linux/tools/lib/bpf/btf_dump.c
<<
>>
Prefs
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2
   3/*
   4 * BTF-to-C type converter.
   5 *
   6 * Copyright (c) 2019 Facebook
   7 */
   8
   9#include <stdbool.h>
  10#include <stddef.h>
  11#include <stdlib.h>
  12#include <string.h>
  13#include <errno.h>
  14#include <linux/err.h>
  15#include <linux/btf.h>
  16#include "btf.h"
  17#include "hashmap.h"
  18#include "libbpf.h"
  19#include "libbpf_internal.h"
  20
  21static const char PREFIXES[] = "\t\t\t\t\t\t\t\t\t\t\t\t\t";
  22static const size_t PREFIX_CNT = sizeof(PREFIXES) - 1;
  23
  24static const char *pfx(int lvl)
  25{
  26        return lvl >= PREFIX_CNT ? PREFIXES : &PREFIXES[PREFIX_CNT - lvl];
  27}
  28
  29enum btf_dump_type_order_state {
  30        NOT_ORDERED,
  31        ORDERING,
  32        ORDERED,
  33};
  34
  35enum btf_dump_type_emit_state {
  36        NOT_EMITTED,
  37        EMITTING,
  38        EMITTED,
  39};
  40
  41/* per-type auxiliary state */
  42struct btf_dump_type_aux_state {
  43        /* topological sorting state */
  44        enum btf_dump_type_order_state order_state: 2;
  45        /* emitting state used to determine the need for forward declaration */
  46        enum btf_dump_type_emit_state emit_state: 2;
  47        /* whether forward declaration was already emitted */
  48        __u8 fwd_emitted: 1;
  49        /* whether unique non-duplicate name was already assigned */
  50        __u8 name_resolved: 1;
  51};
  52
  53struct btf_dump {
  54        const struct btf *btf;
  55        const struct btf_ext *btf_ext;
  56        btf_dump_printf_fn_t printf_fn;
  57        struct btf_dump_opts opts;
  58
  59        /* per-type auxiliary state */
  60        struct btf_dump_type_aux_state *type_states;
  61        /* per-type optional cached unique name, must be freed, if present */
  62        const char **cached_names;
  63
  64        /* topo-sorted list of dependent type definitions */
  65        __u32 *emit_queue;
  66        int emit_queue_cap;
  67        int emit_queue_cnt;
  68
  69        /*
  70         * stack of type declarations (e.g., chain of modifiers, arrays,
  71         * funcs, etc)
  72         */
  73        __u32 *decl_stack;
  74        int decl_stack_cap;
  75        int decl_stack_cnt;
  76
  77        /* maps struct/union/enum name to a number of name occurrences */
  78        struct hashmap *type_names;
  79        /*
  80         * maps typedef identifiers and enum value names to a number of such
  81         * name occurrences
  82         */
  83        struct hashmap *ident_names;
  84};
  85
  86static size_t str_hash_fn(const void *key, void *ctx)
  87{
  88        const char *s = key;
  89        size_t h = 0;
  90
  91        while (*s) {
  92                h = h * 31 + *s;
  93                s++;
  94        }
  95        return h;
  96}
  97
  98static bool str_equal_fn(const void *a, const void *b, void *ctx)
  99{
 100        return strcmp(a, b) == 0;
 101}
 102
 103static __u16 btf_kind_of(const struct btf_type *t)
 104{
 105        return BTF_INFO_KIND(t->info);
 106}
 107
 108static __u16 btf_vlen_of(const struct btf_type *t)
 109{
 110        return BTF_INFO_VLEN(t->info);
 111}
 112
 113static bool btf_kflag_of(const struct btf_type *t)
 114{
 115        return BTF_INFO_KFLAG(t->info);
 116}
 117
 118static const char *btf_name_of(const struct btf_dump *d, __u32 name_off)
 119{
 120        return btf__name_by_offset(d->btf, name_off);
 121}
 122
 123static void btf_dump_printf(const struct btf_dump *d, const char *fmt, ...)
 124{
 125        va_list args;
 126
 127        va_start(args, fmt);
 128        d->printf_fn(d->opts.ctx, fmt, args);
 129        va_end(args);
 130}
 131
 132struct btf_dump *btf_dump__new(const struct btf *btf,
 133                               const struct btf_ext *btf_ext,
 134                               const struct btf_dump_opts *opts,
 135                               btf_dump_printf_fn_t printf_fn)
 136{
 137        struct btf_dump *d;
 138        int err;
 139
 140        d = calloc(1, sizeof(struct btf_dump));
 141        if (!d)
 142                return ERR_PTR(-ENOMEM);
 143
 144        d->btf = btf;
 145        d->btf_ext = btf_ext;
 146        d->printf_fn = printf_fn;
 147        d->opts.ctx = opts ? opts->ctx : NULL;
 148
 149        d->type_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
 150        if (IS_ERR(d->type_names)) {
 151                err = PTR_ERR(d->type_names);
 152                d->type_names = NULL;
 153                btf_dump__free(d);
 154                return ERR_PTR(err);
 155        }
 156        d->ident_names = hashmap__new(str_hash_fn, str_equal_fn, NULL);
 157        if (IS_ERR(d->ident_names)) {
 158                err = PTR_ERR(d->ident_names);
 159                d->ident_names = NULL;
 160                btf_dump__free(d);
 161                return ERR_PTR(err);
 162        }
 163
 164        return d;
 165}
 166
 167void btf_dump__free(struct btf_dump *d)
 168{
 169        int i, cnt;
 170
 171        if (!d)
 172                return;
 173
 174        free(d->type_states);
 175        if (d->cached_names) {
 176                /* any set cached name is owned by us and should be freed */
 177                for (i = 0, cnt = btf__get_nr_types(d->btf); i <= cnt; i++) {
 178                        if (d->cached_names[i])
 179                                free((void *)d->cached_names[i]);
 180                }
 181        }
 182        free(d->cached_names);
 183        free(d->emit_queue);
 184        free(d->decl_stack);
 185        hashmap__free(d->type_names);
 186        hashmap__free(d->ident_names);
 187
 188        free(d);
 189}
 190
 191static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr);
 192static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id);
 193
 194/*
 195 * Dump BTF type in a compilable C syntax, including all the necessary
 196 * dependent types, necessary for compilation. If some of the dependent types
 197 * were already emitted as part of previous btf_dump__dump_type() invocation
 198 * for another type, they won't be emitted again. This API allows callers to
 199 * filter out BTF types according to user-defined criterias and emitted only
 200 * minimal subset of types, necessary to compile everything. Full struct/union
 201 * definitions will still be emitted, even if the only usage is through
 202 * pointer and could be satisfied with just a forward declaration.
