linux/sound/sparc/dbri.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for DBRI sound chip found on Sparcs.
   4 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
   5 *
   6 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
   7 *
   8 * Based entirely upon drivers/sbus/audio/dbri.c which is:
   9 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
  10 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
  11 *
  12 * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
  13 * on Sun SPARCStation 10, 20, LX and Voyager models.
  14 *
  15 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
  16 *   data time multiplexer with ISDN support (aka T7259)
  17 *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
  18 *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
  19 *   Documentation:
  20 *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
  21 *     Sparc Technology Business (courtesy of Sun Support)
  22 *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
  23 *     available from the Lucent (formerly AT&T microelectronics) home
  24 *     page.
  25 *   - http://www.freesoft.org/Linux/DBRI/
  26 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
  27 *   Interfaces: CHI, Audio In & Out, 2 bits parallel
  28 *   Documentation: from the Crystal Semiconductor home page.
  29 *
  30 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
  31 * memory and a serial device (long pipes, no. 0-15) or between two serial
  32 * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
  33 * device (short pipes).
  34 * A timeslot defines the bit-offset and no. of bits read from a serial device.
  35 * The timeslots are linked to 6 circular lists, one for each direction for
  36 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
  37 * (the second one is a monitor/tee pipe, valid only for serial input).
  38 *
  39 * The mmcodec is connected via the CHI bus and needs the data & some
  40 * parameters (volume, output selection) time multiplexed in 8 byte
  41 * chunks. It also has a control mode, which serves for audio format setting.
  42 *
  43 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
  44 * the same CHI bus, so I thought perhaps it is possible to use the on-board
  45 * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
  46 * audio devices. But the SUN HW group decided against it, at least on my
  47 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
  48 * connected.
  49 *
  50 * I've tried to stick to the following function naming conventions:
  51 * snd_*        ALSA stuff
  52 * cs4215_*     CS4215 codec specific stuff
  53 * dbri_*       DBRI high-level stuff
  54 * other        DBRI low-level stuff
  55 */
  56
  57#include <linux/interrupt.h>
  58#include <linux/delay.h>
  59#include <linux/irq.h>
  60#include <linux/io.h>
  61#include <linux/dma-mapping.h>
  62#include <linux/gfp.h>
  63
  64#include <sound/core.h>
  65#include <sound/pcm.h>
  66#include <sound/pcm_params.h>
  67#include <sound/info.h>
  68#include <sound/control.h>
  69#include <sound/initval.h>
  70
  71#include <linux/of.h>
  72#include <linux/of_device.h>
  73#include <linux/atomic.h>
  74#include <linux/module.h>
  75
  76MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
  77MODULE_DESCRIPTION("Sun DBRI");
  78MODULE_LICENSE("GPL");
  79MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
  80
  81static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
  82static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
  83/* Enable this card */
  84static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
  85
  86module_param_array(index, int, NULL, 0444);
  87MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
  88module_param_array(id, charp, NULL, 0444);
  89MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
  90module_param_array(enable, bool, NULL, 0444);
  91MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
  92
  93#undef DBRI_DEBUG
  94
  95#define D_INT   (1<<0)
  96#define D_GEN   (1<<1)
  97#define D_CMD   (1<<2)
  98#define D_MM    (1<<3)
  99#define D_USR   (1<<4)
 100#define D_DESC  (1<<5)
 101
 102static int dbri_debug;
 103module_param(dbri_debug, int, 0644);
 104MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
 105
 106#ifdef DBRI_DEBUG
 107static char *cmds[] = {
 108        "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
 109        "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
 110};
 111
 112#define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
 113
 114#else
 115#define dprintk(a, x...) do { } while (0)
 116
 117#endif                          /* DBRI_DEBUG */
 118
 119#define DBRI_CMD(cmd, intr, value) ((cmd << 28) |       \
 120                                    (intr << 27) |      \
 121                                    value)
 122
 123/***************************************************************************
 124        CS4215 specific definitions and structures
 125****************************************************************************/
 126
 127struct cs4215 {
 128        __u8 data[4];           /* Data mode: Time slots 5-8 */
 129        __u8 ctrl[4];           /* Ctrl mode: Time slots 1-4 */
 130        __u8 onboard;
 131        __u8 offset;            /* Bit offset from frame sync to time slot 1 */
 132        volatile __u32 status;
 133        volatile __u32 version;
 134        __u8 precision;         /* In bits, either 8 or 16 */
 135        __u8 channels;          /* 1 or 2 */
 136};
 137
 138/*
 139 * Control mode first
 140 */
 141
 142/* Time Slot 1, Status register */
 143#define CS4215_CLB      (1<<2)  /* Control Latch Bit */
 144#define CS4215_OLB      (1<<3)  /* 1: line: 2.0V, speaker 4V */
 145                                /* 0: line: 2.8V, speaker 8V */
 146#define CS4215_MLB      (1<<4)  /* 1: Microphone: 20dB gain disabled */
 147#define CS4215_RSRVD_1  (1<<5)
 148
 149/* Time Slot 2, Data Format Register */
 150#define CS4215_DFR_LINEAR16     0
 151#define CS4215_DFR_ULAW         1
 152#define CS4215_DFR_ALAW         2
 153#define CS4215_DFR_LINEAR8      3
 154#define CS4215_DFR_STEREO       (1<<2)
 155static struct {
 156        unsigned short freq;
 157        unsigned char xtal;
 158        unsigned char csval;
 159} CS4215_FREQ[] = {
 160        {  8000, (1 << 4), (0 << 3) },
 161        { 16000, (1 << 4), (1 << 3) },
 162        { 27429, (1 << 4), (2 << 3) },  /* Actually 24428.57 */
 163        { 32000, (1 << 4), (3 << 3) },
 164     /* {    NA, (1 << 4), (4 << 3) }, */
 165     /* {    NA, (1 << 4), (5 << 3) }, */
 166        { 48000, (1 << 4), (6 << 3) },
 167        {  9600, (1 << 4), (7 << 3) },
 168        {  5512, (2 << 4), (0 << 3) },  /* Actually 5512.5 */
 169        { 11025, (2 << 4), (1 << 3) },
 170        { 18900, (2 << 4), (2 << 3) },
 171        { 22050, (2 << 4), (3 << 3) },
 172        { 37800, (2 << 4), (4 << 3) },
 173        { 44100, (2 << 4), (5 << 3) },
 174        { 33075, (2 << 4), (6 << 3) },
 175        {  6615, (2 << 4), (7 << 3) },
 176        { 0, 0, 0}
 177};
 178
 179#define CS4215_HPF      (1<<7)  /* High Pass Filter, 1: Enabled */
 180
 181#define CS4215_12_MASK  0xfcbf  /* Mask off reserved bits in slot 1 & 2 */
 182
 183/* Time Slot 3, Serial Port Control register */
 184#define CS4215_XEN      (1<<0)  /* 0: Enable serial output */
 185#define CS4215_XCLK     (1<<1)  /* 1: Master mode: Generate SCLK */
 186#define CS4215_BSEL_64  (0<<2)  /* Bitrate: 64 bits per frame */
 187#define CS4215_BSEL_128 (1<<2)
 188#define CS4215_BSEL_256 (2<<2)
 189#define CS4215_MCK_MAST (0<<4)  /* Master clock */
 190#define CS4215_MCK_XTL1 (1<<4)  /* 24.576 MHz clock source */
 191#define CS4215_MCK_XTL2 (2<<4)  /* 16.9344 MHz clock source */
 192#define CS4215_MCK_CLK1 (3<<4)  /* Clockin, 256 x Fs */
 193#define CS4215_MCK_CLK2 (4<<4)  /* Clockin, see DFR */
 194
 195/* Time Slot 4, Test Register */
 196#define CS4215_DAD      (1<<0)  /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
 197#define CS4215_ENL      (1<<1)  /* Enable Loopback Testing */
 198
 199/* Time Slot 5, Parallel Port Register */
 200/* Read only here and the same as the in data mode */
 201
 202/* Time Slot 6, Reserved  */
 203
 204/* Time Slot 7, Version Register  */
 205#define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
 206
 207/* Time Slot 8, Reserved  */
 208
 209/*
 210 * Data mode
 211 */
 212/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
 213
 214/* Time Slot 5, Output Setting  */
 215#define CS4215_LO(v)    v       /* Left Output Attenuation 0x3f: -94.5 dB */
 216#define CS4215_LE       (1<<6)  /* Line Out Enable */
 217#define CS4215_HE       (1<<7)  /* Headphone Enable */
 218
 219/* Time Slot 6, Output Setting  */
 220#define CS4215_RO(v)    v       /* Right Output Attenuation 0x3f: -94.5 dB */
 221#define CS4215_SE       (1<<6)  /* Speaker Enable */
 222#define CS4215_ADI      (1<<7)  /* A/D Data Invalid: Busy in calibration */
 223
 224/* Time Slot 7, Input Setting */
 225#define CS4215_LG(v)    v       /* Left Gain Setting 0xf: 22.5 dB */
 226#define CS4215_IS       (1<<4)  /* Input Select: 1=Microphone, 0=Line */
 227#define CS4215_OVR      (1<<5)  /* 1: Over range condition occurred */
 228#define CS4215_PIO0     (1<<6)  /* Parallel I/O 0 */
 229#define CS4215_PIO1     (1<<7)
 230
 231/* Time Slot 8, Input Setting */
 232#define CS4215_RG(v)    v       /* Right Gain Setting 0xf: 22.5 dB */
 233#define CS4215_MA(v)    (v<<4)  /* Monitor Path Attenuation 0xf: mute */
 234
 235/***************************************************************************
 236                DBRI specific definitions and structures
 237****************************************************************************/
 238
 239/* DBRI main registers */
 240#define REG0    0x00            /* Status and Control */
 241#define REG1    0x04            /* Mode and Interrupt */
 242#define REG2    0x08            /* Parallel IO */
 243#define REG3    0x0c            /* Test */
 244#define REG8    0x20            /* Command Queue Pointer */
 245#define REG9    0x24            /* Interrupt Queue Pointer */
 246
 247#define DBRI_NO_CMDS    64
 248#define DBRI_INT_BLK    64
 249#define DBRI_NO_DESCS   64
 250#define DBRI_NO_PIPES   32
 251#define DBRI_MAX_PIPE   (DBRI_NO_PIPES - 1)
 252
 253#define DBRI_REC        0
 254#define DBRI_PLAY       1
 255#define DBRI_NO_STREAMS 2
 256
 257/* One transmit/receive descriptor */
 258/* When ba != 0 descriptor is used */
 259struct dbri_mem {
 260        volatile __u32 word1;
 261        __u32 ba;       /* Transmit/Receive Buffer Address */
 262        __u32 nda;      /* Next Descriptor Address */
 263        volatile __u32 word4;
 264};
 265
 266/* This structure is in a DMA region where it can accessed by both
 267 * the CPU and the DBRI
 268 */
 269struct dbri_dma {
 270        s32 cmd[DBRI_NO_CMDS];                  /* Place for commands */
 271        volatile s32 intr[DBRI_INT_BLK];        /* Interrupt field  */
 272        struct dbri_mem desc[DBRI_NO_DESCS];    /* Xmit/receive descriptors */
 273};
 274
 275#define dbri_dma_off(member, elem)      \
 276        ((u32)(unsigned long)           \
 277         (&(((struct dbri_dma *)0)->member[elem])))
 278
 279enum in_or_out { PIPEinput, PIPEoutput };
 280
 281struct dbri_pipe {
 282        u32 sdp;                /* SDP command word */
 283        int nextpipe;           /* Next pipe in linked list */
 284        int length;             /* Length of timeslot (bits) */
