linux/tools/perf/builtin-sched.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf.h"
   4
   5#include "util/evlist.h"
   6#include "util/cache.h"
   7#include "util/evsel.h"
   8#include "util/symbol.h"
   9#include "util/thread.h"
  10#include "util/header.h"
  11#include "util/session.h"
  12#include "util/tool.h"
  13#include "util/cloexec.h"
  14#include "util/thread_map.h"
  15#include "util/color.h"
  16#include "util/stat.h"
  17#include "util/string2.h"
  18#include "util/callchain.h"
  19#include "util/time-utils.h"
  20
  21#include <subcmd/parse-options.h>
  22#include "util/trace-event.h"
  23
  24#include "util/debug.h"
  25
  26#include <linux/kernel.h>
  27#include <linux/log2.h>
  28#include <linux/zalloc.h>
  29#include <sys/prctl.h>
  30#include <sys/resource.h>
  31#include <inttypes.h>
  32
  33#include <errno.h>
  34#include <semaphore.h>
  35#include <pthread.h>
  36#include <math.h>
  37#include <api/fs/fs.h>
  38#include <linux/time64.h>
  39
  40#include <linux/ctype.h>
  41
  42#define PR_SET_NAME             15               /* Set process name */
  43#define MAX_CPUS                4096
  44#define COMM_LEN                20
  45#define SYM_LEN                 129
  46#define MAX_PID                 1024000
  47
  48struct sched_atom;
  49
  50struct task_desc {
  51        unsigned long           nr;
  52        unsigned long           pid;
  53        char                    comm[COMM_LEN];
  54
  55        unsigned long           nr_events;
  56        unsigned long           curr_event;
  57        struct sched_atom       **atoms;
  58
  59        pthread_t               thread;
  60        sem_t                   sleep_sem;
  61
  62        sem_t                   ready_for_work;
  63        sem_t                   work_done_sem;
  64
  65        u64                     cpu_usage;
  66};
  67
  68enum sched_event_type {
  69        SCHED_EVENT_RUN,
  70        SCHED_EVENT_SLEEP,
  71        SCHED_EVENT_WAKEUP,
  72        SCHED_EVENT_MIGRATION,
  73};
  74
  75struct sched_atom {
  76        enum sched_event_type   type;
  77        int                     specific_wait;
  78        u64                     timestamp;
  79        u64                     duration;
  80        unsigned long           nr;
  81        sem_t                   *wait_sem;
  82        struct task_desc        *wakee;
  83};
  84
  85#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  86
  87/* task state bitmask, copied from include/linux/sched.h */
  88#define TASK_RUNNING            0
  89#define TASK_INTERRUPTIBLE      1
  90#define TASK_UNINTERRUPTIBLE    2
  91#define __TASK_STOPPED          4
  92#define __TASK_TRACED           8
  93/* in tsk->exit_state */
  94#define EXIT_DEAD               16
  95#define EXIT_ZOMBIE             32
  96#define EXIT_TRACE              (EXIT_ZOMBIE | EXIT_DEAD)
  97/* in tsk->state again */
  98#define TASK_DEAD               64
  99#define TASK_WAKEKILL           128
 100#define TASK_WAKING             256
 101#define TASK_PARKED             512
 102
 103enum thread_state {
 104        THREAD_SLEEPING = 0,
 105        THREAD_WAIT_CPU,
 106        THREAD_SCHED_IN,
 107        THREAD_IGNORE
 108};
 109
 110struct work_atom {
 111        struct list_head        list;
 112        enum thread_state       state;
 113        u64                     sched_out_time;
 114        u64                     wake_up_time;
 115        u64                     sched_in_time;
 116        u64                     runtime;
 117};
 118
 119struct work_atoms {
 120        struct list_head        work_list;
 121        struct thread           *thread;
 122        struct rb_node          node;
 123        u64                     max_lat;
 124        u64                     max_lat_at;
 125        u64                     total_lat;
 126        u64                     nb_atoms;
 127        u64                     total_runtime;
 128        int                     num_merged;
 129};
 130
 131typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 132
 133struct perf_sched;
 134
 135struct trace_sched_handler {
 136        int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 137                            struct perf_sample *sample, struct machine *machine);
 138
 139        int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 140                             struct perf_sample *sample, struct machine *machine);
 141
 142        int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 143                            struct perf_sample *sample, struct machine *machine);
 144
 145        /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 146        int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 147                          struct machine *machine);
 148
 149        int (*migrate_task_event)(struct perf_sched *sched,
 150                                  struct perf_evsel *evsel,
 151                                  struct perf_sample *sample,
 152                                  struct machine *machine);
 153};
 154
 155#define COLOR_PIDS PERF_COLOR_BLUE
 156#define COLOR_CPUS PERF_COLOR_BG_RED
 157
 158struct perf_sched_map {
 159        DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 160        int                     *comp_cpus;
 161        bool                     comp;
 162        struct thread_map       *color_pids;
 163        const char              *color_pids_str;
 164        struct cpu_map          *color_cpus;
 165        const char              *color_cpus_str;
 166        struct cpu_map          *cpus;
 167        const char              *cpus_str;
 168};
 169
 170struct perf_sched {
 171        struct perf_tool tool;
 172        const char       *sort_order;
 173        unsigned long    nr_tasks;
 174        struct task_desc **pid_to_task;
 175        struct task_desc **tasks;
 176        const struct trace_sched_handler *tp_handler;
 177        pthread_mutex_t  start_work_mutex;
 178        pthread_mutex_t  work_done_wait_mutex;
 179        int              profile_cpu;
 180/*
 181 * Track the current task - that way we can know whether there's any
 182 * weird events, such as a task being switched away that is not current.
 183 */
 184        int              max_cpu;
 185        u32              curr_pid[MAX_CPUS];
 186        struct thread    *curr_thread[MAX_CPUS];
 187        char             next_shortname1;
 188        char             next_shortname2;
 189        unsigned int     replay_repeat;
 190        unsigned long    nr_run_events;
 191        unsigned long    nr_sleep_events;
 192        unsigned long    nr_wakeup_events;
 193        unsigned long    nr_sleep_corrections;
 194        unsigned long    nr_run_events_optimized;
 195        unsigned long    targetless_wakeups;
 196        unsigned long    multitarget_wakeups;
 197        unsigned long    nr_runs;
 198        unsigned long    nr_timestamps;
 199        unsigned long    nr_unordered_timestamps;
 200        unsigned long    nr_context_switch_bugs;
 201        unsigned long    nr_events;
 202        unsigned long    nr_lost_chunks;
 203        unsigned long    nr_lost_events;
 204        u64              run_measurement_overhead;
 205        u64              sleep_measurement_overhead;
 206        u64              start_time;
 207        u64              cpu_usage;
 208        u64              runavg_cpu_usage;
 209        u64              parent_cpu_usage;
 210        u64              runavg_parent_cpu_usage;
 211        u64              sum_runtime;
 212        u64              sum_fluct;
 213        u64              run_avg;
 214        u64              all_runtime;
 215        u64              all_count;
 216        u64              cpu_last_switched[MAX_CPUS];
 217        struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 218        struct list_head sort_list, cmp_pid;
 219        bool force;
 220        bool skip_merge;
 221        struct perf_sched_map map;
 222
 223        /* options for timehist command */
 224        bool            summary;
 225        bool            summary_only;
 226        bool            idle_hist;
 227        bool            show_callchain;
 228        unsigned int    max_stack;
 229        bool            show_cpu_visual;
 230        bool            show_wakeups;
 231        bool            show_next;
 232        bool            show_migrations;
 233        bool            show_state;
 234        u64             skipped_samples;
 235        const char      *time_str;
 236        struct perf_time_interval ptime;
 237        struct perf_time_interval hist_time;
 238};
 239
 240/* per thread run time data */
 241struct thread_runtime {
 242        u64 last_time;      /* time of previous sched in/out event */
 243        u64 dt_run;         /* run time */
 244        u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 245        u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 246        u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 247        u64 dt_delay;       /* time between wakeup and sched-in */
 248        u64 ready_to_run;   /* time of wakeup */
 249
 250        struct stats run_stats;
 251        u64 total_run_time;
 252        u64 total_sleep_time;
 253        u64 total_iowait_time;
 254        u64 total_preempt_time;
 255        u64 total_delay_time;
 256
 257        int last_state;
 258
 259        char shortname[3];
 260        bool comm_changed;
 261
 262        u64 migrations;
 263};
 264
 265/* per event run time data */
 266struct evsel_runtime {
 267        u64 *last_time; /* time this event was last seen per cpu */
 268        u32 ncpu;       /* highest cpu slot allocated */
 269};
 270
 271/* per cpu idle time data */
 272struct idle_thread_runtime {
 273        struct thread_runtime   tr;
 274        struct thread           *last_thread;
 275        struct rb_root_cached   sorted_root;
 276        struct callchain_root   callchain;
 277        struct callchain_cursor cursor;
 278};
 279
 280/* track idle times per cpu */
 281static struct thread **idle_threads;
 282static int idle_max_cpu;
 283static char idle_comm[] = "<idle>";
 284
 285static u64 get_nsecs(void)
 286{
 287        struct timespec ts;
 288
 289        clock_gettime(CLOCK_MONOTONIC, &ts);
 290
 291        return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 292}
 293
 294static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 295{
 296        u64 T0 = get_nsecs(), T1;
 297
 298        do {
 299                T1 = get_nsecs();
 300        } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 301}
 302
 303static void sleep_nsecs(u64 nsecs)
 304{
 305        struct timespec ts;
 306
 307        ts.tv_nsec = nsecs % 999999999;
 308        ts.tv_sec = nsecs / 999999999;
 309
 310        nanosleep(&ts, NULL);
 311}
 312
 313static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 314{
