linux/sound/pci/cmipci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
   4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
   5 */
   6 
   7/* Does not work. Warning may block system in capture mode */
   8/* #define USE_VAR48KRATE */
   9
  10#include <linux/io.h>
  11#include <linux/delay.h>
  12#include <linux/interrupt.h>
  13#include <linux/init.h>
  14#include <linux/pci.h>
  15#include <linux/slab.h>
  16#include <linux/gameport.h>
  17#include <linux/module.h>
  18#include <linux/mutex.h>
  19#include <sound/core.h>
  20#include <sound/info.h>
  21#include <sound/control.h>
  22#include <sound/pcm.h>
  23#include <sound/rawmidi.h>
  24#include <sound/mpu401.h>
  25#include <sound/opl3.h>
  26#include <sound/sb.h>
  27#include <sound/asoundef.h>
  28#include <sound/initval.h>
  29
  30MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
  31MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
  32MODULE_LICENSE("GPL");
  33MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
  34                "{C-Media,CMI8738B},"
  35                "{C-Media,CMI8338A},"
  36                "{C-Media,CMI8338B}}");
  37
  38#if IS_REACHABLE(CONFIG_GAMEPORT)
  39#define SUPPORT_JOYSTICK 1
  40#endif
  41
  42static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
  43static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
  44static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;     /* Enable switches */
  45static long mpu_port[SNDRV_CARDS];
  46static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  47static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  48#ifdef SUPPORT_JOYSTICK
  49static int joystick_port[SNDRV_CARDS];
  50#endif
  51
  52module_param_array(index, int, NULL, 0444);
  53MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
  54module_param_array(id, charp, NULL, 0444);
  55MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
  56module_param_array(enable, bool, NULL, 0444);
  57MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
  58module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
  59MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
  60module_param_hw_array(fm_port, long, ioport, NULL, 0444);
  61MODULE_PARM_DESC(fm_port, "FM port.");
  62module_param_array(soft_ac3, bool, NULL, 0444);
  63MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
  64#ifdef SUPPORT_JOYSTICK
  65module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
  66MODULE_PARM_DESC(joystick_port, "Joystick port address.");
  67#endif
  68
  69/*
  70 * CM8x38 registers definition
  71 */
  72
  73#define CM_REG_FUNCTRL0         0x00
  74#define CM_RST_CH1              0x00080000
  75#define CM_RST_CH0              0x00040000
  76#define CM_CHEN1                0x00020000      /* ch1: enable */
  77#define CM_CHEN0                0x00010000      /* ch0: enable */
  78#define CM_PAUSE1               0x00000008      /* ch1: pause */
  79#define CM_PAUSE0               0x00000004      /* ch0: pause */
  80#define CM_CHADC1               0x00000002      /* ch1, 0:playback, 1:record */
  81#define CM_CHADC0               0x00000001      /* ch0, 0:playback, 1:record */
  82
  83#define CM_REG_FUNCTRL1         0x04
  84#define CM_DSFC_MASK            0x0000E000      /* channel 1 (DAC?) sampling frequency */
  85#define CM_DSFC_SHIFT           13
  86#define CM_ASFC_MASK            0x00001C00      /* channel 0 (ADC?) sampling frequency */
  87#define CM_ASFC_SHIFT           10
  88#define CM_SPDF_1               0x00000200      /* SPDIF IN/OUT at channel B */
  89#define CM_SPDF_0               0x00000100      /* SPDIF OUT only channel A */
  90#define CM_SPDFLOOP             0x00000080      /* ext. SPDIIF/IN -> OUT loopback */
  91#define CM_SPDO2DAC             0x00000040      /* SPDIF/OUT can be heard from internal DAC */
  92#define CM_INTRM                0x00000020      /* master control block (MCB) interrupt enabled */
  93#define CM_BREQ                 0x00000010      /* bus master enabled */
  94#define CM_VOICE_EN             0x00000008      /* legacy voice (SB16,FM) */
  95#define CM_UART_EN              0x00000004      /* legacy UART */
  96#define CM_JYSTK_EN             0x00000002      /* legacy joystick */
  97#define CM_ZVPORT               0x00000001      /* ZVPORT */
  98
  99#define CM_REG_CHFORMAT         0x08
 100
 101#define CM_CHB3D5C              0x80000000      /* 5,6 channels */
 102#define CM_FMOFFSET2            0x40000000      /* initial FM PCM offset 2 when Fmute=1 */
 103#define CM_CHB3D                0x20000000      /* 4 channels */
 104
 105#define CM_CHIP_MASK1           0x1f000000
 106#define CM_CHIP_037             0x01000000
 107#define CM_SETLAT48             0x00800000      /* set latency timer 48h */
 108#define CM_EDGEIRQ              0x00400000      /* emulated edge trigger legacy IRQ */
 109#define CM_SPD24SEL39           0x00200000      /* 24-bit spdif: model 039 */
 110#define CM_AC3EN1               0x00100000      /* enable AC3: model 037 */
 111#define CM_SPDIF_SELECT1        0x00080000      /* for model <= 037 ? */
 112#define CM_SPD24SEL             0x00020000      /* 24bit spdif: model 037 */
 113/* #define CM_SPDIF_INVERSE     0x00010000 */ /* ??? */
 114
 115#define CM_ADCBITLEN_MASK       0x0000C000      
 116#define CM_ADCBITLEN_16         0x00000000
 117#define CM_ADCBITLEN_15         0x00004000
 118#define CM_ADCBITLEN_14         0x00008000
 119#define CM_ADCBITLEN_13         0x0000C000
 120
 121#define CM_ADCDACLEN_MASK       0x00003000      /* model 037 */
 122#define CM_ADCDACLEN_060        0x00000000
 123#define CM_ADCDACLEN_066        0x00001000
 124#define CM_ADCDACLEN_130        0x00002000
 125#define CM_ADCDACLEN_280        0x00003000
 126
 127#define CM_ADCDLEN_MASK         0x00003000      /* model 039 */
 128#define CM_ADCDLEN_ORIGINAL     0x00000000
 129#define CM_ADCDLEN_EXTRA        0x00001000
 130#define CM_ADCDLEN_24K          0x00002000
 131#define CM_ADCDLEN_WEIGHT       0x00003000
 132
 133#define CM_CH1_SRATE_176K       0x00000800
 134#define CM_CH1_SRATE_96K        0x00000800      /* model 055? */
 135#define CM_CH1_SRATE_88K        0x00000400
 136#define CM_CH0_SRATE_176K       0x00000200
 137#define CM_CH0_SRATE_96K        0x00000200      /* model 055? */
 138#define CM_CH0_SRATE_88K        0x00000100
 139#define CM_CH0_SRATE_128K       0x00000300
 140#define CM_CH0_SRATE_MASK       0x00000300
 141
 142#define CM_SPDIF_INVERSE2       0x00000080      /* model 055? */
 143#define CM_DBLSPDS              0x00000040      /* double SPDIF sample rate 88.2/96 */
 144#define CM_POLVALID             0x00000020      /* inverse SPDIF/IN valid bit */
 145#define CM_SPDLOCKED            0x00000010
 146
 147#define CM_CH1FMT_MASK          0x0000000C      /* bit 3: 16 bits, bit 2: stereo */
 148#define CM_CH1FMT_SHIFT         2
 149#define CM_CH0FMT_MASK          0x00000003      /* bit 1: 16 bits, bit 0: stereo */
 150#define CM_CH0FMT_SHIFT         0
 151
 152#define CM_REG_INT_HLDCLR       0x0C
 153#define CM_CHIP_MASK2           0xff000000
 154#define CM_CHIP_8768            0x20000000
 155#define CM_CHIP_055             0x08000000
 156#define CM_CHIP_039             0x04000000
 157#define CM_CHIP_039_6CH         0x01000000
 158#define CM_UNKNOWN_INT_EN       0x00080000      /* ? */
 159#define CM_TDMA_INT_EN          0x00040000
 160#define CM_CH1_INT_EN           0x00020000
 161#define CM_CH0_INT_EN           0x00010000
 162
 163#define CM_REG_INT_STATUS       0x10
 164#define CM_INTR                 0x80000000
 165#define CM_VCO                  0x08000000      /* Voice Control? CMI8738 */
 166#define CM_MCBINT               0x04000000      /* Master Control Block abort cond.? */
 167#define CM_UARTINT              0x00010000
 168#define CM_LTDMAINT             0x00008000
 169#define CM_HTDMAINT             0x00004000
 170#define CM_XDO46                0x00000080      /* Modell 033? Direct programming EEPROM (read data register) */
 171#define CM_LHBTOG               0x00000040      /* High/Low status from DMA ctrl register */
 172#define CM_LEG_HDMA             0x00000020      /* Legacy is in High DMA channel */
 173#define CM_LEG_STEREO           0x00000010      /* Legacy is in Stereo mode */
 174#define CM_CH1BUSY              0x00000008
 175#define CM_CH0BUSY              0x00000004
 176#define CM_CHINT1               0x00000002
 177#define CM_CHINT0               0x00000001
 178
 179#define CM_REG_LEGACY_CTRL      0x14
 180#define CM_NXCHG                0x80000000      /* don't map base reg dword->sample */
 181#define CM_VMPU_MASK            0x60000000      /* MPU401 i/o port address */
 182#define CM_VMPU_330             0x00000000
 183#define CM_VMPU_320             0x20000000
 184#define CM_VMPU_310             0x40000000
 185#define CM_VMPU_300             0x60000000
 186#define CM_ENWR8237             0x10000000      /* enable bus master to write 8237 base reg */
 187#define CM_VSBSEL_MASK          0x0C000000      /* SB16 base address */
 188#define CM_VSBSEL_220           0x00000000
 189#define CM_VSBSEL_240           0x04000000
 190#define CM_VSBSEL_260           0x08000000
 191#define CM_VSBSEL_280           0x0C000000
 192#define CM_FMSEL_MASK           0x03000000      /* FM OPL3 base address */
 193#define CM_FMSEL_388            0x00000000
 194#define CM_FMSEL_3C8            0x01000000
 195#define CM_FMSEL_3E0            0x02000000
 196#define CM_FMSEL_3E8            0x03000000
 197#define CM_ENSPDOUT             0x00800000      /* enable XSPDIF/OUT to I/O interface */
 198#define CM_SPDCOPYRHT           0x00400000      /* spdif in/out copyright bit */
 199#define CM_DAC2SPDO             0x00200000      /* enable wave+fm_midi -> SPDIF/OUT */
 200#define CM_INVIDWEN             0x00100000      /* internal vendor ID write enable, model 039? */
 201#define CM_SETRETRY             0x00100000      /* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
 202#define CM_C_EEACCESS           0x00080000      /* direct programming eeprom regs */
 203#define CM_C_EECS               0x00040000
 204#define CM_C_EEDI46             0x00020000
 205#define CM_C_EECK46             0x00010000
 206#define CM_CHB3D6C              0x00008000      /* 5.1 channels support */
 207#define CM_CENTR2LIN            0x00004000      /* line-in as center out */
 208#define CM_BASE2LIN             0x00002000      /* line-in as bass out */
 209#define CM_EXBASEN              0x00001000      /* external bass input enable */
 210
 211#define CM_REG_MISC_CTRL        0x18
 212#define CM_PWD                  0x80000000      /* power down */
 213#define CM_RESET                0x40000000
 214#define CM_SFIL_MASK            0x30000000      /* filter control at front end DAC, model 037? */
 215#define CM_VMGAIN               0x10000000      /* analog master amp +6dB, model 039? */
 216#define CM_TXVX                 0x08000000      /* model 037? */
 217#define CM_N4SPK3D              0x04000000      /* copy front to rear */
 218#define CM_SPDO5V               0x02000000      /* 5V spdif output (1 = 0.5v (coax)) */
 219#define CM_SPDIF48K             0x01000000      /* write */
 220#define CM_SPATUS48K            0x01000000      /* read */
 221#define CM_ENDBDAC              0x00800000      /* enable double dac */
 222#define CM_XCHGDAC              0x00400000      /* 0: front=ch0, 1: front=ch1 */
 223#define CM_SPD32SEL             0x00200000      /* 0: 16bit SPDIF, 1: 32bit */
 224#define CM_SPDFLOOPI            0x00100000      /* int. SPDIF-OUT -> int. IN */
 225#define CM_FM_EN                0x00080000      /* enable legacy FM */
 226#define CM_AC3EN2               0x00040000      /* enable AC3: model 039 */
 227#define CM_ENWRASID             0x00010000      /* choose writable internal SUBID (audio) */
 228#define CM_VIDWPDSB             0x00010000      /* model 037? */
 229#define CM_SPDF_AC97            0x00008000      /* 0: SPDIF/OUT 44.1K, 1: 48K */
 230#define CM_MASK_EN              0x00004000      /* activate channel mask on legacy DMA */
 231#define CM_ENWRMSID             0x00002000      /* choose writable internal SUBID (modem) */
 232#define CM_VIDWPPRT             0x00002000      /* model 037? */
 233#define CM_SFILENB              0x00001000      /* filter stepping at front end DAC, model 037? */
 234#define CM_MMODE_MASK           0x00000E00      /* model DAA interface mode */
 235#define CM_SPDIF_SELECT2        0x00000100      /* for model > 039 ? */
 236#define CM_ENCENTER             0x00000080
 237#define CM_FLINKON              0x00000040      /* force modem link detection on, model 037 */
 238#define CM_MUTECH1              0x00000040      /* mute PCI ch1 to DAC */
 239#define CM_FLINKOFF             0x00000020      /* force modem link detection off, model 037 */
 240#define CM_MIDSMP               0x00000010      /* 1/2 interpolation at front end DAC */
 241#define CM_UPDDMA_MASK          0x0000000C      /* TDMA position update notification */
 242#define CM_UPDDMA_2048          0x00000000
 243#define CM_UPDDMA_1024          0x00000004
 244#define CM_UPDDMA_512           0x00000008
 245#define CM_UPDDMA_256           0x0000000C              
 246#define CM_TWAIT_MASK           0x00000003      /* model 037 */