 203 *
 204 * Dumping is done in two high-level passes:
 205 *   1. Topologically sort type definitions to satisfy C rules of compilation.
 206 *   2. Emit type definitions in C syntax.
 207 *
 208 * Returns 0 on success; <0, otherwise.
 209 */
 210int btf_dump__dump_type(struct btf_dump *d, __u32 id)
 211{
 212        int err, i;
 213
 214        if (id > btf__get_nr_types(d->btf))
 215                return -EINVAL;
 216
 217        /* type states are lazily allocated, as they might not be needed */
 218        if (!d->type_states) {
 219                d->type_states = calloc(1 + btf__get_nr_types(d->btf),
 220                                        sizeof(d->type_states[0]));
 221                if (!d->type_states)
 222                        return -ENOMEM;
 223                d->cached_names = calloc(1 + btf__get_nr_types(d->btf),
 224                                         sizeof(d->cached_names[0]));
 225                if (!d->cached_names)
 226                        return -ENOMEM;
 227
 228                /* VOID is special */
 229                d->type_states[0].order_state = ORDERED;
 230                d->type_states[0].emit_state = EMITTED;
 231        }
 232
 233        d->emit_queue_cnt = 0;
 234        err = btf_dump_order_type(d, id, false);
 235        if (err < 0)
 236                return err;
 237
 238        for (i = 0; i < d->emit_queue_cnt; i++)
 239                btf_dump_emit_type(d, d->emit_queue[i], 0 /*top-level*/);
 240
 241        return 0;
 242}
 243
 244static int btf_dump_add_emit_queue_id(struct btf_dump *d, __u32 id)
 245{
 246        __u32 *new_queue;
 247        size_t new_cap;
 248
 249        if (d->emit_queue_cnt >= d->emit_queue_cap) {
 250                new_cap = max(16, d->emit_queue_cap * 3 / 2);
 251                new_queue = realloc(d->emit_queue,
 252                                    new_cap * sizeof(new_queue[0]));
 253                if (!new_queue)
 254                        return -ENOMEM;
 255                d->emit_queue = new_queue;
 256                d->emit_queue_cap = new_cap;
 257        }
 258
 259        d->emit_queue[d->emit_queue_cnt++] = id;
 260        return 0;
 261}
 262
 263/*
 264 * Determine order of emitting dependent types and specified type to satisfy
 265 * C compilation rules.  This is done through topological sorting with an
 266 * additional complication which comes from C rules. The main idea for C is
 267 * that if some type is "embedded" into a struct/union, it's size needs to be
 268 * known at the time of definition of containing type. E.g., for:
 269 *
 270 *      struct A {};
 271 *      struct B { struct A x; }
 272 *
 273 * struct A *HAS* to be defined before struct B, because it's "embedded",
 274 * i.e., it is part of struct B layout. But in the following case:
 275 *
 276 *      struct A;
 277 *      struct B { struct A *x; }
 278 *      struct A {};
 279 *
 280 * it's enough to just have a forward declaration of struct A at the time of
 281 * struct B definition, as struct B has a pointer to struct A, so the size of
 282 * field x is known without knowing struct A size: it's sizeof(void *).
 283 *
 284 * Unfortunately, there are some trickier cases we need to handle, e.g.:
 285 *
 286 *      struct A {}; // if this was forward-declaration: compilation error
 287 *      struct B {
 288 *              struct { // anonymous struct
 289 *                      struct A y;
 290 *              } *x;
 291 *      };
 292 *
 293 * In this case, struct B's field x is a pointer, so it's size is known
 294 * regardless of the size of (anonymous) struct it points to. But because this
 295 * struct is anonymous and thus defined inline inside struct B, *and* it
 296 * embeds struct A, compiler requires full definition of struct A to be known
 297 * before struct B can be defined. This creates a transitive dependency
 298 * between struct A and struct B. If struct A was forward-declared before
 299 * struct B definition and fully defined after struct B definition, that would
 300 * trigger compilation error.
 301 *
 302 * All this means that while we are doing topological sorting on BTF type
 303 * graph, we need to determine relationships between different types (graph
 304 * nodes):
 305 *   - weak link (relationship) between X and Y, if Y *CAN* be
 306 *   forward-declared at the point of X definition;
 307 *   - strong link, if Y *HAS* to be fully-defined before X can be defined.
 308 *
 309 * The rule is as follows. Given a chain of BTF types from X to Y, if there is
 310 * BTF_KIND_PTR type in the chain and at least one non-anonymous type
 311 * Z (excluding X, including Y), then link is weak. Otherwise, it's strong.
 312 * Weak/strong relationship is determined recursively during DFS traversal and
 313 * is returned as a result from btf_dump_order_type().
 314 *
 315 * btf_dump_order_type() is trying to avoid unnecessary forward declarations,
 316 * but it is not guaranteeing that no extraneous forward declarations will be
 317 * emitted.
 318 *
 319 * To avoid extra work, algorithm marks some of BTF types as ORDERED, when
 320 * it's done with them, but not for all (e.g., VOLATILE, CONST, RESTRICT,
 321 * ARRAY, FUNC_PROTO), as weak/strong semantics for those depends on the
 322 * entire graph path, so depending where from one came to that BTF type, it
 323 * might cause weak or strong ordering. For types like STRUCT/UNION/INT/ENUM,
 324 * once they are processed, there is no need to do it again, so they are
 325 * marked as ORDERED. We can mark PTR as ORDERED as well, as it semi-forces
 326 * weak link, unless subsequent referenced STRUCT/UNION/ENUM is anonymous. But
 327 * in any case, once those are processed, no need to do it again, as the
 328 * result won't change.
 329 *
 330 * Returns:
 331 *   - 1, if type is part of strong link (so there is strong topological
 332 *   ordering requirements);
 333 *   - 0, if type is part of weak link (so can be satisfied through forward
 334 *   declaration);
 335 *   - <0, on error (e.g., unsatisfiable type loop detected).
 336 */
 337static int btf_dump_order_type(struct btf_dump *d, __u32 id, bool through_ptr)
 338{
 339        /*
 340         * Order state is used to detect strong link cycles, but only for BTF
 341         * kinds that are or could be an independent definition (i.e.,
 342         * stand-alone fwd decl, enum, typedef, struct, union). Ptrs, arrays,
 343         * func_protos, modifiers are just means to get to these definitions.