 285        int first_desc;         /* Index of first descriptor */
 286        int desc;               /* Index of active descriptor */
 287        volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
 288};
 289
 290/* Per stream (playback or record) information */
 291struct dbri_streaminfo {
 292        struct snd_pcm_substream *substream;
 293        u32 dvma_buffer;        /* Device view of ALSA DMA buffer */
 294        int size;               /* Size of DMA buffer             */
 295        size_t offset;          /* offset in user buffer          */
 296        int pipe;               /* Data pipe used                 */
 297        int left_gain;          /* mixer elements                 */
 298        int right_gain;
 299};
 300
 301/* This structure holds the information for both chips (DBRI & CS4215) */
 302struct snd_dbri {
 303        int regs_size, irq;     /* Needed for unload */
 304        struct platform_device *op;     /* OF device info */
 305        spinlock_t lock;
 306
 307        struct dbri_dma *dma;   /* Pointer to our DMA block */
 308        dma_addr_t dma_dvma;    /* DBRI visible DMA address */
 309
 310        void __iomem *regs;     /* dbri HW regs */
 311        int dbri_irqp;          /* intr queue pointer */
 312
 313        struct dbri_pipe pipes[DBRI_NO_PIPES];  /* DBRI's 32 data pipes */
 314        int next_desc[DBRI_NO_DESCS];           /* Index of next desc, or -1 */
 315        spinlock_t cmdlock;     /* Protects cmd queue accesses */
 316        s32 *cmdptr;            /* Pointer to the last queued cmd */
 317
 318        int chi_bpf;
 319
 320        struct cs4215 mm;       /* mmcodec special info */
 321                                /* per stream (playback/record) info */
 322        struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
 323};
 324
 325#define DBRI_MAX_VOLUME         63      /* Output volume */
 326#define DBRI_MAX_GAIN           15      /* Input gain */
 327
 328/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
 329#define D_P             (1<<15) /* Program command & queue pointer valid */
 330#define D_G             (1<<14) /* Allow 4-Word SBus Burst */
 331#define D_S             (1<<13) /* Allow 16-Word SBus Burst */
 332#define D_E             (1<<12) /* Allow 8-Word SBus Burst */
 333#define D_X             (1<<7)  /* Sanity Timer Disable */
 334#define D_T             (1<<6)  /* Permit activation of the TE interface */
 335#define D_N             (1<<5)  /* Permit activation of the NT interface */
 336#define D_C             (1<<4)  /* Permit activation of the CHI interface */
 337#define D_F             (1<<3)  /* Force Sanity Timer Time-Out */
 338#define D_D             (1<<2)  /* Disable Master Mode */
 339#define D_H             (1<<1)  /* Halt for Analysis */
 340#define D_R             (1<<0)  /* Soft Reset */
 341
 342/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
 343#define D_LITTLE_END    (1<<8)  /* Byte Order */
 344#define D_BIG_END       (0<<8)  /* Byte Order */
 345#define D_MRR           (1<<4)  /* Multiple Error Ack on SBus (read only) */
 346#define D_MLE           (1<<3)  /* Multiple Late Error on SBus (read only) */
 347#define D_LBG           (1<<2)  /* Lost Bus Grant on SBus (read only) */
 348#define D_MBE           (1<<1)  /* Burst Error on SBus (read only) */
 349#define D_IR            (1<<0)  /* Interrupt Indicator (read only) */
 350
 351/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
 352#define D_ENPIO3        (1<<7)  /* Enable Pin 3 */
 353#define D_ENPIO2        (1<<6)  /* Enable Pin 2 */
 354#define D_ENPIO1        (1<<5)  /* Enable Pin 1 */
 355#define D_ENPIO0        (1<<4)  /* Enable Pin 0 */
 356#define D_ENPIO         (0xf0)  /* Enable all the pins */
 357#define D_PIO3          (1<<3)  /* Pin 3: 1: Data mode, 0: Ctrl mode */
 358#define D_PIO2          (1<<2)  /* Pin 2: 1: Onboard PDN */
 359#define D_PIO1          (1<<1)  /* Pin 1: 0: Reset */
 360#define D_PIO0          (1<<0)  /* Pin 0: 1: Speakerbox PDN */
 361
 362/* DBRI Commands (Page 20) */
 363#define D_WAIT          0x0     /* Stop execution */
 364#define D_PAUSE         0x1     /* Flush long pipes */
 365#define D_JUMP          0x2     /* New command queue */
 366#define D_IIQ           0x3     /* Initialize Interrupt Queue */
 367#define D_REX           0x4     /* Report command execution via interrupt */
 368#define D_SDP           0x5     /* Setup Data Pipe */
 369#define D_CDP           0x6     /* Continue Data Pipe (reread NULL Pointer) */
 370#define D_DTS           0x7     /* Define Time Slot */
 371#define D_SSP           0x8     /* Set short Data Pipe */
 372#define D_CHI           0x9     /* Set CHI Global Mode */
 373#define D_NT            0xa     /* NT Command */
 374#define D_TE            0xb     /* TE Command */
 375#define D_CDEC          0xc     /* Codec setup */
 376#define D_TEST          0xd     /* No comment */
 377#define D_CDM           0xe     /* CHI Data mode command */
 378
 379/* Special bits for some commands */
 380#define D_PIPE(v)      ((v)<<0) /* Pipe No.: 0-15 long, 16-21 short */
 381
 382/* Setup Data Pipe */
 383/* IRM */
 384#define D_SDP_2SAME     (1<<18) /* Report 2nd time in a row value received */
 385#define D_SDP_CHANGE    (2<<18) /* Report any changes */
 386#define D_SDP_EVERY     (3<<18) /* Report any changes */
 387#define D_SDP_EOL       (1<<17) /* EOL interrupt enable */
 388#define D_SDP_IDLE      (1<<16) /* HDLC idle interrupt enable */
 389
 390/* Pipe data MODE */
 391#define D_SDP_MEM       (0<<13) /* To/from memory */
 392#define D_SDP_HDLC      (2<<13)
 393#define D_SDP_HDLC_D    (3<<13) /* D Channel (prio control) */
 394#define D_SDP_SER       (4<<13) /* Serial to serial */
 395#define D_SDP_FIXED     (6<<13) /* Short only */
 396#define D_SDP_MODE(v)   ((v)&(7<<13))
 397
 398#define D_SDP_TO_SER    (1<<12) /* Direction */
 399#define D_SDP_FROM_SER  (0<<12) /* Direction */
 400#define D_SDP_MSB       (1<<11) /* Bit order within Byte */
 401#define D_SDP_LSB       (0<<11) /* Bit order within Byte */
 402#define D_SDP_P         (1<<10) /* Pointer Valid */
 403#define D_SDP_A         (1<<8)  /* Abort */
 404#define D_SDP_C         (1<<7)  /* Clear */
 405
 406/* Define Time Slot */
 407#define D_DTS_VI        (1<<17) /* Valid Input Time-Slot Descriptor */
 408#define D_DTS_VO        (1<<16) /* Valid Output Time-Slot Descriptor */
 409#define D_DTS_INS       (1<<15) /* Insert Time Slot */
 410#define D_DTS_DEL       (0<<15) /* Delete Time Slot */
 411#define D_DTS_PRVIN(v) ((v)<<10)        /* Previous In Pipe */
 412#define D_DTS_PRVOUT(v)        ((v)<<5) /* Previous Out Pipe */
 413
 414/* Time Slot defines */
 415#define D_TS_LEN(v)     ((v)<<24)       /* Number of bits in this time slot */
 416#define D_TS_CYCLE(v)   ((v)<<14)       /* Bit Count at start of TS */
 417#define D_TS_DI         (1<<13) /* Data Invert */
 418#define D_TS_1CHANNEL   (0<<10) /* Single Channel / Normal mode */
 419#define D_TS_MONITOR    (2<<10) /* Monitor pipe */
 420#define D_TS_NONCONTIG  (3<<10) /* Non contiguous mode */
 421#define D_TS_ANCHOR     (7<<10) /* Starting short pipes */
 422#define D_TS_MON(v)    ((v)<<5) /* Monitor Pipe */
 423#define D_TS_NEXT(v)   ((v)<<0) /* Pipe no.: 0-15 long, 16-21 short */
 424
 425/* Concentration Highway Interface Modes */
 426#define D_CHI_CHICM(v)  ((v)<<16)       /* Clock mode */
 427#define D_CHI_IR        (1<<15) /* Immediate Interrupt Report */
 428#define D_CHI_EN        (1<<14) /* CHIL Interrupt enabled */
 429#define D_CHI_OD        (1<<13) /* Open Drain Enable */
 430#define D_CHI_FE        (1<<12) /* Sample CHIFS on Rising Frame Edge */
 431#define D_CHI_FD        (1<<11) /* Frame Drive */
 432#define D_CHI_BPF(v)    ((v)<<0)        /* Bits per Frame */
 433
 434/* NT: These are here for completeness */
 435#define D_NT_FBIT       (1<<17) /* Frame Bit */
 436#define D_NT_NBF        (1<<16) /* Number of bad frames to loose framing */
 437#define D_NT_IRM_IMM    (1<<15) /* Interrupt Report & Mask: Immediate */
 438#define D_NT_IRM_EN     (1<<14) /* Interrupt Report & Mask: Enable */
 439#define D_NT_ISNT       (1<<13) /* Configure interface as NT */
 440#define D_NT_FT         (1<<12) /* Fixed Timing */
 441#define D_NT_EZ         (1<<11) /* Echo Channel is Zeros */
 442#define D_NT_IFA        (1<<10) /* Inhibit Final Activation */
 443#define D_NT_ACT        (1<<9)  /* Activate Interface */
 444#define D_NT_MFE        (1<<8)  /* Multiframe Enable */
 445#define D_NT_RLB(v)     ((v)<<5)        /* Remote Loopback */
 446#define D_NT_LLB(v)     ((v)<<2)        /* Local Loopback */
 447#define D_NT_FACT       (1<<1)  /* Force Activation */
 448#define D_NT_ABV        (1<<0)  /* Activate Bipolar Violation */
 449
 450/* Codec Setup */
 451#define D_CDEC_CK(v)    ((v)<<24)       /* Clock Select */
 452#define D_CDEC_FED(v)   ((v)<<12)       /* FSCOD Falling Edge Delay */
 453#define D_CDEC_RED(v)   ((v)<<0)        /* FSCOD Rising Edge Delay */
 454
 455/* Test */
 456#define D_TEST_RAM(v)   ((v)<<16)       /* RAM Pointer */
 457#define D_TEST_SIZE(v)  ((v)<<11)       /* */
 458#define D_TEST_ROMONOFF 0x5     /* Toggle ROM opcode monitor on/off */
 459#define D_TEST_PROC     0x6     /* Microprocessor test */
 460#define D_TEST_SER      0x7     /* Serial-Controller test */
 461#define D_TEST_RAMREAD  0x8     /* Copy from Ram to system memory */
 462#define D_TEST_RAMWRITE 0x9     /* Copy into Ram from system memory */
 463#define D_TEST_RAMBIST  0xa     /* RAM Built-In Self Test */
 464#define D_TEST_MCBIST   0xb     /* Microcontroller Built-In Self Test */
 465#define D_TEST_DUMP     0xe     /* ROM Dump */
 466
 467/* CHI Data Mode */
 468#define D_CDM_THI       (1 << 8)        /* Transmit Data on CHIDR Pin */
 469#define D_CDM_RHI       (1 << 7)        /* Receive Data on CHIDX Pin */
 470#define D_CDM_RCE       (1 << 6)        /* Receive on Rising Edge of CHICK */
 471#define D_CDM_XCE       (1 << 2) /* Transmit Data on Rising Edge of CHICK */
 472#define D_CDM_XEN       (1 << 1)        /* Transmit Highway Enable */
 473#define D_CDM_REN       (1 << 0)        /* Receive Highway Enable */
 474
 475/* The Interrupts */
 476#define D_INTR_BRDY     1       /* Buffer Ready for processing */
 477#define D_INTR_MINT     2       /* Marked Interrupt in RD/TD */
 478#define D_INTR_IBEG     3       /* Flag to idle transition detected (HDLC) */
 479#define D_INTR_IEND     4       /* Idle to flag transition detected (HDLC) */
 480#define D_INTR_EOL      5       /* End of List */
 481#define D_INTR_CMDI     6       /* Command has bean read */
 482#define D_INTR_XCMP     8       /* Transmission of frame complete */
 483#define D_INTR_SBRI     9       /* BRI status change info */
 484#define D_INTR_FXDT     10      /* Fixed data change */
 485#define D_INTR_CHIL     11      /* CHI lost frame sync (channel 36 only) */
 486#define D_INTR_COLL     11      /* Unrecoverable D-Channel collision */
 487#define D_INTR_DBYT     12      /* Dropped by frame slip */
 488#define D_INTR_RBYT     13      /* Repeated by frame slip */
 489#define D_INTR_LINT     14      /* Lost Interrupt */
 490#define D_INTR_UNDR     15      /* DMA underrun */
 491
 492#define D_INTR_TE       32
 493#define D_INTR_NT       34
 494#define D_INTR_CHI      36
 495#define D_INTR_CMD      38
 496
 497#define D_INTR_GETCHAN(v)       (((v) >> 24) & 0x3f)
 498#define D_INTR_GETCODE(v)       (((v) >> 20) & 0xf)
 499#define D_INTR_GETCMD(v)        (((v) >> 16) & 0xf)