 315        u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 316        int i;
 317
 318        for (i = 0; i < 10; i++) {
 319                T0 = get_nsecs();
 320                burn_nsecs(sched, 0);
 321                T1 = get_nsecs();
 322                delta = T1-T0;
 323                min_delta = min(min_delta, delta);
 324        }
 325        sched->run_measurement_overhead = min_delta;
 326
 327        printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 328}
 329
 330static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 331{
 332        u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 333        int i;
 334
 335        for (i = 0; i < 10; i++) {
 336                T0 = get_nsecs();
 337                sleep_nsecs(10000);
 338                T1 = get_nsecs();
 339                delta = T1-T0;
 340                min_delta = min(min_delta, delta);
 341        }
 342        min_delta -= 10000;
 343        sched->sleep_measurement_overhead = min_delta;
 344
 345        printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 346}
 347
 348static struct sched_atom *
 349get_new_event(struct task_desc *task, u64 timestamp)
 350{
 351        struct sched_atom *event = zalloc(sizeof(*event));
 352        unsigned long idx = task->nr_events;
 353        size_t size;
 354
 355        event->timestamp = timestamp;
 356        event->nr = idx;
 357
 358        task->nr_events++;
 359        size = sizeof(struct sched_atom *) * task->nr_events;
 360        task->atoms = realloc(task->atoms, size);
 361        BUG_ON(!task->atoms);
 362
 363        task->atoms[idx] = event;
 364
 365        return event;
 366}
 367
 368static struct sched_atom *last_event(struct task_desc *task)
 369{
 370        if (!task->nr_events)
 371                return NULL;
 372
 373        return task->atoms[task->nr_events - 1];
 374}
 375
 376static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 377                                u64 timestamp, u64 duration)
 378{
 379        struct sched_atom *event, *curr_event = last_event(task);
 380
 381        /*
 382         * optimize an existing RUN event by merging this one
 383         * to it:
 384         */
 385        if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 386                sched->nr_run_events_optimized++;
 387                curr_event->duration += duration;
 388                return;
 389        }
 390
 391        event = get_new_event(task, timestamp);
 392
 393        event->type = SCHED_EVENT_RUN;
 394        event->duration = duration;
 395
 396        sched->nr_run_events++;
 397}
 398
 399static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 400                                   u64 timestamp, struct task_desc *wakee)
 401{
 402        struct sched_atom *event, *wakee_event;
 403
 404        event = get_new_event(task, timestamp);
 405        event->type = SCHED_EVENT_WAKEUP;
 406        event->wakee = wakee;
 407
 408        wakee_event = last_event(wakee);
 409        if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 410                sched->targetless_wakeups++;
 411                return;
 412        }
 413        if (wakee_event->wait_sem) {
 414                sched->multitarget_wakeups++;
 415                return;
 416        }
 417
 418        wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 419        sem_init(wakee_event->wait_sem, 0, 0);
 420        wakee_event->specific_wait = 1;
 421        event->wait_sem = wakee_event->wait_sem;
 422
 423        sched->nr_wakeup_events++;
 424}
 425
 426static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 427                                  u64 timestamp, u64 task_state __maybe_unused)
 428{
 429        struct sched_atom *event = get_new_event(task, timestamp);
 430
 431        event->type = SCHED_EVENT_SLEEP;
 432
 433        sched->nr_sleep_events++;
 434}
 435
 436static struct task_desc *register_pid(struct perf_sched *sched,
 437                                      unsigned long pid, const char *comm)
 438{
 439        struct task_desc *task;
 440        static int pid_max;
 441
 442        if (sched->pid_to_task == NULL) {
 443                if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 444                        pid_max = MAX_PID;
 445                BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 446        }
 447        if (pid >= (unsigned long)pid_max) {
 448                BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 449                        sizeof(struct task_desc *))) == NULL);
 450                while (pid >= (unsigned long)pid_max)
 451                        sched->pid_to_task[pid_max++] = NULL;
 452        }
 453
 454        task = sched->pid_to_task[pid];
 455
 456        if (task)
 457                return task;
 458
 459        task = zalloc(sizeof(*task));
 460        task->pid = pid;
 461        task->nr = sched->nr_tasks;
 462        strcpy(task->comm, comm);
 463        /*
 464         * every task starts in sleeping state - this gets ignored
 465         * if there's no wakeup pointing to this sleep state:
 466         */
 467        add_sched_event_sleep(sched, task, 0, 0);
 468
 469        sched->pid_to_task[pid] = task;
 470        sched->nr_tasks++;
 471        sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 472        BUG_ON(!sched->tasks);
 473        sched->tasks[task->nr] = task;
 474
 475        if (verbose > 0)
 476                printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 477
 478        return task;
 479}
 480
 481
 482static void print_task_traces(struct perf_sched *sched)
 483{
 484        struct task_desc *task;
 485        unsigned long i;
 486
 487        for (i = 0; i < sched->nr_tasks; i++) {
 488                task = sched->tasks[i];
 489                printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 490                        task->nr, task->comm, task->pid, task->nr_events);
 491        }
 492}
 493
 494static void add_cross_task_wakeups(struct perf_sched *sched)
 495{
 496        struct task_desc *task1, *task2;
 497        unsigned long i, j;
 498
 499        for (i = 0; i < sched->nr_tasks; i++) {
 500                task1 = sched->tasks[i];
 501                j = i + 1;
 502                if (j == sched->nr_tasks)
 503                        j = 0;
 504                task2 = sched->tasks[j];
 505                add_sched_event_wakeup(sched, task1, 0, task2);
 506        }
 507}
 508
 509static void perf_sched__process_event(struct perf_sched *sched,
 510                                      struct sched_atom *atom)
 511{
 512        int ret = 0;
 513
 514        switch (atom->type) {
 515                case SCHED_EVENT_RUN:
 516                        burn_nsecs(sched, atom->duration);
 517                        break;
 518                case SCHED_EVENT_SLEEP:
 519                        if (atom->wait_sem)
 520                                ret = sem_wait(atom->wait_sem);
 521                        BUG_ON(ret);
 522                        break;
 523                case SCHED_EVENT_WAKEUP:
 524                        if (atom->wait_sem)
 525                                ret = sem_post(atom->wait_sem);
 526                        BUG_ON(ret);
 527                        break;
 528                case SCHED_EVENT_MIGRATION:
 529                        break;
 530                default:
 531                        BUG_ON(1);
 532        }
 533}
 534
 535static u64 get_cpu_usage_nsec_parent(void)
 536{
 537        struct rusage ru;
 538        u64 sum;
 539        int err;
 540
 541        err = getrusage(RUSAGE_SELF, &ru);
 542        BUG_ON(err);
 543
 544        sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 545        sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 546
 547        return sum;
 548}
 549
 550static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 551{
 552        struct perf_event_attr attr;
 553        char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 554        int fd;
 555        struct rlimit limit;
 556        bool need_privilege = false;
 557
 558        memset(&attr, 0, sizeof(attr));
 559
 560        attr.type = PERF_TYPE_SOFTWARE;
 561        attr.config = PERF_COUNT_SW_TASK_CLOCK;
 562
 563force_again:
 564        fd = sys_perf_event_open(&attr, 0, -1, -1,
 565                                 perf_event_open_cloexec_flag());
 566
 567        if (fd < 0) {
 568                if (errno == EMFILE) {
 569                        if (sched->force) {
 570                                BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 571                                limit.rlim_cur += sched->nr_tasks - cur_task;
 572                                if (limit.rlim_cur > limit.rlim_max) {
 573                                        limit.rlim_max = limit.rlim_cur;
 574                                        need_privilege = true;
 575                                }
 576                                if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 577                                        if (need_privilege && errno == EPERM)
 578                                                strcpy(info, "Need privilege\n");
 579                                } else
 580                                        goto force_again;
 581                        } else
 582                                strcpy(info, "Have a try with -f option\n");
 583                }
 584                pr_err("Error: sys_perf_event_open() syscall returned "
 585                       "with %d (%s)\n%s", fd,
 586                       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 587                exit(EXIT_FAILURE);
 588        }
 589        return fd;
 590}
 591
 592static u64 get_cpu_usage_nsec_self(int fd)
 593{
 594        u64 runtime;
 595        int ret;
 596
 597        ret = read(fd, &runtime, sizeof(runtime));
 598        BUG_ON(ret != sizeof(runtime));
 599
 600        return runtime;
 601}
 602
 603struct sched_thread_parms {
 604        struct task_desc  *task;
 605        struct perf_sched *sched;
 606        int fd;
 607};
 608
 609static void *thread_func(void *ctx)
 610{
 611        struct sched_thread_parms *parms = ctx;
 612        struct task_desc *this_task = parms->task;
 613        struct perf_sched *sched = parms->sched;
 614        u64 cpu_usage_0, cpu_usage_1;
 615        unsigned long i, ret;
 616        char comm2[22];
 617        int fd = parms->fd;
 618
 619        zfree(&parms);
 620
 621        sprintf(comm2, ":%s", this_task->comm);
 622        prctl(PR_SET_NAME, comm2);
 623        if (fd < 0)
 624                return NULL;
 625again:
 626        ret = sem_post(&this_task->ready_for_work);
 627        BUG_ON(ret);
 628        ret = pthread_mutex_lock(&sched->start_work_mutex);
 629        BUG_ON(ret);
 630        ret = pthread_mutex_unlock(&sched->start_work_mutex);
 631        BUG_ON(ret);
