocks, sizeof(struct amdtp_dot));
 392}
 393
 394void amdtp_dot_reset(struct amdtp_stream *s)
 395{
 396        struct amdtp_dot *p = s->protocol;
 397
 398        p->state.carry = 0x00;
 399        p->state.idx = 0x00;
 400        p->state.off = 0;
 401}
 402