 500#define D_INTR_GETVAL(v)        ((v) & 0xffff)
 501#define D_INTR_GETRVAL(v)       ((v) & 0xfffff)
 502
 503#define D_P_0           0       /* TE receive anchor */
 504#define D_P_1           1       /* TE transmit anchor */
 505#define D_P_2           2       /* NT transmit anchor */
 506#define D_P_3           3       /* NT receive anchor */
 507#define D_P_4           4       /* CHI send data */
 508#define D_P_5           5       /* CHI receive data */
 509#define D_P_6           6       /* */
 510#define D_P_7           7       /* */
 511#define D_P_8           8       /* */
 512#define D_P_9           9       /* */
 513#define D_P_10          10      /* */
 514#define D_P_11          11      /* */
 515#define D_P_12          12      /* */
 516#define D_P_13          13      /* */
 517#define D_P_14          14      /* */
 518#define D_P_15          15      /* */
 519#define D_P_16          16      /* CHI anchor pipe */
 520#define D_P_17          17      /* CHI send */
 521#define D_P_18          18      /* CHI receive */
 522#define D_P_19          19      /* CHI receive */
 523#define D_P_20          20      /* CHI receive */
 524#define D_P_21          21      /* */
 525#define D_P_22          22      /* */
 526#define D_P_23          23      /* */
 527#define D_P_24          24      /* */
 528#define D_P_25          25      /* */
 529#define D_P_26          26      /* */
 530#define D_P_27          27      /* */
 531#define D_P_28          28      /* */
 532#define D_P_29          29      /* */
 533#define D_P_30          30      /* */
 534#define D_P_31          31      /* */
 535
 536/* Transmit descriptor defines */
 537#define DBRI_TD_F       (1 << 31)       /* End of Frame */
 538#define DBRI_TD_D       (1 << 30)       /* Do not append CRC */
 539#define DBRI_TD_CNT(v)  ((v) << 16) /* Number of valid bytes in the buffer */
 540#define DBRI_TD_B       (1 << 15)       /* Final interrupt */
 541#define DBRI_TD_M       (1 << 14)       /* Marker interrupt */
 542#define DBRI_TD_I       (1 << 13)       /* Transmit Idle Characters */
 543#define DBRI_TD_FCNT(v) (v)             /* Flag Count */
 544#define DBRI_TD_UNR     (1 << 3) /* Underrun: transmitter is out of data */
 545#define DBRI_TD_ABT     (1 << 2)        /* Abort: frame aborted */
 546#define DBRI_TD_TBC     (1 << 0)        /* Transmit buffer Complete */
 547#define DBRI_TD_STATUS(v)       ((v) & 0xff)    /* Transmit status */
 548                        /* Maximum buffer size per TD: almost 8KB */
 549#define DBRI_TD_MAXCNT  ((1 << 13) - 4)
 550
 551/* Receive descriptor defines */
 552#define DBRI_RD_F       (1 << 31)       /* End of Frame */
 553#define DBRI_RD_C       (1 << 30)       /* Completed buffer */
 554#define DBRI_RD_B       (1 << 15)       /* Final interrupt */
 555#define DBRI_RD_M       (1 << 14)       /* Marker interrupt */
 556#define DBRI_RD_BCNT(v) (v)             /* Buffer size */
 557#define DBRI_RD_CRC     (1 << 7)        /* 0: CRC is correct */
 558#define DBRI_RD_BBC     (1 << 6)        /* 1: Bad Byte received */
 559#define DBRI_RD_ABT     (1 << 5)        /* Abort: frame aborted */
 560#define DBRI_RD_OVRN    (1 << 3)        /* Overrun: data lost */
 561#define DBRI_RD_STATUS(v)      ((v) & 0xff)     /* Receive status */
 562#define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)   /* Valid bytes in the buffer */
 563
 564/* stream_info[] access */
 565/* Translate the ALSA direction into the array index */
 566#define DBRI_STREAMNO(substream)                                \
 567                (substream->stream ==                           \
 568                 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
 569
 570/* Return a pointer to dbri_streaminfo */
 571#define DBRI_STREAM(dbri, substream)    \
 572                &dbri->stream_info[DBRI_STREAMNO(substream)]
 573
 574/*
 575 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
 576 * So we have to reverse the bits. Note: not all bit lengths are supported
 577 */
 578static __u32 reverse_bytes(__u32 b, int len)
 579{
 580        switch (len) {
 581        case 32:
 582                b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
 583        case 16:
 584                b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
 585        case 8:
 586                b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
 587        case 4:
 588                b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
 589        case 2:
 590                b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
 591        case 1:
 592        case 0:
 593                break;
 594        default:
 595                printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
 596        }
 597
 598        return b;
 599}
 600
 601/*
 602****************************************************************************
 603************** DBRI initialization and command synchronization *************
 604****************************************************************************
 605
 606Commands are sent to the DBRI by building a list of them in memory,
 607then writing the address of the first list item to DBRI register 8.
 608The list is terminated with a WAIT command, which generates a
 609CPU interrupt to signal completion.
 610
 611Since the DBRI can run in parallel with the CPU, several means of
 612synchronization present themselves. The method implemented here uses
 613the dbri_cmdwait() to wait for execution of batch of sent commands.
 614
 615A circular command buffer is used here. A new command is being added
 616while another can be executed. The scheme works by adding two WAIT commands
 617after each sent batch of commands. When the next batch is prepared it is
 618added after the WAIT commands then the WAITs are replaced with single JUMP
 619command to the new batch. The the DBRI is forced to reread the last WAIT
 620command (replaced by the JUMP by then). If the DBRI is still executing
 621previous commands the request to reread the WAIT command is ignored.
 622
 623Every time a routine wants to write commands to the DBRI, it must
 624first call dbri_cmdlock() and get pointer to a free space in
 625dbri->dma->cmd buffer. After this, the commands can be written to
 626the buffer, and dbri_cmdsend() is called with the final pointer value
 627to send them to the DBRI.
 628
 629*/
 630
 631#define MAXLOOPS 20
 632/*
 633 * Wait for the current command string to execute
 634 */
 635static void dbri_cmdwait(struct snd_dbri *dbri)
 636{
 637        int maxloops = MAXLOOPS;
 638        unsigned long flags;
 639
 640        /* Delay if previous commands are still being processed */
 641        spin_lock_irqsave(&dbri->lock, flags);
 642        while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
 643                spin_unlock_irqrestore(&dbri->lock, flags);
 644                msleep_interruptible(1);
 645                spin_lock_irqsave(&dbri->lock, flags);
 646        }
 647        spin_unlock_irqrestore(&dbri->lock, flags);
 648
 649        if (maxloops == 0)
 650                printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
 651        else
 652                dprintk(D_CMD, "Chip completed command buffer (%d)\n",
 653                        MAXLOOPS - maxloops - 1);
 654}
 655/*
 656 * Lock the command queue and return pointer to space for len cmd words
 657 * It locks the cmdlock spinlock.
 658 */
 659static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
 660{
 661        u32 dvma_addr = (u32)dbri->dma_dvma;
 662
 663        /* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
 664        len += 2;
 665        spin_lock(&dbri->cmdlock);
 666        if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
 667                return dbri->cmdptr + 2;
 668        else if (len < sbus_readl(dbri->regs + REG8) - dvma_addr)
 669                return dbri->dma->cmd;
 670        else
 671                printk(KERN_ERR "DBRI: no space for commands.");
 672
 673        return NULL;
 674}
 675
 676/*
 677 * Send prepared cmd string. It works by writing a JUMP cmd into
 678 * the last WAIT cmd and force DBRI to reread the cmd.
 679 * The JUMP cmd points to the new cmd string.
 680 * It also releases the cmdlock spinlock.
 681 *
 682 * Lock must be held before calling this.
 683 */
 684static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
 685{
 686        u32 dvma_addr = (u32)dbri->dma_dvma;
 687        s32 tmp, addr;
 688        static int wait_id = 0;
 689
 690        wait_id++;
 691        wait_id &= 0xffff;      /* restrict it to a 16 bit counter. */
 692        *(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
 693        *(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
 694
 695        /* Replace the last command with JUMP */
 696        addr = dvma_addr + (cmd - len - dbri->dma->cmd) * sizeof(s32);
 697        *(dbri->cmdptr+1) = addr;
 698        *(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
 699
 700#ifdef DBRI_DEBUG
 701        if (cmd > dbri->cmdptr) {
 702                s32 *ptr;
 703
 704                for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
 705                        dprintk(D_CMD, "cmd: %lx:%08x\n",
 706                                (unsigned long)ptr, *ptr);
 707        } else {
 708                s32 *ptr = dbri->cmdptr;
 709
 710                dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 711                ptr++;
 712                dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 713                for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
 714                        dprintk(D_CMD, "cmd: %lx:%08x\n",
 715                                (unsigned long)ptr, *ptr);
 716        }
 717#endif
 718
 719        /* Reread the last command */
 720        tmp = sbus_readl(dbri->regs + REG0);
 721        tmp |= D_P;
 722        sbus_writel(tmp, dbri->regs + REG0);
 723
 724        dbri->cmdptr = cmd;
 725        spin_unlock(&dbri->cmdlock);
 726}
 727
 728/* Lock must be held when calling this */
 729static void dbri_reset(struct snd_dbri *dbri)
 730{
 731        int i;
 732        u32 tmp;
 733
 734        dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
 735                sbus_readl(dbri->regs + REG0),
 736                sbus_readl(dbri->regs + REG2),
 737                sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
 738
 739        sbus_writel(D_R, dbri->regs + REG0);    /* Soft Reset */
 740        for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
 741                udelay(10);
 742
 743        /* A brute approach - DBRI falls back to working burst size by itself
 744         * On SS20 D_S does not work, so do not try so high. */
 745        tmp = sbus_readl(dbri->regs + REG0);
 746        tmp |= D_G | D_E;
 747        tmp &= ~D_S;
 748        sbus_writel(tmp, dbri->regs + REG0);
 749}
 750
 751/* Lock must not be held before calling this */
 752static void dbri_initialize(struct snd_dbri *dbri)
 753{
 754        u32 dvma_addr = (u32)dbri->dma_dvma;
 755        s32 *cmd;
 756        u32 dma_addr;
 757        unsigned long flags;
 758        int n;
 759
 760        spin_lock_irqsave(&dbri->lock, flags);
 761
 762        dbri_reset(dbri);
 763
 764        /* Initialize pipes */
 765        for (n = 0; n < DBRI_NO_PIPES; n++)
 766                dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
 767
 768        spin_lock_init(&dbri->cmdlock);
 769        /*
 770         * Initialize the interrupt ring buffer.
