linux/tools/perf/bench/numa.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * numa.c
   4 *
   5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
   6 */
   7
   8#include <inttypes.h>
   9/* For the CLR_() macros */
  10#include <pthread.h>
  11
  12#include "../perf.h"
  13#include "../builtin.h"
  14#include <subcmd/parse-options.h>
  15#include "../util/cloexec.h"
  16
  17#include "bench.h"
  18
  19#include <errno.h>
  20#include <sched.h>
  21#include <stdio.h>
  22#include <assert.h>
  23#include <malloc.h>
  24#include <signal.h>
  25#include <stdlib.h>
  26#include <string.h>
  27#include <unistd.h>
  28#include <sys/mman.h>
  29#include <sys/time.h>
  30#include <sys/resource.h>
  31#include <sys/wait.h>
  32#include <sys/prctl.h>
  33#include <sys/types.h>
  34#include <linux/kernel.h>
  35#include <linux/time64.h>
  36#include <linux/numa.h>
  37#include <linux/zalloc.h>
  38
  39#include <numa.h>
  40#include <numaif.h>
  41
  42#ifndef RUSAGE_THREAD
  43# define RUSAGE_THREAD 1
  44#endif
  45
  46/*
  47 * Regular printout to the terminal, supressed if -q is specified:
  48 */
  49#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
  50
  51/*
  52 * Debug printf:
  53 */
  54#undef dprintf
  55#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
  56
  57struct thread_data {
  58        int                     curr_cpu;
  59        cpu_set_t               bind_cpumask;
  60        int                     bind_node;
  61        u8                      *process_data;
  62        int                     process_nr;
  63        int                     thread_nr;
  64        int                     task_nr;
  65        unsigned int            loops_done;
  66        u64                     val;
  67        u64                     runtime_ns;
  68        u64                     system_time_ns;
  69        u64                     user_time_ns;
  70        double                  speed_gbs;
  71        pthread_mutex_t         *process_lock;
  72};
  73
  74/* Parameters set by options: */
  75
  76struct params {
  77        /* Startup synchronization: */
  78        bool                    serialize_startup;
  79
  80        /* Task hierarchy: */
  81        int                     nr_proc;
  82        int                     nr_threads;
  83
  84        /* Working set sizes: */
  85        const char              *mb_global_str;
  86        const char              *mb_proc_str;
  87        const char              *mb_proc_locked_str;
  88        const char              *mb_thread_str;
  89
  90        double                  mb_global;
  91        double                  mb_proc;
  92        double                  mb_proc_locked;
  93        double                  mb_thread;
  94
  95        /* Access patterns to the working set: */
  96        bool                    data_reads;
  97        bool                    data_writes;
  98        bool                    data_backwards;
  99        bool                    data_zero_memset;
 100        bool                    data_rand_walk;
 101        u32                     nr_loops;
 102        u32                     nr_secs;
 103        u32                     sleep_usecs;
 104
 105        /* Working set initialization: */
 106        bool                    init_zero;
 107        bool                    init_random;
 108        bool                    init_cpu0;
 109
 110        /* Misc options: */
 111        int                     show_details;
 112        int                     run_all;
 113        int                     thp;
 114
 115        long                    bytes_global;
 116        long                    bytes_process;
 117        long                    bytes_process_locked;
 118        long                    bytes_thread;
 119
 120        int                     nr_tasks;
 121        bool                    show_quiet;
 122
 123        bool                    show_convergence;
 124        bool                    measure_convergence;
 125
 126        int                     perturb_secs;
 127        int                     nr_cpus;
 128        int                     nr_nodes;
 129
 130        /* Affinity options -C and -N: */
 131        char                    *cpu_list_str;
 132        char                    *node_list_str;
 133};
 134
 135
 136/* Global, read-writable area, accessible to all processes and threads: */
 137
 138struct global_info {
 139        u8                      *data;
 140
 141        pthread_mutex_t         startup_mutex;
 142        int                     nr_tasks_started;
 143
 144        pthread_mutex_t         startup_done_mutex;
 145
 146        pthread_mutex_t         start_work_mutex;
 147        int                     nr_tasks_working;
 148
 149        pthread_mutex_t         stop_work_mutex;
 150        u64                     bytes_done;
 151
 152        struct thread_data      *threads;
 153
 154        /* Convergence latency measurement: */
 155        bool                    all_converged;
 156        bool                    stop_work;
 157
 158        int                     print_once;
 159
 160        struct params           p;
 161};
 162
 163static struct global_info       *g = NULL;
 164
 165static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
 166static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
 167
 168struct params p0;
 169
 170static const struct option options[] = {
 171        OPT_INTEGER('p', "nr_proc"      , &p0.nr_proc,          "number of processes"),
 172        OPT_INTEGER('t', "nr_threads"   , &p0.nr_threads,       "number of threads per process"),
 173
 174        OPT_STRING('G', "mb_global"     , &p0.mb_global_str,    "MB", "global  memory (MBs)"),
 175        OPT_STRING('P', "mb_proc"       , &p0.mb_proc_str,      "MB", "process memory (MBs)"),
 176        OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
 177        OPT_STRING('T', "mb_thread"     , &p0.mb_thread_str,    "MB", "thread  memory (MBs)"),
 178
 179        OPT_UINTEGER('l', "nr_loops"    , &p0.nr_loops,         "max number of loops to run (default: unlimited)"),
 180        OPT_UINTEGER('s', "nr_secs"     , &p0.nr_secs,          "max number of seconds to run (default: 5 secs)"),
 181        OPT_UINTEGER('u', "usleep"      , &p0.sleep_usecs,      "usecs to sleep per loop iteration"),
 182
 183        OPT_BOOLEAN('R', "data_reads"   , &p0.data_reads,       "access the data via reads (can be mixed with -W)"),
 184        OPT_BOOLEAN('W', "data_writes"  , &p0.data_writes,      "access the data via writes (can be mixed with -R)"),
 185        OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,  "access the data backwards as well"),
 186        OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
 187        OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,  "access the data with random (32bit LFSR) walk"),
 188
 189
 190        OPT_BOOLEAN('z', "init_zero"    , &p0.init_zero,        "bzero the initial allocations"),
 191        OPT_BOOLEAN('I', "init_random"  , &p0.init_random,      "randomize the contents of the initial allocations"),
 192        OPT_BOOLEAN('0', "init_cpu0"    , &p0.init_cpu0,        "do the initial allocations on CPU#0"),
 193        OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,      "perturb thread 0/0 every X secs, to test convergence stability"),
 194
 195        OPT_INCR   ('d', "show_details" , &p0.show_details,     "Show details"),
 196        OPT_INCR   ('a', "all"          , &p0.run_all,          "Run all tests in the suite"),
 197        OPT_INTEGER('H', "thp"          , &p0.thp,              "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
 198        OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
 199                    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
 200        OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"),
 201        OPT_BOOLEAN('q', "quiet"        , &p0.show_quiet,       "quiet mode"),
 202        OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
 203
 204        /* Special option string parsing callbacks: */
 205        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
 206                        "bind the first N tasks to these specific cpus (the rest is unbound)",
 207                        parse_cpus_opt),
 208        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
 209                        "bind the first N tasks to these specific memory nodes (the rest is unbound)",
 210                        parse_nodes_opt),
 211        OPT_END()
 212};
 213
 214static const char * const bench_numa_usage[] = {
 215        "perf bench numa <options>",
 216        NULL
 217};
 218
 219static const char * const numa_usage[] = {
 220        "perf bench numa mem [<options>]",
 221        NULL
 222};
 223
 224/*
 225 * To get number of numa nodes present.