 344         * Int/void don't need definitions, they are assumed to be always
 345         * properly defined.  We also ignore datasec, var, and funcs for now.
 346         * So for all non-defining kinds, we never even set ordering state,
 347         * for defining kinds we set ORDERING and subsequently ORDERED if it
 348         * forms a strong link.
 349         */
 350        struct btf_dump_type_aux_state *tstate = &d->type_states[id];
 351        const struct btf_type *t;
 352        __u16 kind, vlen;
 353        int err, i;
 354
 355        /* return true, letting typedefs know that it's ok to be emitted */
 356        if (tstate->order_state == ORDERED)
 357                return 1;
 358
 359        t = btf__type_by_id(d->btf, id);
 360        kind = btf_kind_of(t);
 361
 362        if (tstate->order_state == ORDERING) {
 363                /* type loop, but resolvable through fwd declaration */
 364                if ((kind == BTF_KIND_STRUCT || kind == BTF_KIND_UNION) &&
 365                    through_ptr && t->name_off != 0)
 366                        return 0;
 367                pr_warning("unsatisfiable type cycle, id:[%u]\n", id);
 368                return -ELOOP;
 369        }
 370
 371        switch (kind) {
 372        case BTF_KIND_INT:
 373                tstate->order_state = ORDERED;
 374                return 0;
 375
 376        case BTF_KIND_PTR:
 377                err = btf_dump_order_type(d, t->type, true);
 378                tstate->order_state = ORDERED;
 379                return err;
 380
 381        case BTF_KIND_ARRAY: {
 382                const struct btf_array *a = (void *)(t + 1);
 383
 384                return btf_dump_order_type(d, a->type, through_ptr);
 385        }
 386        case BTF_KIND_STRUCT:
 387        case BTF_KIND_UNION: {
 388                const struct btf_member *m = (void *)(t + 1);
 389                /*
 390                 * struct/union is part of strong link, only if it's embedded
 391                 * (so no ptr in a path) or it's anonymous (so has to be
 392                 * defined inline, even if declared through ptr)
 393                 */
 394                if (through_ptr && t->name_off != 0)
 395                        return 0;
 396
 397                tstate->order_state = ORDERING;
 398
 399                vlen = btf_vlen_of(t);
 400                for (i = 0; i < vlen; i++, m++) {
 401                        err = btf_dump_order_type(d, m->type, false);
 402                        if (err < 0)
 403                                return err;
 404                }
 405
 406                if (t->name_off != 0) {
 407                        err = btf_dump_add_emit_queue_id(d, id);
 408                        if (err < 0)
 409                                return err;
 410                }
 411
 412                tstate->order_state = ORDERED;
 413                return 1;
 414        }
 415        case BTF_KIND_ENUM:
 416        case BTF_KIND_FWD:
 417                if (t->name_off != 0) {
 418                        err = btf_dump_add_emit_queue_id(d, id);
 419                        if (err)
 420                                return err;
 421                }
 422                tstate->order_state = ORDERED;
 423                return 1;
 424
 425        case BTF_KIND_TYPEDEF: {
 426                int is_strong;
 427
 428                is_strong = btf_dump_order_type(d, t->type, through_ptr);
 429                if (is_strong < 0)
 430                        return is_strong;
 431
 432                /* typedef is similar to struct/union w.r.t. fwd-decls */
 433                if (through_ptr && !is_strong)
 434                        return 0;
 435
 436                /* typedef is always a named definition */
 437                err = btf_dump_add_emit_queue_id(d, id);
 438                if (err)
 439                        return err;
 440
 441                d->type_states[id].order_state = ORDERED;
 442                return 1;
 443        }
 444        case BTF_KIND_VOLATILE:
 445        case BTF_KIND_CONST:
 446        case BTF_KIND_RESTRICT:
 447                return btf_dump_order_type(d, t->type, through_ptr);
 448
 449        case BTF_KIND_FUNC_PROTO: {
 450                const struct btf_param *p = (void *)(t + 1);
 451                bool is_strong;
 452
 453                err = btf_dump_order_type(d, t->type, through_ptr);
 454                if (err < 0)
 455                        return err;
 456                is_strong = err > 0;
 457
 458                vlen = btf_vlen_of(t);
 459                for (i = 0; i < vlen; i++, p++) {
 460                        err = btf_dump_order_type(d, p->type, through_ptr);
 461                        if (err < 0)
 462                                return err;
 463                        if (err > 0)
 464                                is_strong = true;
 465                }
 466                return is_strong;
 467        }
 468        case BTF_KIND_FUNC:
 469        case BTF_KIND_VAR:
 470        case BTF_KIND_DATASEC:
 471                d->type_states[id].order_state = ORDERED;
 472                return 0;
 473
 474        default:
 475                return -EINVAL;
 476        }
 477}
 478
 479static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
 480                                     const struct btf_type *t);
 481static void btf_dump_emit_struct_def(struct btf_dump *d, __u32 id,
 482                                     const struct btf_type *t, int lvl);
 483
 484static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
 485                                   const struct btf_type *t);
 486static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
 487                                   const struct btf_type *t, int lvl);
 488
 489static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
 490                                  const struct btf_type *t);
 491
 492static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
 493                                      const struct btf_type *t, int lvl);
 494
 495/* a local view into a shared stack */
 496struct id_stack {
 497        const __u32 *ids;
 498        int cnt;
 499};
 500
 501static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
 502                                    const char *fname, int lvl);
 503static void btf_dump_emit_type_chain(struct btf_dump *d,
 504                                     struct id_stack *decl_stack,
 505                                     const char *fname, int lvl);
 506
 507static const char *btf_dump_type_name(struct btf_dump *d, __u32 id);
 508static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id);
 509static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
 510                                 const char *orig_name);
 511
 512static bool btf_dump_is_blacklisted(struct btf_dump *d, __u32 id)
 513{
 514        const struct btf_type *t = btf__type_by_id(d->btf, id);
 515
 516        /* __builtin_va_list is a compiler built-in, which causes compilation
 517         * errors, when compiling w/ different compiler, then used to compile
 518         * original code (e.g., GCC to compile kernel, Clang to use generated
 519         * C header from BTF). As it is built-in, it should be already defined
 520         * properly internally in compiler.
 521         */
 522        if (t->name_off == 0)
 523                return false;
 524        return strcmp(btf_name_of(d, t->name_off), "__builtin_va_list") == 0;
 525}
 526
 527/*
 528 * Emit C-syntax definitions of types from chains of BTF types.