 771         */
 772        dma_addr = dvma_addr + dbri_dma_off(intr, 0);
 773        dbri->dma->intr[0] = dma_addr;
 774        dbri->dbri_irqp = 1;
 775        /*
 776         * Set up the interrupt queue
 777         */
 778        spin_lock(&dbri->cmdlock);
 779        cmd = dbri->cmdptr = dbri->dma->cmd;
 780        *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
 781        *(cmd++) = dma_addr;
 782        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 783        dbri->cmdptr = cmd;
 784        *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 785        *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 786        dma_addr = dvma_addr + dbri_dma_off(cmd, 0);
 787        sbus_writel(dma_addr, dbri->regs + REG8);
 788        spin_unlock(&dbri->cmdlock);
 789
 790        spin_unlock_irqrestore(&dbri->lock, flags);
 791        dbri_cmdwait(dbri);
 792}
 793
 794/*
 795****************************************************************************
 796************************** DBRI data pipe management ***********************
 797****************************************************************************
 798
 799While DBRI control functions use the command and interrupt buffers, the
 800main data path takes the form of data pipes, which can be short (command
 801and interrupt driven), or long (attached to DMA buffers).  These functions
 802provide a rudimentary means of setting up and managing the DBRI's pipes,
 803but the calling functions have to make sure they respect the pipes' linked
 804list ordering, among other things.  The transmit and receive functions
 805here interface closely with the transmit and receive interrupt code.
 806
 807*/
 808static inline int pipe_active(struct snd_dbri *dbri, int pipe)
 809{
 810        return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
 811}
 812
 813/* reset_pipe(dbri, pipe)
 814 *
 815 * Called on an in-use pipe to clear anything being transmitted or received
 816 * Lock must be held before calling this.
 817 */
 818static void reset_pipe(struct snd_dbri *dbri, int pipe)
 819{
 820        int sdp;
 821        int desc;
 822        s32 *cmd;
 823
 824        if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 825                printk(KERN_ERR "DBRI: reset_pipe called with "
 826                        "illegal pipe number\n");
 827                return;
 828        }
 829
 830        sdp = dbri->pipes[pipe].sdp;
 831        if (sdp == 0) {
 832                printk(KERN_ERR "DBRI: reset_pipe called "
 833                        "on uninitialized pipe\n");
 834                return;
 835        }
 836
 837        cmd = dbri_cmdlock(dbri, 3);
 838        *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
 839        *(cmd++) = 0;
 840        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 841        dbri_cmdsend(dbri, cmd, 3);
 842
 843        desc = dbri->pipes[pipe].first_desc;
 844        if (desc >= 0)
 845                do {
 846                        dbri->dma->desc[desc].ba = 0;
 847                        dbri->dma->desc[desc].nda = 0;
 848                        desc = dbri->next_desc[desc];
 849                } while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
 850
 851        dbri->pipes[pipe].desc = -1;
 852        dbri->pipes[pipe].first_desc = -1;
 853}
 854
 855/*
 856 * Lock must be held before calling this.
 857 */
 858static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
 859{
 860        if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 861                printk(KERN_ERR "DBRI: setup_pipe called "
 862                        "with illegal pipe number\n");
 863                return;
 864        }
 865
 866        if ((sdp & 0xf800) != sdp) {
 867                printk(KERN_ERR "DBRI: setup_pipe called "
 868                        "with strange SDP value\n");
 869                /* sdp &= 0xf800; */
 870        }
 871
 872        /* If this is a fixed receive pipe, arrange for an interrupt
 873         * every time its data changes
 874         */
 875        if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
 876                sdp |= D_SDP_CHANGE;
 877
 878        sdp |= D_PIPE(pipe);
 879        dbri->pipes[pipe].sdp = sdp;
 880        dbri->pipes[pipe].desc = -1;
 881        dbri->pipes[pipe].first_desc = -1;
 882
 883        reset_pipe(dbri, pipe);
 884}
 885
 886/*
 887 * Lock must be held before calling this.
 888 */
 889static void link_time_slot(struct snd_dbri *dbri, int pipe,
 890                           int prevpipe, int nextpipe,
 891                           int length, int cycle)
 892{
 893        s32 *cmd;
 894        int val;
 895
 896        if (pipe < 0 || pipe > DBRI_MAX_PIPE
 897                        || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 898                        || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 899                printk(KERN_ERR
 900                    "DBRI: link_time_slot called with illegal pipe number\n");
 901                return;
 902        }
 903
 904        if (dbri->pipes[pipe].sdp == 0
 905                        || dbri->pipes[prevpipe].sdp == 0
 906                        || dbri->pipes[nextpipe].sdp == 0) {
 907                printk(KERN_ERR "DBRI: link_time_slot called "
 908                        "on uninitialized pipe\n");
 909                return;
 910        }
 911
 912        dbri->pipes[prevpipe].nextpipe = pipe;
 913        dbri->pipes[pipe].nextpipe = nextpipe;
 914        dbri->pipes[pipe].length = length;
 915
 916        cmd = dbri_cmdlock(dbri, 4);
 917
 918        if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
 919                /* Deal with CHI special case:
 920                 * "If transmission on edges 0 or 1 is desired, then cycle n
 921                 *  (where n = # of bit times per frame...) must be used."
 922                 *                  - DBRI data sheet, page 11
 923                 */
 924                if (prevpipe == 16 && cycle == 0)
 925                        cycle = dbri->chi_bpf;
 926
 927                val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
 928                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 929                *(cmd++) = 0;
 930                *(cmd++) =
 931                    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 932        } else {
 933                val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
 934                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 935                *(cmd++) =
 936                    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 937                *(cmd++) = 0;
 938        }
 939        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 940
 941        dbri_cmdsend(dbri, cmd, 4);
 942}
 943
 944#if 0
 945/*
 946 * Lock must be held before calling this.
 947 */
 948static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
 949                             enum in_or_out direction, int prevpipe,
 950                             int nextpipe)
 951{
 952        s32 *cmd;
 953        int val;
 954
 955        if (pipe < 0 || pipe > DBRI_MAX_PIPE
 956                        || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 957                        || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 958                printk(KERN_ERR
 959                    "DBRI: unlink_time_slot called with illegal pipe number\n");
 960                return;
 961        }
 962
 963        cmd = dbri_cmdlock(dbri, 4);
 964
 965        if (direction == PIPEinput) {
 966                val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
 967                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 968                *(cmd++) = D_TS_NEXT(nextpipe);
 969                *(cmd++) = 0;
 970        } else {
 971                val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
 972                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 973                *(cmd++) = 0;
 974                *(cmd++) = D_TS_NEXT(nextpipe);
 975        }
 976        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 977
 978        dbri_cmdsend(dbri, cmd, 4);
 979}
 980#endif
 981
 982/* xmit_fixed() / recv_fixed()
 983 *
 984 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
 985 * expected to change much, and which we don't need to buffer.
 986 * The DBRI only interrupts us when the data changes (receive pipes),
 987 * or only changes the data when this function is called (transmit pipes).
 988 * Only short pipes (numbers 16-31) can be used in fixed data mode.
 989 *
 990 * These function operate on a 32-bit field, no matter how large
 991 * the actual time slot is.  The interrupt handler takes care of bit
 992 * ordering and alignment.  An 8-bit time slot will always end up
 993 * in the low-order 8 bits, filled either MSB-first or LSB-first,
 994 * depending on the settings passed to setup_pipe().
 995 *
 996 * Lock must not be held before calling it.
 997 */
 998static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
 999{
1000        s32 *cmd;
1001        unsigned long flags;
1002
1003        if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1004                printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
1005                return;
1006        }
1007
1008        if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1009                printk(KERN_ERR "DBRI: xmit_fixed: "
1010                        "Uninitialized pipe %d\n", pipe);
1011                return;
1012        }
1013
1014        if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1015                printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1016                return;
1017        }
1018
1019        if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1020                printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1021                        pipe);
1022                return;
1023        }
1024
1025        /* DBRI short pipes always transmit LSB first */
1026
1027        if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1028                data = reverse_bytes(data, dbri->pipes[pipe].length);
1029
1030        cmd = dbri_cmdlock(dbri, 3);
1031
1032        *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1033        *(cmd++) = data;
1034        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1035
1036        spin_lock_irqsave(&dbri->lock, flags);
1037        dbri_cmdsend(dbri, cmd, 3);
1038        spin_unlock_irqrestore(&dbri->lock, flags);
1039        dbri_cmdwait(dbri);
1040
1041}
1042
1043static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1044{
1045        if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1046                printk(KERN_ERR "DBRI: recv_fixed called with "
1047                        "illegal pipe number\n");
1048                return;
1049        }
1050
1051        if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1052                printk(KERN_ERR "DBRI: recv_fixed called on "
1053                        "non-fixed pipe %d\n", pipe);
1054                return;
1055        }
1056
1057        if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1058                printk(KERN_ERR "DBRI: recv_fixed called on "
1059                        "transmit pipe %d\n", pipe);
1060                return;
1061        }
1062
1063        dbri->pipes[pipe].recv_fixed_ptr = ptr;
1064}
1065
1066/* setup_descs()
1067 *
1068 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1069 * with a DMA buffer.
1070 *
1071 * Only pipe numbers 0-15 can be used in this mode.
1072 *
1073 * This function takes a stream number pointing to a data buffer,
1074 * and work by building chains of descriptors which identify the
1075 * data buffers.  Buffers too large for a single descriptor will
1076 * be spread across multiple descriptors.
1077 *
1078 * All descriptors create a ring buffer.
1079 *
1080 * Lock must be held before calling this.
1081 */
1082static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1083{
1084        struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1085        u32 dvma_addr = (u32)dbri->dma_dvma;
1086        __u32 dvma_buffer;
1087        int desc;
1088        int len;
1089        int first_desc = -1;
1090        int last_desc = -1;
1091
1092        if (info->pipe < 0 || info->pipe > 15) {
1093                printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1094                return -2;
1095        }
1096
1097        if (dbri->pipes[info->pipe].sdp == 0) {
1098                printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1099                       info->pipe);
1100                return -2;
1101        }
1102
1103        dvma_buffer = info->dvma_buffer;
1104        len = info->size;
1105
1106        if (streamno == DBRI_PLAY) {
1107                if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1108                        printk(KERN_ERR "DBRI: setup_descs: "
1109                                "Called on receive pipe %d\n", info->pipe);
1110                        return -2;
1111                }
1112        } else {
1113                if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1114                        printk(KERN_ERR
1115                            "DBRI: setup_descs: Called on transmit pipe %d\n",
1116                             info->pipe);
1117                        return -2;
1118                }
1119                /* Should be able to queue multiple buffers
1120                 * to receive on a pipe
1121                 */
1122                if (pipe_active(dbri, info->pipe)) {
1123                        printk(KERN_ERR "DBRI: recv_on_pipe: "
1124                                "Called on active pipe %d\n", info->pipe);
1125                        return -2;
1126                }
1127
1128                /* Make sure buffer size is multiple of four */
1129                len &= ~3;
1130        }
1131
1132        /* Free descriptors if pipe has any */
1133        desc = dbri->pipes[info->pipe].first_desc;
1134        if (desc >= 0)
1135                do {
1136                        dbri->dma->desc[desc].ba = 0;
1137                        dbri->dma->desc[desc].nda = 0;
1138                        desc = dbri->next_desc[desc];
1139                } while (desc != -1 &&
1140                         desc != dbri->pipes[info->pipe].first_desc);
1141
1142        dbri->pipes[info->pipe].desc = -1;
1143        dbri->pipes[info->pipe].first_desc = -1;
1144
1145        desc = 0;
1146        while (len > 0) {
1147                int mylen;
1148
1149                for (; desc < DBRI_NO_DESCS; desc++) {
1150                        if (!dbri->dma->desc[desc].ba)
1151                                break;
1152                }
1153
1154                if (desc == DBRI_NO_DESCS) {
1155                        printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1156                        return -1;
1157                }
1158
1159                if (len > DBRI_TD_MAXCNT)
1160                        mylen = DBRI_TD_MAXCNT; /* 8KB - 4 */
1161                else
1162                        mylen = len;
1163
1164                if (mylen > period)
1165                        mylen = period;
1166
1167                dbri->next_desc[desc] = -1;
1168                dbri->dma->desc[desc].ba = dvma_buffer;
1169                dbri->dma->desc[desc].nda = 0;
1170
1171                if (streamno == DBRI_PLAY) {
1172                        dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1173                        dbri->dma->desc[desc].word4 = 0;
1174                        dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1175                } else {
1176                        dbri->dma->desc[desc].word1 = 0;
1177                        dbri->dma->desc[desc].word4 =
1178                            DBRI_RD_B | DBRI_RD_BCNT(mylen);
1179                }
1180
1181                if (first_desc == -1)
1182                        first_desc = desc;
1183                else {
1184                        dbri->next_desc[last_desc] = desc;
1185                        dbri->dma->desc[last_desc].nda =
1186                            dvma_addr + dbri_dma_off(desc, desc);
1187                }
1188
1189                last_desc = desc;
1190                dvma_buffer += mylen;
1191                len -= mylen;
1192        }
1193
1194        if (first_desc == -1 || last_desc == -1) {
1195                printk(KERN_ERR "DBRI: setup_descs: "
1196                        " Not enough descriptors available\n");
1197                return -1;
1198        }
1199
1200        dbri->dma->desc[last_desc].nda =
1201            dvma_addr + dbri_dma_off(desc, first_desc);
1202        dbri->next_desc[last_desc] = first_desc;
1203        dbri->pipes[info->pipe].first_desc = first_desc;
1204        dbri->pipes[info->pipe].desc = first_desc;
1205
1206#ifdef DBRI_DEBUG
1207        for (desc = first_desc; desc != -1;) {
1208                dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1209                        desc,
1210                        dbri->dma->desc[desc].word1,
1211                        dbri->dma->desc[desc].ba,
1212                        dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1213                        desc = dbri->next_desc[desc];
1214                        if (desc == first_desc)
1215                                break;
1216        }
1217#endif
1218        return 0;
1219}
1220
1221/*
1222****************************************************************************
1223************************** DBRI - CHI interface ****************************
1224****************************************************************************
1225
1226The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1227multiplexed serial interface which the DBRI can operate in either master
1228(give clock/frame sync) or slave (take clock/frame sync) mode.