 247#define CM_TWAIT1               0x00000002      /* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
 248#define CM_TWAIT0               0x00000001      /* i/o cycle, 0: 4, 1: 6 PCICLKs */
 249
 250#define CM_REG_TDMA_POSITION    0x1C
 251#define CM_TDMA_CNT_MASK        0xFFFF0000      /* current byte/word count */
 252#define CM_TDMA_ADR_MASK        0x0000FFFF      /* current address */
 253
 254        /* byte */
 255#define CM_REG_MIXER0           0x20
 256#define CM_REG_SBVR             0x20            /* write: sb16 version */
 257#define CM_REG_DEV              0x20            /* read: hardware device version */
 258
 259#define CM_REG_MIXER21          0x21
 260#define CM_UNKNOWN_21_MASK      0x78            /* ? */
 261#define CM_X_ADPCM              0x04            /* SB16 ADPCM enable */
 262#define CM_PROINV               0x02            /* SBPro left/right channel switching */
 263#define CM_X_SB16               0x01            /* SB16 compatible */
 264
 265#define CM_REG_SB16_DATA        0x22
 266#define CM_REG_SB16_ADDR        0x23
 267
 268#define CM_REFFREQ_XIN          (315*1000*1000)/22      /* 14.31818 Mhz reference clock frequency pin XIN */
 269#define CM_ADCMULT_XIN          512                     /* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
 270#define CM_TOLERANCE_RATE       0.001                   /* Tolerance sample rate pitch (1000ppm) */
 271#define CM_MAXIMUM_RATE         80000000                /* Note more than 80MHz */
 272
 273#define CM_REG_MIXER1           0x24
 274#define CM_FMMUTE               0x80    /* mute FM */
 275#define CM_FMMUTE_SHIFT         7
 276#define CM_WSMUTE               0x40    /* mute PCM */
 277#define CM_WSMUTE_SHIFT         6
 278#define CM_REAR2LIN             0x20    /* lin-in -> rear line out */
 279#define CM_REAR2LIN_SHIFT       5
 280#define CM_REAR2FRONT           0x10    /* exchange rear/front */
 281#define CM_REAR2FRONT_SHIFT     4
 282#define CM_WAVEINL              0x08    /* digital wave rec. left chan */
 283#define CM_WAVEINL_SHIFT        3
 284#define CM_WAVEINR              0x04    /* digical wave rec. right */
 285#define CM_WAVEINR_SHIFT        2
 286#define CM_X3DEN                0x02    /* 3D surround enable */
 287#define CM_X3DEN_SHIFT          1
 288#define CM_CDPLAY               0x01    /* enable SPDIF/IN PCM -> DAC */
 289#define CM_CDPLAY_SHIFT         0
 290
 291#define CM_REG_MIXER2           0x25
 292#define CM_RAUXREN              0x80    /* AUX right capture */
 293#define CM_RAUXREN_SHIFT        7
 294#define CM_RAUXLEN              0x40    /* AUX left capture */
 295#define CM_RAUXLEN_SHIFT        6
 296#define CM_VAUXRM               0x20    /* AUX right mute */
 297#define CM_VAUXRM_SHIFT         5
 298#define CM_VAUXLM               0x10    /* AUX left mute */
 299#define CM_VAUXLM_SHIFT         4
 300#define CM_VADMIC_MASK          0x0e    /* mic gain level (0-3) << 1 */
 301#define CM_VADMIC_SHIFT         1
 302#define CM_MICGAINZ             0x01    /* mic boost */
 303#define CM_MICGAINZ_SHIFT       0
 304
 305#define CM_REG_MIXER3           0x24
 306#define CM_REG_AUX_VOL          0x26
 307#define CM_VAUXL_MASK           0xf0
 308#define CM_VAUXR_MASK           0x0f
 309
 310#define CM_REG_MISC             0x27
 311#define CM_UNKNOWN_27_MASK      0xd8    /* ? */
 312#define CM_XGPO1                0x20
 313// #define CM_XGPBIO            0x04
 314#define CM_MIC_CENTER_LFE       0x04    /* mic as center/lfe out? (model 039 or later?) */
 315#define CM_SPDIF_INVERSE        0x04    /* spdif input phase inverse (model 037) */
 316#define CM_SPDVALID             0x02    /* spdif input valid check */
 317#define CM_DMAUTO               0x01    /* SB16 DMA auto detect */
 318
 319#define CM_REG_AC97             0x28    /* hmmm.. do we have ac97 link? */
 320/*
 321 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
 322 * or identical with AC97 codec?
 323 */
 324#define CM_REG_EXTERN_CODEC     CM_REG_AC97
 325
 326/*
 327 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
 328 */
 329#define CM_REG_MPU_PCI          0x40
 330
 331/*
 332 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
 333 */
 334#define CM_REG_FM_PCI           0x50
 335
 336/*
 337 * access from SB-mixer port
 338 */
 339#define CM_REG_EXTENT_IND       0xf0
 340#define CM_VPHONE_MASK          0xe0    /* Phone volume control (0-3) << 5 */
 341#define CM_VPHONE_SHIFT         5
 342#define CM_VPHOM                0x10    /* Phone mute control */
 343#define CM_VSPKM                0x08    /* Speaker mute control, default high */
 344#define CM_RLOOPREN             0x04    /* Rec. R-channel enable */
 345#define CM_RLOOPLEN             0x02    /* Rec. L-channel enable */
 346#define CM_VADMIC3              0x01    /* Mic record boost */
 347
 348/*
 349 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
 350 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
 351 * unit (readonly?).
 352 */
 353#define CM_REG_PLL              0xf8
 354
 355/*
 356 * extended registers
 357 */
 358#define CM_REG_CH0_FRAME1       0x80    /* write: base address */
 359#define CM_REG_CH0_FRAME2       0x84    /* read: current address */
 360#define CM_REG_CH1_FRAME1       0x88    /* 0-15: count of samples at bus master; buffer size */
 361#define CM_REG_CH1_FRAME2       0x8C    /* 16-31: count of samples at codec; fragment size */
 362
 363#define CM_REG_EXT_MISC         0x90
 364#define CM_ADC48K44K            0x10000000      /* ADC parameters group, 0: 44k, 1: 48k */
 365#define CM_CHB3D8C              0x00200000      /* 7.1 channels support */
 366#define CM_SPD32FMT             0x00100000      /* SPDIF/IN 32k sample rate */
 367#define CM_ADC2SPDIF            0x00080000      /* ADC output to SPDIF/OUT */
 368#define CM_SHAREADC             0x00040000      /* DAC in ADC as Center/LFE */
 369#define CM_REALTCMP             0x00020000      /* monitor the CMPL/CMPR of ADC */
 370#define CM_INVLRCK              0x00010000      /* invert ZVPORT's LRCK */
 371#define CM_UNKNOWN_90_MASK      0x0000FFFF      /* ? */
 372
 373/*
 374 * size of i/o region
 375 */
 376#define CM_EXTENT_CODEC   0x100
 377#define CM_EXTENT_MIDI    0x2
 378#define CM_EXTENT_SYNTH   0x4
 379
 380
 381/*
 382 * channels for playback / capture
 383 */
 384#define CM_CH_PLAY      0
 385#define CM_CH_CAPT      1
 386
 387/*
 388 * flags to check device open/close
 389 */
 390#define CM_OPEN_NONE    0
 391#define CM_OPEN_CH_MASK 0x01
 392#define CM_OPEN_DAC     0x10
 393#define CM_OPEN_ADC     0x20
 394#define CM_OPEN_SPDIF   0x40
 395#define CM_OPEN_MCHAN   0x80
 396#define CM_OPEN_PLAYBACK        (CM_CH_PLAY | CM_OPEN_DAC)
 397#define CM_OPEN_PLAYBACK2       (CM_CH_CAPT | CM_OPEN_DAC)
 398#define CM_OPEN_PLAYBACK_MULTI  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
 399#define CM_OPEN_CAPTURE         (CM_CH_CAPT | CM_OPEN_ADC)
 400#define CM_OPEN_SPDIF_PLAYBACK  (CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
 401#define CM_OPEN_SPDIF_CAPTURE   (CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
 402
 403
 404#if CM_CH_PLAY == 1
 405#define CM_PLAYBACK_SRATE_176K  CM_CH1_SRATE_176K
 406#define CM_PLAYBACK_SPDF        CM_SPDF_1
 407#define CM_CAPTURE_SPDF         CM_SPDF_0
 408#else
 409#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
 410#define CM_PLAYBACK_SPDF        CM_SPDF_0
 411#define CM_CAPTURE_SPDF         CM_SPDF_1
 412#endif
 413
 414
 415/*
 416 * driver data
 417 */
 418
 419struct cmipci_pcm {
 420        struct snd_pcm_substream *substream;
 421        u8 running;             /* dac/adc running? */
 422        u8 fmt;                 /* format bits */
 423        u8 is_dac;
 424        u8 needs_silencing;
 425        unsigned int dma_size;  /* in frames */
 426        unsigned int shift;
 427        unsigned int ch;        /* channel (0/1) */
 428        unsigned int offset;    /* physical address of the buffer */
 429};
 430
 431/* mixer elements toggled/resumed during ac3 playback */
 432struct cmipci_mixer_auto_switches {
 433        const char *name;       /* switch to toggle */
 434        int toggle_on;          /* value to change when ac3 mode */
 435};
 436static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
 437        {"PCM Playback Switch", 0},
 438        {"IEC958 Output Switch", 1},
 439        {"IEC958 Mix Analog", 0},
 440        // {"IEC958 Out To DAC", 1}, // no longer used
 441        {"IEC958 Loop", 0},
 442};
 443#define CM_SAVED_MIXERS         ARRAY_SIZE(cm_saved_mixer)
 444
 445struct cmipci {
 446        struct snd_card *card;
 447
 448        struct pci_dev *pci;
 449        unsigned int device;    /* device ID */
 450        int irq;
 451
 452        unsigned long iobase;
 453        unsigned int ctrl;      /* FUNCTRL0 current value */
 454
 455        struct snd_pcm *pcm;            /* DAC/ADC PCM */
 456        struct snd_pcm *pcm2;   /* 2nd DAC */
 457        struct snd_pcm *pcm_spdif;      /* SPDIF */
 458
 459        int chip_version;
 460        int max_channels;
 461        unsigned int can_ac3_sw: 1;
 462        unsigned int can_ac3_hw: 1;
 463        unsigned int can_multi_ch: 1;
 464        unsigned int can_96k: 1;        /* samplerate above 48k */
 465        unsigned int do_soft_ac3: 1;
 466
 467        unsigned int spdif_playback_avail: 1;   /* spdif ready? */
 468        unsigned int spdif_playback_enabled: 1; /* spdif switch enabled? */
 469        int spdif_counter;      /* for software AC3 */
 470
 471        unsigned int dig_status;
 472        unsigned int dig_pcm_status;
 473
 474        struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
 475
 476        int opened[2];  /* open mode */
 477        struct mutex open_mutex;
 478
 479        unsigned int mixer_insensitive: 1;
 480        struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
 481        int mixer_res_status[CM_SAVED_MIXERS];
 482
 483        struct cmipci_pcm channel[2];   /* ch0 - DAC, ch1 - ADC or 2nd DAC */
 484
 485        /* external MIDI */
 486        struct snd_rawmidi *rmidi;
 487
 488#ifdef SUPPORT_JOYSTICK
 489        struct gameport *gameport;
 490#endif
 491
 492        spinlock_t reg_lock;
 493
 494#ifdef CONFIG_PM_SLEEP
 495        unsigned int saved_regs[0x20];
 496        unsigned char saved_mixers[0x20];
 497#endif
 498};
 499
 500
 501/* read/write operations for dword register */
 502static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
 503{
 504        outl(data, cm->iobase + cmd);
 505}
 506
 507static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
 508{
 509        return inl(cm->iobase + cmd);
 510}
 511
 512/* read/write operations for word register */
 513static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
 514{
 515        outw(data, cm->iobase + cmd);
 516}
 517
 518static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
 519{
 520        return inw(cm->iobase + cmd);
 521}
 522
 523/* read/write operations for byte register */
 524static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
 525{
 526        outb(data, cm->iobase + cmd);
 527}
 528
 529static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
 530{
 531        return inb(cm->iobase + cmd);
 532}
 533
 534/* bit operations for dword register */
 535static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 536{
 537        unsigned int val, oval;
 538        val = oval = inl(cm->iobase + cmd);
 539        val |= flag;
 540        if (val == oval)
 541                return 0;
 542        outl(val, cm->iobase + cmd);
 543        return 1;
 544}
 545
 546static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 547{
 548        unsigned int val, oval;
 549        val = oval = inl(cm->iobase + cmd);
 550        val &= ~flag;
 551        if (val == oval)
 552                return 0;
 553        outl(val, cm->iobase + cmd);
 554        return 1;
 555}
 556
 557/* bit operations for byte register */
 558static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 559{
 560        unsigned char val, oval;
 561        val = oval = inb(cm->iobase + cmd);
 562        val |= flag;
 563        if (val == oval)
 564                return 0;
 565        outb(val, cm->iobase + cmd);
 566        return 1;
 567}
 568
 569static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 570{
 571        unsigned char val, oval;
 572        val = oval = inb(cm->iobase + cmd);
 573        val &= ~flag;
 574        if (val == oval)
 575                return 0;
 576        outb(val, cm->iobase + cmd);
 577        return 1;
 578}
 579
 580
 581/*
 582 * PCM interface
 583 */
 584
 585/*
 586 * calculate frequency
 587 */
 588
 589static unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
 590
 591static unsigned int snd_cmipci_rate_freq(unsigned int rate)
 592{
 593        unsigned int i;
 594
 595        for (i = 0; i < ARRAY_SIZE(rates); i++) {
 596                if (rates[i] == rate)
 597                        return i;
 598        }
 599        snd_BUG();
 600        return 0;
 601}
 602
 603#ifdef USE_VAR48KRATE
 604/*
 605 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
 606 * does it this way .. maybe not.  Never get any information from C-Media about
 607 * that <werner@suse.de>.