 226 */
 227static int nr_numa_nodes(void)
 228{
 229        int i, nr_nodes = 0;
 230
 231        for (i = 0; i < g->p.nr_nodes; i++) {
 232                if (numa_bitmask_isbitset(numa_nodes_ptr, i))
 233                        nr_nodes++;
 234        }
 235
 236        return nr_nodes;
 237}
 238
 239/*
 240 * To check if given numa node is present.
 241 */
 242static int is_node_present(int node)
 243{
 244        return numa_bitmask_isbitset(numa_nodes_ptr, node);
 245}
 246
 247/*
 248 * To check given numa node has cpus.
 249 */
 250static bool node_has_cpus(int node)
 251{
 252        struct bitmask *cpu = numa_allocate_cpumask();
 253        unsigned int i;
 254
 255        if (cpu && !numa_node_to_cpus(node, cpu)) {
 256                for (i = 0; i < cpu->size; i++) {
 257                        if (numa_bitmask_isbitset(cpu, i))
 258                                return true;
 259                }
 260        }
 261
 262        return false; /* lets fall back to nocpus safely */
 263}
 264
 265static cpu_set_t bind_to_cpu(int target_cpu)
 266{
 267        cpu_set_t orig_mask, mask;
 268        int ret;
 269
 270        ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 271        BUG_ON(ret);
 272
 273        CPU_ZERO(&mask);
 274
 275        if (target_cpu == -1) {
 276                int cpu;
 277
 278                for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 279                        CPU_SET(cpu, &mask);
 280        } else {
 281                BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
 282                CPU_SET(target_cpu, &mask);
 283        }
 284
 285        ret = sched_setaffinity(0, sizeof(mask), &mask);
 286        BUG_ON(ret);
 287
 288        return orig_mask;
 289}
 290
 291static cpu_set_t bind_to_node(int target_node)
 292{
 293        int cpus_per_node = g->p.nr_cpus / nr_numa_nodes();
 294        cpu_set_t orig_mask, mask;
 295        int cpu;
 296        int ret;
 297
 298        BUG_ON(cpus_per_node * nr_numa_nodes() != g->p.nr_cpus);
 299        BUG_ON(!cpus_per_node);
 300
 301        ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 302        BUG_ON(ret);
 303
 304        CPU_ZERO(&mask);
 305
 306        if (target_node == NUMA_NO_NODE) {
 307                for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 308                        CPU_SET(cpu, &mask);
 309        } else {
 310                int cpu_start = (target_node + 0) * cpus_per_node;
 311                int cpu_stop  = (target_node + 1) * cpus_per_node;
 312
 313                BUG_ON(cpu_stop > g->p.nr_cpus);
 314
 315                for (cpu = cpu_start; cpu < cpu_stop; cpu++)
 316                        CPU_SET(cpu, &mask);
 317        }
 318
 319        ret = sched_setaffinity(0, sizeof(mask), &mask);
 320        BUG_ON(ret);
 321
 322        return orig_mask;
 323}
 324
 325static void bind_to_cpumask(cpu_set_t mask)
 326{
 327        int ret;
 328
 329        ret = sched_setaffinity(0, sizeof(mask), &mask);
 330        BUG_ON(ret);
 331}
 332
 333static void mempol_restore(void)
 334{
 335        int ret;
 336
 337        ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
 338
 339        BUG_ON(ret);
 340}
 341
 342static void bind_to_memnode(int node)
 343{
 344        unsigned long nodemask;
 345        int ret;
 346
 347        if (node == NUMA_NO_NODE)
 348                return;
 349
 350        BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
 351        nodemask = 1L << node;
 352
 353        ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
 354        dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
 355
 356        BUG_ON(ret);
 357}
 358
 359#define HPSIZE (2*1024*1024)
 360
 361#define set_taskname(fmt...)                            \
 362do {                                                    \
 363        char name[20];                                  \
 364                                                        \
 365        snprintf(name, 20, fmt);                        \
 366        prctl(PR_SET_NAME, name);                       \
 367} while (0)
 368
 369static u8 *alloc_data(ssize_t bytes0, int map_flags,
 370                      int init_zero, int init_cpu0, int thp, int init_random)
 371{
 372        cpu_set_t orig_mask;
 373        ssize_t bytes;
 374        u8 *buf;
 375        int ret;
 376
 377        if (!bytes0)
 378                return NULL;
 379
 380        /* Allocate and initialize all memory on CPU#0: */
 381        if (init_cpu0) {
 382                int node = numa_node_of_cpu(0);
 383
 384                orig_mask = bind_to_node(node);
 385                bind_to_memnode(node);
 386        }
 387
 388        bytes = bytes0 + HPSIZE;
 389
 390        buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
 391        BUG_ON(buf == (void *)-1);
 392
 393        if (map_flags == MAP_PRIVATE) {
 394                if (thp > 0) {
 395                        ret = madvise(buf, bytes, MADV_HUGEPAGE);
 396                        if (ret && !g->print_once) {
 397                                g->print_once = 1;
 398                                printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
 399                        }
 400                }
 401                if (thp < 0) {
 402                        ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
 403                        if (ret && !g->print_once) {
 404                                g->print_once = 1;
 405                                printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
 406                        }
 407                }
 408        }
 409
 410        if (init_zero) {
 411                bzero(buf, bytes);
 412        } else {
 413                /* Initialize random contents, different in each word: */
 414                if (init_random) {
 415                        u64 *wbuf = (void *)buf;
 416                        long off = rand();
 417                        long i;
 418
 419                        for (i = 0; i < bytes/8; i++)
 420                                wbuf[i] = i + off;
 421                }
 422        }
 423
 424        /* Align to 2MB boundary: */
 425        buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
 426
 427        /* Restore affinity: */
 428        if (init_cpu0) {
 429                bind_to_cpumask(orig_mask);
 430                mempol_restore();
 431        }
 432
 433        return buf;
 434}
 435
 436static void free_data(void *data, ssize_t bytes)
 437{
 438        int ret;
 439
 440        if (!data)
 441                return;
 442
 443        ret = munmap(data, bytes);
 444        BUG_ON(ret);
 445}
 446
 447/*
 448 * Create a shared memory buffer that can be shared between processes, zeroed:
 449 */
 450static void * zalloc_shared_data(ssize_t bytes)
 451{
 452        return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 453}
 454
 455/*
 456 * Create a shared memory buffer that can be shared between processes:
 457 */
 458static void * setup_shared_data(ssize_t bytes)
 459{
 460        return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 461}
 462
 463/*
 464 * Allocate process-local memory - this will either be shared between
 465 * threads of this process, or only be accessed by this thread:
 466 */
 467static void * setup_private_data(ssize_t bytes)
 468{
 469        return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 470}
 471
 472/*
 473 * Return a process-shared (global) mutex:
 474 */
 475static void init_global_mutex(pthread_mutex_t *mutex)
 476{
 477        pthread_mutexattr_t attr;
 478
 479        pthread_mutexattr_init(&attr);
 480        pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
 481        pthread_mutex_init(mutex, &attr);
 482}
 483
 484static int parse_cpu_list(const char *arg)
 485{
 486        p0.cpu_list_str = strdup(arg);
 487
 488        dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
 489
 490        return 0;
 491}
 492
 493static int parse_setup_cpu_list(void)
 494{
 495        struct thread_data *td;
 496        char *str0, *str;
 497        int t;
 498
 499        if (!g->p.cpu_list_str)
 500                return 0;
 501
 502        dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 503
 504        str0 = str = strdup(g->p.cpu_list_str);
 505        t = 0;
 506
 507        BUG_ON(!str);
 508
 509        tprintf("# binding tasks to CPUs:\n");
 510        tprintf("#  ");
 511
 512        while (true) {
 513                int bind_cpu, bind_cpu_0, bind_cpu_1;
 514                char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
 515                int bind_len;
 516                int step;
 517                int mul;
 518
 519                tok = strsep(&str, ",");
 520                if (!tok)
