linux/tools/lib/traceevent/kbuffer-parse.c
<<
>>
Prefs
   1// SPDX-License-Identifier: LGPL-2.1
   2/*
   3 * Copyright (C) 2009, 2010 Red Hat Inc, Steven Rostedt <srostedt@redhat.com>
   4 *
   5 */
   6#include <stdio.h>
   7#include <stdlib.h>
   8#include <string.h>
   9
  10#include "kbuffer.h"
  11
  12#define MISSING_EVENTS (1UL << 31)
  13#define MISSING_STORED (1UL << 30)
  14
  15#define COMMIT_MASK ((1 << 27) - 1)
  16
  17enum {
  18        KBUFFER_FL_HOST_BIG_ENDIAN      = (1<<0),
  19        KBUFFER_FL_BIG_ENDIAN           = (1<<1),
  20        KBUFFER_FL_LONG_8               = (1<<2),
  21        KBUFFER_FL_OLD_FORMAT           = (1<<3),
  22};
  23
  24#define ENDIAN_MASK (KBUFFER_FL_HOST_BIG_ENDIAN | KBUFFER_FL_BIG_ENDIAN)
  25
  26/** kbuffer
  27 * @timestamp           - timestamp of current event
  28 * @lost_events         - # of lost events between this subbuffer and previous
  29 * @flags               - special flags of the kbuffer
  30 * @subbuffer           - pointer to the sub-buffer page
  31 * @data                - pointer to the start of data on the sub-buffer page
  32 * @index               - index from @data to the @curr event data
  33 * @curr                - offset from @data to the start of current event
  34 *                         (includes metadata)
  35 * @next                - offset from @data to the start of next event
  36 * @size                - The size of data on @data
  37 * @start               - The offset from @subbuffer where @data lives
  38 *
  39 * @read_4              - Function to read 4 raw bytes (may swap)
  40 * @read_8              - Function to read 8 raw bytes (may swap)
  41 * @read_long           - Function to read a long word (4 or 8 bytes with needed swap)
  42 */
  43struct kbuffer {
  44        unsigned long long      timestamp;
  45        long long               lost_events;
  46        unsigned long           flags;
  47        void                    *subbuffer;
  48        void                    *data;
  49        unsigned int            index;
  50        unsigned int            curr;
  51        unsigned int            next;
  52        unsigned int            size;
  53        unsigned int            start;
  54
  55        unsigned int (*read_4)(void *ptr);
  56        unsigned long long (*read_8)(void *ptr);
  57        unsigned long long (*read_long)(struct kbuffer *kbuf, void *ptr);
  58        int (*next_event)(struct kbuffer *kbuf);
  59};
  60
  61static void *zmalloc(size_t size)
  62{
  63        return calloc(1, size);
  64}
  65
  66static int host_is_bigendian(void)
  67{
  68        unsigned char str[] = { 0x1, 0x2, 0x3, 0x4 };
  69        unsigned int *ptr;
  70
  71        ptr = (unsigned int *)str;
  72        return *ptr == 0x01020304;
  73}
  74
  75static int do_swap(struct kbuffer *kbuf)
  76{
  77        return ((kbuf->flags & KBUFFER_FL_HOST_BIG_ENDIAN) + kbuf->flags) &
  78                ENDIAN_MASK;
  79}
  80
  81static unsigned long long __read_8(void *ptr)
  82{
  83        unsigned long long data = *(unsigned long long *)ptr;
  84
  85        return data;
  86}
  87
  88static unsigned long long __read_8_sw(void *ptr)
  89{
  90        unsigned long long data = *(unsigned long long *)ptr;
  91        unsigned long long swap;
  92
  93        swap = ((data & 0xffULL) << 56) |
  94                ((data & (0xffULL << 8)) << 40) |
  95                ((data & (0xffULL << 16)) << 24) |
  96                ((data & (0xffULL << 24)) << 8) |
  97                ((data & (0xffULL << 32)) >> 8) |
  98                ((data & (0xffULL << 40)) >> 24) |
  99                ((data & (0xffULL << 48)) >> 40) |
 100                ((data & (0xffULL << 56)) >> 56);
 101
 102        return swap;
 103}
 104
 105static unsigned int __read_4(void *ptr)
 106{
 107        unsigned int data = *(unsigned int *)ptr;
 108
 109        return data;
 110}
 111
 112static unsigned int __read_4_sw(void *ptr)
 113{
 114        unsigned int data = *(unsigned int *)ptr;
 115        unsigned int swap;
 116
 117        swap = ((data & 0xffULL) << 24) |
 118                ((data & (0xffULL << 8)) << 8) |
 119                ((data & (0xffULL << 16)) >> 8) |
 120                ((data & (0xffULL << 24)) >> 24);
 121
 122        return swap;