 608 */
 609static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
 610{
 611        unsigned int delta, tolerance;
 612        int xm, xn, xr;
 613
 614        for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
 615                rate <<= 1;
 616        *n = -1;
 617        if (*r > 0xff)
 618                goto out;
 619        tolerance = rate*CM_TOLERANCE_RATE;
 620
 621        for (xn = (1+2); xn < (0x1f+2); xn++) {
 622                for (xm = (1+2); xm < (0xff+2); xm++) {
 623                        xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
 624
 625                        if (xr < rate)
 626                                delta = rate - xr;
 627                        else
 628                                delta = xr - rate;
 629
 630                        /*
 631                         * If we found one, remember this,
 632                         * and try to find a closer one
 633                         */
 634                        if (delta < tolerance) {
 635                                tolerance = delta;
 636                                *m = xm - 2;
 637                                *n = xn - 2;
 638                        }
 639                }
 640        }
 641out:
 642        return (*n > -1);
 643}
 644
 645/*
 646 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
 647 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
 648 * at the register CM_REG_FUNCTRL1 (0x04).
 649 * Problem: other ways are also possible (any information about that?)
 650 */
 651static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
 652{
 653        unsigned int reg = CM_REG_PLL + slot;
 654        /*
 655         * Guess that this programs at reg. 0x04 the pos 15:13/12:10
 656         * for DSFC/ASFC (000 up to 111).
 657         */
 658
 659        /* FIXME: Init (Do we've to set an other register first before programming?) */
 660
 661        /* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
 662        snd_cmipci_write_b(cm, reg, rate>>8);
 663        snd_cmipci_write_b(cm, reg, rate&0xff);
 664
 665        /* FIXME: Setup (Do we've to set an other register first to enable this?) */
 666}
 667#endif /* USE_VAR48KRATE */
 668
 669static int snd_cmipci_hw_params(struct snd_pcm_substream *substream,
 670                                struct snd_pcm_hw_params *hw_params)
 671{
 672        return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
 673}
 674
 675static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
 676                                          struct snd_pcm_hw_params *hw_params)
 677{
 678        struct cmipci *cm = snd_pcm_substream_chip(substream);
 679        if (params_channels(hw_params) > 2) {
 680                mutex_lock(&cm->open_mutex);
 681                if (cm->opened[CM_CH_PLAY]) {
 682                        mutex_unlock(&cm->open_mutex);
 683                        return -EBUSY;
 684                }
 685                /* reserve the channel A */
 686                cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
 687                mutex_unlock(&cm->open_mutex);
 688        }
 689        return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
 690}
 691
 692static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
 693{
 694        int reset = CM_RST_CH0 << (cm->channel[ch].ch);
 695        snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 696        snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 697        udelay(10);
 698}
 699
 700static int snd_cmipci_hw_free(struct snd_pcm_substream *substream)
 701{
 702        return snd_pcm_lib_free_pages(substream);
 703}
 704
 705
 706/*
 707 */
 708
 709static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
 710static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
 711        .count = 3,
 712        .list = hw_channels,
 713        .mask = 0,
 714};
 715static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
 716        .count = 4,
 717        .list = hw_channels,
 718        .mask = 0,
 719};
 720static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
 721        .count = 5,
 722        .list = hw_channels,
 723        .mask = 0,
 724};
 725
 726static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
 727{
 728        if (channels > 2) {
 729                if (!cm->can_multi_ch || !rec->ch)
 730                        return -EINVAL;
 731                if (rec->fmt != 0x03) /* stereo 16bit only */
 732                        return -EINVAL;
 733        }
 734
 735        if (cm->can_multi_ch) {
 736                spin_lock_irq(&cm->reg_lock);
 737                if (channels > 2) {
 738                        snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 739                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 740                } else {
 741                        snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 742                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 743                }
 744                if (channels == 8)
 745                        snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 746                else
 747                        snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 748                if (channels == 6) {
 749                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 750                        snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 751                } else {
 752                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 753                        snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 754                }
 755                if (channels == 4)
 756                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 757                else
 758                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 759                spin_unlock_irq(&cm->reg_lock);
 760        }
 761        return 0;
 762}
 763
 764
 765/*
 766 * prepare playback/capture channel
 767 * channel to be used must have been set in rec->ch.
 768 */
 769static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
 770                                 struct snd_pcm_substream *substream)
 771{
 772        unsigned int reg, freq, freq_ext, val;
 773        unsigned int period_size;
 774        struct snd_pcm_runtime *runtime = substream->runtime;
 775
 776        rec->fmt = 0;
 777        rec->shift = 0;
 778        if (snd_pcm_format_width(runtime->format) >= 16) {
 779                rec->fmt |= 0x02;
 780                if (snd_pcm_format_width(runtime->format) > 16)
 781                        rec->shift++; /* 24/32bit */
 782        }
 783        if (runtime->channels > 1)
 784                rec->fmt |= 0x01;
 785        if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
 786                dev_dbg(cm->card->dev, "cannot set dac channels\n");
 787                return -EINVAL;
 788        }
 789
 790        rec->offset = runtime->dma_addr;
 791        /* buffer and period sizes in frame */
 792        rec->dma_size = runtime->buffer_size << rec->shift;
 793        period_size = runtime->period_size << rec->shift;
 794        if (runtime->channels > 2) {
 795                /* multi-channels */
 796                rec->dma_size = (rec->dma_size * runtime->channels) / 2;
 797                period_size = (period_size * runtime->channels) / 2;
 798        }
 799
 800        spin_lock_irq(&cm->reg_lock);
 801
 802        /* set buffer address */
 803        reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 804        snd_cmipci_write(cm, reg, rec->offset);
 805        /* program sample counts */
 806        reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 807        snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
 808        snd_cmipci_write_w(cm, reg + 2, period_size - 1);
 809
 810        /* set adc/dac flag */
 811        val = rec->ch ? CM_CHADC1 : CM_CHADC0;
 812        if (rec->is_dac)
 813                cm->ctrl &= ~val;
 814        else
 815                cm->ctrl |= val;
 816        snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 817        /* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
 818
 819        /* set sample rate */
 820        freq = 0;
 821        freq_ext = 0;
 822        if (runtime->rate > 48000)
 823                switch (runtime->rate) {
 824                case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
 825                case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
 826                case 128000: freq_ext = CM_CH0_SRATE_128K; break;
 827                default:     snd_BUG(); break;
 828                }
 829        else
 830                freq = snd_cmipci_rate_freq(runtime->rate);
 831        val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
 832        if (rec->ch) {
 833                val &= ~CM_DSFC_MASK;
 834                val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
 835        } else {
 836                val &= ~CM_ASFC_MASK;
 837                val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
 838        }
 839        snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
 840        dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
 841
 842        /* set format */
 843        val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
 844        if (rec->ch) {
 845                val &= ~CM_CH1FMT_MASK;
 846                val |= rec->fmt << CM_CH1FMT_SHIFT;
 847        } else {
 848                val &= ~CM_CH0FMT_MASK;
 849                val |= rec->fmt << CM_CH0FMT_SHIFT;
 850        }
 851        if (cm->can_96k) {
 852                val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
 853                val |= freq_ext << (rec->ch * 2);
 854        }
 855        snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
 856        dev_dbg(cm->card->dev, "chformat = %08x\n", val);
 857
 858        if (!rec->is_dac && cm->chip_version) {
 859                if (runtime->rate > 44100)
 860                        snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 861                else
 862                        snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 863        }
 864
 865        rec->running = 0;
 866        spin_unlock_irq(&cm->reg_lock);
 867
 868        return 0;
 869}
 870
 871/*
 872 * PCM trigger/stop
 873 */
 874static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
 875                                  int cmd)
 876{
 877        unsigned int inthld, chen, reset, pause;
 878        int result = 0;
 879
 880        inthld = CM_CH0_INT_EN << rec->ch;
 881        chen = CM_CHEN0 << rec->ch;
 882        reset = CM_RST_CH0 << rec->ch;
 883        pause = CM_PAUSE0 << rec->ch;
 884
 885        spin_lock(&cm->reg_lock);
 886        switch (cmd) {
 887        case SNDRV_PCM_TRIGGER_START:
 888                rec->running = 1;
 889                /* set interrupt */
 890                snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
 891                cm->ctrl |= chen;
 892                /* enable channel */
 893                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 894                dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
 895                break;
 896        case SNDRV_PCM_TRIGGER_STOP:
 897                rec->running = 0;
 898                /* disable interrupt */
 899                snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
 900                /* reset */
 901                cm->ctrl &= ~chen;
 902                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 903                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 904                rec->needs_silencing = rec->is_dac;
 905                break;
 906        case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 907        case SNDRV_PCM_TRIGGER_SUSPEND:
 908                cm->ctrl |= pause;
 909                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 910                break;
 911        case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 912        case SNDRV_PCM_TRIGGER_RESUME:
 913                cm->ctrl &= ~pause;
 914                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 915                break;
 916        default:
 917                result = -EINVAL;
 918                break;
 919        }
 920        spin_unlock(&cm->reg_lock);
 921        return result;
 922}
 923
 924/*
 925 * return the current pointer
 926 */
 927static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
 928                                                struct snd_pcm_substream *substream)
 929{
 930        size_t ptr;
 931        unsigned int reg, rem, tries;
 932
 933        if (!rec->running)
 934                return 0;
 935#if 1 // this seems better..