 521                        break;
 522
 523                tok_end = strstr(tok, "-");
 524
 525                dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 526                if (!tok_end) {
 527                        /* Single CPU specified: */
 528                        bind_cpu_0 = bind_cpu_1 = atol(tok);
 529                } else {
 530                        /* CPU range specified (for example: "5-11"): */
 531                        bind_cpu_0 = atol(tok);
 532                        bind_cpu_1 = atol(tok_end + 1);
 533                }
 534
 535                step = 1;
 536                tok_step = strstr(tok, "#");
 537                if (tok_step) {
 538                        step = atol(tok_step + 1);
 539                        BUG_ON(step <= 0 || step >= g->p.nr_cpus);
 540                }
 541
 542                /*
 543                 * Mask length.
 544                 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
 545                 * where the _4 means the next 4 CPUs are allowed.
 546                 */
 547                bind_len = 1;
 548                tok_len = strstr(tok, "_");
 549                if (tok_len) {
 550                        bind_len = atol(tok_len + 1);
 551                        BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
 552                }
 553
 554                /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 555                mul = 1;
 556                tok_mul = strstr(tok, "x");
 557                if (tok_mul) {
 558                        mul = atol(tok_mul + 1);
 559                        BUG_ON(mul <= 0);
 560                }
 561
 562                dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
 563
 564                if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
 565                        printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
 566                        return -1;
 567                }
 568
 569                BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
 570                BUG_ON(bind_cpu_0 > bind_cpu_1);
 571
 572                for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
 573                        int i;
 574
 575                        for (i = 0; i < mul; i++) {
 576                                int cpu;
 577
 578                                if (t >= g->p.nr_tasks) {
 579                                        printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
 580                                        goto out;
 581                                }
 582                                td = g->threads + t;
 583
 584                                if (t)
 585                                        tprintf(",");
 586                                if (bind_len > 1) {
 587                                        tprintf("%2d/%d", bind_cpu, bind_len);
 588                                } else {
 589                                        tprintf("%2d", bind_cpu);
 590                                }
 591
 592                                CPU_ZERO(&td->bind_cpumask);
 593                                for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
 594                                        BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
 595                                        CPU_SET(cpu, &td->bind_cpumask);
 596                                }
 597                                t++;
 598                        }
 599                }
 600        }
 601out:
 602
 603        tprintf("\n");
 604
 605        if (t < g->p.nr_tasks)
 606                printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 607
 608        free(str0);
 609        return 0;
 610}
 611
 612static int parse_cpus_opt(const struct option *opt __maybe_unused,
 613                          const char *arg, int unset __maybe_unused)
 614{
 615        if (!arg)
 616                return -1;
 617
 618        return parse_cpu_list(arg);
 619}
 620
 621static int parse_node_list(const char *arg)
 622{
 623        p0.node_list_str = strdup(arg);
 624
 625        dprintf("got NODE list: {%s}\n", p0.node_list_str);
 626
 627        return 0;
 628}
 629
 630static int parse_setup_node_list(void)
 631{
 632        struct thread_data *td;
 633        char *str0, *str;
 634        int t;
 635
 636        if (!g->p.node_list_str)
 637                return 0;
 638
 639        dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 640
 641        str0 = str = strdup(g->p.node_list_str);
 642        t = 0;
 643
 644        BUG_ON(!str);
 645
 646        tprintf("# binding tasks to NODEs:\n");
 647        tprintf("# ");
 648
 649        while (true) {
 650                int bind_node, bind_node_0, bind_node_1;
 651                char *tok, *tok_end, *tok_step, *tok_mul;
 652                int step;
 653                int mul;
 654
 655                tok = strsep(&str, ",");
 656                if (!tok)
 657                        break;
 658
 659                tok_end = strstr(tok, "-");
 660
 661                dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 662                if (!tok_end) {
 663                        /* Single NODE specified: */
 664                        bind_node_0 = bind_node_1 = atol(tok);
 665                } else {
 666                        /* NODE range specified (for example: "5-11"): */
 667                        bind_node_0 = atol(tok);
 668                        bind_node_1 = atol(tok_end + 1);
 669                }
 670
 671                step = 1;
 672                tok_step = strstr(tok, "#");
 673                if (tok_step) {
 674                        step = atol(tok_step + 1);
 675                        BUG_ON(step <= 0 || step >= g->p.nr_nodes);
 676                }
 677
 678                /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 679                mul = 1;
 680                tok_mul = strstr(tok, "x");
 681                if (tok_mul) {
 682                        mul = atol(tok_mul + 1);
 683                        BUG_ON(mul <= 0);
 684                }
 685
 686                dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
 687
 688                if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
 689                        printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
 690                        return -1;
 691                }
 692
 693                BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
 694                BUG_ON(bind_node_0 > bind_node_1);
 695
 696                for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
 697                        int i;
 698
 699                        for (i = 0; i < mul; i++) {
 700                                if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
 701                                        printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
 702                                        goto out;
 703                                }
 704                                td = g->threads + t;
 705
 706                                if (!t)
 707                                        tprintf(" %2d", bind_node);
 708                                else
 709                                        tprintf(",%2d", bind_node);
 710
 711                                td->bind_node = bind_node;
 712                                t++;
 713                        }
 714                }
 715        }
 716out:
 717
 718        tprintf("\n");
 719
 720        if (t < g->p.nr_tasks)
 721                printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 722
 723        free(str0);
 724        return 0;
 725}
 726
 727static int parse_nodes_opt(const struct option *opt __maybe_unused,
 728                          const char *arg, int unset __maybe_unused)
 729{
 730        if (!arg)
 731                return -1;
 732
 733        return parse_node_list(arg);
 734
 735        return 0;
 736}
 737
 738#define BIT(x) (1ul << x)
 739
 740static inline uint32_t lfsr_32(uint32_t lfsr)
 741{
 742        const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
 743        return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
 744}
 745
 746/*
 747 * Make sure there's real data dependency to RAM (when read
 748 * accesses are enabled), so the compiler, the CPU and the
 749 * kernel (KSM, zero page, etc.) cannot optimize away RAM
 750 * accesses:
 751 */
 752static inline u64 access_data(u64 *data, u64 val)
 753{
 754        if (g->p.data_reads)
 755                val += *data;
 756        if (g->p.data_writes)
 757                *data = val + 1;
 758        return val;
 759}
 760
 761/*
 762 * The worker process does two types of work, a forwards going
 763 * loop and a backwards going loop.