 529 *
 530 * High-level handling of determining necessary forward declarations are handled
 531 * by btf_dump_emit_type() itself, but all nitty-gritty details of emitting type
 532 * declarations/definitions in C syntax  are handled by a combo of
 533 * btf_dump_emit_type_decl()/btf_dump_emit_type_chain() w/ delegation to
 534 * corresponding btf_dump_emit_*_{def,fwd}() functions.
 535 *
 536 * We also keep track of "containing struct/union type ID" to determine when
 537 * we reference it from inside and thus can avoid emitting unnecessary forward
 538 * declaration.
 539 *
 540 * This algorithm is designed in such a way, that even if some error occurs
 541 * (either technical, e.g., out of memory, or logical, i.e., malformed BTF
 542 * that doesn't comply to C rules completely), algorithm will try to proceed
 543 * and produce as much meaningful output as possible.
 544 */
 545static void btf_dump_emit_type(struct btf_dump *d, __u32 id, __u32 cont_id)
 546{
 547        struct btf_dump_type_aux_state *tstate = &d->type_states[id];
 548        bool top_level_def = cont_id == 0;
 549        const struct btf_type *t;
 550        __u16 kind;
 551
 552        if (tstate->emit_state == EMITTED)
 553                return;
 554
 555        t = btf__type_by_id(d->btf, id);
 556        kind = btf_kind_of(t);
 557
 558        if (top_level_def && t->name_off == 0) {
 559                pr_warning("unexpected nameless definition, id:[%u]\n", id);
 560                return;
 561        }
 562
 563        if (tstate->emit_state == EMITTING) {
 564                if (tstate->fwd_emitted)
 565                        return;
 566
 567                switch (kind) {
 568                case BTF_KIND_STRUCT:
 569                case BTF_KIND_UNION:
 570                        /*
 571                         * if we are referencing a struct/union that we are
 572                         * part of - then no need for fwd declaration
 573                         */
 574                        if (id == cont_id)
 575                                return;
 576                        if (t->name_off == 0) {
 577                                pr_warning("anonymous struct/union loop, id:[%u]\n",
 578                                           id);
 579                                return;
 580                        }
 581                        btf_dump_emit_struct_fwd(d, id, t);
 582                        btf_dump_printf(d, ";\n\n");
 583                        tstate->fwd_emitted = 1;
 584                        break;
 585                case BTF_KIND_TYPEDEF:
 586                        /*
 587                         * for typedef fwd_emitted means typedef definition
 588                         * was emitted, but it can be used only for "weak"
 589                         * references through pointer only, not for embedding
 590                         */
 591                        if (!btf_dump_is_blacklisted(d, id)) {
 592                                btf_dump_emit_typedef_def(d, id, t, 0);
 593                                btf_dump_printf(d, ";\n\n");
 594                        };
 595                        tstate->fwd_emitted = 1;
 596                        break;
 597                default:
 598                        break;
 599                }
 600
 601                return;
 602        }
 603
 604        switch (kind) {
 605        case BTF_KIND_INT:
 606                tstate->emit_state = EMITTED;
 607                break;
 608        case BTF_KIND_ENUM:
 609                if (top_level_def) {
 610                        btf_dump_emit_enum_def(d, id, t, 0);
 611                        btf_dump_printf(d, ";\n\n");
 612                }
 613                tstate->emit_state = EMITTED;
 614                break;
 615        case BTF_KIND_PTR:
 616        case BTF_KIND_VOLATILE:
 617        case BTF_KIND_CONST:
 618        case BTF_KIND_RESTRICT:
 619                btf_dump_emit_type(d, t->type, cont_id);
 620                break;
 621        case BTF_KIND_ARRAY: {
 622                const struct btf_array *a = (void *)(t + 1);
 623
 624                btf_dump_emit_type(d, a->type, cont_id);
 625                break;
 626        }
 627        case BTF_KIND_FWD:
 628                btf_dump_emit_fwd_def(d, id, t);
 629                btf_dump_printf(d, ";\n\n");
 630                tstate->emit_state = EMITTED;
 631                break;
 632        case BTF_KIND_TYPEDEF:
 633                tstate->emit_state = EMITTING;
 634                btf_dump_emit_type(d, t->type, id);
 635                /*
 636                 * typedef can server as both definition and forward
 637                 * declaration; at this stage someone depends on
 638                 * typedef as a forward declaration (refers to it
 639                 * through pointer), so unless we already did it,
 640                 * emit typedef as a forward declaration
 641                 */
 642                if (!tstate->fwd_emitted && !btf_dump_is_blacklisted(d, id)) {
 643                        btf_dump_emit_typedef_def(d, id, t, 0);
 644                        btf_dump_printf(d, ";\n\n");
 645                }
 646                tstate->emit_state = EMITTED;
 647                break;
 648        case BTF_KIND_STRUCT:
 649        case BTF_KIND_UNION:
 650                tstate->emit_state = EMITTING;
 651                /* if it's a top-level struct/union definition or struct/union
 652                 * is anonymous, then in C we'll be emitting all fields and
 653                 * their types (as opposed to just `struct X`), so we need to
 654                 * make sure that all types, referenced from struct/union
 655                 * members have necessary forward-declarations, where
 656                 * applicable
 657                 */
 658                if (top_level_def || t->name_off == 0) {
 659                        const struct btf_member *m = (void *)(t + 1);
 660                        __u16 vlen = btf_vlen_of(t);
 661                        int i, new_cont_id;
 662
 663                        new_cont_id = t->name_off == 0 ? cont_id : id;
 664                        for (i = 0; i < vlen; i++, m++)
 665                                btf_dump_emit_type(d, m->type, new_cont_id);
 666                } else if (!tstate->fwd_emitted && id != cont_id) {
 667                        btf_dump_emit_struct_fwd(d, id, t);