 936        reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 937        for (tries = 0; tries < 3; tries++) {
 938                rem = snd_cmipci_read_w(cm, reg);
 939                if (rem < rec->dma_size)
 940                        goto ok;
 941        } 
 942        dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
 943        return SNDRV_PCM_POS_XRUN;
 944ok:
 945        ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
 946#else
 947        reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 948        ptr = snd_cmipci_read(cm, reg) - rec->offset;
 949        ptr = bytes_to_frames(substream->runtime, ptr);
 950#endif
 951        if (substream->runtime->channels > 2)
 952                ptr = (ptr * 2) / substream->runtime->channels;
 953        return ptr;
 954}
 955
 956/*
 957 * playback
 958 */
 959
 960static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
 961                                       int cmd)
 962{
 963        struct cmipci *cm = snd_pcm_substream_chip(substream);
 964        return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
 965}
 966
 967static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
 968{
 969        struct cmipci *cm = snd_pcm_substream_chip(substream);
 970        return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
 971}
 972
 973
 974
 975/*
 976 * capture
 977 */
 978
 979static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
 980                                     int cmd)
 981{
 982        struct cmipci *cm = snd_pcm_substream_chip(substream);
 983        return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
 984}
 985
 986static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
 987{
 988        struct cmipci *cm = snd_pcm_substream_chip(substream);
 989        return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
 990}
 991
 992
 993/*
 994 * hw preparation for spdif
 995 */
 996
 997static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
 998                                         struct snd_ctl_elem_info *uinfo)
 999{
1000        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1001        uinfo->count = 1;
1002        return 0;
1003}
1004
1005static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
1006                                        struct snd_ctl_elem_value *ucontrol)
1007{
1008        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1009        int i;
1010
1011        spin_lock_irq(&chip->reg_lock);
1012        for (i = 0; i < 4; i++)
1013                ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1014        spin_unlock_irq(&chip->reg_lock);
1015        return 0;
1016}
1017
1018static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1019                                         struct snd_ctl_elem_value *ucontrol)
1020{
1021        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1022        int i, change;
1023        unsigned int val;
1024
1025        val = 0;
1026        spin_lock_irq(&chip->reg_lock);
1027        for (i = 0; i < 4; i++)
1028                val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1029        change = val != chip->dig_status;
1030        chip->dig_status = val;
1031        spin_unlock_irq(&chip->reg_lock);
1032        return change;
1033}
1034
1035static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1036{
1037        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1038        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1039        .info =         snd_cmipci_spdif_default_info,
1040        .get =          snd_cmipci_spdif_default_get,
1041        .put =          snd_cmipci_spdif_default_put
1042};
1043
1044static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1045                                      struct snd_ctl_elem_info *uinfo)
1046{
1047        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1048        uinfo->count = 1;
1049        return 0;
1050}
1051
1052static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1053                                     struct snd_ctl_elem_value *ucontrol)
1054{
1055        ucontrol->value.iec958.status[0] = 0xff;
1056        ucontrol->value.iec958.status[1] = 0xff;
1057        ucontrol->value.iec958.status[2] = 0xff;
1058        ucontrol->value.iec958.status[3] = 0xff;
1059        return 0;
1060}
1061
1062static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1063{
1064        .access =       SNDRV_CTL_ELEM_ACCESS_READ,
1065        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1066        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1067        .info =         snd_cmipci_spdif_mask_info,
1068        .get =          snd_cmipci_spdif_mask_get,
1069};
1070
1071static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1072                                        struct snd_ctl_elem_info *uinfo)
1073{
1074        uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1075        uinfo->count = 1;
1076        return 0;
1077}
1078
1079static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1080                                       struct snd_ctl_elem_value *ucontrol)
1081{
1082        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1083        int i;
1084
1085        spin_lock_irq(&chip->reg_lock);
1086        for (i = 0; i < 4; i++)
1087                ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1088        spin_unlock_irq(&chip->reg_lock);
1089        return 0;
1090}
1091
1092static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1093                                       struct snd_ctl_elem_value *ucontrol)
1094{
1095        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1096        int i, change;
1097        unsigned int val;
1098
1099        val = 0;
1100        spin_lock_irq(&chip->reg_lock);
1101        for (i = 0; i < 4; i++)
1102                val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1103        change = val != chip->dig_pcm_status;
1104        chip->dig_pcm_status = val;
1105        spin_unlock_irq(&chip->reg_lock);
1106        return change;
1107}
1108
1109static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1110{
1111        .access =       SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1112        .iface =        SNDRV_CTL_ELEM_IFACE_PCM,
1113        .name =         SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1114        .info =         snd_cmipci_spdif_stream_info,
1115        .get =          snd_cmipci_spdif_stream_get,
1116        .put =          snd_cmipci_spdif_stream_put
1117};
1118
1119/*
1120 */
1121
1122/* save mixer setting and mute for AC3 playback */
1123static int save_mixer_state(struct cmipci *cm)
1124{
1125        if (! cm->mixer_insensitive) {
1126                struct snd_ctl_elem_value *val;
1127                unsigned int i;
1128
1129                val = kmalloc(sizeof(*val), GFP_KERNEL);
1130                if (!val)
1131                        return -ENOMEM;
1132                for (i = 0; i < CM_SAVED_MIXERS; i++) {
1133                        struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1134                        if (ctl) {
1135                                int event;
1136                                memset(val, 0, sizeof(*val));
1137                                ctl->get(ctl, val);
1138                                cm->mixer_res_status[i] = val->value.integer.value[0];
1139                                val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1140                                event = SNDRV_CTL_EVENT_MASK_INFO;
1141                                if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1142                                        ctl->put(ctl, val); /* toggle */
1143                                        event |= SNDRV_CTL_EVENT_MASK_VALUE;
1144                                }
1145                                ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1146                                snd_ctl_notify(cm->card, event, &ctl->id);
1147                        }
1148                }
1149                kfree(val);
1150                cm->mixer_insensitive = 1;
1151        }
1152        return 0;
1153}
1154
1155
1156/* restore the previously saved mixer status */
1157static void restore_mixer_state(struct cmipci *cm)
1158{
1159        if (cm->mixer_insensitive) {
1160                struct snd_ctl_elem_value *val;
1161                unsigned int i;
1162
1163                val = kmalloc(sizeof(*val), GFP_KERNEL);
1164                if (!val)
1165                        return;
1166                cm->mixer_insensitive = 0; /* at first clear this;
1167                                              otherwise the changes will be ignored */
1168                for (i = 0; i < CM_SAVED_MIXERS; i++) {
1169                        struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1170                        if (ctl) {
1171                                int event;
1172
1173                                memset(val, 0, sizeof(*val));
1174                                ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1175                                ctl->get(ctl, val);
1176                                event = SNDRV_CTL_EVENT_MASK_INFO;
1177                                if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1178                                        val->value.integer.value[0] = cm->mixer_res_status[i];
1179                                        ctl->put(ctl, val);
1180                                        event |= SNDRV_CTL_EVENT_MASK_VALUE;
1181                                }
1182                                snd_ctl_notify(cm->card, event, &ctl->id);
1183                        }
1184                }
1185                kfree(val);
1186        }
1187}
1188
1189/* spinlock held! */
1190static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1191{
1192        if (do_ac3) {
1193                /* AC3EN for 037 */
1194                snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1195                /* AC3EN for 039 */
1196                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1197        
1198                if (cm->can_ac3_hw) {
1199                        /* SPD24SEL for 037, 0x02 */
1200                        /* SPD24SEL for 039, 0x20, but cannot be set */
1201                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1202                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1203                } else { /* can_ac3_sw */
1204                        /* SPD32SEL for 037 & 039, 0x20 */
1205                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1206                        /* set 176K sample rate to fix 033 HW bug */
1207                        if (cm->chip_version == 33) {
1208                                if (rate >= 48000) {
1209                                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1210                                } else {
1211                                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1212                                }
1213                        }
1214                }
1215
1216        } else {
1217                snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1218                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1219
1220                if (cm->can_ac3_hw) {
1221                        /* chip model >= 37 */
1222                        if (snd_pcm_format_width(subs->runtime->format) > 16) {
1223                                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1224                                snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1225                        } else {
1226                                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1227                                snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1228                        }
1229                } else {
1230                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1231                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1232                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1233                }
1234        }
1235}
1236
1237static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1238{
1239        int rate, err;
1240
1241        rate = subs->runtime->rate;
1242
1243        if (up && do_ac3)
1244                if ((err = save_mixer_state(cm)) < 0)
1245                        return err;
1246
1247        spin_lock_irq(&cm->reg_lock);
1248        cm->spdif_playback_avail = up;
1249        if (up) {
1250                /* they are controlled via "IEC958 Output Switch" */
1251                /* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1252                /* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1253                if (cm->spdif_playback_enabled)
1254                        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1255                setup_ac3(cm, subs, do_ac3, rate);
1256
1257                if (rate == 48000 || rate == 96000)
1258                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1259                else
1260                        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1261                if (rate > 48000)
1262                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1263                else
1264                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1265        } else {
1266                /* they are controlled via "IEC958 Output Switch" */
1267                /* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1268                /* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1269                snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1270                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1271                setup_ac3(cm, subs, 0, 0);
1272        }
1273        spin_unlock_irq(&cm->reg_lock);
1274        return 0;
1275}
1276
1277
1278/*
1279 * preparation
1280 */
1281
1282/* playback - enable spdif only on the certain condition */
1283static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1284{
1285        struct cmipci *cm = snd_pcm_substream_chip(substream);
1286        int rate = substream->runtime->rate;
1287        int err, do_spdif, do_ac3 = 0;
1288
1289        do_spdif = (rate >= 44100 && rate <= 96000 &&
1290                    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1291                    substream->runtime->channels == 2);
1292        if (do_spdif && cm->can_ac3_hw) 
1293                do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1294        if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
1295                return err;
1296        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1297}
1298
1299/* playback  (via device #2) - enable spdif always */
1300static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1301{
1302        struct cmipci *cm = snd_pcm_substream_chip(substream);
1303        int err, do_ac3;
1304
1305        if (cm->can_ac3_hw) 
1306                do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1307        else
1308                do_ac3 = 1; /* doesn't matter */
1309        if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
1310                return err;
1311        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1312}
1313
1314/*
1315 * Apparently, the samples last played on channel A stay in some buffer, even
1316 * after the channel is reset, and get added to the data for the rear DACs when
1317 * playing a multichannel stream on channel B.  This is likely to generate
1318 * wraparounds and thus distortions.
1319 * To avoid this, we play at least one zero sample after the actual stream has
1320 * stopped.
1321 */
1322static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1323{
1324        struct snd_pcm_runtime *runtime = rec->substream->runtime;
1325        unsigned int reg, val;
1326
1327        if (rec->needs_silencing && runtime && runtime->dma_area) {
1328                /* set up a small silence buffer */
1329                memset(runtime->dma_area, 0, PAGE_SIZE);
1330                reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1331                val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1332                snd_cmipci_write(cm, reg, val);
1333        
1334                /* configure for 16 bits, 2 channels, 8 kHz */
1335                if (runtime->channels > 2)
1336                        set_dac_channels(cm, rec, 2);
1337                spin_lock_irq(&cm->reg_lock);
1338                val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1339                val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1340                val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1341                snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1342                val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1343                val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1344                val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1345                if (cm->can_96k)
1346                        val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1347                snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1348        
1349                /* start stream (we don't need interrupts) */
1350                cm->ctrl |= CM_CHEN0 << rec->ch;
1351                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1352                spin_unlock_irq(&cm->reg_lock);
1353
1354                msleep(1);
1355
1356                /* stop and reset stream */
1357                spin_lock_irq(&cm->reg_lock);
1358                cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1359                val = CM_RST_CH0 << rec->ch;
1360                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1361                snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1362                spin_unlock_irq(&cm->reg_lock);
1363
1364                rec->needs_silencing = 0;
1365        }
1366}
1367
1368static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1369{
1370        struct cmipci *cm = snd_pcm_substream_chip(substream);
1371        setup_spdif_playback(cm, substream, 0, 0);
1372        restore_mixer_state(cm);
1373        snd_cmipci_silence_hack(cm, &cm->channel[0]);
1374        return snd_cmipci_hw_free(substream);
1375}
1376
1377static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1378{
1379        struct cmipci *cm = snd_pcm_substream_chip(substream);
1380        snd_cmipci_silence_hack(cm, &cm->channel[1]);
1381        return snd_cmipci_hw_free(substream);
1382}
1383
1384/* capture */
1385static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1386{
1387        struct cmipci *cm = snd_pcm_substream_chip(substream);
1388        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1389}
1390
1391/* capture with spdif (via device #2) */
1392static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1393{
1394        struct cmipci *cm = snd_pcm_substream_chip(substream);
1395
1396        spin_lock_irq(&cm->reg_lock);
1397        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1398        if (cm->can_96k) {
1399                if (substream->runtime->rate > 48000)
1400                        snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1401                else
1402                        snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1403        }
1404        if (snd_pcm_format_width(substream->runtime->format) > 16)
1405                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1406        else
1407                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1408
1409        spin_unlock_irq(&cm->reg_lock);
1410
1411        return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1412}
1413
1414static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1415{
1416        struct cmipci *cm = snd_pcm_substream_chip(subs);
1417
1418        spin_lock_irq(&cm->reg_lock);
1419        snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1420        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1421        spin_unlock_irq(&cm->reg_lock);
1422
1423        return snd_cmipci_hw_free(subs);
1424}
1425
1426
1427/*
1428 * interrupt handler
1429 */
1430static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1431{
1432        struct cmipci *cm = dev_id;
1433        unsigned int status, mask = 0;
1434        
1435        /* fastpath out, to ease interrupt sharing */
1436        status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1437        if (!(status & CM_INTR))
1438                return IRQ_NONE;
1439
1440        /* acknowledge interrupt */
1441        spin_lock(&cm->reg_lock);
1442        if (status & CM_CHINT0)
1443                mask |= CM_CH0_INT_EN;
1444        if (status & CM_CHINT1)
1445                mask |= CM_CH1_INT_EN;
1446        snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1447        snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1448        spin_unlock(&cm->reg_lock);
1449
1450        if (cm->rmidi && (status & CM_UARTINT))
1451                snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1452
1453        if (cm->pcm) {
1454                if ((status & CM_CHINT0) && cm->channel[0].running)
1455                        snd_pcm_period_elapsed(cm->channel[0].substream);
1456                if ((status & CM_CHINT1) && cm->channel[1].running)
1457                        snd_pcm_period_elapsed(cm->channel[1].substream);
1458        }
1459        return IRQ_HANDLED;
1460}
1461
1462/*
1463 * h/w infos
1464 */
1465
1466/* playback on channel A */
1467static const struct snd_pcm_hardware snd_cmipci_playback =
1468{
1469        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1470                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1471                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1472        .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1473        .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1474        .rate_min =             5512,
1475        .rate_max =             48000,
1476        .channels_min =         1,
1477        .channels_max =         2,
1478        .buffer_bytes_max =     (128*1024),
1479        .period_bytes_min =     64,
1480        .period_bytes_max =     (128*1024),
1481        .periods_min =          2,
1482        .periods_max =          1024,
1483        .fifo_size =            0,
1484};
1485
1486/* capture on channel B */
1487static const struct snd_pcm_hardware snd_cmipci_capture =
1488{
1489        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1490                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1491                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1492        .formats =              SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1493        .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1494        .rate_min =             5512,
1495        .rate_max =             48000,
1496        .channels_min =         1,
1497        .channels_max =         2,
1498        .buffer_bytes_max =     (128*1024),
1499        .period_bytes_min =     64,
1500        .period_bytes_max =     (128*1024),
1501        .periods_min =          2,
1502        .periods_max =          1024,
1503        .fifo_size =            0,
1504};
1505
1506/* playback on channel B - stereo 16bit only? */
1507static const struct snd_pcm_hardware snd_cmipci_playback2 =
1508{
1509        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1510                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1511                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1512        .formats =              SNDRV_PCM_FMTBIT_S16_LE,
1513        .rates =                SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1514        .rate_min =             5512,
1515        .rate_max =             48000,
1516        .channels_min =         2,
1517        .channels_max =         2,
1518        .buffer_bytes_max =     (128*1024),
1519        .period_bytes_min =     64,
1520        .period_bytes_max =     (128*1024),
1521        .periods_min =          2,
1522        .periods_max =          1024,
1523        .fifo_size =            0,
1524};
1525
1526/* spdif playback on channel A */
1527static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1528{
1529        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1530                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1531                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1532        .formats =              SNDRV_PCM_FMTBIT_S16_LE,
1533        .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1534        .rate_min =             44100,
1535        .rate_max =             48000,
1536        .channels_min =         2,
1537        .channels_max =         2,
1538        .buffer_bytes_max =     (128*1024),
1539        .period_bytes_min =     64,
1540        .period_bytes_max =     (128*1024),
1541        .periods_min =          2,
1542        .periods_max =          1024,
1543        .fifo_size =            0,
1544};
1545
1546/* spdif playback on channel A (32bit, IEC958 subframes) */
1547static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1548{
1549        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1550                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1551                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1552        .formats =              SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1553        .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1554        .rate_min =             44100,
1555        .rate_max =             48000,
1556        .channels_min =         2,
1557        .channels_max =         2,
1558        .buffer_bytes_max =     (128*1024),
1559        .period_bytes_min =     64,
1560        .period_bytes_max =     (128*1024),
1561        .periods_min =          2,
1562        .periods_max =          1024,
1563        .fifo_size =            0,
1564};
1565
1566/* spdif capture on channel B */
1567static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1568{
1569        .info =                 (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1570                                 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1571                                 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1572        .formats =              SNDRV_PCM_FMTBIT_S16_LE |
1573                                SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1574        .rates =                SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1575        .rate_min =             44100,
1576        .rate_max =             48000,
1577        .channels_min =         2,
1578        .channels_max =         2,
1579        .buffer_bytes_max =     (128*1024),
1580        .period_bytes_min =     64,
1581        .period_bytes_max =     (128*1024),
1582        .periods_min =          2,
1583        .periods_max =          1024,
1584        .fifo_size =            0,
1585};
1586
1587static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1588                        32000, 44100, 48000, 88200, 96000, 128000 };
1589static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1590                .count = ARRAY_SIZE(rate_constraints),
1591                .list = rate_constraints,
1592                .mask = 0,
1593};
1594
1595/*
1596 * check device open/close
1597 */
1598static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1599{
1600        int ch = mode & CM_OPEN_CH_MASK;
1601
1602        /* FIXME: a file should wait until the device becomes free
1603         * when it's opened on blocking mode.  however, since the current
1604         * pcm framework doesn't pass file pointer before actually opened,
1605         * we can't know whether blocking mode or not in open callback..