 764 *
 765 * We do this so that on multiprocessor systems we do not create
 766 * a 'train' of processing, with highly synchronized processes,
 767 * skewing the whole benchmark.
 768 */
 769static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
 770{
 771        long words = bytes/sizeof(u64);
 772        u64 *data = (void *)__data;
 773        long chunk_0, chunk_1;
 774        u64 *d0, *d, *d1;
 775        long off;
 776        long i;
 777
 778        BUG_ON(!data && words);
 779        BUG_ON(data && !words);
 780
 781        if (!data)
 782                return val;
 783
 784        /* Very simple memset() work variant: */
 785        if (g->p.data_zero_memset && !g->p.data_rand_walk) {
 786                bzero(data, bytes);
 787                return val;
 788        }
 789
 790        /* Spread out by PID/TID nr and by loop nr: */
 791        chunk_0 = words/nr_max;
 792        chunk_1 = words/g->p.nr_loops;
 793        off = nr*chunk_0 + loop*chunk_1;
 794
 795        while (off >= words)
 796                off -= words;
 797
 798        if (g->p.data_rand_walk) {
 799                u32 lfsr = nr + loop + val;
 800                int j;
 801
 802                for (i = 0; i < words/1024; i++) {
 803                        long start, end;
 804
 805                        lfsr = lfsr_32(lfsr);
 806
 807                        start = lfsr % words;
 808                        end = min(start + 1024, words-1);
 809
 810                        if (g->p.data_zero_memset) {
 811                                bzero(data + start, (end-start) * sizeof(u64));
 812                        } else {
 813                                for (j = start; j < end; j++)
 814                                        val = access_data(data + j, val);
 815                        }
 816                }
 817        } else if (!g->p.data_backwards || (nr + loop) & 1) {
 818
 819                d0 = data + off;
 820                d  = data + off + 1;
 821                d1 = data + words;
 822
 823                /* Process data forwards: */
 824                for (;;) {
 825                        if (unlikely(d >= d1))
 826                                d = data;
 827                        if (unlikely(d == d0))
 828                                break;
 829
 830                        val = access_data(d, val);
 831
 832                        d++;
 833                }
 834        } else {
 835                /* Process data backwards: */
 836
 837                d0 = data + off;
 838                d  = data + off - 1;
 839                d1 = data + words;
 840
 841                /* Process data forwards: */
 842                for (;;) {
 843                        if (unlikely(d < data))
 844                                d = data + words-1;
 845                        if (unlikely(d == d0))
 846                                break;
 847
 848                        val = access_data(d, val);
 849
 850                        d--;
 851                }
 852        }
 853
 854        return val;
 855}
 856
 857static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
 858{
 859        unsigned int cpu;
 860
 861        cpu = sched_getcpu();
 862
 863        g->threads[task_nr].curr_cpu = cpu;
 864        prctl(0, bytes_worked);
 865}
 866
 867#define MAX_NR_NODES    64
 868
 869/*
 870 * Count the number of nodes a process's threads
 871 * are spread out on.
 872 *
 873 * A count of 1 means that the process is compressed
 874 * to a single node. A count of g->p.nr_nodes means it's
 875 * spread out on the whole system.
 876 */
 877static int count_process_nodes(int process_nr)
 878{
 879        char node_present[MAX_NR_NODES] = { 0, };
 880        int nodes;
 881        int n, t;
 882
 883        for (t = 0; t < g->p.nr_threads; t++) {
 884                struct thread_data *td;
 885                int task_nr;
 886                int node;
 887
 888                task_nr = process_nr*g->p.nr_threads + t;
 889                td = g->threads + task_nr;
 890
 891                node = numa_node_of_cpu(td->curr_cpu);
 892                if (node < 0) /* curr_cpu was likely still -1 */
 893                        return 0;
 894
 895                node_present[node] = 1;
 896        }
 897
 898        nodes = 0;
 899
 900        for (n = 0; n < MAX_NR_NODES; n++)
 901                nodes += node_present[n];
 902
 903        return nodes;
 904}
 905
 906/*
 907 * Count the number of distinct process-threads a node contains.
 908 *
 909 * A count of 1 means that the node contains only a single
 910 * process. If all nodes on the system contain at most one
 911 * process then we are well-converged.