 668                        btf_dump_printf(d, ";\n\n");
 669                        tstate->fwd_emitted = 1;
 670                }
 671
 672                if (top_level_def) {
 673                        btf_dump_emit_struct_def(d, id, t, 0);
 674                        btf_dump_printf(d, ";\n\n");
 675                        tstate->emit_state = EMITTED;
 676                } else {
 677                        tstate->emit_state = NOT_EMITTED;
 678                }
 679                break;
 680        case BTF_KIND_FUNC_PROTO: {
 681                const struct btf_param *p = (void *)(t + 1);
 682                __u16 vlen = btf_vlen_of(t);
 683                int i;
 684
 685                btf_dump_emit_type(d, t->type, cont_id);
 686                for (i = 0; i < vlen; i++, p++)
 687                        btf_dump_emit_type(d, p->type, cont_id);
 688
 689                break;
 690        }
 691        default:
 692                break;
 693        }
 694}
 695
 696static int btf_align_of(const struct btf *btf, __u32 id)
 697{
 698        const struct btf_type *t = btf__type_by_id(btf, id);
 699        __u16 kind = btf_kind_of(t);
 700
 701        switch (kind) {
 702        case BTF_KIND_INT:
 703        case BTF_KIND_ENUM:
 704                return min(sizeof(void *), t->size);
 705        case BTF_KIND_PTR:
 706                return sizeof(void *);
 707        case BTF_KIND_TYPEDEF:
 708        case BTF_KIND_VOLATILE:
 709        case BTF_KIND_CONST:
 710        case BTF_KIND_RESTRICT:
 711                return btf_align_of(btf, t->type);
 712        case BTF_KIND_ARRAY: {
 713                const struct btf_array *a = (void *)(t + 1);
 714
 715                return btf_align_of(btf, a->type);
 716        }
 717        case BTF_KIND_STRUCT:
 718        case BTF_KIND_UNION: {
 719                const struct btf_member *m = (void *)(t + 1);
 720                __u16 vlen = btf_vlen_of(t);
 721                int i, align = 1;
 722
 723                for (i = 0; i < vlen; i++, m++)
 724                        align = max(align, btf_align_of(btf, m->type));
 725
 726                return align;
 727        }
 728        default:
 729                pr_warning("unsupported BTF_KIND:%u\n", btf_kind_of(t));
 730                return 1;
 731        }
 732}
 733
 734static bool btf_is_struct_packed(const struct btf *btf, __u32 id,
 735                                 const struct btf_type *t)
 736{
 737        const struct btf_member *m;
 738        int align, i, bit_sz;
 739        __u16 vlen;
 740        bool kflag;
 741
 742        align = btf_align_of(btf, id);
 743        /* size of a non-packed struct has to be a multiple of its alignment*/
 744        if (t->size % align)
 745                return true;
 746
 747        m = (void *)(t + 1);
 748        kflag = btf_kflag_of(t);
 749        vlen = btf_vlen_of(t);
 750        /* all non-bitfield fields have to be naturally aligned */
 751        for (i = 0; i < vlen; i++, m++) {
 752                align = btf_align_of(btf, m->type);
 753                bit_sz = kflag ? BTF_MEMBER_BITFIELD_SIZE(m->offset) : 0;
 754                if (bit_sz == 0 && m->offset % (8 * align) != 0)
 755                        return true;
 756        }
 757
 758        /*
 759         * if original struct was marked as packed, but its layout is
 760         * naturally aligned, we'll detect that it's not packed
 761         */
 762        return false;
 763}
 764
 765static int chip_away_bits(int total, int at_most)
 766{
 767        return total % at_most ? : at_most;
 768}
 769
 770static void btf_dump_emit_bit_padding(const struct btf_dump *d,
 771                                      int cur_off, int m_off, int m_bit_sz,
 772                                      int align, int lvl)
 773{
 774        int off_diff = m_off - cur_off;
 775        int ptr_bits = sizeof(void *) * 8;
 776
 777        if (off_diff <= 0)
 778                /* no gap */
 779                return;
 780        if (m_bit_sz == 0 && off_diff < align * 8)
 781                /* natural padding will take care of a gap */
 782                return;
 783
 784        while (off_diff > 0) {
 785                const char *pad_type;
 786                int pad_bits;
 787
 788                if (ptr_bits > 32 && off_diff > 32) {
 789                        pad_type = "long";
 790                        pad_bits = chip_away_bits(off_diff, ptr_bits);
 791                } else if (off_diff > 16) {
 792                        pad_type = "int";
 793                        pad_bits = chip_away_bits(off_diff, 32);
 794                } else if (off_diff > 8) {
 795                        pad_type = "short";
 796                        pad_bits = chip_away_bits(off_diff, 16);
 797                } else {
 798                        pad_type = "char";
 799                        pad_bits = chip_away_bits(off_diff, 8);
 800                }
 801                btf_dump_printf(d, "\n%s%s: %d;", pfx(lvl), pad_type, pad_bits);
 802                off_diff -= pad_bits;
 803        }
 804}
 805
 806static void btf_dump_emit_struct_fwd(struct btf_dump *d, __u32 id,
 807                                     const struct btf_type *t)
 808{
 809        btf_dump_printf(d, "%s %s",
 810                        btf_kind_of(t) == BTF_KIND_STRUCT ? "struct" : "union",
 811                        btf_dump_type_name(d, id));
 812}
 813
 814static void btf_dump_emit_struct_def(struct btf_dump *d,
 815                                     __u32 id,
 816                                     const struct btf_type *t,
 817                                     int lvl)
 818{
 819        const struct btf_member *m = (void *)(t + 1);
 820        bool kflag = btf_kflag_of(t), is_struct;
 821        int align, i, packed, off = 0;
 822        __u16 vlen = btf_vlen_of(t);
 823
 824        is_struct = btf_kind_of(t) == BTF_KIND_STRUCT;
 825        packed = is_struct ? btf_is_struct_packed(d->btf, id, t) : 0;
 826        align = packed ? 1 : btf_align_of(d->btf, id);
 827
 828        btf_dump_printf(d, "%s%s%s {",
 829                        is_struct ? "struct" : "union",
 830                        t->name_off ? " " : "",
 831                        btf_dump_type_name(d, id));
 832
 833        for (i = 0; i < vlen; i++, m++) {
 834                const char *fname;
 835                int m_off, m_sz;
 836