 632
 633        cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 634
 635        for (i = 0; i < this_task->nr_events; i++) {
 636                this_task->curr_event = i;
 637                perf_sched__process_event(sched, this_task->atoms[i]);
 638        }
 639
 640        cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 641        this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 642        ret = sem_post(&this_task->work_done_sem);
 643        BUG_ON(ret);
 644
 645        ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 646        BUG_ON(ret);
 647        ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 648        BUG_ON(ret);
 649
 650        goto again;
 651}
 652
 653static void create_tasks(struct perf_sched *sched)
 654{
 655        struct task_desc *task;
 656        pthread_attr_t attr;
 657        unsigned long i;
 658        int err;
 659
 660        err = pthread_attr_init(&attr);
 661        BUG_ON(err);
 662        err = pthread_attr_setstacksize(&attr,
 663                        (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 664        BUG_ON(err);
 665        err = pthread_mutex_lock(&sched->start_work_mutex);
 666        BUG_ON(err);
 667        err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 668        BUG_ON(err);
 669        for (i = 0; i < sched->nr_tasks; i++) {
 670                struct sched_thread_parms *parms = malloc(sizeof(*parms));
 671                BUG_ON(parms == NULL);
 672                parms->task = task = sched->tasks[i];
 673                parms->sched = sched;
 674                parms->fd = self_open_counters(sched, i);
 675                sem_init(&task->sleep_sem, 0, 0);
 676                sem_init(&task->ready_for_work, 0, 0);
 677                sem_init(&task->work_done_sem, 0, 0);
 678                task->curr_event = 0;
 679                err = pthread_create(&task->thread, &attr, thread_func, parms);
 680                BUG_ON(err);
 681        }
 682}
 683
 684static void wait_for_tasks(struct perf_sched *sched)
 685{
 686        u64 cpu_usage_0, cpu_usage_1;
 687        struct task_desc *task;
 688        unsigned long i, ret;
 689
 690        sched->start_time = get_nsecs();
 691        sched->cpu_usage = 0;
 692        pthread_mutex_unlock(&sched->work_done_wait_mutex);
 693
 694        for (i = 0; i < sched->nr_tasks; i++) {
 695                task = sched->tasks[i];
 696                ret = sem_wait(&task->ready_for_work);
 697                BUG_ON(ret);
 698                sem_init(&task->ready_for_work, 0, 0);
 699        }
 700        ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 701        BUG_ON(ret);
 702
 703        cpu_usage_0 = get_cpu_usage_nsec_parent();
 704
 705        pthread_mutex_unlock(&sched->start_work_mutex);
 706
 707        for (i = 0; i < sched->nr_tasks; i++) {
 708                task = sched->tasks[i];
 709                ret = sem_wait(&task->work_done_sem);
 710                BUG_ON(ret);
 711                sem_init(&task->work_done_sem, 0, 0);
 712                sched->cpu_usage += task->cpu_usage;
 713                task->cpu_usage = 0;
 714        }
 715
 716        cpu_usage_1 = get_cpu_usage_nsec_parent();
 717        if (!sched->runavg_cpu_usage)
 718                sched->runavg_cpu_usage = sched->cpu_usage;
 719        sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 720
 721        sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 722        if (!sched->runavg_parent_cpu_usage)
 723                sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 724        sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 725                                         sched->parent_cpu_usage)/sched->replay_repeat;
 726
 727        ret = pthread_mutex_lock(&sched->start_work_mutex);
 728        BUG_ON(ret);
 729
 730        for (i = 0; i < sched->nr_tasks; i++) {
 731                task = sched->tasks[i];
 732                sem_init(&task->sleep_sem, 0, 0);
 733                task->curr_event = 0;
 734        }
 735}
 736
 737static void run_one_test(struct perf_sched *sched)
 738{
 739        u64 T0, T1, delta, avg_delta, fluct;
 740
 741        T0 = get_nsecs();
 742        wait_for_tasks(sched);
 743        T1 = get_nsecs();
 744
 745        delta = T1 - T0;
 746        sched->sum_runtime += delta;
 747        sched->nr_runs++;
 748
 749        avg_delta = sched->sum_runtime / sched->nr_runs;
 750        if (delta < avg_delta)
 751                fluct = avg_delta - delta;
 752        else
 753                fluct = delta - avg_delta;
 754        sched->sum_fluct += fluct;
 755        if (!sched->run_avg)
 756                sched->run_avg = delta;
 757        sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 758
 759        printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 760
 761        printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 762
 763        printf("cpu: %0.2f / %0.2f",
 764                (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 765
 766#if 0
 767        /*
 768         * rusage statistics done by the parent, these are less
 769         * accurate than the sched->sum_exec_runtime based statistics:
 770         */
 771        printf(" [%0.2f / %0.2f]",
 772                (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 773                (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 774#endif
 775
 776        printf("\n");
 777
 778        if (sched->nr_sleep_corrections)
 779                printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 780        sched->nr_sleep_corrections = 0;
 781}
 782
 783static void test_calibrations(struct perf_sched *sched)
 784{
 785        u64 T0, T1;
 786
 787        T0 = get_nsecs();
 788        burn_nsecs(sched, NSEC_PER_MSEC);
 789        T1 = get_nsecs();
 790
 791        printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 792
 793        T0 = get_nsecs();
 794        sleep_nsecs(NSEC_PER_MSEC);
 795        T1 = get_nsecs();
 796
 797        printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 798}
 799
 800static int
 801replay_wakeup_event(struct perf_sched *sched,
 802                    struct perf_evsel *evsel, struct perf_sample *sample,
 803                    struct machine *machine __maybe_unused)
 804{
 805        const char *comm = perf_evsel__strval(evsel, sample, "comm");
 806        const u32 pid    = perf_evsel__intval(evsel, sample, "pid");
 807        struct task_desc *waker, *wakee;
 808
 809        if (verbose > 0) {
 810                printf("sched_wakeup event %p\n", evsel);
 811
 812                printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 813        }
 814
 815        waker = register_pid(sched, sample->tid, "<unknown>");
 816        wakee = register_pid(sched, pid, comm);
 817
 818        add_sched_event_wakeup(sched, waker, sample->time, wakee);
 819        return 0;
 820}
 821
 822static int replay_switch_event(struct perf_sched *sched,
 823                               struct perf_evsel *evsel,
 824                               struct perf_sample *sample,
 825                               struct machine *machine __maybe_unused)
 826{
 827        const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
 828                   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
 829        const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 830                  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 831        const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 832        struct task_desc *prev, __maybe_unused *next;
 833        u64 timestamp0, timestamp = sample->time;
 834        int cpu = sample->cpu;
 835        s64 delta;
 836
 837        if (verbose > 0)
 838                printf("sched_switch event %p\n", evsel);
 839
 840        if (cpu >= MAX_CPUS || cpu < 0)
 841                return 0;
 842
 843        timestamp0 = sched->cpu_last_switched[cpu];
 844        if (timestamp0)
 845                delta = timestamp - timestamp0;
 846        else
 847                delta = 0;
 848
 849        if (delta < 0) {
 850                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 851                return -1;
 852        }
 853
 854        pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 855                 prev_comm, prev_pid, next_comm, next_pid, delta);
 856
 857        prev = register_pid(sched, prev_pid, prev_comm);
 858        next = register_pid(sched, next_pid, next_comm);
 859
 860        sched->cpu_last_switched[cpu] = timestamp;
 861
 862        add_sched_event_run(sched, prev, timestamp, delta);
 863        add_sched_event_sleep(sched, prev, timestamp, prev_state);
 864
 865        return 0;
 866}
 867
 868static int replay_fork_event(struct perf_sched *sched,
 869                             union perf_event *event,
 870                             struct machine *machine)
 871{
 872        struct thread *child, *parent;
 873
 874        child = machine__findnew_thread(machine, event->fork.pid,
 875                                        event->fork.tid);
 876        parent = machine__findnew_thread(machine, event->fork.ppid,
 877                                         event->fork.ptid);
 878
 879        if (child == NULL || parent == NULL) {
 880                pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 881                                 child, parent);
 882                goto out_put;
 883        }
 884
 885        if (verbose > 0) {
 886                printf("fork event\n");
 887                printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 888                printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 889        }
 890
 891        register_pid(sched, parent->tid, thread__comm_str(parent));
 892        register_pid(sched, child->tid, thread__comm_str(child));
 893out_put:
 894        thread__put(child);
 895        thread__put(parent);
 896        return 0;
 897}
 898
 899struct sort_dimension {
 900        const char              *name;
 901        sort_fn_t               cmp;
 902        struct list_head        list;
 903};
 904
 905/*
 906 * handle runtime stats saved per thread
 907 */
 908static struct thread_runtime *thread__init_runtime(struct thread *thread)
 909{
 910        struct thread_runtime *r;
 911
 912        r = zalloc(sizeof(struct thread_runtime));
 913        if (!r)
 914                return NULL;
 915
 916        init_stats(&r->run_stats);
 917        thread__set_priv(thread, r);
 918
 919        return r;
 920}
 921
 922static struct thread_runtime *thread__get_runtime(struct thread *thread)
 923{
 924        struct thread_runtime *tr;
 925
 926        tr = thread__priv(thread);
 927        if (tr == NULL) {
 928                tr = thread__init_runtime(thread);
 929                if (tr == NULL)
 930                        pr_debug("Failed to malloc memory for runtime data.\n");