 912 */
 913static int count_node_processes(int node)
 914{
 915        int processes = 0;
 916        int t, p;
 917
 918        for (p = 0; p < g->p.nr_proc; p++) {
 919                for (t = 0; t < g->p.nr_threads; t++) {
 920                        struct thread_data *td;
 921                        int task_nr;
 922                        int n;
 923
 924                        task_nr = p*g->p.nr_threads + t;
 925                        td = g->threads + task_nr;
 926
 927                        n = numa_node_of_cpu(td->curr_cpu);
 928                        if (n == node) {
 929                                processes++;
 930                                break;
 931                        }
 932                }
 933        }
 934
 935        return processes;
 936}
 937
 938static void calc_convergence_compression(int *strong)
 939{
 940        unsigned int nodes_min, nodes_max;
 941        int p;
 942
 943        nodes_min = -1;
 944        nodes_max =  0;
 945
 946        for (p = 0; p < g->p.nr_proc; p++) {
 947                unsigned int nodes = count_process_nodes(p);
 948
 949                if (!nodes) {
 950                        *strong = 0;
 951                        return;
 952                }
 953
 954                nodes_min = min(nodes, nodes_min);
 955                nodes_max = max(nodes, nodes_max);
 956        }
 957
 958        /* Strong convergence: all threads compress on a single node: */
 959        if (nodes_min == 1 && nodes_max == 1) {
 960                *strong = 1;
 961        } else {
 962                *strong = 0;
 963                tprintf(" {%d-%d}", nodes_min, nodes_max);
 964        }
 965}
 966
 967static void calc_convergence(double runtime_ns_max, double *convergence)
 968{
 969        unsigned int loops_done_min, loops_done_max;
 970        int process_groups;
 971        int nodes[MAX_NR_NODES];
 972        int distance;
 973        int nr_min;
 974        int nr_max;
 975        int strong;
 976        int sum;
 977        int nr;
 978        int node;
 979        int cpu;
 980        int t;
 981
 982        if (!g->p.show_convergence && !g->p.measure_convergence)
 983                return;
 984
 985        for (node = 0; node < g->p.nr_nodes; node++)
 986                nodes[node] = 0;
 987
 988        loops_done_min = -1;
 989        loops_done_max = 0;
 990
 991        for (t = 0; t < g->p.nr_tasks; t++) {
 992                struct thread_data *td = g->threads + t;
 993                unsigned int loops_done;
 994
 995                cpu = td->curr_cpu;
 996
 997                /* Not all threads have written it yet: */
 998                if (cpu < 0)
 999                        continue;
1000
1001                node = numa_node_of_cpu(cpu);
1002
1003                nodes[node]++;
1004
1005                loops_done = td->loops_done;
1006                loops_done_min = min(loops_done, loops_done_min);
1007                loops_done_max = max(loops_done, loops_done_max);
1008        }
1009
1010        nr_max = 0;
1011        nr_min = g->p.nr_tasks;
1012        sum = 0;
1013
1014        for (node = 0; node < g->p.nr_nodes; node++) {
1015                if (!is_node_present(node))
1016                        continue;
1017                nr = nodes[node];
1018                nr_min = min(nr, nr_min);
1019                nr_max = max(nr, nr_max);
1020                sum += nr;
1021        }
1022        BUG_ON(nr_min > nr_max);
1023
1024        BUG_ON(sum > g->p.nr_tasks);
1025
1026        if (0 && (sum < g->p.nr_tasks))
1027                return;
1028
1029        /*
1030         * Count the number of distinct process groups present
1031         * on nodes - when we are converged this will decrease
1032         * to g->p.nr_proc:
1033         */
1034        process_groups = 0;
1035
1036        for (node = 0; node < g->p.nr_nodes; node++) {
1037                int processes;
1038
1039                if (!is_node_present(node))
1040                        continue;
1041                processes = count_node_processes(node);
1042                nr = nodes[node];
1043                tprintf(" %2d/%-2d", nr, processes);
1044
1045                process_groups += processes;
1046        }
1047
1048        distance = nr_max - nr_min;
1049
1050        tprintf(" [%2d/%-2d]", distance, process_groups);
1051
1052        tprintf(" l:%3d-%-3d (%3d)",
1053                loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1054
1055        if (loops_done_min && loops_done_max) {
1056                double skew = 1.0 - (double)loops_done_min/loops_done_max;
1057
1058                tprintf(" [%4.1f%%]", skew * 100.0);
1059        }
1060
1061        calc_convergence_compression(&strong);
1062
1063        if (strong && process_groups == g->p.nr_proc) {
1064                if (!*convergence) {
1065                        *convergence = runtime_ns_max;
1066                        tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1067                        if (g->p.measure_convergence) {
1068                                g->all_converged = true;
1069                                g->stop_work = true;
1070                        }
1071                }
1072        } else {
1073                if (*convergence) {
1074                        tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1075                        *convergence = 0;
1076                }
1077                tprintf("\n");
1078        }
1079}
1080
1081static void show_summary(double runtime_ns_max, int l, double *convergence)
1082{
1083        tprintf("\r #  %5.1f%%  [%.1f mins]",
1084                (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1085
1086        calc_convergence(runtime_ns_max, convergence);
1087
1088        if (g->p.show_details >= 0)
1089                fflush(stdout);
1090}
1091
1092static void *worker_thread(void *__tdata)
1093{
1094        struct thread_data *td = __tdata;
1095        struct timeval start0, start, stop, diff;
1096        int process_nr = td->process_nr;
1097        int thread_nr = td->thread_nr;
1098        unsigned long last_perturbance;
1099        int task_nr = td->task_nr;
1100        int details = g->p.show_details;
1101        int first_task, last_task;
1102        double convergence = 0;
1103        u64 val = td->val;
1104        double runtime_ns_max;
1105        u8 *global_data;
1106        u8 *process_data;
1107        u8 *thread_data;
1108        u64 bytes_done, secs;
1109        long work_done;
1110        u32 l;
1111        struct rusage rusage;
1112
1113        bind_to_cpumask(td->bind_cpumask);
1114        bind_to_memnode(td->bind_node);
1115
1116        set_taskname("thread %d/%d", process_nr, thread_nr);
1117
1118        global_data = g->data;
1119        process_data = td->process_data;
1120        thread_data = setup_private_data(g->p.bytes_thread);
1121
1122        bytes_done = 0;
1123
1124        last_task = 0;
1125        if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1126                last_task = 1;
1127
1128        first_task = 0;
1129        if (process_nr == 0 && thread_nr == 0)
1130                first_task = 1;
1131
1132        if (details >= 2) {
1133                printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1134                        process_nr, thread_nr, global_data, process_data, thread_data);
1135        }
1136
1137        if (g->p.serialize_startup) {
1138                pthread_mutex_lock(&g->startup_mutex);
1139                g->nr_tasks_started++;
1140                pthread_mutex_unlock(&g->startup_mutex);
1141
1142                /* Here we will wait for the main process to start us all at once: */
1143                pthread_mutex_lock(&g->start_work_mutex);
1144                g->nr_tasks_working++;
1145
1146                /* Last one wake the main process: */
1147                if (g->nr_tasks_working == g->p.nr_tasks)
1148                        pthread_mutex_unlock(&g->startup_done_mutex);
1149
1150                pthread_mutex_unlock(&g->start_work_mutex);
1151        }
1152
1153        gettimeofday(&start0, NULL);
1154
1155        start = stop = start0;
1156        last_perturbance = start.tv_sec;
1157
1158        for (l = 0; l < g->p.nr_loops; l++) {
1159                start = stop;
1160
1161                if (g->stop_work)
1162                        break;
1163
1164                val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,      l, val);
1165                val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,   l, val);
1166                val += do_work(thread_data,  g->p.bytes_thread,  0,          1,         l, val);