1229
1230*/
1231
1232enum master_or_slave { CHImaster, CHIslave };
1233
1234/*
1235 * Lock must not be held before calling it.
1236 */
1237static void reset_chi(struct snd_dbri *dbri,
1238                      enum master_or_slave master_or_slave,
1239                      int bits_per_frame)
1240{
1241        s32 *cmd;
1242        int val;
1243
1244        /* Set CHI Anchor: Pipe 16 */
1245
1246        cmd = dbri_cmdlock(dbri, 4);
1247        val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1248                | D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1249        *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1250        *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1251        *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1252        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1253        dbri_cmdsend(dbri, cmd, 4);
1254
1255        dbri->pipes[16].sdp = 1;
1256        dbri->pipes[16].nextpipe = 16;
1257
1258        cmd = dbri_cmdlock(dbri, 4);
1259
1260        if (master_or_slave == CHIslave) {
1261                /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1262                 *
1263                 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1264                 * IR     = give immediate CHI status interrupt
1265                 * EN     = give CHI status interrupt upon change
1266                 */
1267                *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1268        } else {
1269                /* Setup DBRI for CHI Master - generate clock, FS
1270                 *
1271                 * BPF                          =  bits per 8 kHz frame
1272                 * 12.288 MHz / CHICM_divisor   = clock rate
1273                 * FD = 1 - drive CHIFS on rising edge of CHICK
1274                 */
1275                int clockrate = bits_per_frame * 8;
1276                int divisor = 12288 / clockrate;
1277
1278                if (divisor > 255 || divisor * clockrate != 12288)
1279                        printk(KERN_ERR "DBRI: illegal bits_per_frame "
1280                                "in setup_chi\n");
1281
1282                *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1283                                    | D_CHI_BPF(bits_per_frame));
1284        }
1285
1286        dbri->chi_bpf = bits_per_frame;
1287
1288        /* CHI Data Mode
1289         *
1290         * RCE   =  0 - receive on falling edge of CHICK
1291         * XCE   =  1 - transmit on rising edge of CHICK
1292         * XEN   =  1 - enable transmitter
1293         * REN   =  1 - enable receiver
1294         */
1295
1296        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1297        *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1298        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1299
1300        dbri_cmdsend(dbri, cmd, 4);
1301}
1302
1303/*
1304****************************************************************************
1305*********************** CS4215 audio codec management **********************
1306****************************************************************************
1307
1308In the standard SPARC audio configuration, the CS4215 codec is attached
1309to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1310
1311 * Lock must not be held before calling it.
1312
1313*/
1314static void cs4215_setup_pipes(struct snd_dbri *dbri)
1315{
1316        unsigned long flags;
1317
1318        spin_lock_irqsave(&dbri->lock, flags);
1319        /*
1320         * Data mode:
1321         * Pipe  4: Send timeslots 1-4 (audio data)
1322         * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1323         * Pipe  6: Receive timeslots 1-4 (audio data)
1324         * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1325         *          interrupt, and the rest of the data (slot 5 and 8) is
1326         *          not relevant for us (only for doublechecking).
1327         *
1328         * Control mode:
1329         * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1330         * Pipe 18: Receive timeslot 1 (clb).
1331         * Pipe 19: Receive timeslot 7 (version).
1332         */
1333
1334        setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1335        setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1336        setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1337        setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1338
1339        setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1340        setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1341        setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1342        spin_unlock_irqrestore(&dbri->lock, flags);
1343
1344        dbri_cmdwait(dbri);
1345}
1346
1347static int cs4215_init_data(struct cs4215 *mm)
1348{
1349        /*
1350         * No action, memory resetting only.
1351         *
1352         * Data Time Slot 5-8
1353         * Speaker,Line and Headphone enable. Gain set to the half.
1354         * Input is mike.
1355         */
1356        mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1357        mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1358        mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1359        mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1360
1361        /*
1362         * Control Time Slot 1-4
1363         * 0: Default I/O voltage scale
1364         * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1365         * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1366         * 3: Tests disabled
1367         */
1368        mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1369        mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1370        mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1371        mm->ctrl[3] = 0;
1372
1373        mm->status = 0;
1374        mm->version = 0xff;
1375        mm->precision = 8;      /* For ULAW */
1376        mm->channels = 1;
1377
1378        return 0;
1379}
1380
1381static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1382{
1383        if (muted) {
1384                dbri->mm.data[0] |= 63;
1385                dbri->mm.data[1] |= 63;
1386                dbri->mm.data[2] &= ~15;
1387                dbri->mm.data[3] &= ~15;
1388        } else {
1389                /* Start by setting the playback attenuation. */
1390                struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1391                int left_gain = info->left_gain & 0x3f;
1392                int right_gain = info->right_gain & 0x3f;
1393
1394                dbri->mm.data[0] &= ~0x3f;      /* Reset the volume bits */
1395                dbri->mm.data[1] &= ~0x3f;
1396                dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1397                dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1398
1399                /* Now set the recording gain. */
1400                info = &dbri->stream_info[DBRI_REC];
1401                left_gain = info->left_gain & 0xf;
1402                right_gain = info->right_gain & 0xf;
1403                dbri->mm.data[2] |= CS4215_LG(left_gain);
1404                dbri->mm.data[3] |= CS4215_RG(right_gain);
1405        }
1406
1407        xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1408}
1409
1410/*
1411 * Set the CS4215 to data mode.
1412 */
1413static void cs4215_open(struct snd_dbri *dbri)
1414{
1415        int data_width;
1416        u32 tmp;
1417        unsigned long flags;
1418
1419        dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1420                dbri->mm.channels, dbri->mm.precision);
1421
1422        /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1423         * to make sure this takes.  This avoids clicking noises.
1424         */
1425
1426        cs4215_setdata(dbri, 1);
1427        udelay(125);
1428
1429        /*
1430         * Data mode:
1431         * Pipe  4: Send timeslots 1-4 (audio data)
1432         * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1433         * Pipe  6: Receive timeslots 1-4 (audio data)
1434         * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1435         *          interrupt, and the rest of the data (slot 5 and 8) is
1436         *          not relevant for us (only for doublechecking).
1437         *
1438         * Just like in control mode, the time slots are all offset by eight
1439         * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1440         * even if it's the CHI master.  Don't ask me...
1441         */
1442        spin_lock_irqsave(&dbri->lock, flags);
1443        tmp = sbus_readl(dbri->regs + REG0);
1444        tmp &= ~(D_C);          /* Disable CHI */
1445        sbus_writel(tmp, dbri->regs + REG0);
1446
1447        /* Switch CS4215 to data mode - set PIO3 to 1 */
1448        sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1449                    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1450
1451        reset_chi(dbri, CHIslave, 128);
1452
1453        /* Note: this next doesn't work for 8-bit stereo, because the two
1454         * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1455         * (See CS4215 datasheet Fig 15)
1456         *
1457         * DBRI non-contiguous mode would be required to make this work.
1458         */
1459        data_width = dbri->mm.channels * dbri->mm.precision;
1460
1461        link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1462        link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1463        link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1464        link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1465
1466        /* FIXME: enable CHI after _setdata? */
1467        tmp = sbus_readl(dbri->regs + REG0);
1468        tmp |= D_C;             /* Enable CHI */
1469        sbus_writel(tmp, dbri->regs + REG0);
1470        spin_unlock_irqrestore(&dbri->lock, flags);
1471
1472        cs4215_setdata(dbri, 0);
1473}
1474
1475/*
1476 * Send the control information (i.e. audio format)
1477 */
1478static int cs4215_setctrl(struct snd_dbri *dbri)
1479{
1480        int i, val;
1481        u32 tmp;
1482        unsigned long flags;
1483
1484        /* FIXME - let the CPU do something useful during these delays */
1485
1486        /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1487         * to make sure this takes.  This avoids clicking noises.
1488         */
1489        cs4215_setdata(dbri, 1);
1490        udelay(125);
1491
1492        /*
1493         * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1494         * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1495         */
1496        val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1497        sbus_writel(val, dbri->regs + REG2);
1498        dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1499        udelay(34);
1500
1501        /* In Control mode, the CS4215 is a slave device, so the DBRI must
1502         * operate as CHI master, supplying clocking and frame synchronization.
1503         *
1504         * In Data mode, however, the CS4215 must be CHI master to insure
1505         * that its data stream is synchronous with its codec.
1506         *
1507         * The upshot of all this?  We start by putting the DBRI into master
1508         * mode, program the CS4215 in Control mode, then switch the CS4215
1509         * into Data mode and put the DBRI into slave mode.  Various timing
1510         * requirements must be observed along the way.
1511         *
1512         * Oh, and one more thing, on a SPARCStation 20 (and maybe
1513         * others?), the addressing of the CS4215's time slots is
1514         * offset by eight bits, so we add eight to all the "cycle"
1515         * values in the Define Time Slot (DTS) commands.  This is
1516         * done in hardware by a TI 248 that delays the DBRI->4215
1517         * frame sync signal by eight clock cycles.  Anybody know why?
1518         */
1519        spin_lock_irqsave(&dbri->lock, flags);
1520        tmp = sbus_readl(dbri->regs + REG0);
1521        tmp &= ~D_C;            /* Disable CHI */
1522        sbus_writel(tmp, dbri->regs + REG0);
1523
1524        reset_chi(dbri, CHImaster, 128);
1525
1526        /*
1527         * Control mode:
1528         * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1529         * Pipe 18: Receive timeslot 1 (clb).
1530         * Pipe 19: Receive timeslot 7 (version).
1531         */
1532
1533        link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1534        link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1535        link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1536        spin_unlock_irqrestore(&dbri->lock, flags);
1537
1538        /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1539        dbri->mm.ctrl[0] &= ~CS4215_CLB;
1540        xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1541
1542        spin_lock_irqsave(&dbri->lock, flags);
1543        tmp = sbus_readl(dbri->regs + REG0);
1544        tmp |= D_C;             /* Enable CHI */
1545        sbus_writel(tmp, dbri->regs + REG0);
1546        spin_unlock_irqrestore(&dbri->lock, flags);
1547
1548        for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1549                msleep_interruptible(1);
1550
1551        if (i == 0) {
1552                dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1553                        dbri->mm.status);
1554                return -1;
1555        }
1556
1557        /* Disable changes to our copy of the version number, as we are about
1558         * to leave control mode.