 837                fname = btf_name_of(d, m->name_off);
 838                m_sz = kflag ? BTF_MEMBER_BITFIELD_SIZE(m->offset) : 0;
 839                m_off = kflag ? BTF_MEMBER_BIT_OFFSET(m->offset) : m->offset;
 840                align = packed ? 1 : btf_align_of(d->btf, m->type);
 841
 842                btf_dump_emit_bit_padding(d, off, m_off, m_sz, align, lvl + 1);
 843                btf_dump_printf(d, "\n%s", pfx(lvl + 1));
 844                btf_dump_emit_type_decl(d, m->type, fname, lvl + 1);
 845
 846                if (m_sz) {
 847                        btf_dump_printf(d, ": %d", m_sz);
 848                        off = m_off + m_sz;
 849                } else {
 850                        m_sz = max(0, btf__resolve_size(d->btf, m->type));
 851                        off = m_off + m_sz * 8;
 852                }
 853                btf_dump_printf(d, ";");
 854        }
 855
 856        if (vlen)
 857                btf_dump_printf(d, "\n");
 858        btf_dump_printf(d, "%s}", pfx(lvl));
 859        if (packed)
 860                btf_dump_printf(d, " __attribute__((packed))");
 861}
 862
 863static void btf_dump_emit_enum_fwd(struct btf_dump *d, __u32 id,
 864                                   const struct btf_type *t)
 865{
 866        btf_dump_printf(d, "enum %s", btf_dump_type_name(d, id));
 867}
 868
 869static void btf_dump_emit_enum_def(struct btf_dump *d, __u32 id,
 870                                   const struct btf_type *t,
 871                                   int lvl)
 872{
 873        const struct btf_enum *v = (void *)(t+1);
 874        __u16 vlen = btf_vlen_of(t);
 875        const char *name;
 876        size_t dup_cnt;
 877        int i;
 878
 879        btf_dump_printf(d, "enum%s%s",
 880                        t->name_off ? " " : "",
 881                        btf_dump_type_name(d, id));
 882
 883        if (vlen) {
 884                btf_dump_printf(d, " {");
 885                for (i = 0; i < vlen; i++, v++) {
 886                        name = btf_name_of(d, v->name_off);
 887                        /* enumerators share namespace with typedef idents */
 888                        dup_cnt = btf_dump_name_dups(d, d->ident_names, name);
 889                        if (dup_cnt > 1) {
 890                                btf_dump_printf(d, "\n%s%s___%zu = %d,",
 891                                                pfx(lvl + 1), name, dup_cnt,
 892                                                (__s32)v->val);
 893                        } else {
 894                                btf_dump_printf(d, "\n%s%s = %d,",
 895                                                pfx(lvl + 1), name,
 896                                                (__s32)v->val);
 897                        }
 898                }
 899                btf_dump_printf(d, "\n%s}", pfx(lvl));
 900        }
 901}
 902
 903static void btf_dump_emit_fwd_def(struct btf_dump *d, __u32 id,
 904                                  const struct btf_type *t)
 905{
 906        const char *name = btf_dump_type_name(d, id);
 907
 908        if (btf_kflag_of(t))
 909                btf_dump_printf(d, "union %s", name);
 910        else
 911                btf_dump_printf(d, "struct %s", name);
 912}
 913
 914static void btf_dump_emit_typedef_def(struct btf_dump *d, __u32 id,
 915                                     const struct btf_type *t, int lvl)
 916{
 917        const char *name = btf_dump_ident_name(d, id);
 918
 919        btf_dump_printf(d, "typedef ");
 920        btf_dump_emit_type_decl(d, t->type, name, lvl);
 921}
 922
 923static int btf_dump_push_decl_stack_id(struct btf_dump *d, __u32 id)
 924{
 925        __u32 *new_stack;
 926        size_t new_cap;
 927
 928        if (d->decl_stack_cnt >= d->decl_stack_cap) {
 929                new_cap = max(16, d->decl_stack_cap * 3 / 2);
 930                new_stack = realloc(d->decl_stack,
 931                                    new_cap * sizeof(new_stack[0]));
 932                if (!new_stack)
 933                        return -ENOMEM;
 934                d->decl_stack = new_stack;
 935                d->decl_stack_cap = new_cap;
 936        }
 937
 938        d->decl_stack[d->decl_stack_cnt++] = id;
 939
 940        return 0;
 941}
 942
 943/*
 944 * Emit type declaration (e.g., field type declaration in a struct or argument
 945 * declaration in function prototype) in correct C syntax.
 946 *
 947 * For most types it's trivial, but there are few quirky type declaration
 948 * cases worth mentioning:
 949 *   - function prototypes (especially nesting of function prototypes);
 950 *   - arrays;
 951 *   - const/volatile/restrict for pointers vs other types.
 952 *
 953 * For a good discussion of *PARSING* C syntax (as a human), see
 954 * Peter van der Linden's "Expert C Programming: Deep C Secrets",
 955 * Ch.3 "Unscrambling Declarations in C".
 956 *
 957 * It won't help with BTF to C conversion much, though, as it's an opposite
 958 * problem. So we came up with this algorithm in reverse to van der Linden's
 959 * parsing algorithm. It goes from structured BTF representation of type
 960 * declaration to a valid compilable C syntax.
 961 *
 962 * For instance, consider this C typedef:
 963 *      typedef const int * const * arr[10] arr_t;
 964 * It will be represented in BTF with this chain of BTF types:
 965 *      [typedef] -> [array] -> [ptr] -> [const] -> [ptr] -> [const] -> [int]
 966 *
 967 * Notice how [const] modifier always goes before type it modifies in BTF type
 968 * graph, but in C syntax, const/volatile/restrict modifiers are written to
 969 * the right of pointers, but to the left of other types. There are also other
 970 * quirks, like function pointers, arrays of them, functions returning other
 971 * functions, etc.
 972 *
 973 * We handle that by pushing all the types to a stack, until we hit "terminal"
 974 * type (int/enum/struct/union/fwd). Then depending on the kind of a type on
 975 * top of a stack, modifiers are handled differently. Array/function pointers
 976 * have also wildly different syntax and how nesting of them are done. See
 977 * code for authoritative definition.
 978 *
 979 * To avoid allocating new stack for each independent chain of BTF types, we
 980 * share one bigger stack, with each chain working only on its own local view
 981 * of a stack frame. Some care is required to "pop" stack frames after
 982 * processing type declaration chain.