 931        }
 932
 933        return tr;
 934}
 935
 936static int
 937thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 938{
 939        struct sort_dimension *sort;
 940        int ret = 0;
 941
 942        BUG_ON(list_empty(list));
 943
 944        list_for_each_entry(sort, list, list) {
 945                ret = sort->cmp(l, r);
 946                if (ret)
 947                        return ret;
 948        }
 949
 950        return ret;
 951}
 952
 953static struct work_atoms *
 954thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 955                         struct list_head *sort_list)
 956{
 957        struct rb_node *node = root->rb_root.rb_node;
 958        struct work_atoms key = { .thread = thread };
 959
 960        while (node) {
 961                struct work_atoms *atoms;
 962                int cmp;
 963
 964                atoms = container_of(node, struct work_atoms, node);
 965
 966                cmp = thread_lat_cmp(sort_list, &key, atoms);
 967                if (cmp > 0)
 968                        node = node->rb_left;
 969                else if (cmp < 0)
 970                        node = node->rb_right;
 971                else {
 972                        BUG_ON(thread != atoms->thread);
 973                        return atoms;
 974                }
 975        }
 976        return NULL;
 977}
 978
 979static void
 980__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
 981                         struct list_head *sort_list)
 982{
 983        struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
 984        bool leftmost = true;
 985
 986        while (*new) {
 987                struct work_atoms *this;
 988                int cmp;
 989
 990                this = container_of(*new, struct work_atoms, node);
 991                parent = *new;
 992
 993                cmp = thread_lat_cmp(sort_list, data, this);
 994
 995                if (cmp > 0)
 996                        new = &((*new)->rb_left);
 997                else {
 998                        new = &((*new)->rb_right);
 999                        leftmost = false;
1000                }
1001        }
1002
1003        rb_link_node(&data->node, parent, new);
1004        rb_insert_color_cached(&data->node, root, leftmost);
1005}
1006
1007static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1008{
1009        struct work_atoms *atoms = zalloc(sizeof(*atoms));
1010        if (!atoms) {
1011                pr_err("No memory at %s\n", __func__);
1012                return -1;
1013        }
1014
1015        atoms->thread = thread__get(thread);
1016        INIT_LIST_HEAD(&atoms->work_list);
1017        __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1018        return 0;
1019}
1020
1021static char sched_out_state(u64 prev_state)
1022{
1023        const char *str = TASK_STATE_TO_CHAR_STR;
1024
1025        return str[prev_state];
1026}
1027
1028static int
1029add_sched_out_event(struct work_atoms *atoms,
1030                    char run_state,
1031                    u64 timestamp)
1032{
1033        struct work_atom *atom = zalloc(sizeof(*atom));
1034        if (!atom) {
1035                pr_err("Non memory at %s", __func__);
1036                return -1;
1037        }
1038
1039        atom->sched_out_time = timestamp;
1040
1041        if (run_state == 'R') {
1042                atom->state = THREAD_WAIT_CPU;
1043                atom->wake_up_time = atom->sched_out_time;
1044        }
1045
1046        list_add_tail(&atom->list, &atoms->work_list);
1047        return 0;
1048}
1049
1050static void
1051add_runtime_event(struct work_atoms *atoms, u64 delta,
1052                  u64 timestamp __maybe_unused)
1053{
1054        struct work_atom *atom;
1055
1056        BUG_ON(list_empty(&atoms->work_list));
1057
1058        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1059
1060        atom->runtime += delta;
1061        atoms->total_runtime += delta;
1062}
1063
1064static void
1065add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1066{
1067        struct work_atom *atom;
1068        u64 delta;
1069
1070        if (list_empty(&atoms->work_list))
1071                return;
1072
1073        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1074
1075        if (atom->state != THREAD_WAIT_CPU)
1076                return;
1077
1078        if (timestamp < atom->wake_up_time) {
1079                atom->state = THREAD_IGNORE;
1080                return;
1081        }
1082
1083        atom->state = THREAD_SCHED_IN;
1084        atom->sched_in_time = timestamp;
1085
1086        delta = atom->sched_in_time - atom->wake_up_time;
1087        atoms->total_lat += delta;
1088        if (delta > atoms->max_lat) {
1089                atoms->max_lat = delta;
1090                atoms->max_lat_at = timestamp;
1091        }
1092        atoms->nb_atoms++;
1093}
1094
1095static int latency_switch_event(struct perf_sched *sched,
1096                                struct perf_evsel *evsel,
1097                                struct perf_sample *sample,
1098                                struct machine *machine)
1099{
1100        const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1101                  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1102        const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1103        struct work_atoms *out_events, *in_events;
1104        struct thread *sched_out, *sched_in;
1105        u64 timestamp0, timestamp = sample->time;
1106        int cpu = sample->cpu, err = -1;
1107        s64 delta;
1108
1109        BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1110
1111        timestamp0 = sched->cpu_last_switched[cpu];
1112        sched->cpu_last_switched[cpu] = timestamp;
1113        if (timestamp0)
1114                delta = timestamp - timestamp0;
1115        else
1116                delta = 0;
1117
1118        if (delta < 0) {
1119                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1120                return -1;
1121        }
1122
1123        sched_out = machine__findnew_thread(machine, -1, prev_pid);
1124        sched_in = machine__findnew_thread(machine, -1, next_pid);
1125        if (sched_out == NULL || sched_in == NULL)
1126                goto out_put;
1127
1128        out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1129        if (!out_events) {
1130                if (thread_atoms_insert(sched, sched_out))
1131                        goto out_put;
1132                out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1133                if (!out_events) {
1134                        pr_err("out-event: Internal tree error");
1135                        goto out_put;
1136                }
1137        }
1138        if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1139                return -1;
1140
1141        in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1142        if (!in_events) {
1143                if (thread_atoms_insert(sched, sched_in))
1144                        goto out_put;
1145                in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1146                if (!in_events) {
1147                        pr_err("in-event: Internal tree error");
1148                        goto out_put;
1149                }
1150                /*
1151                 * Take came in we have not heard about yet,
1152                 * add in an initial atom in runnable state:
1153                 */
1154                if (add_sched_out_event(in_events, 'R', timestamp))
1155                        goto out_put;
1156        }
1157        add_sched_in_event(in_events, timestamp);
1158        err = 0;
1159out_put:
1160        thread__put(sched_out);
1161        thread__put(sched_in);
1162        return err;
1163}
1164
1165static int latency_runtime_event(struct perf_sched *sched,
1166                                 struct perf_evsel *evsel,
1167                                 struct perf_sample *sample,
1168                                 struct machine *machine)
1169{
1170        const u32 pid      = perf_evsel__intval(evsel, sample, "pid");
1171        const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1172        struct thread *thread = machine__findnew_thread(machine, -1, pid);
1173        struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1174        u64 timestamp = sample->time;
1175        int cpu = sample->cpu, err = -1;
1176
1177        if (thread == NULL)
1178                return -1;
1179
1180        BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1181        if (!atoms) {
1182                if (thread_atoms_insert(sched, thread))
1183                        goto out_put;
1184                atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1185                if (!atoms) {
1186                        pr_err("in-event: Internal tree error");
1187                        goto out_put;
1188                }
1189                if (add_sched_out_event(atoms, 'R', timestamp))
1190                        goto out_put;
1191        }
1192
1193        add_runtime_event(atoms, runtime, timestamp);
1194        err = 0;
1195out_put:
1196        thread__put(thread);
1197        return err;
1198}
1199
1200static int latency_wakeup_event(struct perf_sched *sched,
1201                                struct perf_evsel *evsel,
1202                                struct perf_sample *sample,
1203                                struct machine *machine)
1204{
1205        const u32 pid     = perf_evsel__intval(evsel, sample, "pid");
1206        struct work_atoms *atoms;
1207        struct work_atom *atom;
1208        struct thread *wakee;
1209        u64 timestamp = sample->time;
1210        int err = -1;
1211
1212        wakee = machine__findnew_thread(machine, -1, pid);
1213        if (wakee == NULL)
1214                return -1;
1215        atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1216        if (!atoms) {
1217                if (thread_atoms_insert(sched, wakee))
1218                        goto out_put;
1219                atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1220                if (!atoms) {
1221                        pr_err("wakeup-event: Internal tree error");
1222                        goto out_put;
1223                }
1224                if (add_sched_out_event(atoms, 'S', timestamp))
1225                        goto out_put;
1226        }
1227
1228        BUG_ON(list_empty(&atoms->work_list));
1229
1230        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1231
1232        /*
1233         * As we do not guarantee the wakeup event happens when
1234         * task is out of run queue, also may happen when task is
1235         * on run queue and wakeup only change ->state to TASK_RUNNING,
1236         * then we should not set the ->wake_up_time when wake up a
1237         * task which is on run queue.