1559         */
1560        recv_fixed(dbri, 19, NULL);
1561
1562        /* Terminate CS4215 control mode - data sheet says
1563         * "Set CLB=1 and send two more frames of valid control info"
1564         */
1565        dbri->mm.ctrl[0] |= CS4215_CLB;
1566        xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1567
1568        /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1569        udelay(250);
1570
1571        cs4215_setdata(dbri, 0);
1572
1573        return 0;
1574}
1575
1576/*
1577 * Setup the codec with the sampling rate, audio format and number of
1578 * channels.
1579 * As part of the process we resend the settings for the data
1580 * timeslots as well.
1581 */
1582static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1583                          snd_pcm_format_t format, unsigned int channels)
1584{
1585        int freq_idx;
1586        int ret = 0;
1587
1588        /* Lookup index for this rate */
1589        for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1590                if (CS4215_FREQ[freq_idx].freq == rate)
1591                        break;
1592        }
1593        if (CS4215_FREQ[freq_idx].freq != rate) {
1594                printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1595                return -1;
1596        }
1597
1598        switch (format) {
1599        case SNDRV_PCM_FORMAT_MU_LAW:
1600                dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1601                dbri->mm.precision = 8;
1602                break;
1603        case SNDRV_PCM_FORMAT_A_LAW:
1604                dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1605                dbri->mm.precision = 8;
1606                break;
1607        case SNDRV_PCM_FORMAT_U8:
1608                dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1609                dbri->mm.precision = 8;
1610                break;
1611        case SNDRV_PCM_FORMAT_S16_BE:
1612                dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1613                dbri->mm.precision = 16;
1614                break;
1615        default:
1616                printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1617                return -1;
1618        }
1619
1620        /* Add rate parameters */
1621        dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1622        dbri->mm.ctrl[2] = CS4215_XCLK |
1623            CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1624
1625        dbri->mm.channels = channels;
1626        if (channels == 2)
1627                dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1628
1629        ret = cs4215_setctrl(dbri);
1630        if (ret == 0)
1631                cs4215_open(dbri);      /* set codec to data mode */
1632
1633        return ret;
1634}
1635
1636/*
1637 *
1638 */
1639static int cs4215_init(struct snd_dbri *dbri)
1640{
1641        u32 reg2 = sbus_readl(dbri->regs + REG2);
1642        dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1643
1644        /* Look for the cs4215 chips */
1645        if (reg2 & D_PIO2) {
1646                dprintk(D_MM, "Onboard CS4215 detected\n");
1647                dbri->mm.onboard = 1;
1648        }
1649        if (reg2 & D_PIO0) {
1650                dprintk(D_MM, "Speakerbox detected\n");
1651                dbri->mm.onboard = 0;
1652
1653                if (reg2 & D_PIO2) {
1654                        printk(KERN_INFO "DBRI: Using speakerbox / "
1655                               "ignoring onboard mmcodec.\n");
1656                        sbus_writel(D_ENPIO2, dbri->regs + REG2);
1657                }
1658        }
1659
1660        if (!(reg2 & (D_PIO0 | D_PIO2))) {
1661                printk(KERN_ERR "DBRI: no mmcodec found.\n");
1662                return -EIO;
1663        }
1664
1665        cs4215_setup_pipes(dbri);
1666        cs4215_init_data(&dbri->mm);
1667
1668        /* Enable capture of the status & version timeslots. */
1669        recv_fixed(dbri, 18, &dbri->mm.status);
1670        recv_fixed(dbri, 19, &dbri->mm.version);
1671
1672        dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1673        if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1674                dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1675                        dbri->mm.offset);
1676                return -EIO;
1677        }
1678        dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1679
1680        return 0;
1681}
1682
1683/*
1684****************************************************************************
1685*************************** DBRI interrupt handler *************************
1686****************************************************************************
1687
1688The DBRI communicates with the CPU mainly via a circular interrupt
1689buffer.  When an interrupt is signaled, the CPU walks through the
1690buffer and calls dbri_process_one_interrupt() for each interrupt word.
1691Complicated interrupts are handled by dedicated functions (which
1692appear first in this file).  Any pending interrupts can be serviced by
1693calling dbri_process_interrupt_buffer(), which works even if the CPU's
1694interrupts are disabled.
1695
1696*/
1697
1698/* xmit_descs()
1699 *
1700 * Starts transmitting the current TD's for recording/playing.
1701 * For playback, ALSA has filled the DMA memory with new data (we hope).
1702 */
1703static void xmit_descs(struct snd_dbri *dbri)
1704{
1705        struct dbri_streaminfo *info;
1706        u32 dvma_addr;
1707        s32 *cmd;
1708        unsigned long flags;
1709        int first_td;
1710
1711        if (dbri == NULL)
1712                return;         /* Disabled */
1713
1714        dvma_addr = (u32)dbri->dma_dvma;
1715        info = &dbri->stream_info[DBRI_REC];
1716        spin_lock_irqsave(&dbri->lock, flags);
1717
1718        if (info->pipe >= 0) {
1719                first_td = dbri->pipes[info->pipe].first_desc;
1720
1721                dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1722
1723                /* Stream could be closed by the time we run. */
1724                if (first_td >= 0) {
1725                        cmd = dbri_cmdlock(dbri, 2);
1726                        *(cmd++) = DBRI_CMD(D_SDP, 0,
1727                                            dbri->pipes[info->pipe].sdp
1728                                            | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1729                        *(cmd++) = dvma_addr +
1730                                   dbri_dma_off(desc, first_td);
1731                        dbri_cmdsend(dbri, cmd, 2);
1732
1733                        /* Reset our admin of the pipe. */
1734                        dbri->pipes[info->pipe].desc = first_td;
1735                }
1736        }
1737
1738        info = &dbri->stream_info[DBRI_PLAY];
1739
1740        if (info->pipe >= 0) {
1741                first_td = dbri->pipes[info->pipe].first_desc;
1742
1743                dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1744
1745                /* Stream could be closed by the time we run. */
1746                if (first_td >= 0) {
1747                        cmd = dbri_cmdlock(dbri, 2);
1748                        *(cmd++) = DBRI_CMD(D_SDP, 0,
1749                                            dbri->pipes[info->pipe].sdp
1750                                            | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1751                        *(cmd++) = dvma_addr +
1752                                   dbri_dma_off(desc, first_td);
1753                        dbri_cmdsend(dbri, cmd, 2);
1754
1755                        /* Reset our admin of the pipe. */
1756                        dbri->pipes[info->pipe].desc = first_td;
1757                }
1758        }
1759
1760        spin_unlock_irqrestore(&dbri->lock, flags);
1761}
1762
1763/* transmission_complete_intr()
1764 *
1765 * Called by main interrupt handler when DBRI signals transmission complete
1766 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1767 *
1768 * Walks through the pipe's list of transmit buffer descriptors and marks
1769 * them as available. Stops when the first descriptor is found without
1770 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1771 *
1772 * The DMA buffers are not released. They form a ring buffer and
1773 * they are filled by ALSA while others are transmitted by DMA.
1774 *
1775 */
1776
1777static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1778{
1779        struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1780        int td = dbri->pipes[pipe].desc;
1781        int status;
1782
1783        while (td >= 0) {
1784                if (td >= DBRI_NO_DESCS) {
1785                        printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1786                        return;
1787                }
1788
1789                status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1790                if (!(status & DBRI_TD_TBC))
1791                        break;
1792
1793                dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1794
1795                dbri->dma->desc[td].word4 = 0;  /* Reset it for next time. */
1796                info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1797
1798                td = dbri->next_desc[td];
1799                dbri->pipes[pipe].desc = td;
1800        }
1801
1802        /* Notify ALSA */
1803        spin_unlock(&dbri->lock);
1804        snd_pcm_period_elapsed(info->substream);
1805        spin_lock(&dbri->lock);
1806}
1807
1808static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1809{
1810        struct dbri_streaminfo *info;
1811        int rd = dbri->pipes[pipe].desc;
1812        s32 status;
1813
1814        if (rd < 0 || rd >= DBRI_NO_DESCS) {
1815                printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1816                return;
1817        }
1818
1819        dbri->pipes[pipe].desc = dbri->next_desc[rd];
1820        status = dbri->dma->desc[rd].word1;
1821        dbri->dma->desc[rd].word1 = 0;  /* Reset it for next time. */
1822
1823        info = &dbri->stream_info[DBRI_REC];
1824        info->offset += DBRI_RD_CNT(status);
1825
1826        /* FIXME: Check status */
1827
1828        dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1829                rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1830
1831        /* Notify ALSA */
1832        spin_unlock(&dbri->lock);
1833        snd_pcm_period_elapsed(info->substream);
1834        spin_lock(&dbri->lock);
1835}
1836
1837static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1838{
1839        int val = D_INTR_GETVAL(x);
1840        int channel = D_INTR_GETCHAN(x);
1841        int command = D_INTR_GETCMD(x);
1842        int code = D_INTR_GETCODE(x);
1843#ifdef DBRI_DEBUG
1844        int rval = D_INTR_GETRVAL(x);
1845#endif
1846
1847        if (channel == D_INTR_CMD) {
1848                dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1849                        cmds[command], val);
1850        } else {
1851                dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1852                        channel, code, rval);
1853        }
1854
1855        switch (code) {
1856        case D_INTR_CMDI:
1857                if (command != D_WAIT)
1858                        printk(KERN_ERR "DBRI: Command read interrupt\n");
1859                break;
1860        case D_INTR_BRDY:
1861                reception_complete_intr(dbri, channel);
1862                break;
1863        case D_INTR_XCMP:
1864        case D_INTR_MINT:
1865                transmission_complete_intr(dbri, channel);
1866                break;
1867        case D_INTR_UNDR:
1868                /* UNDR - Transmission underrun
1869                 * resend SDP command with clear pipe bit (C) set
1870                 */
1871                {
1872        /* FIXME: do something useful in case of underrun */
1873                        printk(KERN_ERR "DBRI: Underrun error\n");
1874#if 0
1875                        s32 *cmd;
1876                        int pipe = channel;
1877                        int td = dbri->pipes[pipe].desc;
1878
1879                        dbri->dma->desc[td].word4 = 0;
1880                        cmd = dbri_cmdlock(dbri, NoGetLock);
1881                        *(cmd++) = DBRI_CMD(D_SDP, 0,
1882                                            dbri->pipes[pipe].sdp
1883                                            | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1884                        *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1885                        dbri_cmdsend(dbri, cmd);
1886#endif
1887                }
1888                break;
1889        case D_INTR_FXDT:
1890                /* FXDT - Fixed data change */
1891                if (dbri->pipes[channel].sdp & D_SDP_MSB)
1892                        val = reverse_bytes(val, dbri->pipes[channel].length);
1893
1894                if (dbri->pipes[channel].recv_fixed_ptr)
1895                        *(dbri->pipes[channel].recv_fixed_ptr) = val;
1896                break;
1897        default:
1898                if (channel != D_INTR_CMD)
1899                        printk(KERN_WARNING
1900                               "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1901        }
1902}
1903
1904/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1905 * buffer until it finds a zero word (indicating nothing more to do
1906 * right now).  Non-zero words require processing and are handed off
1907 * to dbri_process_one_interrupt AFTER advancing the pointer.
1908 */
1909static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1910{
1911        s32 x;
1912
1913        while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1914                dbri->dma->intr[dbri->dbri_irqp] = 0;
1915                dbri->dbri_irqp++;
1916                if (dbri->dbri_irqp == DBRI_INT_BLK)
1917                        dbri->dbri_irqp = 1;
1918
1919                dbri_process_one_interrupt(dbri, x);
1920        }
1921}
1922
1923static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1924{
1925        struct snd_dbri *dbri = dev_id;
1926        static int errcnt = 0;
1927        int x;
1928
1929        if (dbri == NULL)
1930                return IRQ_NONE;
1931        spin_lock(&dbri->lock);
1932
1933        /*
1934         * Read it, so the interrupt goes away.