1606         */
1607        mutex_lock(&cm->open_mutex);
1608        if (cm->opened[ch]) {
1609                mutex_unlock(&cm->open_mutex);
1610                return -EBUSY;
1611        }
1612        cm->opened[ch] = mode;
1613        cm->channel[ch].substream = subs;
1614        if (! (mode & CM_OPEN_DAC)) {
1615                /* disable dual DAC mode */
1616                cm->channel[ch].is_dac = 0;
1617                spin_lock_irq(&cm->reg_lock);
1618                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1619                spin_unlock_irq(&cm->reg_lock);
1620        }
1621        mutex_unlock(&cm->open_mutex);
1622        return 0;
1623}
1624
1625static void close_device_check(struct cmipci *cm, int mode)
1626{
1627        int ch = mode & CM_OPEN_CH_MASK;
1628
1629        mutex_lock(&cm->open_mutex);
1630        if (cm->opened[ch] == mode) {
1631                if (cm->channel[ch].substream) {
1632                        snd_cmipci_ch_reset(cm, ch);
1633                        cm->channel[ch].running = 0;
1634                        cm->channel[ch].substream = NULL;
1635                }
1636                cm->opened[ch] = 0;
1637                if (! cm->channel[ch].is_dac) {
1638                        /* enable dual DAC mode again */
1639                        cm->channel[ch].is_dac = 1;
1640                        spin_lock_irq(&cm->reg_lock);
1641                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1642                        spin_unlock_irq(&cm->reg_lock);
1643                }
1644        }
1645        mutex_unlock(&cm->open_mutex);
1646}
1647
1648/*
1649 */
1650
1651static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1652{
1653        struct cmipci *cm = snd_pcm_substream_chip(substream);
1654        struct snd_pcm_runtime *runtime = substream->runtime;
1655        int err;
1656
1657        if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
1658                return err;
1659        runtime->hw = snd_cmipci_playback;
1660        if (cm->chip_version == 68) {
1661                runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1662                                     SNDRV_PCM_RATE_96000;
1663                runtime->hw.rate_max = 96000;
1664        } else if (cm->chip_version == 55) {
1665                err = snd_pcm_hw_constraint_list(runtime, 0,
1666                        SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1667                if (err < 0)
1668                        return err;
1669                runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1670                runtime->hw.rate_max = 128000;
1671        }
1672        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1673        cm->dig_pcm_status = cm->dig_status;
1674        return 0;
1675}
1676
1677static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1678{
1679        struct cmipci *cm = snd_pcm_substream_chip(substream);
1680        struct snd_pcm_runtime *runtime = substream->runtime;
1681        int err;
1682
1683        if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
1684                return err;
1685        runtime->hw = snd_cmipci_capture;
1686        if (cm->chip_version == 68) {   // 8768 only supports 44k/48k recording
1687                runtime->hw.rate_min = 41000;
1688                runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1689        } else if (cm->chip_version == 55) {
1690                err = snd_pcm_hw_constraint_list(runtime, 0,
1691                        SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1692                if (err < 0)
1693                        return err;
1694                runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1695                runtime->hw.rate_max = 128000;
1696        }
1697        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1698        return 0;
1699}
1700
1701static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1702{
1703        struct cmipci *cm = snd_pcm_substream_chip(substream);
1704        struct snd_pcm_runtime *runtime = substream->runtime;
1705        int err;
1706
1707        if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
1708                return err;
1709        runtime->hw = snd_cmipci_playback2;
1710        mutex_lock(&cm->open_mutex);
1711        if (! cm->opened[CM_CH_PLAY]) {
1712                if (cm->can_multi_ch) {
1713                        runtime->hw.channels_max = cm->max_channels;
1714                        if (cm->max_channels == 4)
1715                                snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1716                        else if (cm->max_channels == 6)
1717                                snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1718                        else if (cm->max_channels == 8)
1719                                snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1720                }
1721        }
1722        mutex_unlock(&cm->open_mutex);
1723        if (cm->chip_version == 68) {
1724                runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1725                                     SNDRV_PCM_RATE_96000;
1726                runtime->hw.rate_max = 96000;
1727        } else if (cm->chip_version == 55) {
1728                err = snd_pcm_hw_constraint_list(runtime, 0,
1729                        SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1730                if (err < 0)
1731                        return err;
1732                runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1733                runtime->hw.rate_max = 128000;
1734        }
1735        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1736        return 0;
1737}
1738
1739static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1740{
1741        struct cmipci *cm = snd_pcm_substream_chip(substream);
1742        struct snd_pcm_runtime *runtime = substream->runtime;
1743        int err;
1744
1745        if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
1746                return err;
1747        if (cm->can_ac3_hw) {
1748                runtime->hw = snd_cmipci_playback_spdif;
1749                if (cm->chip_version >= 37) {
1750                        runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1751                        snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1752                }
1753                if (cm->can_96k) {
1754                        runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1755                                             SNDRV_PCM_RATE_96000;
1756                        runtime->hw.rate_max = 96000;
1757                }
1758        } else {
1759                runtime->hw = snd_cmipci_playback_iec958_subframe;
1760        }
1761        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1762        cm->dig_pcm_status = cm->dig_status;
1763        return 0;
1764}
1765
1766static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1767{
1768        struct cmipci *cm = snd_pcm_substream_chip(substream);
1769        struct snd_pcm_runtime *runtime = substream->runtime;
1770        int err;
1771
1772        if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
1773                return err;
1774        runtime->hw = snd_cmipci_capture_spdif;
1775        if (cm->can_96k && !(cm->chip_version == 68)) {
1776                runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1777                                     SNDRV_PCM_RATE_96000;
1778                runtime->hw.rate_max = 96000;
1779        }
1780        snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1781        return 0;
1782}
1783
1784
1785/*
1786 */
1787
1788static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1789{
1790        struct cmipci *cm = snd_pcm_substream_chip(substream);
1791        close_device_check(cm, CM_OPEN_PLAYBACK);
1792        return 0;
1793}
1794
1795static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1796{
1797        struct cmipci *cm = snd_pcm_substream_chip(substream);
1798        close_device_check(cm, CM_OPEN_CAPTURE);
1799        return 0;
1800}
1801
1802static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1803{
1804        struct cmipci *cm = snd_pcm_substream_chip(substream);
1805        close_device_check(cm, CM_OPEN_PLAYBACK2);
1806        close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1807        return 0;
1808}
1809
1810static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1811{
1812        struct cmipci *cm = snd_pcm_substream_chip(substream);
1813        close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1814        return 0;
1815}
1816
1817static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1818{
1819        struct cmipci *cm = snd_pcm_substream_chip(substream);
1820        close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1821        return 0;
1822}
1823
1824
1825/*
1826 */
1827
1828static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1829        .open =         snd_cmipci_playback_open,
1830        .close =        snd_cmipci_playback_close,
1831        .ioctl =        snd_pcm_lib_ioctl,
1832        .hw_params =    snd_cmipci_hw_params,
1833        .hw_free =      snd_cmipci_playback_hw_free,
1834        .prepare =      snd_cmipci_playback_prepare,
1835        .trigger =      snd_cmipci_playback_trigger,
1836        .pointer =      snd_cmipci_playback_pointer,
1837};
1838
1839static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1840        .open =         snd_cmipci_capture_open,
1841        .close =        snd_cmipci_capture_close,
1842        .ioctl =        snd_pcm_lib_ioctl,
1843        .hw_params =    snd_cmipci_hw_params,
1844        .hw_free =      snd_cmipci_hw_free,
1845        .prepare =      snd_cmipci_capture_prepare,
1846        .trigger =      snd_cmipci_capture_trigger,
1847        .pointer =      snd_cmipci_capture_pointer,
1848};
1849
1850static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1851        .open =         snd_cmipci_playback2_open,
1852        .close =        snd_cmipci_playback2_close,
1853        .ioctl =        snd_pcm_lib_ioctl,
1854        .hw_params =    snd_cmipci_playback2_hw_params,
1855        .hw_free =      snd_cmipci_playback2_hw_free,
1856        .prepare =      snd_cmipci_capture_prepare,     /* channel B */
1857        .trigger =      snd_cmipci_capture_trigger,     /* channel B */
1858        .pointer =      snd_cmipci_capture_pointer,     /* channel B */
1859};
1860
1861static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1862        .open =         snd_cmipci_playback_spdif_open,
1863        .close =        snd_cmipci_playback_spdif_close,
1864        .ioctl =        snd_pcm_lib_ioctl,
1865        .hw_params =    snd_cmipci_hw_params,
1866        .hw_free =      snd_cmipci_playback_hw_free,
1867        .prepare =      snd_cmipci_playback_spdif_prepare,      /* set up rate */
1868        .trigger =      snd_cmipci_playback_trigger,
1869        .pointer =      snd_cmipci_playback_pointer,
1870};
1871
1872static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1873        .open =         snd_cmipci_capture_spdif_open,
1874        .close =        snd_cmipci_capture_spdif_close,
1875        .ioctl =        snd_pcm_lib_ioctl,
1876        .hw_params =    snd_cmipci_hw_params,
1877        .hw_free =      snd_cmipci_capture_spdif_hw_free,
1878        .prepare =      snd_cmipci_capture_spdif_prepare,
1879        .trigger =      snd_cmipci_capture_trigger,
1880        .pointer =      snd_cmipci_capture_pointer,
1881};
1882
1883
1884/*
1885 */
1886
1887static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1888{
1889        struct snd_pcm *pcm;
1890        int err;
1891
1892        err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1893        if (err < 0)
1894                return err;
1895
1896        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1897        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1898
1899        pcm->private_data = cm;
1900        pcm->info_flags = 0;
1901        strcpy(pcm->name, "C-Media PCI DAC/ADC");
1902        cm->pcm = pcm;
1903
1904        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1905                                              snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1906
1907        return 0;
1908}
1909
1910static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1911{
1912        struct snd_pcm *pcm;
1913        int err;
1914
1915        err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1916        if (err < 0)
1917                return err;
1918
1919        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1920
1921        pcm->private_data = cm;
1922        pcm->info_flags = 0;
1923        strcpy(pcm->name, "C-Media PCI 2nd DAC");
1924        cm->pcm2 = pcm;
1925
1926        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1927                                              snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1928
1929        return 0;
1930}
1931
1932static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1933{
1934        struct snd_pcm *pcm;
1935        int err;
1936
1937        err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1938        if (err < 0)
1939                return err;
1940
1941        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1942        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1943
1944        pcm->private_data = cm;
1945        pcm->info_flags = 0;
1946        strcpy(pcm->name, "C-Media PCI IEC958");
1947        cm->pcm_spdif = pcm;
1948
1949        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
1950                                              snd_dma_pci_data(cm->pci), 64*1024, 128*1024);
1951
1952        err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1953                                     snd_pcm_alt_chmaps, cm->max_channels, 0,
1954                                     NULL);
1955        if (err < 0)
1956                return err;
1957
1958        return 0;
1959}
1960
1961/*
1962 * mixer interface:
1963 * - CM8338/8738 has a compatible mixer interface with SB16, but
1964 *   lack of some elements like tone control, i/o gain and AGC.