 123}
 124
 125static unsigned long long read_8(struct kbuffer *kbuf, void *ptr)
 126{
 127        return kbuf->read_8(ptr);
 128}
 129
 130static unsigned int read_4(struct kbuffer *kbuf, void *ptr)
 131{
 132        return kbuf->read_4(ptr);
 133}
 134
 135static unsigned long long __read_long_8(struct kbuffer *kbuf, void *ptr)
 136{
 137        return kbuf->read_8(ptr);
 138}
 139
 140static unsigned long long __read_long_4(struct kbuffer *kbuf, void *ptr)
 141{
 142        return kbuf->read_4(ptr);
 143}
 144
 145static unsigned long long read_long(struct kbuffer *kbuf, void *ptr)
 146{
 147        return kbuf->read_long(kbuf, ptr);
 148}
 149
 150static int calc_index(struct kbuffer *kbuf, void *ptr)
 151{
 152        return (unsigned long)ptr - (unsigned long)kbuf->data;
 153}
 154
 155static int __next_event(struct kbuffer *kbuf);
 156
 157/**
 158 * kbuffer_alloc - allocat a new kbuffer
 159 * @size;       enum to denote size of word
 160 * @endian:     enum to denote endianness
 161 *
 162 * Allocates and returns a new kbuffer.
 163 */
 164struct kbuffer *
 165kbuffer_alloc(enum kbuffer_long_size size, enum kbuffer_endian endian)
 166{
 167        struct kbuffer *kbuf;
 168        int flags = 0;
 169
 170        switch (size) {
 171        case KBUFFER_LSIZE_4:
 172                break;
 173        case KBUFFER_LSIZE_8:
 174                flags |= KBUFFER_FL_LONG_8;
 175                break;
 176        default:
 177                return NULL;
 178        }
 179
 180        switch (endian) {
 181        case KBUFFER_ENDIAN_LITTLE:
 182                break;
 183        case KBUFFER_ENDIAN_BIG:
 184                flags |= KBUFFER_FL_BIG_ENDIAN;
 185                break;
 186        default:
 187                return NULL;
 188        }
 189
 190        kbuf = zmalloc(sizeof(*kbuf));
 191        if (!kbuf)
 192                return NULL;
 193
 194        kbuf->flags = flags;
 195
 196        if (host_is_bigendian())
 197                kbuf->flags |= KBUFFER_FL_HOST_BIG_ENDIAN;
 198
 199        if (do_swap(kbuf)) {
 200                kbuf->read_8 = __read_8_sw;
 201                kbuf->read_4 = __read_4_sw;
 202        } else {
 203                kbuf->read_8 = __read_8;
 204                kbuf->read_4 = __read_4;
 205        }
 206
 207        if (kbuf->flags & KBUFFER_FL_LONG_8)
 208                kbuf->read_long = __read_long_8;
 209        else
 210                kbuf->read_long = __read_long_4;
 211
 212        /* May be changed by kbuffer_set_old_format() */
 213        kbuf->next_event = __next_event;
 214
 215        return kbuf;
 216}
 217
 218/** kbuffer_free - free an allocated kbuffer
 219 * @kbuf:       The kbuffer to free
 220 *
 221 * Can take NULL as a parameter.
 222 */
 223void kbuffer_free(struct kbuffer *kbuf)
 224{
 225        free(kbuf);
 226}
 227
 228static unsigned int type4host(struct kbuffer *kbuf,
 229                              unsigned int type_len_ts)
 230{
 231        if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
 232                return (type_len_ts >> 29) & 3;
 233        else
 234                return type_len_ts & 3;
 235}
 236
 237static unsigned int len4host(struct kbuffer *kbuf,
 238                             unsigned int type_len_ts)
 239{
 240        if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
 241                return (type_len_ts >> 27) & 7;
 242        else
 243                return (type_len_ts >> 2) & 7;
 244}
 245
 246static unsigned int type_len4host(struct kbuffer *kbuf,
 247                                  unsigned int type_len_ts)
 248{
 249        if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
 250                return (type_len_ts >> 27) & ((1 << 5) - 1);
 251        else
 252                return type_len_ts & ((1 << 5) - 1);
 253}
 254
 255static unsigned int ts4host(struct kbuffer *kbuf,
 256                            unsigned int type_len_ts)
 257{
 258        if (kbuf->flags & KBUFFER_FL_BIG_ENDIAN)
 259                return type_len_ts & ((1 << 27) - 1);
 260        else
 261                return type_len_ts >> 5;
 262}
 263
 264/*
 265 * Linux 2.6.30 and earlier (not much ealier) had a different
 266 * ring buffer format. It should be obsolete, but we handle it anyway.