1238         *
1239         * You WILL be missing events if you've recorded only
1240         * one CPU, or are only looking at only one, so don't
1241         * skip in this case.
1242         */
1243        if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1244                goto out_ok;
1245
1246        sched->nr_timestamps++;
1247        if (atom->sched_out_time > timestamp) {
1248                sched->nr_unordered_timestamps++;
1249                goto out_ok;
1250        }
1251
1252        atom->state = THREAD_WAIT_CPU;
1253        atom->wake_up_time = timestamp;
1254out_ok:
1255        err = 0;
1256out_put:
1257        thread__put(wakee);
1258        return err;
1259}
1260
1261static int latency_migrate_task_event(struct perf_sched *sched,
1262                                      struct perf_evsel *evsel,
1263                                      struct perf_sample *sample,
1264                                      struct machine *machine)
1265{
1266        const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1267        u64 timestamp = sample->time;
1268        struct work_atoms *atoms;
1269        struct work_atom *atom;
1270        struct thread *migrant;
1271        int err = -1;
1272
1273        /*
1274         * Only need to worry about migration when profiling one CPU.
1275         */
1276        if (sched->profile_cpu == -1)
1277                return 0;
1278
1279        migrant = machine__findnew_thread(machine, -1, pid);
1280        if (migrant == NULL)
1281                return -1;
1282        atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1283        if (!atoms) {
1284                if (thread_atoms_insert(sched, migrant))
1285                        goto out_put;
1286                register_pid(sched, migrant->tid, thread__comm_str(migrant));
1287                atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1288                if (!atoms) {
1289                        pr_err("migration-event: Internal tree error");
1290                        goto out_put;
1291                }
1292                if (add_sched_out_event(atoms, 'R', timestamp))
1293                        goto out_put;
1294        }
1295
1296        BUG_ON(list_empty(&atoms->work_list));
1297
1298        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1299        atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1300
1301        sched->nr_timestamps++;
1302
1303        if (atom->sched_out_time > timestamp)
1304                sched->nr_unordered_timestamps++;
1305        err = 0;
1306out_put:
1307        thread__put(migrant);
1308        return err;
1309}
1310
1311static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1312{
1313        int i;
1314        int ret;
1315        u64 avg;
1316        char max_lat_at[32];
1317
1318        if (!work_list->nb_atoms)
1319                return;
1320        /*
1321         * Ignore idle threads:
1322         */
1323        if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1324                return;
1325
1326        sched->all_runtime += work_list->total_runtime;
1327        sched->all_count   += work_list->nb_atoms;
1328
1329        if (work_list->num_merged > 1)
1330                ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1331        else
1332                ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1333
1334        for (i = 0; i < 24 - ret; i++)
1335                printf(" ");
1336
1337        avg = work_list->total_lat / work_list->nb_atoms;
1338        timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1339
1340        printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1341              (double)work_list->total_runtime / NSEC_PER_MSEC,
1342                 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1343                 (double)work_list->max_lat / NSEC_PER_MSEC,
1344                 max_lat_at);
1345}
1346
1347static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1348{
1349        if (l->thread == r->thread)
1350                return 0;
1351        if (l->thread->tid < r->thread->tid)
1352                return -1;
1353        if (l->thread->tid > r->thread->tid)
1354                return 1;
1355        return (int)(l->thread - r->thread);
1356}
1357
1358static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1359{
1360        u64 avgl, avgr;
1361
1362        if (!l->nb_atoms)
1363                return -1;
1364
1365        if (!r->nb_atoms)
1366                return 1;
1367
1368        avgl = l->total_lat / l->nb_atoms;
1369        avgr = r->total_lat / r->nb_atoms;
1370
1371        if (avgl < avgr)
1372                return -1;
1373        if (avgl > avgr)
1374                return 1;
1375
1376        return 0;
1377}
1378
1379static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1380{
1381        if (l->max_lat < r->max_lat)
1382                return -1;
1383        if (l->max_lat > r->max_lat)
1384                return 1;
1385
1386        return 0;
1387}
1388
1389static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1390{
1391        if (l->nb_atoms < r->nb_atoms)
1392                return -1;
1393        if (l->nb_atoms > r->nb_atoms)
1394                return 1;
1395
1396        return 0;
1397}
1398
1399static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1400{
1401        if (l->total_runtime < r->total_runtime)
1402                return -1;
1403        if (l->total_runtime > r->total_runtime)
1404                return 1;
1405
1406        return 0;
1407}
1408
1409static int sort_dimension__add(const char *tok, struct list_head *list)
1410{
1411        size_t i;
1412        static struct sort_dimension avg_sort_dimension = {
1413                .name = "avg",
1414                .cmp  = avg_cmp,
1415        };
1416        static struct sort_dimension max_sort_dimension = {
1417                .name = "max",
1418                .cmp  = max_cmp,
1419        };
1420        static struct sort_dimension pid_sort_dimension = {
1421                .name = "pid",
1422                .cmp  = pid_cmp,
1423        };
1424        static struct sort_dimension runtime_sort_dimension = {
1425                .name = "runtime",
1426                .cmp  = runtime_cmp,
1427        };
1428        static struct sort_dimension switch_sort_dimension = {
1429                .name = "switch",
1430                .cmp  = switch_cmp,
1431        };
1432        struct sort_dimension *available_sorts[] = {
1433                &pid_sort_dimension,
1434                &avg_sort_dimension,
1435                &max_sort_dimension,
1436                &switch_sort_dimension,
1437                &runtime_sort_dimension,
1438        };
1439
1440        for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1441                if (!strcmp(available_sorts[i]->name, tok)) {
1442                        list_add_tail(&available_sorts[i]->list, list);
1443
1444                        return 0;
1445                }
1446        }
1447
1448        return -1;
1449}
1450
1451static void perf_sched__sort_lat(struct perf_sched *sched)
1452{
1453        struct rb_node *node;
1454        struct rb_root_cached *root = &sched->atom_root;
1455again:
1456        for (;;) {
1457                struct work_atoms *data;
1458                node = rb_first_cached(root);
1459                if (!node)
1460                        break;
1461
1462                rb_erase_cached(node, root);
1463                data = rb_entry(node, struct work_atoms, node);
1464                __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1465        }
1466        if (root == &sched->atom_root) {
1467                root = &sched->merged_atom_root;
1468                goto again;
1469        }
1470}
1471
1472static int process_sched_wakeup_event(struct perf_tool *tool,
1473                                      struct perf_evsel *evsel,
1474                                      struct perf_sample *sample,
1475                                      struct machine *machine)
1476{
1477        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1478
1479        if (sched->tp_handler->wakeup_event)
1480                return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1481
1482        return 0;
1483}
1484
1485union map_priv {
1486        void    *ptr;
1487        bool     color;
1488};
1489
1490static bool thread__has_color(struct thread *thread)
1491{
1492        union map_priv priv = {
1493                .ptr = thread__priv(thread),
1494        };
1495
1496        return priv.color;
1497}
1498
1499static struct thread*
1500map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1501{
1502        struct thread *thread = machine__findnew_thread(machine, pid, tid);
1503        union map_priv priv = {
1504                .color = false,
1505        };
1506
1507        if (!sched->map.color_pids || !thread || thread__priv(thread))
1508                return thread;
1509
1510        if (thread_map__has(sched->map.color_pids, tid))
1511                priv.color = true;
1512
1513        thread__set_priv(thread, priv.ptr);
1514        return thread;
1515}
1516
1517static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1518                            struct perf_sample *sample, struct machine *machine)
1519{
1520        const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1521        struct thread *sched_in;
1522        struct thread_runtime *tr;
1523        int new_shortname;
1524        u64 timestamp0, timestamp = sample->time;
1525        s64 delta;
1526        int i, this_cpu = sample->cpu;
1527        int cpus_nr;
1528        bool new_cpu = false;
1529        const char *color = PERF_COLOR_NORMAL;
1530        char stimestamp[32];
1531
1532        BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1533
1534        if (this_cpu > sched->max_cpu)
1535                sched->max_cpu = this_cpu;
1536
1537        if (sched->map.comp) {
1538                cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1539                if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1540                        sched->map.comp_cpus[cpus_nr++] = this_cpu;
1541                        new_cpu = true;
1542                }
1543        } else
1544                cpus_nr = sched->max_cpu;
1545
1546        timestamp0 = sched->cpu_last_switched[this_cpu];
1547        sched->cpu_last_switched[this_cpu] = timestamp;
1548        if (timestamp0)
1549                delta = timestamp - timestamp0;
1550        else
1551                delta = 0;
1552
1553        if (delta < 0) {
1554                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1555                return -1;
1556        }
1557
1558        sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1559        if (sched_in == NULL)
1560                return -1;
1561
1562        tr = thread__get_runtime(sched_in);
1563        if (tr == NULL) {
1564                thread__put(sched_in);
1565                return -1;
1566        }
1567
1568        sched->curr_thread[this_cpu] = thread__get(sched_in);
1569
1570        printf("  ");
1571
1572        new_shortname = 0;
1573        if (!tr->shortname[0]) {
1574                if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1575                        /*
1576                         * Don't allocate a letter-number for swapper:0
1577                         * as a shortname. Instead, we use '.' for it.