1965 * - Access to native registers:
1966 *   - A 3D switch
1967 *   - Output mute switches
1968 */
1969
1970static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1971{
1972        outb(idx, s->iobase + CM_REG_SB16_ADDR);
1973        outb(data, s->iobase + CM_REG_SB16_DATA);
1974}
1975
1976static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1977{
1978        unsigned char v;
1979
1980        outb(idx, s->iobase + CM_REG_SB16_ADDR);
1981        v = inb(s->iobase + CM_REG_SB16_DATA);
1982        return v;
1983}
1984
1985/*
1986 * general mixer element
1987 */
1988struct cmipci_sb_reg {
1989        unsigned int left_reg, right_reg;
1990        unsigned int left_shift, right_shift;
1991        unsigned int mask;
1992        unsigned int invert: 1;
1993        unsigned int stereo: 1;
1994};
1995
1996#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1997 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1998
1999#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
2000{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2001  .info = snd_cmipci_info_volume, \
2002  .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
2003  .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
2004}
2005
2006#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
2007#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
2008#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
2009#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
2010
2011static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
2012{
2013        r->left_reg = val & 0xff;
2014        r->right_reg = (val >> 8) & 0xff;
2015        r->left_shift = (val >> 16) & 0x07;
2016        r->right_shift = (val >> 19) & 0x07;
2017        r->invert = (val >> 22) & 1;
2018        r->stereo = (val >> 23) & 1;
2019        r->mask = (val >> 24) & 0xff;
2020}
2021
2022static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2023                                  struct snd_ctl_elem_info *uinfo)
2024{
2025        struct cmipci_sb_reg reg;
2026
2027        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2028        uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2029        uinfo->count = reg.stereo + 1;
2030        uinfo->value.integer.min = 0;
2031        uinfo->value.integer.max = reg.mask;
2032        return 0;
2033}
2034 
2035static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2036                                 struct snd_ctl_elem_value *ucontrol)
2037{
2038        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2039        struct cmipci_sb_reg reg;
2040        int val;
2041
2042        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2043        spin_lock_irq(&cm->reg_lock);
2044        val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2045        if (reg.invert)
2046                val = reg.mask - val;
2047        ucontrol->value.integer.value[0] = val;
2048        if (reg.stereo) {
2049                val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2050                if (reg.invert)
2051                        val = reg.mask - val;
2052                ucontrol->value.integer.value[1] = val;
2053        }
2054        spin_unlock_irq(&cm->reg_lock);
2055        return 0;
2056}
2057
2058static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2059                                 struct snd_ctl_elem_value *ucontrol)
2060{
2061        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2062        struct cmipci_sb_reg reg;
2063        int change;
2064        int left, right, oleft, oright;
2065
2066        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2067        left = ucontrol->value.integer.value[0] & reg.mask;
2068        if (reg.invert)
2069                left = reg.mask - left;
2070        left <<= reg.left_shift;
2071        if (reg.stereo) {
2072                right = ucontrol->value.integer.value[1] & reg.mask;
2073                if (reg.invert)
2074                        right = reg.mask - right;
2075                right <<= reg.right_shift;
2076        } else
2077                right = 0;
2078        spin_lock_irq(&cm->reg_lock);
2079        oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2080        left |= oleft & ~(reg.mask << reg.left_shift);
2081        change = left != oleft;
2082        if (reg.stereo) {
2083                if (reg.left_reg != reg.right_reg) {
2084                        snd_cmipci_mixer_write(cm, reg.left_reg, left);
2085                        oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2086                } else
2087                        oright = left;
2088                right |= oright & ~(reg.mask << reg.right_shift);
2089                change |= right != oright;
2090                snd_cmipci_mixer_write(cm, reg.right_reg, right);
2091        } else
2092                snd_cmipci_mixer_write(cm, reg.left_reg, left);
2093        spin_unlock_irq(&cm->reg_lock);
2094        return change;
2095}
2096
2097/*
2098 * input route (left,right) -> (left,right)
2099 */
2100#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2101{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2102  .info = snd_cmipci_info_input_sw, \
2103  .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2104  .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2105}
2106
2107static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2108                                    struct snd_ctl_elem_info *uinfo)
2109{
2110        uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2111        uinfo->count = 4;
2112        uinfo->value.integer.min = 0;
2113        uinfo->value.integer.max = 1;
2114        return 0;
2115}
2116 
2117static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2118                                   struct snd_ctl_elem_value *ucontrol)
2119{
2120        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2121        struct cmipci_sb_reg reg;
2122        int val1, val2;
2123
2124        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2125        spin_lock_irq(&cm->reg_lock);
2126        val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2127        val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2128        spin_unlock_irq(&cm->reg_lock);
2129        ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2130        ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2131        ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2132        ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2133        return 0;
2134}
2135
2136static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2137                                   struct snd_ctl_elem_value *ucontrol)
2138{
2139        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2140        struct cmipci_sb_reg reg;
2141        int change;
2142        int val1, val2, oval1, oval2;
2143
2144        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2145        spin_lock_irq(&cm->reg_lock);
2146        oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2147        oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2148        val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2149        val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2150        val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2151        val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2152        val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2153        val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2154        change = val1 != oval1 || val2 != oval2;
2155        snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2156        snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2157        spin_unlock_irq(&cm->reg_lock);
2158        return change;
2159}
2160
2161/*
2162 * native mixer switches/volumes
2163 */
2164
2165#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2166{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2167  .info = snd_cmipci_info_native_mixer, \
2168  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2169  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2170}
2171
2172#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2173{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2174  .info = snd_cmipci_info_native_mixer, \
2175  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2176  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2177}
2178
2179#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2180{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2181  .info = snd_cmipci_info_native_mixer, \
2182  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2183  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2184}
2185
2186#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2187{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2188  .info = snd_cmipci_info_native_mixer, \
2189  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2190  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2191}
2192
2193static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2194                                        struct snd_ctl_elem_info *uinfo)
2195{
2196        struct cmipci_sb_reg reg;
2197
2198        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2199        uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2200        uinfo->count = reg.stereo + 1;
2201        uinfo->value.integer.min = 0;
2202        uinfo->value.integer.max = reg.mask;
2203        return 0;
2204
2205}
2206
2207static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2208                                       struct snd_ctl_elem_value *ucontrol)
2209{
2210        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2211        struct cmipci_sb_reg reg;
2212        unsigned char oreg, val;
2213
2214        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2215        spin_lock_irq(&cm->reg_lock);
2216        oreg = inb(cm->iobase + reg.left_reg);
2217        val = (oreg >> reg.left_shift) & reg.mask;
2218        if (reg.invert)
2219                val = reg.mask - val;
2220        ucontrol->value.integer.value[0] = val;
2221        if (reg.stereo) {
2222                val = (oreg >> reg.right_shift) & reg.mask;
2223                if (reg.invert)
2224                        val = reg.mask - val;
2225                ucontrol->value.integer.value[1] = val;
2226        }
2227        spin_unlock_irq(&cm->reg_lock);
2228        return 0;
2229}
2230
2231static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2232                                       struct snd_ctl_elem_value *ucontrol)
2233{
2234        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2235        struct cmipci_sb_reg reg;
2236        unsigned char oreg, nreg, val;
2237
2238        cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2239        spin_lock_irq(&cm->reg_lock);
2240        oreg = inb(cm->iobase + reg.left_reg);
2241        val = ucontrol->value.integer.value[0] & reg.mask;
2242        if (reg.invert)
2243                val = reg.mask - val;
2244        nreg = oreg & ~(reg.mask << reg.left_shift);
2245        nreg |= (val << reg.left_shift);
2246        if (reg.stereo) {
2247                val = ucontrol->value.integer.value[1] & reg.mask;
2248                if (reg.invert)
2249                        val = reg.mask - val;
2250                nreg &= ~(reg.mask << reg.right_shift);
2251                nreg |= (val << reg.right_shift);
2252        }
2253        outb(nreg, cm->iobase + reg.left_reg);
2254        spin_unlock_irq(&cm->reg_lock);
2255        return (nreg != oreg);
2256}
2257
2258/*
2259 * special case - check mixer sensitivity
2260 */
2261static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2262                                                 struct snd_ctl_elem_value *ucontrol)
2263{
2264        //struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2265        return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2266}
2267
2268static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2269                                                 struct snd_ctl_elem_value *ucontrol)
2270{
2271        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2272        if (cm->mixer_insensitive) {
2273                /* ignored */
2274                return 0;
2275        }
2276        return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2277}
2278
2279
2280static struct snd_kcontrol_new snd_cmipci_mixers[] = {
2281        CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2282        CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2283        CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2284        //CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2285        { /* switch with sensitivity */
2286                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2287                .name = "PCM Playback Switch",
2288                .info = snd_cmipci_info_native_mixer,
2289                .get = snd_cmipci_get_native_mixer_sensitive,
2290                .put = snd_cmipci_put_native_mixer_sensitive,
2291                .private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2292        },
2293        CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2294        CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2295        CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2296        CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2297        CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2298        CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2299        CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2300        CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2301        CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2302        CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2303        CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2304        CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2305        CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2306        CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2307        CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2308        CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2309        CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2310        CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2311        CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2312        CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2313        CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2314        CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2315        CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2316};
2317
2318/*
2319 * other switches
2320 */
2321
2322struct cmipci_switch_args {
2323        int reg;                /* register index */
2324        unsigned int mask;      /* mask bits */
2325        unsigned int mask_on;   /* mask bits to turn on */
2326        unsigned int is_byte: 1;                /* byte access? */
2327        unsigned int ac3_sensitive: 1;  /* access forbidden during
2328                                         * non-audio operation?
2329                                         */
2330};
2331
2332#define snd_cmipci_uswitch_info         snd_ctl_boolean_mono_info
2333
2334static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2335                                   struct snd_ctl_elem_value *ucontrol,
2336                                   struct cmipci_switch_args *args)
2337{
2338        unsigned int val;
2339        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2340
2341        spin_lock_irq(&cm->reg_lock);
2342        if (args->ac3_sensitive && cm->mixer_insensitive) {
2343                ucontrol->value.integer.value[0] = 0;
2344                spin_unlock_irq(&cm->reg_lock);
2345                return 0;
2346        }
2347        if (args->is_byte)
2348                val = inb(cm->iobase + args->reg);
2349        else
2350                val = snd_cmipci_read(cm, args->reg);
2351        ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2352        spin_unlock_irq(&cm->reg_lock);
2353        return 0;
2354}
2355
2356static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2357                                  struct snd_ctl_elem_value *ucontrol)
2358{
2359        struct cmipci_switch_args *args;
2360        args = (struct cmipci_switch_args *)kcontrol->private_value;
2361        if (snd_BUG_ON(!args))
2362                return -EINVAL;
2363        return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2364}
2365
2366static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2367                                   struct snd_ctl_elem_value *ucontrol,
2368                                   struct cmipci_switch_args *args)
2369{
2370        unsigned int val;
2371        int change;
2372        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2373
2374        spin_lock_irq(&cm->reg_lock);
2375        if (args->ac3_sensitive && cm->mixer_insensitive) {
2376                /* ignored */
2377                spin_unlock_irq(&cm->reg_lock);
2378                return 0;
2379        }
2380        if (args->is_byte)
2381                val = inb(cm->iobase + args->reg);
2382        else
2383                val = snd_cmipci_read(cm, args->reg);
2384        change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 
2385                        args->mask_on : (args->mask & ~args->mask_on));
2386        if (change) {
2387                val &= ~args->mask;
2388                if (ucontrol->value.integer.value[0])
2389                        val |= args->mask_on;
2390                else
2391                        val |= (args->mask & ~args->mask_on);
2392                if (args->is_byte)
2393                        outb((unsigned char)val, cm->iobase + args->reg);
2394                else
2395                        snd_cmipci_write(cm, args->reg, val);
2396        }
2397        spin_unlock_irq(&cm->reg_lock);
2398        return change;
2399}
2400
2401static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2402                                  struct snd_ctl_elem_value *ucontrol)
2403{
2404        struct cmipci_switch_args *args;
2405        args = (struct cmipci_switch_args *)kcontrol->private_value;
2406        if (snd_BUG_ON(!args))
2407                return -EINVAL;
2408        return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2409}
2410
2411#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2412static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2413  .reg = xreg, \
2414  .mask = xmask, \
2415  .mask_on = xmask_on, \
2416  .is_byte = xis_byte, \
2417  .ac3_sensitive = xac3, \
2418}
2419        
2420#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2421        DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2422
2423#if 0 /* these will be controlled in pcm device */
2424DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2425DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2426#endif
2427DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2428DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2429DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2430DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2431DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2432DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2433DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2434DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2435// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2436DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2437DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2438/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2439DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2440DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2441#if CM_CH_PLAY == 1
2442DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2443#else
2444DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2445#endif
2446DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2447// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2448// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2449// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2450DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2451
2452#define DEFINE_SWITCH(sname, stype, sarg) \
2453{ .name = sname, \
2454  .iface = stype, \
2455  .info = snd_cmipci_uswitch_info, \
2456  .get = snd_cmipci_uswitch_get, \
2457  .put = snd_cmipci_uswitch_put, \
2458  .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2459}
2460
2461#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2462#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2463
2464
2465/*
2466 * callbacks for spdif output switch
2467 * needs toggle two registers..