 267 */
 268enum old_ring_buffer_type {
 269        OLD_RINGBUF_TYPE_PADDING,
 270        OLD_RINGBUF_TYPE_TIME_EXTEND,
 271        OLD_RINGBUF_TYPE_TIME_STAMP,
 272        OLD_RINGBUF_TYPE_DATA,
 273};
 274
 275static unsigned int old_update_pointers(struct kbuffer *kbuf)
 276{
 277        unsigned long long extend;
 278        unsigned int type_len_ts;
 279        unsigned int type;
 280        unsigned int len;
 281        unsigned int delta;
 282        unsigned int length;
 283        void *ptr = kbuf->data + kbuf->curr;
 284
 285        type_len_ts = read_4(kbuf, ptr);
 286        ptr += 4;
 287
 288        type = type4host(kbuf, type_len_ts);
 289        len = len4host(kbuf, type_len_ts);
 290        delta = ts4host(kbuf, type_len_ts);
 291
 292        switch (type) {
 293        case OLD_RINGBUF_TYPE_PADDING:
 294                kbuf->next = kbuf->size;
 295                return 0;
 296
 297        case OLD_RINGBUF_TYPE_TIME_EXTEND:
 298                extend = read_4(kbuf, ptr);
 299                extend <<= TS_SHIFT;
 300                extend += delta;
 301                delta = extend;
 302                ptr += 4;
 303                length = 0;
 304                break;
 305
 306        case OLD_RINGBUF_TYPE_TIME_STAMP:
 307                /* should never happen! */
 308                kbuf->curr = kbuf->size;
 309                kbuf->next = kbuf->size;
 310                kbuf->index = kbuf->size;
 311                return -1;
 312        default:
 313                if (len)
 314                        length = len * 4;
 315                else {
 316                        length = read_4(kbuf, ptr);
 317                        length -= 4;
 318                        ptr += 4;
 319                }
 320                break;
 321        }
 322
 323        kbuf->timestamp += delta;
 324        kbuf->index = calc_index(kbuf, ptr);
 325        kbuf->next = kbuf->index + length;
 326
 327        return type;
 328}
 329
 330static int __old_next_event(struct kbuffer *kbuf)
 331{
 332        int type;
 333
 334        do {
 335                kbuf->curr = kbuf->next;
 336                if (kbuf->next >= kbuf->size)
 337                        return -1;
 338                type = old_update_pointers(kbuf);
 339        } while (type == OLD_RINGBUF_TYPE_TIME_EXTEND || type == OLD_RINGBUF_TYPE_PADDING);
 340
 341        return 0;
 342}
 343
 344static unsigned int
 345translate_data(struct kbuffer *kbuf, void *data, void **rptr,
 346               unsigned long long *delta, int *length)
 347{
 348        unsigned long long extend;
 349        unsigned int type_len_ts;
 350        unsigned int type_len;
 351
 352        type_len_ts = read_4(kbuf, data);
 353        data += 4;
 354
 355        type_len = type_len4host(kbuf, type_len_ts);
 356        *delta = ts4host(kbuf, type_len_ts);
 357
 358        switch (type_len) {
 359        case KBUFFER_TYPE_PADDING:
 360                *length = read_4(kbuf, data);
 361                break;
 362
 363        case KBUFFER_TYPE_TIME_EXTEND:
 364                extend = read_4(kbuf, data);
 365                data += 4;
 366                extend <<= TS_SHIFT;
 367                extend += *delta;
 368                *delta = extend;
 369                *length = 0;
 370                break;
 371
 372        case KBUFFER_TYPE_TIME_STAMP:
 373                data += 12;
 374                *length = 0;
 375                break;
 376        case 0:
 377                *length = read_4(kbuf, data) - 4;
 378                *length = (*length + 3) & ~3;
 379                data += 4;
 380                break;
 381        default:
 382                *length = type_len * 4;
 383                break;
 384        }
 385
 386        *rptr = data;
 387
 388        return type_len;
 389}
 390
 391static unsigned int update_pointers(struct kbuffer *kbuf)
 392{
 393        unsigned long long delta;
 394        unsigned int type_len;
 395        int length;
 396        void *ptr = kbuf->data + kbuf->curr;
 397
 398        type_len = translate_data(kbuf, ptr, &ptr, &delta, &length);
 399
 400        kbuf->timestamp += delta;
 401        kbuf->index = calc_index(kbuf, ptr);
 402        kbuf->next = kbuf->index + length;
 403
 404        return type_len;
 405}
 406
 407/**
 408 * kbuffer_translate_data - read raw data to get a record
 409 * @swap:       Set to 1 if bytes in words need to be swapped when read
 410 * @data:       The raw data to read
 411 * @size:       Address to store the size of the event data.