1578                         */
1579                        tr->shortname[0] = '.';
1580                        tr->shortname[1] = ' ';
1581                } else {
1582                        tr->shortname[0] = sched->next_shortname1;
1583                        tr->shortname[1] = sched->next_shortname2;
1584
1585                        if (sched->next_shortname1 < 'Z') {
1586                                sched->next_shortname1++;
1587                        } else {
1588                                sched->next_shortname1 = 'A';
1589                                if (sched->next_shortname2 < '9')
1590                                        sched->next_shortname2++;
1591                                else
1592                                        sched->next_shortname2 = '0';
1593                        }
1594                }
1595                new_shortname = 1;
1596        }
1597
1598        for (i = 0; i < cpus_nr; i++) {
1599                int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1600                struct thread *curr_thread = sched->curr_thread[cpu];
1601                struct thread_runtime *curr_tr;
1602                const char *pid_color = color;
1603                const char *cpu_color = color;
1604
1605                if (curr_thread && thread__has_color(curr_thread))
1606                        pid_color = COLOR_PIDS;
1607
1608                if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1609                        continue;
1610
1611                if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1612                        cpu_color = COLOR_CPUS;
1613
1614                if (cpu != this_cpu)
1615                        color_fprintf(stdout, color, " ");
1616                else
1617                        color_fprintf(stdout, cpu_color, "*");
1618
1619                if (sched->curr_thread[cpu]) {
1620                        curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1621                        if (curr_tr == NULL) {
1622                                thread__put(sched_in);
1623                                return -1;
1624                        }
1625                        color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1626                } else
1627                        color_fprintf(stdout, color, "   ");
1628        }
1629
1630        if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1631                goto out;
1632
1633        timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1634        color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1635        if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1636                const char *pid_color = color;
1637
1638                if (thread__has_color(sched_in))
1639                        pid_color = COLOR_PIDS;
1640
1641                color_fprintf(stdout, pid_color, "%s => %s:%d",
1642                       tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1643                tr->comm_changed = false;
1644        }
1645
1646        if (sched->map.comp && new_cpu)
1647                color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1648
1649out:
1650        color_fprintf(stdout, color, "\n");
1651
1652        thread__put(sched_in);
1653
1654        return 0;
1655}
1656
1657static int process_sched_switch_event(struct perf_tool *tool,
1658                                      struct perf_evsel *evsel,
1659                                      struct perf_sample *sample,
1660                                      struct machine *machine)
1661{
1662        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1663        int this_cpu = sample->cpu, err = 0;
1664        u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1665            next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1666
1667        if (sched->curr_pid[this_cpu] != (u32)-1) {
1668                /*
1669                 * Are we trying to switch away a PID that is
1670                 * not current?
1671                 */
1672                if (sched->curr_pid[this_cpu] != prev_pid)
1673                        sched->nr_context_switch_bugs++;
1674        }
1675
1676        if (sched->tp_handler->switch_event)
1677                err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1678
1679        sched->curr_pid[this_cpu] = next_pid;
1680        return err;
1681}
1682
1683static int process_sched_runtime_event(struct perf_tool *tool,
1684                                       struct perf_evsel *evsel,
1685                                       struct perf_sample *sample,
1686                                       struct machine *machine)
1687{
1688        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1689
1690        if (sched->tp_handler->runtime_event)
1691                return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1692
1693        return 0;
1694}
1695
1696static int perf_sched__process_fork_event(struct perf_tool *tool,
1697                                          union perf_event *event,
1698                                          struct perf_sample *sample,
1699                                          struct machine *machine)
1700{
1701        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1702
1703        /* run the fork event through the perf machineruy */
1704        perf_event__process_fork(tool, event, sample, machine);
1705
1706        /* and then run additional processing needed for this command */
1707        if (sched->tp_handler->fork_event)
1708                return sched->tp_handler->fork_event(sched, event, machine);
1709
1710        return 0;
1711}
1712
1713static int process_sched_migrate_task_event(struct perf_tool *tool,
1714                                            struct perf_evsel *evsel,
1715                                            struct perf_sample *sample,
1716                                            struct machine *machine)
1717{
1718        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1719
1720        if (sched->tp_handler->migrate_task_event)
1721                return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1722
1723        return 0;
1724}
1725
1726typedef int (*tracepoint_handler)(struct perf_tool *tool,
1727                                  struct perf_evsel *evsel,
1728                                  struct perf_sample *sample,
1729                                  struct machine *machine);
1730
1731static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1732                                                 union perf_event *event __maybe_unused,
1733                                                 struct perf_sample *sample,
1734                                                 struct perf_evsel *evsel,
1735                                                 struct machine *machine)
1736{
1737        int err = 0;
1738
1739        if (evsel->handler != NULL) {
1740                tracepoint_handler f = evsel->handler;
1741                err = f(tool, evsel, sample, machine);
1742        }
1743
1744        return err;
1745}
1746
1747static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1748                                    union perf_event *event,
1749                                    struct perf_sample *sample,
1750                                    struct machine *machine)
1751{
1752        struct thread *thread;
1753        struct thread_runtime *tr;
1754        int err;
1755
1756        err = perf_event__process_comm(tool, event, sample, machine);
1757        if (err)
1758                return err;
1759
1760        thread = machine__find_thread(machine, sample->pid, sample->tid);
1761        if (!thread) {
1762                pr_err("Internal error: can't find thread\n");
1763                return -1;
1764        }
1765
1766        tr = thread__get_runtime(thread);
1767        if (tr == NULL) {
1768                thread__put(thread);
1769                return -1;
1770        }
1771
1772        tr->comm_changed = true;
1773        thread__put(thread);
1774
1775        return 0;
1776}
1777
1778static int perf_sched__read_events(struct perf_sched *sched)
1779{
1780        const struct perf_evsel_str_handler handlers[] = {
1781                { "sched:sched_switch",       process_sched_switch_event, },
1782                { "sched:sched_stat_runtime", process_sched_runtime_event, },
1783                { "sched:sched_wakeup",       process_sched_wakeup_event, },
1784                { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1785                { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1786        };
1787        struct perf_session *session;
1788        struct perf_data data = {
1789                .path  = input_name,
1790                .mode  = PERF_DATA_MODE_READ,
1791                .force = sched->force,
1792        };
1793        int rc = -1;
1794
1795        session = perf_session__new(&data, false, &sched->tool);
1796        if (session == NULL) {
1797                pr_debug("No Memory for session\n");
1798                return -1;
1799        }
1800
1801        symbol__init(&session->header.env);
1802
1803        if (perf_session__set_tracepoints_handlers(session, handlers))
1804                goto out_delete;
1805
1806        if (perf_session__has_traces(session, "record -R")) {
1807                int err = perf_session__process_events(session);
1808                if (err) {
1809                        pr_err("Failed to process events, error %d", err);
1810                        goto out_delete;
1811                }
1812
1813                sched->nr_events      = session->evlist->stats.nr_events[0];
1814                sched->nr_lost_events = session->evlist->stats.total_lost;
1815                sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1816        }
1817
1818        rc = 0;
1819out_delete:
1820        perf_session__delete(session);
1821        return rc;
1822}
1823
1824/*
1825 * scheduling times are printed as msec.usec
1826 */
1827static inline void print_sched_time(unsigned long long nsecs, int width)
1828{
1829        unsigned long msecs;
1830        unsigned long usecs;
1831
1832        msecs  = nsecs / NSEC_PER_MSEC;
1833        nsecs -= msecs * NSEC_PER_MSEC;
1834        usecs  = nsecs / NSEC_PER_USEC;
1835        printf("%*lu.%03lu ", width, msecs, usecs);
1836}
1837
1838/*
1839 * returns runtime data for event, allocating memory for it the
1840 * first time it is used.