1935         */
1936        x = sbus_readl(dbri->regs + REG1);
1937
1938        if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1939                u32 tmp;
1940
1941                if (x & D_MRR)
1942                        printk(KERN_ERR
1943                               "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1944                               x);
1945                if (x & D_MLE)
1946                        printk(KERN_ERR
1947                               "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1948                               x);
1949                if (x & D_LBG)
1950                        printk(KERN_ERR
1951                               "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1952                if (x & D_MBE)
1953                        printk(KERN_ERR
1954                               "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1955
1956                /* Some of these SBus errors cause the chip's SBus circuitry
1957                 * to be disabled, so just re-enable and try to keep going.
1958                 *
1959                 * The only one I've seen is MRR, which will be triggered
1960                 * if you let a transmit pipe underrun, then try to CDP it.
1961                 *
1962                 * If these things persist, we reset the chip.
1963                 */
1964                if ((++errcnt) % 10 == 0) {
1965                        dprintk(D_INT, "Interrupt errors exceeded.\n");
1966                        dbri_reset(dbri);
1967                } else {
1968                        tmp = sbus_readl(dbri->regs + REG0);
1969                        tmp &= ~(D_D);
1970                        sbus_writel(tmp, dbri->regs + REG0);
1971                }
1972        }
1973
1974        dbri_process_interrupt_buffer(dbri);
1975
1976        spin_unlock(&dbri->lock);
1977
1978        return IRQ_HANDLED;
1979}
1980
1981/****************************************************************************
1982                PCM Interface
1983****************************************************************************/
1984static const struct snd_pcm_hardware snd_dbri_pcm_hw = {
1985        .info           = SNDRV_PCM_INFO_MMAP |
1986                          SNDRV_PCM_INFO_INTERLEAVED |
1987                          SNDRV_PCM_INFO_BLOCK_TRANSFER |
1988                          SNDRV_PCM_INFO_MMAP_VALID |
1989                          SNDRV_PCM_INFO_BATCH,
1990        .formats        = SNDRV_PCM_FMTBIT_MU_LAW |
1991                          SNDRV_PCM_FMTBIT_A_LAW |
1992                          SNDRV_PCM_FMTBIT_U8 |
1993                          SNDRV_PCM_FMTBIT_S16_BE,
1994        .rates          = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1995        .rate_min               = 5512,
1996        .rate_max               = 48000,
1997        .channels_min           = 1,
1998        .channels_max           = 2,
1999        .buffer_bytes_max       = 64 * 1024,
2000        .period_bytes_min       = 1,
2001        .period_bytes_max       = DBRI_TD_MAXCNT,
2002        .periods_min            = 1,
2003        .periods_max            = 1024,
2004};
2005
2006static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
2007                              struct snd_pcm_hw_rule *rule)
2008{
2009        struct snd_interval *c = hw_param_interval(params,
2010                                SNDRV_PCM_HW_PARAM_CHANNELS);
2011        struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2012        struct snd_mask fmt;
2013
2014        snd_mask_any(&fmt);
2015        if (c->min > 1) {
2016                fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2017                return snd_mask_refine(f, &fmt);
2018        }
2019        return 0;
2020}
2021
2022static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2023                                struct snd_pcm_hw_rule *rule)
2024{
2025        struct snd_interval *c = hw_param_interval(params,
2026                                SNDRV_PCM_HW_PARAM_CHANNELS);
2027        struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2028        struct snd_interval ch;
2029
2030        snd_interval_any(&ch);
2031        if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2032                ch.min = 1;
2033                ch.max = 1;
2034                ch.integer = 1;
2035                return snd_interval_refine(c, &ch);
2036        }
2037        return 0;
2038}
2039
2040static int snd_dbri_open(struct snd_pcm_substream *substream)
2041{
2042        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2043        struct snd_pcm_runtime *runtime = substream->runtime;
2044        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2045        unsigned long flags;
2046
2047        dprintk(D_USR, "open audio output.\n");
2048        runtime->hw = snd_dbri_pcm_hw;
2049
2050        spin_lock_irqsave(&dbri->lock, flags);
2051        info->substream = substream;
2052        info->offset = 0;
2053        info->dvma_buffer = 0;
2054        info->pipe = -1;
2055        spin_unlock_irqrestore(&dbri->lock, flags);
2056
2057        snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2058                            snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2059                            -1);
2060        snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2061                            snd_hw_rule_channels, NULL,
2062                            SNDRV_PCM_HW_PARAM_CHANNELS,
2063                            -1);
2064
2065        cs4215_open(dbri);
2066
2067        return 0;
2068}
2069
2070static int snd_dbri_close(struct snd_pcm_substream *substream)
2071{
2072        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2073        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2074
2075        dprintk(D_USR, "close audio output.\n");
2076        info->substream = NULL;
2077        info->offset = 0;
2078
2079        return 0;
2080}
2081
2082static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2083                              struct snd_pcm_hw_params *hw_params)
2084{
2085        struct snd_pcm_runtime *runtime = substream->runtime;
2086        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2087        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2088        int direction;
2089        int ret;
2090
2091        /* set sampling rate, audio format and number of channels */
2092        ret = cs4215_prepare(dbri, params_rate(hw_params),
2093                             params_format(hw_params),
2094                             params_channels(hw_params));
2095        if (ret != 0)
2096                return ret;
2097
2098        if ((ret = snd_pcm_lib_malloc_pages(substream,
2099                                params_buffer_bytes(hw_params))) < 0) {
2100                printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2101                return ret;
2102        }
2103
2104        /* hw_params can get called multiple times. Only map the DMA once.
2105         */
2106        if (info->dvma_buffer == 0) {
2107                if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2108                        direction = DMA_TO_DEVICE;
2109                else
2110                        direction = DMA_FROM_DEVICE;
2111
2112                info->dvma_buffer =
2113                        dma_map_single(&dbri->op->dev,
2114                                       runtime->dma_area,
2115                                       params_buffer_bytes(hw_params),
2116                                       direction);
2117        }
2118
2119        direction = params_buffer_bytes(hw_params);
2120        dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2121                direction, info->dvma_buffer);
2122        return 0;
2123}
2124
2125static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2126{
2127        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2128        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2129        int direction;
2130
2131        dprintk(D_USR, "hw_free.\n");
2132
2133        /* hw_free can get called multiple times. Only unmap the DMA once.
2134         */
2135        if (info->dvma_buffer) {
2136                if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2137                        direction = DMA_TO_DEVICE;
2138                else
2139                        direction = DMA_FROM_DEVICE;
2140
2141                dma_unmap_single(&dbri->op->dev, info->dvma_buffer,
2142                                 substream->runtime->buffer_size, direction);
2143                info->dvma_buffer = 0;
2144        }
2145        if (info->pipe != -1) {
2146                reset_pipe(dbri, info->pipe);
2147                info->pipe = -1;
2148        }
2149
2150        return snd_pcm_lib_free_pages(substream);
2151}
2152
2153static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2154{
2155        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2156        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2157        int ret;
2158
2159        info->size = snd_pcm_lib_buffer_bytes(substream);
2160        if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2161                info->pipe = 4; /* Send pipe */
2162        else
2163                info->pipe = 6; /* Receive pipe */
2164
2165        spin_lock_irq(&dbri->lock);
2166        info->offset = 0;
2167
2168        /* Setup the all the transmit/receive descriptors to cover the
2169         * whole DMA buffer.
2170         */
2171        ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2172                          snd_pcm_lib_period_bytes(substream));
2173
2174        spin_unlock_irq(&dbri->lock);
2175
2176        dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2177        return ret;
2178}
2179
2180static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2181{
2182        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2183        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2184        int ret = 0;
2185
2186        switch (cmd) {
2187        case SNDRV_PCM_TRIGGER_START:
2188                dprintk(D_USR, "start audio, period is %d bytes\n",
2189                        (int)snd_pcm_lib_period_bytes(substream));
2190                /* Re-submit the TDs. */
2191                xmit_descs(dbri);
2192                break;
2193        case SNDRV_PCM_TRIGGER_STOP:
2194                dprintk(D_USR, "stop audio.\n");
2195                reset_pipe(dbri, info->pipe);
2196                break;
2197        default:
2198                ret = -EINVAL;
2199        }
2200
2201        return ret;
2202}
2203
2204static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2205{
2206        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2207        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2208        snd_pcm_uframes_t ret;
2209
2210        ret = bytes_to_frames(substream->runtime, info->offset)
2211                % substream->runtime->buffer_size;
2212        dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2213                ret, substream->runtime->buffer_size);
2214        return ret;
2215}
2216
2217static const struct snd_pcm_ops snd_dbri_ops = {
2218        .open = snd_dbri_open,
2219        .close = snd_dbri_close,
2220        .ioctl = snd_pcm_lib_ioctl,
2221        .hw_params = snd_dbri_hw_params,
2222        .hw_free = snd_dbri_hw_free,
2223        .prepare = snd_dbri_prepare,
2224        .trigger = snd_dbri_trigger,
2225        .pointer = snd_dbri_pointer,
2226};
2227
2228static int snd_dbri_pcm(struct snd_card *card)
2229{
2230        struct snd_pcm *pcm;
2231        int err;
2232
2233        if ((err = snd_pcm_new(card,
2234                               /* ID */             "sun_dbri",
2235                               /* device */         0,
2236                               /* playback count */ 1,
2237                               /* capture count */  1, &pcm)) < 0)
2238                return err;
2239
2240        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2241        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2242
2243        pcm->private_data = card->private_data;
2244        pcm->info_flags = 0;
2245        strcpy(pcm->name, card->shortname);
2246
2247        snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS,
2248                                              snd_dma_continuous_data(GFP_KERNEL),
2249                                              64 * 1024, 64 * 1024);
2250        return 0;
2251}
2252
2253/*****************************************************************************
2254                        Mixer interface
2255*****************************************************************************/
2256
2257static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2258                                  struct snd_ctl_elem_info *uinfo)
2259{
2260        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2261        uinfo->count = 2;
2262        uinfo->value.integer.min = 0;
2263        if (kcontrol->private_value == DBRI_PLAY)
2264                uinfo->value.integer.max = DBRI_MAX_VOLUME;
2265        else
2266                uinfo->value.integer.max = DBRI_MAX_GAIN;
2267        return 0;
2268}
2269
2270static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2271                                 struct snd_ctl_elem_value *ucontrol)
2272{
2273        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2274        struct dbri_streaminfo *info;
2275
2276        if (snd_BUG_ON(!dbri))
2277                return -EINVAL;
2278        info = &dbri->stream_info[kcontrol->private_value];
2279
2280        ucontrol->value.integer.value[0] = info->left_gain;
2281        ucontrol->value.integer.value[1] = info->right_gain;
2282        return 0;
2283}
2284
2285static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2286                                 struct snd_ctl_elem_value *ucontrol)
2287{
2288        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2289        struct dbri_streaminfo *info =
2290                                &dbri->stream_info[kcontrol->private_value];
2291        unsigned int vol[2];
2292        int changed = 0;
2293
2294        vol[0] = ucontrol->value.integer.value[0];
2295        vol[1] = ucontrol->value.integer.value[1];
2296        if (kcontrol->private_value == DBRI_PLAY) {
2297                if (vol[0] > DBRI_MAX_VOLUME || vol[1] > DBRI_MAX_VOLUME)
2298                        return -EINVAL;
2299        } else {
2300                if (vol[0] > DBRI_MAX_GAIN || vol[1] > DBRI_MAX_GAIN)
2301                        return -EINVAL;
2302        }
2303
2304        if (info->left_gain != vol[0]) {
2305                info->left_gain = vol[0];
2306                changed = 1;
2307        }
2308        if (info->right_gain != vol[1]) {
2309                info->right_gain = vol[1];
2310                changed = 1;
2311        }
2312        if (changed) {
2313                /* First mute outputs, and wait 1/8000 sec (125 us)
2314                 * to make sure this takes.  This avoids clicking noises.