 412 *
 413 * Returns a pointer to the event data. To determine the entire
 414 * record size (record metadata + data) just add the difference between
 415 * @data and the returned value to @size.
 416 */
 417void *kbuffer_translate_data(int swap, void *data, unsigned int *size)
 418{
 419        unsigned long long delta;
 420        struct kbuffer kbuf;
 421        int type_len;
 422        int length;
 423        void *ptr;
 424
 425        if (swap) {
 426                kbuf.read_8 = __read_8_sw;
 427                kbuf.read_4 = __read_4_sw;
 428                kbuf.flags = host_is_bigendian() ? 0 : KBUFFER_FL_BIG_ENDIAN;
 429        } else {
 430                kbuf.read_8 = __read_8;
 431                kbuf.read_4 = __read_4;
 432                kbuf.flags = host_is_bigendian() ? KBUFFER_FL_BIG_ENDIAN: 0;
 433        }
 434
 435        type_len = translate_data(&kbuf, data, &ptr, &delta, &length);
 436        switch (type_len) {
 437        case KBUFFER_TYPE_PADDING:
 438        case KBUFFER_TYPE_TIME_EXTEND:
 439        case KBUFFER_TYPE_TIME_STAMP:
 440                return NULL;
 441        };
 442
 443        *size = length;
 444
 445        return ptr;
 446}
 447
 448static int __next_event(struct kbuffer *kbuf)
 449{
 450        int type;
 451
 452        do {
 453                kbuf->curr = kbuf->next;
 454                if (kbuf->next >= kbuf->size)
 455                        return -1;
 456                type = update_pointers(kbuf);
 457        } while (type == KBUFFER_TYPE_TIME_EXTEND || type == KBUFFER_TYPE_PADDING);
 458
 459        return 0;
 460}
 461
 462static int next_event(struct kbuffer *kbuf)
 463{
 464        return kbuf->next_event(kbuf);
 465}
 466
 467/**
 468 * kbuffer_next_event - increment the current pointer
 469 * @kbuf:       The kbuffer to read
 470 * @ts:         Address to store the next record's timestamp (may be NULL to ignore)
 471 *
 472 * Increments the pointers into the subbuffer of the kbuffer to point to the
 473 * next event so that the next kbuffer_read_event() will return a
 474 * new event.
 475 *
 476 * Returns the data of the next event if a new event exists on the subbuffer,
 477 * NULL otherwise.
 478 */
 479void *kbuffer_next_event(struct kbuffer *kbuf, unsigned long long *ts)
 480{
 481        int ret;
 482
 483        if (!kbuf || !kbuf->subbuffer)
 484                return NULL;
 485
 486        ret = next_event(kbuf);
 487        if (ret < 0)
 488                return NULL;
 489
 490        if (ts)
 491                *ts = kbuf->timestamp;
 492
 493        return kbuf->data + kbuf->index;
 494}
 495
 496/**
 497 * kbuffer_load_subbuffer - load a new subbuffer into the kbuffer
 498 * @kbuf:       The kbuffer to load
 499 * @subbuffer:  The subbuffer to load into @kbuf.
 500 *
 501 * Load a new subbuffer (page) into @kbuf. This will reset all
 502 * the pointers and update the @kbuf timestamp. The next read will
 503 * return the first event on @subbuffer.
 504 *
 505 * Returns 0 on succes, -1 otherwise.