1167
1168                if (g->p.sleep_usecs) {
1169                        pthread_mutex_lock(td->process_lock);
1170                        usleep(g->p.sleep_usecs);
1171                        pthread_mutex_unlock(td->process_lock);
1172                }
1173                /*
1174                 * Amount of work to be done under a process-global lock:
1175                 */
1176                if (g->p.bytes_process_locked) {
1177                        pthread_mutex_lock(td->process_lock);
1178                        val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,    l, val);
1179                        pthread_mutex_unlock(td->process_lock);
1180                }
1181
1182                work_done = g->p.bytes_global + g->p.bytes_process +
1183                            g->p.bytes_process_locked + g->p.bytes_thread;
1184
1185                update_curr_cpu(task_nr, work_done);
1186                bytes_done += work_done;
1187
1188                if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1189                        continue;
1190
1191                td->loops_done = l;
1192
1193                gettimeofday(&stop, NULL);
1194
1195                /* Check whether our max runtime timed out: */
1196                if (g->p.nr_secs) {
1197                        timersub(&stop, &start0, &diff);
1198                        if ((u32)diff.tv_sec >= g->p.nr_secs) {
1199                                g->stop_work = true;
1200                                break;
1201                        }
1202                }
1203
1204                /* Update the summary at most once per second: */
1205                if (start.tv_sec == stop.tv_sec)
1206                        continue;
1207
1208                /*
1209                 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1210                 * by migrating to CPU#0:
1211                 */
1212                if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1213                        cpu_set_t orig_mask;
1214                        int target_cpu;
1215                        int this_cpu;
1216
1217                        last_perturbance = stop.tv_sec;
1218
1219                        /*
1220                         * Depending on where we are running, move into
1221                         * the other half of the system, to create some
1222                         * real disturbance:
1223                         */
1224                        this_cpu = g->threads[task_nr].curr_cpu;
1225                        if (this_cpu < g->p.nr_cpus/2)
1226                                target_cpu = g->p.nr_cpus-1;
1227                        else
1228                                target_cpu = 0;
1229
1230                        orig_mask = bind_to_cpu(target_cpu);
1231
1232                        /* Here we are running on the target CPU already */
1233                        if (details >= 1)
1234                                printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1235
1236                        bind_to_cpumask(orig_mask);
1237                }
1238
1239                if (details >= 3) {
1240                        timersub(&stop, &start, &diff);
1241                        runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1242                        runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1243
1244                        if (details >= 0) {
1245                                printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1246                                        process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1247                        }
1248                        fflush(stdout);
1249                }
1250                if (!last_task)
1251                        continue;
1252
1253                timersub(&stop, &start0, &diff);
1254                runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1255                runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1256
1257                show_summary(runtime_ns_max, l, &convergence);
1258        }
1259
1260        gettimeofday(&stop, NULL);
1261        timersub(&stop, &start0, &diff);
1262        td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1263        td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1264        secs = td->runtime_ns / NSEC_PER_SEC;
1265        td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1266
1267        getrusage(RUSAGE_THREAD, &rusage);
1268        td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1269        td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1270        td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1271        td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1272
1273        free_data(thread_data, g->p.bytes_thread);
1274
1275        pthread_mutex_lock(&g->stop_work_mutex);
1276        g->bytes_done += bytes_done;
1277        pthread_mutex_unlock(&g->stop_work_mutex);
1278
1279        return NULL;
1280}
1281
1282/*
1283 * A worker process starts a couple of threads:
1284 */
1285static void worker_process(int process_nr)
1286{
1287        pthread_mutex_t process_lock;
1288        struct thread_data *td;
1289        pthread_t *pthreads;
1290        u8 *process_data;
1291        int task_nr;
1292        int ret;
1293        int t;
1294
1295        pthread_mutex_init(&process_lock, NULL);
1296        set_taskname("process %d", process_nr);
1297
1298        /*
1299         * Pick up the memory policy and the CPU binding of our first thread,
1300         * so that we initialize memory accordingly:
1301         */
1302        task_nr = process_nr*g->p.nr_threads;
1303        td = g->threads + task_nr;
1304
1305        bind_to_memnode(td->bind_node);
1306        bind_to_cpumask(td->bind_cpumask);
1307
1308        pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1309        process_data = setup_private_data(g->p.bytes_process);
1310
1311        if (g->p.show_details >= 3) {
1312                printf(" # process %2d global mem: %p, process mem: %p\n",
1313                        process_nr, g->data, process_data);
1314        }
1315
1316        for (t = 0; t < g->p.nr_threads; t++) {
1317                task_nr = process_nr*g->p.nr_threads + t;
1318                td = g->threads + task_nr;
1319
1320                td->process_data = process_data;
1321                td->process_nr   = process_nr;
1322                td->thread_nr    = t;
1323                td->task_nr      = task_nr;
1324                td->val          = rand();
1325                td->curr_cpu     = -1;
1326                td->process_lock = &process_lock;
1327
1328                ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1329                BUG_ON(ret);
1330        }
1331
1332        for (t = 0; t < g->p.nr_threads; t++) {
1333                ret = pthread_join(pthreads[t], NULL);
1334                BUG_ON(ret);
1335        }
1336
1337        free_data(process_data, g->p.bytes_process);
1338        free(pthreads);
1339}
1340
1341static void print_summary(void)
1342{
1343        if (g->p.show_details < 0)
1344                return;
1345
1346        printf("\n ###\n");
1347        printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1348                g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1349        printf(" #      %5dx %5ldMB global  shared mem operations\n",
1350                        g->p.nr_loops, g->p.bytes_global/1024/1024);
1351        printf(" #      %5dx %5ldMB process shared mem operations\n",
1352                        g->p.nr_loops, g->p.bytes_process/1024/1024);
1353        printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1354                        g->p.nr_loops, g->p.bytes_thread/1024/1024);
1355
1356        printf(" ###\n");
1357
1358        printf("\n ###\n"); fflush(stdout);
1359}
1360
1361static void init_thread_data(void)
1362{
1363        ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1364        int t;
1365
1366        g->threads = zalloc_shared_data(size);
1367
1368        for (t = 0; t < g->p.nr_tasks; t++) {
1369                struct thread_data *td = g->threads + t;
1370                int cpu;
1371
1372                /* Allow all nodes by default: */
1373                td->bind_node = NUMA_NO_NODE;
1374
1375                /* Allow all CPUs by default: */
1376                CPU_ZERO(&td->bind_cpumask);
1377                for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1378                        CPU_SET(cpu, &td->bind_cpumask);
1379        }
1380}
1381
1382static void deinit_thread_data(void)
1383{