1841 */
1842static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
1843{
1844        struct evsel_runtime *r = evsel->priv;
1845
1846        if (r == NULL) {
1847                r = zalloc(sizeof(struct evsel_runtime));
1848                evsel->priv = r;
1849        }
1850
1851        return r;
1852}
1853
1854/*
1855 * save last time event was seen per cpu
1856 */
1857static void perf_evsel__save_time(struct perf_evsel *evsel,
1858                                  u64 timestamp, u32 cpu)
1859{
1860        struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1861
1862        if (r == NULL)
1863                return;
1864
1865        if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1866                int i, n = __roundup_pow_of_two(cpu+1);
1867                void *p = r->last_time;
1868
1869                p = realloc(r->last_time, n * sizeof(u64));
1870                if (!p)
1871                        return;
1872
1873                r->last_time = p;
1874                for (i = r->ncpu; i < n; ++i)
1875                        r->last_time[i] = (u64) 0;
1876
1877                r->ncpu = n;
1878        }
1879
1880        r->last_time[cpu] = timestamp;
1881}
1882
1883/* returns last time this event was seen on the given cpu */
1884static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
1885{
1886        struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1887
1888        if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1889                return 0;
1890
1891        return r->last_time[cpu];
1892}
1893
1894static int comm_width = 30;
1895
1896static char *timehist_get_commstr(struct thread *thread)
1897{
1898        static char str[32];
1899        const char *comm = thread__comm_str(thread);
1900        pid_t tid = thread->tid;
1901        pid_t pid = thread->pid_;
1902        int n;
1903
1904        if (pid == 0)
1905                n = scnprintf(str, sizeof(str), "%s", comm);
1906
1907        else if (tid != pid)
1908                n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1909
1910        else
1911                n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1912
1913        if (n > comm_width)
1914                comm_width = n;
1915
1916        return str;
1917}
1918
1919static void timehist_header(struct perf_sched *sched)
1920{
1921        u32 ncpus = sched->max_cpu + 1;
1922        u32 i, j;
1923
1924        printf("%15s %6s ", "time", "cpu");
1925
1926        if (sched->show_cpu_visual) {
1927                printf(" ");
1928                for (i = 0, j = 0; i < ncpus; ++i) {
1929                        printf("%x", j++);
1930                        if (j > 15)
1931                                j = 0;
1932                }
1933                printf(" ");
1934        }
1935
1936        printf(" %-*s  %9s  %9s  %9s", comm_width,
1937                "task name", "wait time", "sch delay", "run time");
1938
1939        if (sched->show_state)
1940                printf("  %s", "state");
1941
1942        printf("\n");
1943
1944        /*
1945         * units row
1946         */
1947        printf("%15s %-6s ", "", "");
1948
1949        if (sched->show_cpu_visual)
1950                printf(" %*s ", ncpus, "");
1951
1952        printf(" %-*s  %9s  %9s  %9s", comm_width,
1953               "[tid/pid]", "(msec)", "(msec)", "(msec)");
1954
1955        if (sched->show_state)
1956                printf("  %5s", "");
1957
1958        printf("\n");
1959
1960        /*
1961         * separator
1962         */
1963        printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1964
1965        if (sched->show_cpu_visual)
1966                printf(" %.*s ", ncpus, graph_dotted_line);
1967
1968        printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1969                graph_dotted_line, graph_dotted_line, graph_dotted_line,
1970                graph_dotted_line);
1971
1972        if (sched->show_state)
1973                printf("  %.5s", graph_dotted_line);
1974
1975        printf("\n");
1976}
1977
1978static char task_state_char(struct thread *thread, int state)
1979{
1980        static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1981        unsigned bit = state ? ffs(state) : 0;
1982
1983        /* 'I' for idle */
1984        if (thread->tid == 0)
1985                return 'I';
1986
1987        return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1988}
1989
1990static void timehist_print_sample(struct perf_sched *sched,
1991                                  struct perf_evsel *evsel,
1992                                  struct perf_sample *sample,
1993                                  struct addr_location *al,
1994                                  struct thread *thread,
1995                                  u64 t, int state)
1996{
1997        struct thread_runtime *tr = thread__priv(thread);
1998        const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
1999        const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
2000        u32 max_cpus = sched->max_cpu + 1;
2001        char tstr[64];
2002        char nstr[30];
2003        u64 wait_time;
2004
2005        timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2006        printf("%15s [%04d] ", tstr, sample->cpu);
2007
2008        if (sched->show_cpu_visual) {
2009                u32 i;
2010                char c;
2011
2012                printf(" ");
2013                for (i = 0; i < max_cpus; ++i) {
2014                        /* flag idle times with 'i'; others are sched events */
2015                        if (i == sample->cpu)
2016                                c = (thread->tid == 0) ? 'i' : 's';
2017                        else
2018                                c = ' ';
2019                        printf("%c", c);
2020                }
2021                printf(" ");
2022        }
2023
2024        printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2025
2026        wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2027        print_sched_time(wait_time, 6);
2028
2029        print_sched_time(tr->dt_delay, 6);
2030        print_sched_time(tr->dt_run, 6);
2031
2032        if (sched->show_state)
2033                printf(" %5c ", task_state_char(thread, state));
2034
2035        if (sched->show_next) {
2036                snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2037                printf(" %-*s", comm_width, nstr);
2038        }
2039
2040        if (sched->show_wakeups && !sched->show_next)
2041                printf("  %-*s", comm_width, "");
2042
2043        if (thread->tid == 0)
2044                goto out;
2045
2046        if (sched->show_callchain)
2047                printf("  ");
2048
2049        sample__fprintf_sym(sample, al, 0,
2050                            EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2051                            EVSEL__PRINT_CALLCHAIN_ARROW |
2052                            EVSEL__PRINT_SKIP_IGNORED,
2053                            &callchain_cursor, stdout);
2054
2055out:
2056        printf("\n");
2057}
2058
2059/*
2060 * Explanation of delta-time stats:
2061 *
2062 *            t = time of current schedule out event
2063 *        tprev = time of previous sched out event
2064 *                also time of schedule-in event for current task
2065 *    last_time = time of last sched change event for current task
2066 *                (i.e, time process was last scheduled out)
2067 * ready_to_run = time of wakeup for current task
2068 *
2069 * -----|------------|------------|------------|------
2070 *    last         ready        tprev          t
2071 *    time         to run
2072 *
2073 *      |-------- dt_wait --------|
2074 *                   |- dt_delay -|-- dt_run --|
2075 *
2076 *   dt_run = run time of current task
2077 *  dt_wait = time between last schedule out event for task and tprev
2078 *            represents time spent off the cpu
2079 * dt_delay = time between wakeup and schedule-in of task
2080 */
2081
2082static void timehist_update_runtime_stats(struct thread_runtime *r,
2083                                         u64 t, u64 tprev)
2084{
2085        r->dt_delay   = 0;
2086        r->dt_sleep   = 0;
2087        r->dt_iowait  = 0;
2088        r->dt_preempt = 0;
2089        r->dt_run     = 0;
2090
2091        if (tprev) {
2092                r->dt_run = t - tprev;
2093                if (r->ready_to_run) {
2094                        if (r->ready_to_run > tprev)
2095                                pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2096                        else
2097                                r->dt_delay = tprev - r->ready_to_run;
2098                }
2099
2100                if (r->last_time > tprev)
2101                        pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2102                else if (r->last_time) {
2103                        u64 dt_wait = tprev - r->last_time;
2104
2105                        if (r->last_state == TASK_RUNNING)
2106                                r->dt_preempt = dt_wait;
2107                        else if (r->last_state == TASK_UNINTERRUPTIBLE)
2108                                r->dt_iowait = dt_wait;
2109                        else
2110                                r->dt_sleep = dt_wait;
2111                }
2112        }
2113
2114        update_stats(&r->run_stats, r->dt_run);
2115
2116        r->total_run_time     += r->dt_run;
2117        r->total_delay_time   += r->dt_delay;
2118        r->total_sleep_time   += r->dt_sleep;
2119        r->total_iowait_time  += r->dt_iowait;
2120        r->total_preempt_time += r->dt_preempt;
2121}
2122
2123static bool is_idle_sample(struct perf_sample *sample,
2124                           struct perf_evsel *evsel)
2125{
2126        /* pid 0 == swapper == idle task */
2127        if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2128                return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2129
2130        return sample->pid == 0;
2131}
2132
2133static void save_task_callchain(struct perf_sched *sched,
2134                                struct perf_sample *sample,
2135                                struct perf_evsel *evsel,
2136                                struct machine *machine)
2137{
2138        struct callchain_cursor *cursor = &callchain_cursor;
2139        struct thread *thread;
2140
2141        /* want main thread for process - has maps */
2142        thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2143        if (thread == NULL) {
2144                pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2145                return;
2146        }
2147
2148        if (!sched->show_callchain || sample->callchain == NULL)
2149                return;
2150
2151        if (thread__resolve_callchain(thread, cursor, evsel, sample,
2152                                      NULL, NULL, sched->max_stack + 2) != 0) {
2153                if (verbose > 0)
2154                        pr_err("Failed to resolve callchain. Skipping\n");
2155
2156                return;
2157        }
2158
2159        callchain_cursor_commit(cursor);
2160
2161        while (true) {
2162                struct callchain_cursor_node *node;
2163                struct symbol *sym;
2164
2165                node = callchain_cursor_current(cursor);
2166                if (node == NULL)
2167                        break;
2168
2169                sym = node->sym;
2170                if (sym) {
2171                        if (!strcmp(sym->name, "schedule") ||
2172                            !strcmp(sym->name, "__schedule") ||
2173                            !strcmp(sym->name, "preempt_schedule"))
2174                                sym->ignore = 1;
2175                }
2176
2177                callchain_cursor_advance(cursor);
2178        }
2179}
2180
2181static int init_idle_thread(struct thread *thread)
2182{
2183        struct idle_thread_runtime *itr;
2184
2185        thread__set_comm(thread, idle_comm, 0);
2186
2187        itr = zalloc(sizeof(*itr));
2188        if (itr == NULL)
2189                return -ENOMEM;
2190
2191        init_stats(&itr->tr.run_stats);
2192        callchain_init(&itr->callchain);
2193        callchain_cursor_reset(&itr->cursor);
2194        thread__set_priv(thread, itr);
2195
2196        return 0;
2197}
2198
2199/*
2200 * Track idle stats per cpu by maintaining a local thread
2201 * struct for the idle task on each cpu.