 506 */
 507int kbuffer_load_subbuffer(struct kbuffer *kbuf, void *subbuffer)
 508{
 509        unsigned long long flags;
 510        void *ptr = subbuffer;
 511
 512        if (!kbuf || !subbuffer)
 513                return -1;
 514
 515        kbuf->subbuffer = subbuffer;
 516
 517        kbuf->timestamp = read_8(kbuf, ptr);
 518        ptr += 8;
 519
 520        kbuf->curr = 0;
 521
 522        if (kbuf->flags & KBUFFER_FL_LONG_8)
 523                kbuf->start = 16;
 524        else
 525                kbuf->start = 12;
 526
 527        kbuf->data = subbuffer + kbuf->start;
 528
 529        flags = read_long(kbuf, ptr);
 530        kbuf->size = (unsigned int)flags & COMMIT_MASK;
 531
 532        if (flags & MISSING_EVENTS) {
 533                if (flags & MISSING_STORED) {
 534                        ptr = kbuf->data + kbuf->size;
 535                        kbuf->lost_events = read_long(kbuf, ptr);
 536                } else
 537                        kbuf->lost_events = -1;
 538        } else
 539                kbuf->lost_events = 0;
 540
 541        kbuf->index = 0;
 542        kbuf->next = 0;
 543
 544        next_event(kbuf);
 545
 546        return 0;
 547}
 548
 549/**
 550 * kbuffer_read_event - read the next event in the kbuffer subbuffer
 551 * @kbuf:       The kbuffer to read from
 552 * @ts:         The address to store the timestamp of the event (may be NULL to ignore)
 553 *
 554 * Returns a pointer to the data part of the current event.
 555 * NULL if no event is left on the subbuffer.
 556 */
 557void *kbuffer_read_event(struct kbuffer *kbuf, unsigned long long *ts)
 558{
 559        if (!kbuf || !kbuf->subbuffer)
 560                return NULL;
 561
 562        if (kbuf->curr >= kbuf->size)
 563                return NULL;
 564
 565        if (ts)
 566                *ts = kbuf->timestamp;
 567        return kbuf->data + kbuf->index;
 568}
 569
 570/**
 571 * kbuffer_timestamp - Return the timestamp of the current event
 572 * @kbuf:       The kbuffer to read from
 573 *
 574 * Returns the timestamp of the current (next) event.
 575 */
 576unsigned long long kbuffer_timestamp(struct kbuffer *kbuf)
 577{
 578        return kbuf->timestamp;
 579}
 580
 581/**
 582 * kbuffer_read_at_offset - read the event that is at offset
 583 * @kbuf:       The kbuffer to read from
 584 * @offset:     The offset into the subbuffer
 585 * @ts:         The address to store the timestamp of the event (may be NULL to ignore)
 586 *
 587 * The @offset must be an index from the @kbuf subbuffer beginning.
 588 * If @offset is bigger than the stored subbuffer, NULL will be returned.
 589 *
 590 * Returns the data of the record that is at @offset. Note, @offset does
 591 * not need to be the start of the record, the offset just needs to be
 592 * in the record (or beginning of it).
 593 *
 594 * Note, the kbuf timestamp and pointers are updated to the
 595 * returned record. That is, kbuffer_read_event() will return the same
 596 * data and timestamp, and kbuffer_next_event() will increment from
 597 * this record.
 598 */
 599void *kbuffer_read_at_offset(struct kbuffer *kbuf, int offset,
 600                             unsigned long long *ts)
 601{
 602        void *data;
 603
 604        if (offset < kbuf->start)
 605                offset = 0;
 606        else
 607                offset -= kbuf->start;
 608
 609        /* Reset the buffer */
 610        kbuffer_load_subbuffer(kbuf, kbuf->subbuffer);
 611        data = kbuffer_read_event(kbuf, ts);
 612
 613        while (kbuf->curr < offset) {
 614                data = kbuffer_next_event(kbuf, ts);
 615                if (!data)
 616                        break;
 617        }
 618
 619        return data;
 620}
 621
 622/**
 623 * kbuffer_subbuffer_size - the size of the loaded subbuffer
 624 * @kbuf:       The kbuffer to read from
 625 *
 626 * Returns the size of the subbuffer. Note, this size is
 627 * where the last event resides. The stored subbuffer may actually be
 628 * bigger due to padding and such.
 629 */
 630int kbuffer_subbuffer_size(struct kbuffer *kbuf)
 631{
 632        return kbuf->size;
 633}
 634
 635/**
 636 * kbuffer_curr_index - Return the index of the record
 637 * @kbuf:       The kbuffer to read from
 638 *
 639 * Returns the index from the start of the data part of
 640 * the subbuffer to the current location. Note this is not
 641 * from the start of the subbuffer. An index of zero will
 642 * point to the first record. Use kbuffer_curr_offset() for
 643 * the actually offset (that can be used by kbuffer_read_at_offset())
 644 */
 645int kbuffer_curr_index(struct kbuffer *kbuf)
 646{
 647        return kbuf->curr;
 648}
 649
 650/**
 651 * kbuffer_curr_offset - Return the offset of the record
 652 * @kbuf:       The kbuffer to read from
 653 *
 654 * Returns the offset from the start of the subbuffer to the
 655 * current location.