1384        ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1385
1386        free_data(g->threads, size);
1387}
1388
1389static int init(void)
1390{
1391        g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1392
1393        /* Copy over options: */
1394        g->p = p0;
1395
1396        g->p.nr_cpus = numa_num_configured_cpus();
1397
1398        g->p.nr_nodes = numa_max_node() + 1;
1399
1400        /* char array in count_process_nodes(): */
1401        BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1402
1403        if (g->p.show_quiet && !g->p.show_details)
1404                g->p.show_details = -1;
1405
1406        /* Some memory should be specified: */
1407        if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1408                return -1;
1409
1410        if (g->p.mb_global_str) {
1411                g->p.mb_global = atof(g->p.mb_global_str);
1412                BUG_ON(g->p.mb_global < 0);
1413        }
1414
1415        if (g->p.mb_proc_str) {
1416                g->p.mb_proc = atof(g->p.mb_proc_str);
1417                BUG_ON(g->p.mb_proc < 0);
1418        }
1419
1420        if (g->p.mb_proc_locked_str) {
1421                g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1422                BUG_ON(g->p.mb_proc_locked < 0);
1423                BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1424        }
1425
1426        if (g->p.mb_thread_str) {
1427                g->p.mb_thread = atof(g->p.mb_thread_str);
1428                BUG_ON(g->p.mb_thread < 0);
1429        }
1430
1431        BUG_ON(g->p.nr_threads <= 0);
1432        BUG_ON(g->p.nr_proc <= 0);
1433
1434        g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1435
1436        g->p.bytes_global               = g->p.mb_global        *1024L*1024L;
1437        g->p.bytes_process              = g->p.mb_proc          *1024L*1024L;
1438        g->p.bytes_process_locked       = g->p.mb_proc_locked   *1024L*1024L;
1439        g->p.bytes_thread               = g->p.mb_thread        *1024L*1024L;
1440
1441        g->data = setup_shared_data(g->p.bytes_global);
1442
1443        /* Startup serialization: */
1444        init_global_mutex(&g->start_work_mutex);
1445        init_global_mutex(&g->startup_mutex);
1446        init_global_mutex(&g->startup_done_mutex);
1447        init_global_mutex(&g->stop_work_mutex);
1448
1449        init_thread_data();
1450
1451        tprintf("#\n");
1452        if (parse_setup_cpu_list() || parse_setup_node_list())
1453                return -1;
1454        tprintf("#\n");
1455
1456        print_summary();
1457
1458        return 0;
1459}
1460
1461static void deinit(void)
1462{
1463        free_data(g->data, g->p.bytes_global);
1464        g->data = NULL;
1465
1466        deinit_thread_data();
1467
1468        free_data(g, sizeof(*g));
1469        g = NULL;
1470}
1471
1472/*
1473 * Print a short or long result, depending on the verbosity setting:
1474 */
1475static void print_res(const char *name, double val,
1476                      const char *txt_unit, const char *txt_short, const char *txt_long)
1477{
1478        if (!name)
1479                name = "main,";
1480
1481        if (!g->p.show_quiet)
1482                printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1483        else
1484                printf(" %14.3f %s\n", val, txt_long);
1485}
1486
1487static int __bench_numa(const char *name)
1488{
1489        struct timeval start, stop, diff;
1490        u64 runtime_ns_min, runtime_ns_sum;
1491        pid_t *pids, pid, wpid;
1492        double delta_runtime;
1493        double runtime_avg;
1494        double runtime_sec_max;
1495        double runtime_sec_min;
1496        int wait_stat;
1497        double bytes;
1498        int i, t, p;
1499
1500        if (init())
1501                return -1;
1502
1503        pids = zalloc(g->p.nr_proc * sizeof(*pids));
1504        pid = -1;
1505
1506        /* All threads try to acquire it, this way we can wait for them to start up: */
1507        pthread_mutex_lock(&g->start_work_mutex);
1508
1509        if (g->p.serialize_startup) {
1510                tprintf(" #\n");
1511                tprintf(" # Startup synchronization: ..."); fflush(stdout);
1512        }
1513
1514        gettimeofday(&start, NULL);
1515
1516        for (i = 0; i < g->p.nr_proc; i++) {
1517                pid = fork();
1518                dprintf(" # process %2d: PID %d\n", i, pid);
1519
1520                BUG_ON(pid < 0);
1521                if (!pid) {
1522                        /* Child process: */
1523                        worker_process(i);
1524
1525                        exit(0);
1526                }
1527                pids[i] = pid;
1528
1529        }
1530        /* Wait for all the threads to start up: */
1531        while (g->nr_tasks_started != g->p.nr_tasks)
1532                usleep(USEC_PER_MSEC);
1533
1534        BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1535
1536        if (g->p.serialize_startup) {
1537                double startup_sec;
1538
1539                pthread_mutex_lock(&g->startup_done_mutex);
1540
1541                /* This will start all threads: */
1542                pthread_mutex_unlock(&g->start_work_mutex);
1543
1544                /* This mutex is locked - the last started thread will wake us: */
1545                pthread_mutex_lock(&g->startup_done_mutex);
1546
1547                gettimeofday(&stop, NULL);
1548
1549                timersub(&stop, &start, &diff);
1550
1551                startup_sec = diff.tv_sec * NSEC_PER_SEC;
1552                startup_sec += diff.tv_usec * NSEC_PER_USEC;
1553                startup_sec /= NSEC_PER_SEC;
1554
1555                tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1556                tprintf(" #\n");
1557
1558                start = stop;
1559                pthread_mutex_unlock(&g->startup_done_mutex);
1560        } else {
1561                gettimeofday(&start, NULL);
1562        }
1563
1564        /* Parent process: */
1565
1566
1567        for (i = 0; i < g->p.nr_proc; i++) {
1568                wpid = waitpid(pids[i], &wait_stat, 0);
1569                BUG_ON(wpid < 0);
1570                BUG_ON(!WIFEXITED(wait_stat));
1571
1572        }
1573
1574        runtime_ns_sum = 0;
1575        runtime_ns_min = -1LL;
1576
1577        for (t = 0; t < g->p.nr_tasks; t++) {
1578                u64 thread_runtime_ns = g->threads[t].runtime_ns;
1579
1580                runtime_ns_sum += thread_runtime_ns;
1581                runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1582        }
1583
1584        gettimeofday(&stop, NULL);
1585        timersub(&stop, &start, &diff);
1586
1587        BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1588
1589        tprintf("\n ###\n");
1590        tprintf("\n");
1591
1592        runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1593        runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1594        runtime_sec_max /= NSEC_PER_SEC;
1595
1596        runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1597
1598        bytes = g->bytes_done;
1599        runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1600
1601        if (g->p.measure_convergence) {
1602                print_res(name, runtime_sec_max,
1603                        "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1604        }
1605
1606        print_res(name, runtime_sec_max,
1607                "secs,", "runtime-max/thread",  "secs slowest (max) thread-runtime");
1608
1609        print_res(name, runtime_sec_min,
1610                "secs,", "runtime-min/thread",  "secs fastest (min) thread-runtime");
1611
1612        print_res(name, runtime_avg,
1613                "secs,", "runtime-avg/thread",  "secs average thread-runtime");
1614
1615        delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1616        print_res(name, delta_runtime / runtime_sec_max * 100.0,
1617                "%,", "spread-runtime/thread",  "% difference between max/avg runtime");
1618
1619        print_res(name, bytes / g->p.nr_tasks / 1e9,
1620                "GB,", "data/thread",           "GB data processed, per thread");
1621
1622        print_res(name, bytes / 1e9,
1623                "GB,", "data-total",            "GB data processed, total");
1624
1625        print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1626                "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1627
1628        print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1629                "GB/sec,", "thread-speed",      "GB/sec/thread speed");
1630
1631        print_res(name, bytes / runtime_sec_max / 1e9,