2468 */
2469static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2470                                        struct snd_ctl_elem_value *ucontrol)
2471{
2472        int changed;
2473        changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2474        changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2475        return changed;
2476}
2477
2478static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2479                                        struct snd_ctl_elem_value *ucontrol)
2480{
2481        struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2482        int changed;
2483        changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2484        changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2485        if (changed) {
2486                if (ucontrol->value.integer.value[0]) {
2487                        if (chip->spdif_playback_avail)
2488                                snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2489                } else {
2490                        if (chip->spdif_playback_avail)
2491                                snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2492                }
2493        }
2494        chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2495        return changed;
2496}
2497
2498
2499static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2500                                        struct snd_ctl_elem_info *uinfo)
2501{
2502        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2503        static const char *const texts[3] = {
2504                "Line-In", "Rear Output", "Bass Output"
2505        };
2506
2507        return snd_ctl_enum_info(uinfo, 1,
2508                                 cm->chip_version >= 39 ? 3 : 2, texts);
2509}
2510
2511static inline unsigned int get_line_in_mode(struct cmipci *cm)
2512{
2513        unsigned int val;
2514        if (cm->chip_version >= 39) {
2515                val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2516                if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2517                        return 2;
2518        }
2519        val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2520        if (val & CM_REAR2LIN)
2521                return 1;
2522        return 0;
2523}
2524
2525static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2526                                       struct snd_ctl_elem_value *ucontrol)
2527{
2528        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2529
2530        spin_lock_irq(&cm->reg_lock);
2531        ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2532        spin_unlock_irq(&cm->reg_lock);
2533        return 0;
2534}
2535
2536static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2537                                       struct snd_ctl_elem_value *ucontrol)
2538{
2539        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2540        int change;
2541
2542        spin_lock_irq(&cm->reg_lock);
2543        if (ucontrol->value.enumerated.item[0] == 2)
2544                change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2545        else
2546                change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2547        if (ucontrol->value.enumerated.item[0] == 1)
2548                change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2549        else
2550                change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2551        spin_unlock_irq(&cm->reg_lock);
2552        return change;
2553}
2554
2555static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2556                                       struct snd_ctl_elem_info *uinfo)
2557{
2558        static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2559
2560        return snd_ctl_enum_info(uinfo, 1, 2, texts);
2561}
2562
2563static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2564                                      struct snd_ctl_elem_value *ucontrol)
2565{
2566        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2567        /* same bit as spdi_phase */
2568        spin_lock_irq(&cm->reg_lock);
2569        ucontrol->value.enumerated.item[0] = 
2570                (snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2571        spin_unlock_irq(&cm->reg_lock);
2572        return 0;
2573}
2574
2575static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2576                                      struct snd_ctl_elem_value *ucontrol)
2577{
2578        struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2579        int change;
2580
2581        spin_lock_irq(&cm->reg_lock);
2582        if (ucontrol->value.enumerated.item[0])
2583                change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2584        else
2585                change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2586        spin_unlock_irq(&cm->reg_lock);
2587        return change;
2588}
2589
2590/* both for CM8338/8738 */
2591static struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2592        DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2593        {
2594                .name = "Line-In Mode",
2595                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2596                .info = snd_cmipci_line_in_mode_info,
2597                .get = snd_cmipci_line_in_mode_get,
2598                .put = snd_cmipci_line_in_mode_put,
2599        },
2600};
2601
2602/* for non-multichannel chips */
2603static struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2604DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2605
2606/* only for CM8738 */
2607static struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2608#if 0 /* controlled in pcm device */
2609        DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2610        DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2611        DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2612#endif
2613        // DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2614        { .name = "IEC958 Output Switch",
2615          .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2616          .info = snd_cmipci_uswitch_info,
2617          .get = snd_cmipci_spdout_enable_get,
2618          .put = snd_cmipci_spdout_enable_put,
2619        },
2620        DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2621        DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2622        DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2623//      DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2624        DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2625        DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2626};
2627
2628/* only for model 033/037 */
2629static struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2630        DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2631        DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2632        DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2633};
2634
2635/* only for model 039 or later */
2636static struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2637        DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2638        DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2639        {
2640                .name = "Mic-In Mode",
2641                .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2642                .info = snd_cmipci_mic_in_mode_info,
2643                .get = snd_cmipci_mic_in_mode_get,
2644                .put = snd_cmipci_mic_in_mode_put,
2645        }
2646};
2647
2648/* card control switches */
2649static struct snd_kcontrol_new snd_cmipci_modem_switch =
2650DEFINE_CARD_SWITCH("Modem", modem);
2651
2652
2653static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2654{
2655        struct snd_card *card;
2656        struct snd_kcontrol_new *sw;
2657        struct snd_kcontrol *kctl;
2658        unsigned int idx;
2659        int err;
2660
2661        if (snd_BUG_ON(!cm || !cm->card))
2662                return -EINVAL;
2663
2664        card = cm->card;
2665
2666        strcpy(card->mixername, "CMedia PCI");
2667
2668        spin_lock_irq(&cm->reg_lock);
2669        snd_cmipci_mixer_write(cm, 0x00, 0x00);         /* mixer reset */
2670        spin_unlock_irq(&cm->reg_lock);
2671
2672        for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2673                if (cm->chip_version == 68) {   // 8768 has no PCM volume
2674                        if (!strcmp(snd_cmipci_mixers[idx].name,
2675                                "PCM Playback Volume"))
2676                                continue;
2677                }
2678                if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
2679                        return err;
2680        }
2681
2682        /* mixer switches */
2683        sw = snd_cmipci_mixer_switches;
2684        for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2685                err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2686                if (err < 0)
2687                        return err;
2688        }
2689        if (! cm->can_multi_ch) {
2690                err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2691                if (err < 0)
2692                        return err;
2693        }
2694        if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2695            cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2696                sw = snd_cmipci_8738_mixer_switches;
2697                for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2698                        err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2699                        if (err < 0)
2700                                return err;
2701                }
2702                if (cm->can_ac3_hw) {
2703                        if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
2704                                return err;
2705                        kctl->id.device = pcm_spdif_device;
2706                        if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
2707                                return err;
2708                        kctl->id.device = pcm_spdif_device;
2709                        if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
2710                                return err;
2711                        kctl->id.device = pcm_spdif_device;
2712                }
2713                if (cm->chip_version <= 37) {
2714                        sw = snd_cmipci_old_mixer_switches;
2715                        for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2716                                err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2717                                if (err < 0)
2718                                        return err;
2719                        }
2720                }
2721        }
2722        if (cm->chip_version >= 39) {
2723                sw = snd_cmipci_extra_mixer_switches;
2724                for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2725                        err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2726                        if (err < 0)
2727                                return err;
2728                }
2729        }
2730
2731        /* card switches */
2732        /*
2733         * newer chips don't have the register bits to force modem link
2734         * detection; the bit that was FLINKON now mutes CH1
2735         */
2736        if (cm->chip_version < 39) {
2737                err = snd_ctl_add(cm->card,
2738                                  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2739                if (err < 0)
2740                        return err;
2741        }
2742
2743        for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2744                struct snd_ctl_elem_id elem_id;
2745                struct snd_kcontrol *ctl;
2746                memset(&elem_id, 0, sizeof(elem_id));
2747                elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2748                strcpy(elem_id.name, cm_saved_mixer[idx].name);
2749                ctl = snd_ctl_find_id(cm->card, &elem_id);
2750                if (ctl)
2751                        cm->mixer_res_ctl[idx] = ctl;
2752        }
2753
2754        return 0;
2755}
2756
2757
2758/*
2759 * proc interface
2760 */
2761
2762static void snd_cmipci_proc_read(struct snd_info_entry *entry, 
2763                                 struct snd_info_buffer *buffer)
2764{
2765        struct cmipci *cm = entry->private_data;
2766        int i, v;
2767        
2768        snd_iprintf(buffer, "%s\n", cm->card->longname);
2769        for (i = 0; i < 0x94; i++) {
2770                if (i == 0x28)
2771                        i = 0x90;
2772                v = inb(cm->iobase + i);
2773                if (i % 4 == 0)
2774                        snd_iprintf(buffer, "\n%02x:", i);
2775                snd_iprintf(buffer, " %02x", v);
2776        }
2777        snd_iprintf(buffer, "\n");
2778}
2779
2780static void snd_cmipci_proc_init(struct cmipci *cm)
2781{
2782        snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2783}
2784
2785static const struct pci_device_id snd_cmipci_ids[] = {
2786        {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2787        {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2788        {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2789        {PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2790        {PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2791        {0,},
2792};
2793
2794
2795/*
2796 * check chip version and capabilities
2797 * driver name is modified according to the chip model
2798 */
2799static void query_chip(struct cmipci *cm)
2800{
2801        unsigned int detect;
2802
2803        /* check reg 0Ch, bit 24-31 */
2804        detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2805        if (! detect) {
2806                /* check reg 08h, bit 24-28 */
2807                detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2808                switch (detect) {
2809                case 0:
2810                        cm->chip_version = 33;
2811                        if (cm->do_soft_ac3)
2812                                cm->can_ac3_sw = 1;
2813                        else
2814                                cm->can_ac3_hw = 1;
2815                        break;
2816                case CM_CHIP_037:
2817                        cm->chip_version = 37;
2818                        cm->can_ac3_hw = 1;
2819                        break;
2820                default:
2821                        cm->chip_version = 39;
2822                        cm->can_ac3_hw = 1;
2823                        break;
2824                }
2825                cm->max_channels = 2;
2826        } else {
2827                if (detect & CM_CHIP_039) {
2828                        cm->chip_version = 39;
2829                        if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2830                                cm->max_channels = 6;
2831                        else
2832                                cm->max_channels = 4;
2833                } else if (detect & CM_CHIP_8768) {
2834                        cm->chip_version = 68;
2835                        cm->max_channels = 8;
2836                        cm->can_96k = 1;
2837                } else {
2838                        cm->chip_version = 55;
2839                        cm->max_channels = 6;
2840                        cm->can_96k = 1;
2841                }
2842                cm->can_ac3_hw = 1;
2843                cm->can_multi_ch = 1;
2844        }
2845}
2846
2847#ifdef SUPPORT_JOYSTICK
2848static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2849{
2850        static int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2851        struct gameport *gp;
2852        struct resource *r = NULL;
2853        int i, io_port = 0;
2854
2855        if (joystick_port[dev] == 0)
2856                return -ENODEV;
2857
2858        if (joystick_port[dev] == 1) { /* auto-detect */
2859                for (i = 0; ports[i]; i++) {
2860                        io_port = ports[i];
2861                        r = request_region(io_port, 1, "CMIPCI gameport");
2862                        if (r)
2863                                break;
2864                }
2865        } else {
2866                io_port = joystick_port[dev];
2867                r = request_region(io_port, 1, "CMIPCI gameport");
2868        }
2869
2870        if (!r) {
2871                dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2872                return -EBUSY;
2873        }
2874
2875        cm->gameport = gp = gameport_allocate_port();
2876        if (!gp) {
2877                dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2878                release_and_free_resource(r);
2879                return -ENOMEM;
2880        }
2881        gameport_set_name(gp, "C-Media Gameport");
2882        gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2883        gameport_set_dev_parent(gp, &cm->pci->dev);
2884        gp->io = io_port;
2885        gameport_set_port_data(gp, r);
2886
2887        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2888
2889        gameport_register_port(cm->gameport);
2890
2891        return 0;
2892}
2893
2894static void snd_cmipci_free_gameport(struct cmipci *cm)
2895{
2896        if (cm->gameport) {
2897                struct resource *r = gameport_get_port_data(cm->gameport);
2898
2899                gameport_unregister_port(cm->gameport);
2900                cm->gameport = NULL;
2901
2902                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2903                release_and_free_resource(r);
2904        }
2905}
2906#else
2907static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2908static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2909#endif
2910
2911static int snd_cmipci_free(struct cmipci *cm)
2912{
2913        if (cm->irq >= 0) {