 656 */
 657int kbuffer_curr_offset(struct kbuffer *kbuf)
 658{
 659        return kbuf->curr + kbuf->start;
 660}
 661
 662/**
 663 * kbuffer_event_size - return the size of the event data
 664 * @kbuf:       The kbuffer to read
 665 *
 666 * Returns the size of the event data (the payload not counting
 667 * the meta data of the record) of the current event.
 668 */
 669int kbuffer_event_size(struct kbuffer *kbuf)
 670{
 671        return kbuf->next - kbuf->index;
 672}
 673
 674/**
 675 * kbuffer_curr_size - return the size of the entire record
 676 * @kbuf:       The kbuffer to read
 677 *
 678 * Returns the size of the entire record (meta data and payload)
 679 * of the current event.
 680 */
 681int kbuffer_curr_size(struct kbuffer *kbuf)
 682{
 683        return kbuf->next - kbuf->curr;
 684}
 685
 686/**
 687 * kbuffer_missed_events - return the # of missed events from last event.
 688 * @kbuf:       The kbuffer to read from
 689 *
 690 * Returns the # of missed events (if recorded) before the current
 691 * event. Note, only events on the beginning of a subbuffer can
 692 * have missed events, all other events within the buffer will be
 693 * zero.
 694 */
 695int kbuffer_missed_events(struct kbuffer *kbuf)
 696{
 697        /* Only the first event can have missed events */
 698        if (kbuf->curr)
 699                return 0;
 700
 701        return kbuf->lost_events;
 702}
 703
 704/**
 705 * kbuffer_set_old_forma - set the kbuffer to use the old format parsing
 706 * @kbuf:       The kbuffer to set
 707 *
 708 * This is obsolete (or should be). The first kernels to use the
 709 * new ring buffer had a slightly different ring buffer format
 710 * (2.6.30 and earlier). It is still somewhat supported by kbuffer,
 711 * but should not be counted on in the future.
 712 */
 713void kbuffer_set_old_format(struct kbuffer *kbuf)
 714{
 715        kbuf->flags |= KBUFFER_FL_OLD_FORMAT;
 716
 717        kbuf->next_event = __old_next_event;
 718}
 719
 720/**
 721 * kbuffer_start_of_data - return offset of where data starts on subbuffer
 722 * @kbuf:       The kbuffer
 723 *
 724 * Returns the location on the subbuffer where the data starts.
 725 */
 726int kbuffer_start_of_data(struct kbuffer *kbuf)
 727{
 728        return kbuf->start;
 729}
 730
 731/**
 732 * kbuffer_raw_get - get raw buffer info
 733 * @kbuf:       The kbuffer
 734 * @subbuf:     Start of mapped subbuffer
 735 * @info:       Info descriptor to fill in
 736 *
 737 * For debugging. This can return internals of the ring buffer.
 738 * Expects to have info->next set to what it will read.
 739 * The type, length and timestamp delta will be filled in, and
 740 * @info->next will be updated to the next element.
 741 * The @subbuf is used to know if the info is passed the end of
 742 * data and NULL will be returned if it is.
 743 */
 744struct kbuffer_raw_info *
 745kbuffer_raw_get(struct kbuffer *kbuf, void *subbuf, struct kbuffer_raw_info *info)
 746{
 747        unsigned long long flags;
 748        unsigned long long delta;
 749        unsigned int type_len;
 750        unsigned int size;
 751        int start;
 752        int length;
 753        void *ptr = info->next;
 754
 755        if (!kbuf || !subbuf)
 756                return NULL;
 757
 758        if (kbuf->flags & KBUFFER_FL_LONG_8)
 759                start = 16;
 760        else
 761                start = 12;
 762
 763        flags = read_long(kbuf, subbuf + 8);
 764        size = (unsigned int)flags & COMMIT_MASK;
 765
 766        if (ptr < subbuf || ptr >= subbuf + start + size)
 767                return NULL;
 768
 769        type_len = translate_data(kbuf, ptr, &ptr, &delta, &length);
 770
 771        info->next = ptr + length;
 772
 773        info->type = type_len;
 774        info->delta = delta;
 775        info->length = length;
 776
 777        return info;
 778}
 779