1632                "GB/sec,", "total-speed",       "GB/sec total speed");
1633
1634        if (g->p.show_details >= 2) {
1635                char tname[14 + 2 * 10 + 1];
1636                struct thread_data *td;
1637                for (p = 0; p < g->p.nr_proc; p++) {
1638                        for (t = 0; t < g->p.nr_threads; t++) {
1639                                memset(tname, 0, sizeof(tname));
1640                                td = g->threads + p*g->p.nr_threads + t;
1641                                snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1642                                print_res(tname, td->speed_gbs,
1643                                        "GB/sec",       "thread-speed", "GB/sec/thread speed");
1644                                print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1645                                        "secs", "thread-system-time", "system CPU time/thread");
1646                                print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1647                                        "secs", "thread-user-time", "user CPU time/thread");
1648                        }
1649                }
1650        }
1651
1652        free(pids);
1653
1654        deinit();
1655
1656        return 0;
1657}
1658
1659#define MAX_ARGS 50
1660
1661static int command_size(const char **argv)
1662{
1663        int size = 0;
1664
1665        while (*argv) {
1666                size++;
1667                argv++;
1668        }
1669
1670        BUG_ON(size >= MAX_ARGS);
1671
1672        return size;
1673}
1674
1675static void init_params(struct params *p, const char *name, int argc, const char **argv)
1676{
1677        int i;
1678
1679        printf("\n # Running %s \"perf bench numa", name);
1680
1681        for (i = 0; i < argc; i++)
1682                printf(" %s", argv[i]);
1683
1684        printf("\"\n");
1685
1686        memset(p, 0, sizeof(*p));
1687
1688        /* Initialize nonzero defaults: */
1689
1690        p->serialize_startup            = 1;
1691        p->data_reads                   = true;
1692        p->data_writes                  = true;
1693        p->data_backwards               = true;
1694        p->data_rand_walk               = true;
1695        p->nr_loops                     = -1;
1696        p->init_random                  = true;
1697        p->mb_global_str                = "1";
1698        p->nr_proc                      = 1;
1699        p->nr_threads                   = 1;
1700        p->nr_secs                      = 5;
1701        p->run_all                      = argc == 1;
1702}
1703
1704static int run_bench_numa(const char *name, const char **argv)
1705{
1706        int argc = command_size(argv);
1707
1708        init_params(&p0, name, argc, argv);
1709        argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1710        if (argc)
1711                goto err;
1712
1713        if (__bench_numa(name))
1714                goto err;
1715
1716        return 0;
1717
1718err:
1719        return -1;
1720}
1721
1722#define OPT_BW_RAM              "-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1723#define OPT_BW_RAM_NOTHP        OPT_BW_RAM,             "--thp", "-1"
1724
1725#define OPT_CONV                "-s", "100", "-zZ0qcm", "--thp", " 1"
1726#define OPT_CONV_NOTHP          OPT_CONV,               "--thp", "-1"
1727
1728#define OPT_BW                  "-s",  "20", "-zZ0q",   "--thp", " 1"
1729#define OPT_BW_NOTHP            OPT_BW,                 "--thp", "-1"
1730
1731/*
1732 * The built-in test-suite executed by "perf bench numa -a".
1733 *
1734 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1735 */
1736static const char *tests[][MAX_ARGS] = {
1737   /* Basic single-stream NUMA bandwidth measurements: */
1738   { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1739                          "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1740   { "RAM-bw-local-NOTHP,",
1741                          "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1742                          "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1743   { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1744                          "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1745
1746   /* 2-stream NUMA bandwidth measurements: */
1747   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1748                           "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1749   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1750                           "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1751
1752   /* Cross-stream NUMA bandwidth measurement: */
1753   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1754                           "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1755
1756   /* Convergence latency measurements: */
1757   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1758   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1759   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1760   { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1761   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1762   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1763   { " 4x4-convergence-NOTHP,",
1764                          "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1765   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1766   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1767   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1768   { " 8x4-convergence-NOTHP,",
1769                          "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1770   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1771   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1772   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1773   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1774   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1775
1776   /* Various NUMA process/thread layout bandwidth measurements: */
1777   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1778   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1779   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1780   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1781   { " 8x1-bw-process-NOTHP,",
1782                          "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1783   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1784
1785   { " 4x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1786   { " 8x1-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1787   { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1788   { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1789
1790   { " 2x3-bw-thread,",   "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1791   { " 4x4-bw-thread,",   "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1792   { " 4x6-bw-thread,",   "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1793   { " 4x8-bw-thread,",   "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1794   { " 4x8-bw-thread-NOTHP,",
1795                          "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1796   { " 3x3-bw-thread,",   "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1797   { " 5x5-bw-thread,",   "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1798
1799   { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1800   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1801
1802   { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1803   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1804   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1805   { "numa01-bw-thread-NOTHP,",
1806                          "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1807};
1808
1809static int bench_all(void)
1810{
1811        int nr = ARRAY_SIZE(tests);
1812        int ret;
1813        int i;
1814
1815        ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1816        BUG_ON(ret < 0);
1817
1818        for (i = 0; i < nr; i++) {
1819                run_bench_numa(tests[i][0], tests[i] + 1);
1820        }
1821
1822        printf("\n");
1823
1824        return 0;
1825}
1826
1827int bench_numa(int argc, const char **argv)
1828{
1829        init_params(&p0, "main,", argc, argv);
1830        argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1831        if (argc)
1832                goto err;
1833
1834        if (p0.run_all)
1835                return bench_all();
1836
1837        if (__bench_numa(NULL))
1838                goto err;
1839
1840        return 0;
1841
1842err:
1843        usage_with_options(numa_usage, options);
1844        return -1;
1845}
1846