2914                snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2915                snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2916                snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2917                snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2918                snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2919                snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2920                snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2921
2922                /* reset mixer */
2923                snd_cmipci_mixer_write(cm, 0, 0);
2924
2925                free_irq(cm->irq, cm);
2926        }
2927
2928        snd_cmipci_free_gameport(cm);
2929        pci_release_regions(cm->pci);
2930        pci_disable_device(cm->pci);
2931        kfree(cm);
2932        return 0;
2933}
2934
2935static int snd_cmipci_dev_free(struct snd_device *device)
2936{
2937        struct cmipci *cm = device->device_data;
2938        return snd_cmipci_free(cm);
2939}
2940
2941static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2942{
2943        long iosynth;
2944        unsigned int val;
2945        struct snd_opl3 *opl3;
2946        int err;
2947
2948        if (!fm_port)
2949                goto disable_fm;
2950
2951        if (cm->chip_version >= 39) {
2952                /* first try FM regs in PCI port range */
2953                iosynth = cm->iobase + CM_REG_FM_PCI;
2954                err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2955                                      OPL3_HW_OPL3, 1, &opl3);
2956        } else {
2957                err = -EIO;
2958        }
2959        if (err < 0) {
2960                /* then try legacy ports */
2961                val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2962                iosynth = fm_port;
2963                switch (iosynth) {
2964                case 0x3E8: val |= CM_FMSEL_3E8; break;
2965                case 0x3E0: val |= CM_FMSEL_3E0; break;
2966                case 0x3C8: val |= CM_FMSEL_3C8; break;
2967                case 0x388: val |= CM_FMSEL_388; break;
2968                default:
2969                        goto disable_fm;
2970                }
2971                snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2972                /* enable FM */
2973                snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2974
2975                if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2976                                    OPL3_HW_OPL3, 0, &opl3) < 0) {
2977                        dev_err(cm->card->dev,
2978                                "no OPL device at %#lx, skipping...\n",
2979                                iosynth);
2980                        goto disable_fm;
2981                }
2982        }
2983        if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
2984                dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2985                return err;
2986        }
2987        return 0;
2988
2989 disable_fm:
2990        snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2991        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2992        return 0;
2993}
2994
2995static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2996                             int dev, struct cmipci **rcmipci)
2997{
2998        struct cmipci *cm;
2999        int err;
3000        static struct snd_device_ops ops = {
3001                .dev_free =     snd_cmipci_dev_free,
3002        };
3003        unsigned int val;
3004        long iomidi = 0;
3005        int integrated_midi = 0;
3006        char modelstr[16];
3007        int pcm_index, pcm_spdif_index;
3008        static const struct pci_device_id intel_82437vx[] = {
3009                { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3010                { },
3011        };
3012
3013        *rcmipci = NULL;
3014
3015        if ((err = pci_enable_device(pci)) < 0)
3016                return err;
3017
3018        cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3019        if (cm == NULL) {
3020                pci_disable_device(pci);
3021                return -ENOMEM;
3022        }
3023
3024        spin_lock_init(&cm->reg_lock);
3025        mutex_init(&cm->open_mutex);
3026        cm->device = pci->device;
3027        cm->card = card;
3028        cm->pci = pci;
3029        cm->irq = -1;
3030        cm->channel[0].ch = 0;
3031        cm->channel[1].ch = 1;
3032        cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3033
3034        if ((err = pci_request_regions(pci, card->driver)) < 0) {
3035                kfree(cm);
3036                pci_disable_device(pci);
3037                return err;
3038        }
3039        cm->iobase = pci_resource_start(pci, 0);
3040
3041        if (request_irq(pci->irq, snd_cmipci_interrupt,
3042                        IRQF_SHARED, KBUILD_MODNAME, cm)) {
3043                dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3044                snd_cmipci_free(cm);
3045                return -EBUSY;
3046        }
3047        cm->irq = pci->irq;
3048
3049        pci_set_master(cm->pci);
3050
3051        /*
3052         * check chip version, max channels and capabilities
3053         */
3054
3055        cm->chip_version = 0;
3056        cm->max_channels = 2;
3057        cm->do_soft_ac3 = soft_ac3[dev];
3058
3059        if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3060            pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3061                query_chip(cm);
3062        /* added -MCx suffix for chip supporting multi-channels */
3063        if (cm->can_multi_ch)
3064                sprintf(cm->card->driver + strlen(cm->card->driver),
3065                        "-MC%d", cm->max_channels);
3066        else if (cm->can_ac3_sw)
3067                strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3068
3069        cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3070        cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3071
3072#if CM_CH_PLAY == 1
3073        cm->ctrl = CM_CHADC0;   /* default FUNCNTRL0 */
3074#else
3075        cm->ctrl = CM_CHADC1;   /* default FUNCNTRL0 */
3076#endif
3077
3078        /* initialize codec registers */
3079        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3080        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3081        snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);     /* disable ints */
3082        snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3083        snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3084        snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);       /* disable channels */
3085        snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3086
3087        snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3088        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3089#if CM_CH_PLAY == 1
3090        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3091#else
3092        snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3093#endif
3094        if (cm->chip_version) {
3095                snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3096                snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3097        }
3098        /* Set Bus Master Request */
3099        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3100
3101        /* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3102        switch (pci->device) {
3103        case PCI_DEVICE_ID_CMEDIA_CM8738:
3104        case PCI_DEVICE_ID_CMEDIA_CM8738B:
3105                if (!pci_dev_present(intel_82437vx)) 
3106                        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3107                break;
3108        default:
3109                break;
3110        }
3111
3112        if (cm->chip_version < 68) {
3113                val = pci->device < 0x110 ? 8338 : 8738;
3114        } else {
3115                switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3116                case 0:
3117                        val = 8769;
3118                        break;
3119                case 2:
3120                        val = 8762;
3121                        break;
3122                default:
3123                        switch ((pci->subsystem_vendor << 16) |
3124                                pci->subsystem_device) {
3125                        case 0x13f69761:
3126                        case 0x584d3741:
3127                        case 0x584d3751:
3128                        case 0x584d3761:
3129                        case 0x584d3771:
3130                        case 0x72848384:
3131                                val = 8770;
3132                                break;
3133                        default:
3134                                val = 8768;
3135                                break;
3136                        }
3137                }
3138        }
3139        sprintf(card->shortname, "C-Media CMI%d", val);
3140        if (cm->chip_version < 68)
3141                sprintf(modelstr, " (model %d)", cm->chip_version);
3142        else
3143                modelstr[0] = '\0';
3144        sprintf(card->longname, "%s%s at %#lx, irq %i",
3145                card->shortname, modelstr, cm->iobase, cm->irq);
3146
3147        if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
3148                snd_cmipci_free(cm);
3149                return err;
3150        }
3151
3152        if (cm->chip_version >= 39) {
3153                val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3154                if (val != 0x00 && val != 0xff) {
3155                        iomidi = cm->iobase + CM_REG_MPU_PCI;
3156                        integrated_midi = 1;
3157                }
3158        }
3159        if (!integrated_midi) {
3160                val = 0;
3161                iomidi = mpu_port[dev];
3162                switch (iomidi) {
3163                case 0x320: val = CM_VMPU_320; break;
3164                case 0x310: val = CM_VMPU_310; break;
3165                case 0x300: val = CM_VMPU_300; break;
3166                case 0x330: val = CM_VMPU_330; break;
3167                default:
3168                            iomidi = 0; break;
3169                }
3170                if (iomidi > 0) {
3171                        snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3172                        /* enable UART */
3173                        snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3174                        if (inb(iomidi + 1) == 0xff) {
3175                                dev_err(cm->card->dev,
3176                                        "cannot enable MPU-401 port at %#lx\n",
3177                                        iomidi);
3178                                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3179                                                     CM_UART_EN);
3180                                iomidi = 0;
3181                        }
3182                }
3183        }
3184
3185        if (cm->chip_version < 68) {
3186                err = snd_cmipci_create_fm(cm, fm_port[dev]);
3187                if (err < 0)
3188                        return err;
3189        }
3190
3191        /* reset mixer */
3192        snd_cmipci_mixer_write(cm, 0, 0);
3193
3194        snd_cmipci_proc_init(cm);
3195
3196        /* create pcm devices */
3197        pcm_index = pcm_spdif_index = 0;
3198        if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
3199                return err;
3200        pcm_index++;
3201        if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
3202                return err;
3203        pcm_index++;
3204        if (cm->can_ac3_hw || cm->can_ac3_sw) {
3205                pcm_spdif_index = pcm_index;
3206                if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
3207                        return err;
3208        }
3209
3210        /* create mixer interface & switches */
3211        if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
3212                return err;
3213
3214        if (iomidi > 0) {
3215                if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3216                                               iomidi,
3217                                               (integrated_midi ?
3218                                                MPU401_INFO_INTEGRATED : 0) |
3219                                               MPU401_INFO_IRQ_HOOK,
3220                                               -1, &cm->rmidi)) < 0) {
3221                        dev_err(cm->card->dev,
3222                                "no UART401 device at 0x%lx\n", iomidi);
3223                }
3224        }
3225
3226#ifdef USE_VAR48KRATE
3227        for (val = 0; val < ARRAY_SIZE(rates); val++)
3228                snd_cmipci_set_pll(cm, rates[val], val);
3229
3230        /*
3231         * (Re-)Enable external switch spdo_48k
3232         */
3233        snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3234#endif /* USE_VAR48KRATE */
3235
3236        if (snd_cmipci_create_gameport(cm, dev) < 0)
3237                snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3238
3239        *rcmipci = cm;
3240        return 0;
3241}
3242
3243/*
3244 */
3245
3246MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3247
3248static int snd_cmipci_probe(struct pci_dev *pci,
3249                            const struct pci_device_id *pci_id)
3250{
3251        static int dev;
3252        struct snd_card *card;
3253        struct cmipci *cm;
3254        int err;
3255
3256        if (dev >= SNDRV_CARDS)
3257                return -ENODEV;
3258        if (! enable[dev]) {
3259                dev++;
3260                return -ENOENT;
3261        }
3262
3263        err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3264                           0, &card);
3265        if (err < 0)
3266                return err;
3267        
3268        switch (pci->device) {
3269        case PCI_DEVICE_ID_CMEDIA_CM8738:
3270        case PCI_DEVICE_ID_CMEDIA_CM8738B:
3271                strcpy(card->driver, "CMI8738");
3272                break;
3273        case PCI_DEVICE_ID_CMEDIA_CM8338A:
3274        case PCI_DEVICE_ID_CMEDIA_CM8338B:
3275                strcpy(card->driver, "CMI8338");
3276                break;
3277        default:
3278                strcpy(card->driver, "CMIPCI");
3279                break;
3280        }
3281
3282        err = snd_cmipci_create(card, pci, dev, &cm);
3283        if (err < 0)
3284                goto free_card;
3285
3286        card->private_data = cm;
3287
3288        err = snd_card_register(card);
3289        if (err < 0)
3290                goto free_card;
3291
3292        pci_set_drvdata(pci, card);
3293        dev++;
3294        return 0;
3295
3296free_card:
3297        snd_card_free(card);
3298        return err;
3299}
3300
3301static void snd_cmipci_remove(struct pci_dev *pci)
3302{
3303        snd_card_free(pci_get_drvdata(pci));
3304}
3305
3306
3307#ifdef CONFIG_PM_SLEEP
3308/*
3309 * power management
3310 */
3311static unsigned char saved_regs[] = {
3312        CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3313        CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3314        CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3315        CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3316        CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3317};
3318
3319static unsigned char saved_mixers[] = {
3320        SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3321        SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3322        SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3323        SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3324        SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3325        SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3326        CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3327        SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3328};
3329
3330static int snd_cmipci_suspend(struct device *dev)
3331{
3332        struct snd_card *card = dev_get_drvdata(dev);
3333        struct cmipci *cm = card->private_data;
3334        int i;
3335
3336        snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3337        
3338        /* save registers */
3339        for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3340                cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3341        for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3342                cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3343
3344        /* disable ints */
3345        snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3346        return 0;
3347}
3348
3349static int snd_cmipci_resume(struct device *dev)
3350{
3351        struct snd_card *card = dev_get_drvdata(dev);
3352        struct cmipci *cm = card->private_data;
3353        int i;
3354
3355        /* reset / initialize to a sane state */
3356        snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3357        snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3358        snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3359        snd_cmipci_mixer_write(cm, 0, 0);
3360
3361        /* restore registers */
3362        for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3363                snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3364        for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3365                snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3366
3367        snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3368        return 0;
3369}
3370
3371static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3372#define SND_CMIPCI_PM_OPS       &snd_cmipci_pm
3373#else
3374#define SND_CMIPCI_PM_OPS       NULL
3375#endif /* CONFIG_PM_SLEEP */
3376
3377static struct pci_driver cmipci_driver = {
3378        .name = KBUILD_MODNAME,
3379        .id_table = snd_cmipci_ids,
3380        .probe = snd_cmipci_probe,
3381        .remove = snd_cmipci_remove,
3382        .driver = {
3383                .pm = SND_CMIPCI_PM_OPS,
3384        },
3385};
3386        
3387module_pci_driver(cmipci_driver);
3388