 983 */
 984static void btf_dump_emit_type_decl(struct btf_dump *d, __u32 id,
 985                                    const char *fname, int lvl)
 986{
 987        struct id_stack decl_stack;
 988        const struct btf_type *t;
 989        int err, stack_start;
 990        __u16 kind;
 991
 992        stack_start = d->decl_stack_cnt;
 993        for (;;) {
 994                err = btf_dump_push_decl_stack_id(d, id);
 995                if (err < 0) {
 996                        /*
 997                         * if we don't have enough memory for entire type decl
 998                         * chain, restore stack, emit warning, and try to
 999                         * proceed nevertheless
1000                         */
1001                        pr_warning("not enough memory for decl stack:%d", err);
1002                        d->decl_stack_cnt = stack_start;
1003                        return;
1004                }
1005
1006                /* VOID */
1007                if (id == 0)
1008                        break;
1009
1010                t = btf__type_by_id(d->btf, id);
1011                kind = btf_kind_of(t);
1012                switch (kind) {
1013                case BTF_KIND_PTR:
1014                case BTF_KIND_VOLATILE:
1015                case BTF_KIND_CONST:
1016                case BTF_KIND_RESTRICT:
1017                case BTF_KIND_FUNC_PROTO:
1018                        id = t->type;
1019                        break;
1020                case BTF_KIND_ARRAY: {
1021                        const struct btf_array *a = (void *)(t + 1);
1022
1023                        id = a->type;
1024                        break;
1025                }
1026                case BTF_KIND_INT:
1027                case BTF_KIND_ENUM:
1028                case BTF_KIND_FWD:
1029                case BTF_KIND_STRUCT:
1030                case BTF_KIND_UNION:
1031                case BTF_KIND_TYPEDEF:
1032                        goto done;
1033                default:
1034                        pr_warning("unexpected type in decl chain, kind:%u, id:[%u]\n",
1035                                   kind, id);
1036                        goto done;
1037                }
1038        }
1039done:
1040        /*
1041         * We might be inside a chain of declarations (e.g., array of function
1042         * pointers returning anonymous (so inlined) structs, having another
1043         * array field). Each of those needs its own "stack frame" to handle
1044         * emitting of declarations. Those stack frames are non-overlapping
1045         * portions of shared btf_dump->decl_stack. To make it a bit nicer to
1046         * handle this set of nested stacks, we create a view corresponding to
1047         * our own "stack frame" and work with it as an independent stack.
1048         * We'll need to clean up after emit_type_chain() returns, though.
1049         */
1050        decl_stack.ids = d->decl_stack + stack_start;
1051        decl_stack.cnt = d->decl_stack_cnt - stack_start;
1052        btf_dump_emit_type_chain(d, &decl_stack, fname, lvl);
1053        /*
1054         * emit_type_chain() guarantees that it will pop its entire decl_stack
1055         * frame before returning. But it works with a read-only view into
1056         * decl_stack, so it doesn't actually pop anything from the
1057         * perspective of shared btf_dump->decl_stack, per se. We need to
1058         * reset decl_stack state to how it was before us to avoid it growing
1059         * all the time.
1060         */
1061        d->decl_stack_cnt = stack_start;
1062}
1063
1064static void btf_dump_emit_mods(struct btf_dump *d, struct id_stack *decl_stack)
1065{
1066        const struct btf_type *t;
1067        __u32 id;
1068
1069        while (decl_stack->cnt) {
1070                id = decl_stack->ids[decl_stack->cnt - 1];
1071                t = btf__type_by_id(d->btf, id);
1072
1073                switch (btf_kind_of(t)) {
1074                case BTF_KIND_VOLATILE:
1075                        btf_dump_printf(d, "volatile ");
1076                        break;
1077                case BTF_KIND_CONST:
1078                        btf_dump_printf(d, "const ");
1079                        break;
1080                case BTF_KIND_RESTRICT:
1081                        btf_dump_printf(d, "restrict ");
1082                        break;
1083                default:
1084                        return;
1085                }
1086                decl_stack->cnt--;
1087        }
1088}
1089
1090static bool btf_is_mod_kind(const struct btf *btf, __u32 id)
1091{
1092        const struct btf_type *t = btf__type_by_id(btf, id);
1093
1094        switch (btf_kind_of(t)) {
1095        case BTF_KIND_VOLATILE:
1096        case BTF_KIND_CONST:
1097        case BTF_KIND_RESTRICT:
1098                return true;
1099        default:
1100                return false;
1101        }
1102}
1103
1104static void btf_dump_emit_name(const struct btf_dump *d,
1105                               const char *name, bool last_was_ptr)
1106{
1107        bool separate = name[0] && !last_was_ptr;
1108
1109        btf_dump_printf(d, "%s%s", separate ? " " : "", name);
1110}
1111
1112static void btf_dump_emit_type_chain(struct btf_dump *d,
1113                                     struct id_stack *decls,
1114                                     const char *fname, int lvl)
1115{
1116        /*
1117         * last_was_ptr is used to determine if we need to separate pointer
1118         * asterisk (*) from previous part of type signature with space, so
1119         * that we get `int ***`, instead of `int * * *`. We default to true
1120         * for cases where we have single pointer in a chain. E.g., in ptr ->
1121         * func_proto case. func_proto will start a new emit_type_chain call
1122         * with just ptr, which should be emitted as (*) or (*<fname>), so we
1123         * don't want to prepend space for that last pointer.
1124         */
1125        bool last_was_ptr = true;
1126        const struct btf_type *t;
1127        const char *name;
1128        __u16 kind;
1129        __u32 id;
1130
1131        while (decls->cnt) {
1132                id = decls->ids[--decls->cnt];
1133                if (id == 0) {
1134                        /* VOID is a special snowflake */
1135                        btf_dump_emit_mods(d, decls);
1136                        btf_dump_printf(d, "void");
1137                        last_was_ptr = false;
1138                        continue;
1139                }
1140
1141                t = btf__type_by_id(d->btf, id);
1142                kind = btf_kind_of(t);
1143
1144                switch (kind) {
1145                case BTF_KIND_INT:
1146                        btf_dump_emit_mods(d, decls);
1147                        name = btf_name_of(d, t->name_off);
1148                        btf_dump_printf(d, "%s", name);
1149                        break;
1150                case BTF_KIND_STRUCT:
1151                case BTF_KIND_UNION:
1152                        btf_dump_emit_mods(d, decls);
1153                        /* inline anonymous struct/union */
1154                        if (t->name_off == 0)
1155                                btf_dump_emit_struct_def(d, id, t, lvl);
1156                        else
1157                                btf_dump_emit_struct_fwd(d, id, t);
1158                        break;
1159                case BTF_KIND_ENUM:
1160                        btf_dump_emit_mods(d, decls);
1161                        /* inline anonymous enum */
1162                        if (t->name_off == 0)
1163                                btf_dump_emit_enum_def(d, id, t, lvl);
1164                        else
1165                                btf_dump_emit_enum_fwd(d, id, t);
1166                        break;
1167                case BTF_KIND_FWD:
1168                        btf_dump_emit_mods(d, decls);
1169                        btf_dump_emit_fwd_def(d, id, t);
1170                        break;
1171                case BTF_KIND_TYPEDEF:
1172                        btf_dump_emit_mods(d, decls);
1173                        btf_dump_printf(d, "%s", btf_dump_ident_name(d, id));
1174                        break;
1175                case BTF_KIND_PTR:
1176                        btf_dump_printf(d, "%s", last_was_ptr ? "*" : " *");
1177                        break;
1178                case BTF_KIND_VOLATILE:
1179                        btf_dump_printf(d, " volatile");
1180                        break;
1181                case BTF_KIND_CONST:
1182                        btf_dump_printf(d, " const");
1183                        break;
1184                case BTF_KIND_RESTRICT:
1185                        btf_dump_printf(d, " restrict");
1186                        break;
1187                case BTF_KIND_ARRAY: {
1188                        const struct btf_array *a = (void *)(t + 1);
1189                        const struct btf_type *next_t;
1190                        __u32 next_id;
1191                        bool multidim;
1192                        /*
1193                         * GCC has a bug
1194                         * (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=8354)
1195                         * which causes it to emit extra const/volatile
1196                         * modifiers for an array, if array's element type has
1197                         * const/volatile modifiers. Clang doesn't do that.