2315                 */
2316                cs4215_setdata(dbri, 1);
2317                udelay(125);
2318                cs4215_setdata(dbri, 0);
2319        }
2320        return changed;
2321}
2322
2323static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2324                                  struct snd_ctl_elem_info *uinfo)
2325{
2326        int mask = (kcontrol->private_value >> 16) & 0xff;
2327
2328        uinfo->type = (mask == 1) ?
2329            SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2330        uinfo->count = 1;
2331        uinfo->value.integer.min = 0;
2332        uinfo->value.integer.max = mask;
2333        return 0;
2334}
2335
2336static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2337                                 struct snd_ctl_elem_value *ucontrol)
2338{
2339        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2340        int elem = kcontrol->private_value & 0xff;
2341        int shift = (kcontrol->private_value >> 8) & 0xff;
2342        int mask = (kcontrol->private_value >> 16) & 0xff;
2343        int invert = (kcontrol->private_value >> 24) & 1;
2344
2345        if (snd_BUG_ON(!dbri))
2346                return -EINVAL;
2347
2348        if (elem < 4)
2349                ucontrol->value.integer.value[0] =
2350                    (dbri->mm.data[elem] >> shift) & mask;
2351        else
2352                ucontrol->value.integer.value[0] =
2353                    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2354
2355        if (invert == 1)
2356                ucontrol->value.integer.value[0] =
2357                    mask - ucontrol->value.integer.value[0];
2358        return 0;
2359}
2360
2361static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2362                                 struct snd_ctl_elem_value *ucontrol)
2363{
2364        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2365        int elem = kcontrol->private_value & 0xff;
2366        int shift = (kcontrol->private_value >> 8) & 0xff;
2367        int mask = (kcontrol->private_value >> 16) & 0xff;
2368        int invert = (kcontrol->private_value >> 24) & 1;
2369        int changed = 0;
2370        unsigned short val;
2371
2372        if (snd_BUG_ON(!dbri))
2373                return -EINVAL;
2374
2375        val = (ucontrol->value.integer.value[0] & mask);
2376        if (invert == 1)
2377                val = mask - val;
2378        val <<= shift;
2379
2380        if (elem < 4) {
2381                dbri->mm.data[elem] = (dbri->mm.data[elem] &
2382                                       ~(mask << shift)) | val;
2383                changed = (val != dbri->mm.data[elem]);
2384        } else {
2385                dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2386                                           ~(mask << shift)) | val;
2387                changed = (val != dbri->mm.ctrl[elem - 4]);
2388        }
2389
2390        dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2391                "mixer-value=%ld, mm-value=0x%x\n",
2392                mask, changed, ucontrol->value.integer.value[0],
2393                dbri->mm.data[elem & 3]);
2394
2395        if (changed) {
2396                /* First mute outputs, and wait 1/8000 sec (125 us)
2397                 * to make sure this takes.  This avoids clicking noises.
2398                 */
2399                cs4215_setdata(dbri, 1);
2400                udelay(125);
2401                cs4215_setdata(dbri, 0);
2402        }
2403        return changed;
2404}
2405
2406/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2407   timeslots. Shift is the bit offset in the timeslot, mask defines the
2408   number of bits. invert is a boolean for use with attenuation.
2409 */
2410#define CS4215_SINGLE(xname, entry, shift, mask, invert)        \
2411{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),         \
2412  .info = snd_cs4215_info_single,                               \
2413  .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,   \
2414  .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |  \
2415                        ((invert) << 24) },
2416
2417static struct snd_kcontrol_new dbri_controls[] = {
2418        {
2419         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2420         .name  = "Playback Volume",
2421         .info  = snd_cs4215_info_volume,
2422         .get   = snd_cs4215_get_volume,
2423         .put   = snd_cs4215_put_volume,
2424         .private_value = DBRI_PLAY,
2425         },
2426        CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2427        CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2428        CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2429        {
2430         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2431         .name  = "Capture Volume",
2432         .info  = snd_cs4215_info_volume,
2433         .get   = snd_cs4215_get_volume,
2434         .put   = snd_cs4215_put_volume,
2435         .private_value = DBRI_REC,
2436         },
2437        /* FIXME: mic/line switch */
2438        CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2439        CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2440        CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2441        CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2442};
2443
2444static int snd_dbri_mixer(struct snd_card *card)
2445{
2446        int idx, err;
2447        struct snd_dbri *dbri;
2448
2449        if (snd_BUG_ON(!card || !card->private_data))
2450                return -EINVAL;
2451        dbri = card->private_data;
2452
2453        strcpy(card->mixername, card->shortname);
2454
2455        for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2456                err = snd_ctl_add(card,
2457                                snd_ctl_new1(&dbri_controls[idx], dbri));
2458                if (err < 0)
2459                        return err;
2460        }
2461
2462        for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2463                dbri->stream_info[idx].left_gain = 0;
2464                dbri->stream_info[idx].right_gain = 0;
2465        }
2466
2467        return 0;
2468}
2469
2470/****************************************************************************
2471                        /proc interface
2472****************************************************************************/
2473static void dbri_regs_read(struct snd_info_entry *entry,
2474                           struct snd_info_buffer *buffer)
2475{
2476        struct snd_dbri *dbri = entry->private_data;
2477
2478        snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2479        snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2480        snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2481        snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2482}
2483
2484#ifdef DBRI_DEBUG
2485static void dbri_debug_read(struct snd_info_entry *entry,
2486                            struct snd_info_buffer *buffer)
2487{
2488        struct snd_dbri *dbri = entry->private_data;
2489        int pipe;
2490        snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2491
2492        for (pipe = 0; pipe < 32; pipe++) {
2493                if (pipe_active(dbri, pipe)) {
2494                        struct dbri_pipe *pptr = &dbri->pipes[pipe];
2495                        snd_iprintf(buffer,
2496                                    "Pipe %d: %s SDP=0x%x desc=%d, "
2497                                    "len=%d next %d\n",
2498                                    pipe,
2499                                   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2500                                                                 "input",
2501                                    pptr->sdp, pptr->desc,
2502                                    pptr->length, pptr->nextpipe);
2503                }
2504        }
2505}
2506#endif
2507
2508static void snd_dbri_proc(struct snd_card *card)
2509{
2510        struct snd_dbri *dbri = card->private_data;
2511
2512        snd_card_ro_proc_new(card, "regs", dbri, dbri_regs_read);
2513#ifdef DBRI_DEBUG
2514        snd_card_ro_proc_new(card, "debug", dbri, dbri_debug_read);
2515#endif
2516}
2517
2518/*
2519****************************************************************************
2520**************************** Initialization ********************************
2521****************************************************************************
2522*/
2523static void snd_dbri_free(struct snd_dbri *dbri);
2524
2525static int snd_dbri_create(struct snd_card *card,
2526                           struct platform_device *op,
2527                           int irq, int dev)
2528{
2529        struct snd_dbri *dbri = card->private_data;
2530        int err;
2531
2532        spin_lock_init(&dbri->lock);
2533        dbri->op = op;
2534        dbri->irq = irq;
2535
2536        dbri->dma = dma_alloc_coherent(&op->dev, sizeof(struct dbri_dma),
2537                                       &dbri->dma_dvma, GFP_KERNEL);
2538        if (!dbri->dma)
2539                return -ENOMEM;
2540
2541        dprintk(D_GEN, "DMA Cmd Block 0x%p (%pad)\n",
2542                dbri->dma, dbri->dma_dvma);
2543
2544        /* Map the registers into memory. */
2545        dbri->regs_size = resource_size(&op->resource[0]);
2546        dbri->regs = of_ioremap(&op->resource[0], 0,
2547                                dbri->regs_size, "DBRI Registers");
2548        if (!dbri->regs) {
2549                printk(KERN_ERR "DBRI: could not allocate registers\n");
2550                dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2551                                  (void *)dbri->dma, dbri->dma_dvma);
2552                return -EIO;
2553        }
2554
2555        err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2556                          "DBRI audio", dbri);
2557        if (err) {
2558                printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2559                of_iounmap(&op->resource[0], dbri->regs, dbri->regs_size);
2560                dma_free_coherent(&op->dev, sizeof(struct dbri_dma),
2561                                  (void *)dbri->dma, dbri->dma_dvma);
2562                return err;
2563        }
2564
2565        /* Do low level initialization of the DBRI and CS4215 chips */
2566        dbri_initialize(dbri);
2567        err = cs4215_init(dbri);
2568        if (err) {
2569                snd_dbri_free(dbri);
2570                return err;
2571        }
2572
2573        return 0;
2574}
2575
2576static void snd_dbri_free(struct snd_dbri *dbri)
2577{
2578        dprintk(D_GEN, "snd_dbri_free\n");
2579        dbri_reset(dbri);
2580
2581        if (dbri->irq)
2582                free_irq(dbri->irq, dbri);
2583
2584        if (dbri->regs)
2585                of_iounmap(&dbri->op->resource[0], dbri->regs, dbri->regs_size);
2586
2587        if (dbri->dma)
2588                dma_free_coherent(&dbri->op->dev,
2589                                  sizeof(struct dbri_dma),
2590                                  (void *)dbri->dma, dbri->dma_dvma);
2591}
2592
2593static int dbri_probe(struct platform_device *op)
2594{
2595        struct snd_dbri *dbri;
2596        struct resource *rp;
2597        struct snd_card *card;
2598        static int dev = 0;
2599        int irq;
2600        int err;
2601
2602        if (dev >= SNDRV_CARDS)
2603                return -ENODEV;
2604        if (!enable[dev]) {
2605                dev++;
2606                return -ENOENT;
2607        }
2608
2609        irq = op->archdata.irqs[0];
2610        if (irq <= 0) {
2611                printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2612                return -ENODEV;
2613        }
2614
2615        err = snd_card_new(&op->dev, index[dev], id[dev], THIS_MODULE,
2616                           sizeof(struct snd_dbri), &card);
2617        if (err < 0)
2618                return err;
2619
2620        strcpy(card->driver, "DBRI");
2621        strcpy(card->shortname, "Sun DBRI");
2622        rp = &op->resource[0];
2623        sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2624                card->shortname,
2625                rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2626
2627        err = snd_dbri_create(card, op, irq, dev);
2628        if (err < 0) {
2629                snd_card_free(card);
2630                return err;
2631        }
2632
2633        dbri = card->private_data;
2634        err = snd_dbri_pcm(card);
2635        if (err < 0)
2636                goto _err;
2637
2638        err = snd_dbri_mixer(card);
2639        if (err < 0)
2640                goto _err;
2641
2642        /* /proc file handling */
2643        snd_dbri_proc(card);
2644        dev_set_drvdata(&op->dev, card);
2645
2646        err = snd_card_register(card);
2647        if (err < 0)
2648                goto _err;
2649
2650        printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2651               dev, dbri->regs,
2652               dbri->irq, op->dev.of_node->name[9], dbri->mm.version);
2653        dev++;
2654
2655        return 0;
2656
2657_err:
2658        snd_dbri_free(dbri);
2659        snd_card_free(card);
2660        return err;
2661}
2662
2663static int dbri_remove(struct platform_device *op)
2664{
2665        struct snd_card *card = dev_get_drvdata(&op->dev);
2666
2667        snd_dbri_free(card->private_data);
2668        snd_card_free(card);
2669
2670        return 0;
2671}
2672
2673static const struct of_device_id dbri_match[] = {
2674        {
2675                .name = "SUNW,DBRIe",
2676        },
2677        {
2678                .name = "SUNW,DBRIf",
2679        },
2680        {},
2681};
2682
2683MODULE_DEVICE_TABLE(of, dbri_match);
2684
2685static struct platform_driver dbri_sbus_driver = {
2686        .driver = {
2687                .name = "dbri",
2688                .of_match_table = dbri_match,
2689        },
2690        .probe          = dbri_probe,
2691        .remove         = dbri_remove,
2692};
2693
2694module_platform_driver(dbri_sbus_driver);
2695