1198                         * In general, it doesn't seem very meaningful to have
1199                         * a const/volatile modifier for array, so we are
1200                         * going to silently skip them here.
1201                         */
1202                        while (decls->cnt) {
1203                                next_id = decls->ids[decls->cnt - 1];
1204                                if (btf_is_mod_kind(d->btf, next_id))
1205                                        decls->cnt--;
1206                                else
1207                                        break;
1208                        }
1209
1210                        if (decls->cnt == 0) {
1211                                btf_dump_emit_name(d, fname, last_was_ptr);
1212                                btf_dump_printf(d, "[%u]", a->nelems);
1213                                return;
1214                        }
1215
1216                        next_t = btf__type_by_id(d->btf, next_id);
1217                        multidim = btf_kind_of(next_t) == BTF_KIND_ARRAY;
1218                        /* we need space if we have named non-pointer */
1219                        if (fname[0] && !last_was_ptr)
1220                                btf_dump_printf(d, " ");
1221                        /* no parentheses for multi-dimensional array */
1222                        if (!multidim)
1223                                btf_dump_printf(d, "(");
1224                        btf_dump_emit_type_chain(d, decls, fname, lvl);
1225                        if (!multidim)
1226                                btf_dump_printf(d, ")");
1227                        btf_dump_printf(d, "[%u]", a->nelems);
1228                        return;
1229                }
1230                case BTF_KIND_FUNC_PROTO: {
1231                        const struct btf_param *p = (void *)(t + 1);
1232                        __u16 vlen = btf_vlen_of(t);
1233                        int i;
1234
1235                        btf_dump_emit_mods(d, decls);
1236                        if (decls->cnt) {
1237                                btf_dump_printf(d, " (");
1238                                btf_dump_emit_type_chain(d, decls, fname, lvl);
1239                                btf_dump_printf(d, ")");
1240                        } else {
1241                                btf_dump_emit_name(d, fname, last_was_ptr);
1242                        }
1243                        btf_dump_printf(d, "(");
1244                        /*
1245                         * Clang for BPF target generates func_proto with no
1246                         * args as a func_proto with a single void arg (e.g.,
1247                         * `int (*f)(void)` vs just `int (*f)()`). We are
1248                         * going to pretend there are no args for such case.
1249                         */
1250                        if (vlen == 1 && p->type == 0) {
1251                                btf_dump_printf(d, ")");
1252                                return;
1253                        }
1254
1255                        for (i = 0; i < vlen; i++, p++) {
1256                                if (i > 0)
1257                                        btf_dump_printf(d, ", ");
1258
1259                                /* last arg of type void is vararg */
1260                                if (i == vlen - 1 && p->type == 0) {
1261                                        btf_dump_printf(d, "...");
1262                                        break;
1263                                }
1264
1265                                name = btf_name_of(d, p->name_off);
1266                                btf_dump_emit_type_decl(d, p->type, name, lvl);
1267                        }
1268
1269                        btf_dump_printf(d, ")");
1270                        return;
1271                }
1272                default:
1273                        pr_warning("unexpected type in decl chain, kind:%u, id:[%u]\n",
1274                                   kind, id);
1275                        return;
1276                }
1277
1278                last_was_ptr = kind == BTF_KIND_PTR;
1279        }
1280
1281        btf_dump_emit_name(d, fname, last_was_ptr);
1282}
1283
1284/* return number of duplicates (occurrences) of a given name */
1285static size_t btf_dump_name_dups(struct btf_dump *d, struct hashmap *name_map,
1286                                 const char *orig_name)
1287{
1288        size_t dup_cnt = 0;
1289
1290        hashmap__find(name_map, orig_name, (void **)&dup_cnt);
1291        dup_cnt++;
1292        hashmap__set(name_map, orig_name, (void *)dup_cnt, NULL, NULL);
1293
1294        return dup_cnt;
1295}
1296
1297static const char *btf_dump_resolve_name(struct btf_dump *d, __u32 id,
1298                                         struct hashmap *name_map)
1299{
1300        struct btf_dump_type_aux_state *s = &d->type_states[id];
1301        const struct btf_type *t = btf__type_by_id(d->btf, id);
1302        const char *orig_name = btf_name_of(d, t->name_off);
1303        const char **cached_name = &d->cached_names[id];
1304        size_t dup_cnt;
1305
1306        if (t->name_off == 0)
1307                return "";
1308
1309        if (s->name_resolved)
1310                return *cached_name ? *cached_name : orig_name;
1311
1312        dup_cnt = btf_dump_name_dups(d, name_map, orig_name);
1313        if (dup_cnt > 1) {
1314                const size_t max_len = 256;
1315                char new_name[max_len];
1316
1317                snprintf(new_name, max_len, "%s___%zu", orig_name, dup_cnt);
1318                *cached_name = strdup(new_name);
1319        }
1320
1321        s->name_resolved = 1;
1322        return *cached_name ? *cached_name : orig_name;
1323}
1324
1325static const char *btf_dump_type_name(struct btf_dump *d, __u32 id)
1326{
1327        return btf_dump_resolve_name(d, id, d->type_names);
1328}
1329
1330static const char *btf_dump_ident_name(struct btf_dump *d, __u32 id)
1331{
1332        return btf_dump_resolve_name(d, id, d->ident_names);
1333}
1334