2202 */
2203static int init_idle_threads(int ncpu)
2204{
2205        int i, ret;
2206
2207        idle_threads = zalloc(ncpu * sizeof(struct thread *));
2208        if (!idle_threads)
2209                return -ENOMEM;
2210
2211        idle_max_cpu = ncpu;
2212
2213        /* allocate the actual thread struct if needed */
2214        for (i = 0; i < ncpu; ++i) {
2215                idle_threads[i] = thread__new(0, 0);
2216                if (idle_threads[i] == NULL)
2217                        return -ENOMEM;
2218
2219                ret = init_idle_thread(idle_threads[i]);
2220                if (ret < 0)
2221                        return ret;
2222        }
2223
2224        return 0;
2225}
2226
2227static void free_idle_threads(void)
2228{
2229        int i;
2230
2231        if (idle_threads == NULL)
2232                return;
2233
2234        for (i = 0; i < idle_max_cpu; ++i) {
2235                if ((idle_threads[i]))
2236                        thread__delete(idle_threads[i]);
2237        }
2238
2239        free(idle_threads);
2240}
2241
2242static struct thread *get_idle_thread(int cpu)
2243{
2244        /*
2245         * expand/allocate array of pointers to local thread
2246         * structs if needed
2247         */
2248        if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2249                int i, j = __roundup_pow_of_two(cpu+1);
2250                void *p;
2251
2252                p = realloc(idle_threads, j * sizeof(struct thread *));
2253                if (!p)
2254                        return NULL;
2255
2256                idle_threads = (struct thread **) p;
2257                for (i = idle_max_cpu; i < j; ++i)
2258                        idle_threads[i] = NULL;
2259
2260                idle_max_cpu = j;
2261        }
2262
2263        /* allocate a new thread struct if needed */
2264        if (idle_threads[cpu] == NULL) {
2265                idle_threads[cpu] = thread__new(0, 0);
2266
2267                if (idle_threads[cpu]) {
2268                        if (init_idle_thread(idle_threads[cpu]) < 0)
2269                                return NULL;
2270                }
2271        }
2272
2273        return idle_threads[cpu];
2274}
2275
2276static void save_idle_callchain(struct perf_sched *sched,
2277                                struct idle_thread_runtime *itr,
2278                                struct perf_sample *sample)
2279{
2280        if (!sched->show_callchain || sample->callchain == NULL)
2281                return;
2282
2283        callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2284}
2285
2286static struct thread *timehist_get_thread(struct perf_sched *sched,
2287                                          struct perf_sample *sample,
2288                                          struct machine *machine,
2289                                          struct perf_evsel *evsel)
2290{
2291        struct thread *thread;
2292
2293        if (is_idle_sample(sample, evsel)) {
2294                thread = get_idle_thread(sample->cpu);
2295                if (thread == NULL)
2296                        pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2297
2298        } else {
2299                /* there were samples with tid 0 but non-zero pid */
2300                thread = machine__findnew_thread(machine, sample->pid,
2301                                                 sample->tid ?: sample->pid);
2302                if (thread == NULL) {
2303                        pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2304                                 sample->tid);
2305                }
2306
2307                save_task_callchain(sched, sample, evsel, machine);
2308                if (sched->idle_hist) {
2309                        struct thread *idle;
2310                        struct idle_thread_runtime *itr;
2311
2312                        idle = get_idle_thread(sample->cpu);
2313                        if (idle == NULL) {
2314                                pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2315                                return NULL;
2316                        }
2317
2318                        itr = thread__priv(idle);
2319                        if (itr == NULL)
2320                                return NULL;
2321
2322                        itr->last_thread = thread;
2323
2324                        /* copy task callchain when entering to idle */
2325                        if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2326                                save_idle_callchain(sched, itr, sample);
2327                }
2328        }
2329
2330        return thread;
2331}
2332
2333static bool timehist_skip_sample(struct perf_sched *sched,
2334                                 struct thread *thread,
2335                                 struct perf_evsel *evsel,
2336                                 struct perf_sample *sample)
2337{
2338        bool rc = false;
2339
2340        if (thread__is_filtered(thread)) {
2341                rc = true;
2342                sched->skipped_samples++;
2343        }
2344
2345        if (sched->idle_hist) {
2346                if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2347                        rc = true;
2348                else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2349                         perf_evsel__intval(evsel, sample, "next_pid") != 0)
2350                        rc = true;
2351        }
2352
2353        return rc;
2354}
2355
2356static void timehist_print_wakeup_event(struct perf_sched *sched,
2357                                        struct perf_evsel *evsel,
2358                                        struct perf_sample *sample,
2359                                        struct machine *machine,
2360                                        struct thread *awakened)
2361{
2362        struct thread *thread;
2363        char tstr[64];
2364
2365        thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2366        if (thread == NULL)
2367                return;
2368
2369        /* show wakeup unless both awakee and awaker are filtered */
2370        if (timehist_skip_sample(sched, thread, evsel, sample) &&
2371            timehist_skip_sample(sched, awakened, evsel, sample)) {
2372                return;
2373        }
2374
2375        timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2376        printf("%15s [%04d] ", tstr, sample->cpu);
2377        if (sched->show_cpu_visual)
2378                printf(" %*s ", sched->max_cpu + 1, "");
2379
2380        printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2381
2382        /* dt spacer */
2383        printf("  %9s  %9s  %9s ", "", "", "");
2384
2385        printf("awakened: %s", timehist_get_commstr(awakened));
2386
2387        printf("\n");
2388}
2389
2390static int timehist_sched_wakeup_event(struct perf_tool *tool,
2391                                       union perf_event *event __maybe_unused,
2392                                       struct perf_evsel *evsel,
2393                                       struct perf_sample *sample,
2394                                       struct machine *machine)
2395{
2396        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2397        struct thread *thread;
2398        struct thread_runtime *tr = NULL;
2399        /* want pid of awakened task not pid in sample */
2400        const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2401
2402        thread = machine__findnew_thread(machine, 0, pid);
2403        if (thread == NULL)
2404                return -1;
2405
2406        tr = thread__get_runtime(thread);
2407        if (tr == NULL)
2408                return -1;
2409
2410        if (tr->ready_to_run == 0)
2411                tr->ready_to_run = sample->time;
2412
2413        /* show wakeups if requested */
2414        if (sched->show_wakeups &&
2415            !perf_time__skip_sample(&sched->ptime, sample->time))
2416                timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2417
2418        return 0;
2419}
2420
2421static void timehist_print_migration_event(struct perf_sched *sched,
2422                                        struct perf_evsel *evsel,
2423                                        struct perf_sample *sample,
2424                                        struct machine *machine,
2425                                        struct thread *migrated)
2426{
2427        struct thread *thread;
2428        char tstr[64];
2429        u32 max_cpus = sched->max_cpu + 1;
2430        u32 ocpu, dcpu;
2431
2432        if (sched->summary_only)
2433                return;
2434
2435        max_cpus = sched->max_cpu + 1;
2436        ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2437        dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2438
2439        thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2440        if (thread == NULL)
2441                return;
2442
2443        if (timehist_skip_sample(sched, thread, evsel, sample) &&
2444            timehist_skip_sample(sched, migrated, evsel, sample)) {
2445                return;
2446        }
2447
2448        timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2449        printf("%15s [%04d] ", tstr, sample->cpu);
2450
2451        if (sched->show_cpu_visual) {
2452                u32 i;
2453                char c;
2454
2455                printf("  ");
2456                for (i = 0; i < max_cpus; ++i) {
2457                        c = (i == sample->cpu) ? 'm' : ' ';
2458                        printf("%c", c);
2459                }
2460                printf("  ");
2461        }
2462
2463        printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2464
2465        /* dt spacer */
2466        printf("  %9s  %9s  %9s ", "", "", "");
2467
2468        printf("migrated: %s", timehist_get_commstr(migrated));
2469        printf(" cpu %d => %d", ocpu, dcpu);
2470
2471        printf("\n");
2472}
2473
2474static int timehist_migrate_task_event(struct perf_tool *tool,
2475                                       union perf_event *event __maybe_unused,
2476                                       struct perf_evsel *evsel,
2477                                       struct perf_sample *sample,
2478                                       struct machine *machine)
2479{
2480        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2481        struct thread *thread;
2482        struct thread_runtime *tr = NULL;
2483        /* want pid of migrated task not pid in sample */
2484        const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2485
2486        thread = machine__findnew_thread(machine, 0, pid);
2487        if (thread == NULL)
2488                return -1;
2489
2490        tr = thread__get_runtime(thread);
2491        if (tr == NULL)
2492                return -1;
2493
2494        tr->migrations++;
2495
2496        /* show migrations if requested */
2497        timehist_print_migration_event(sched, evsel, sample, machine, thread);
2498
2499        return 0;
2500}
2501
2502static int timehist_sched_change_event(struct perf_tool *tool,
2503                                       union perf_event *event,
2504                                       struct perf_evsel *evsel,
2505                                       struct perf_sample *sample,
2506                                       struct machine *machine)
2507{
2508        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2509        struct perf_time_interval *ptime = &sched->ptime;
2510        struct addr_location al;
2511        struct thread *thread;
2512        struct thread_runtime *tr = NULL;
2513        u64 tprev, t = sample->time;
2514        int rc = 0;
2515        int state = perf_evsel__intval(evsel, sample, "prev_state");
2516
2517
2518        if (machine__resolve(machine, &al, sample) < 0) {
2519                pr_err("problem processing %d event. skipping it\n",
2520                       event->header.type);
2521                rc = -1;
2522                goto out;
2523        }
2524
2525        thread = timehist_get_thread(sched, sample, machine, evsel);
2526        if (thread == NULL) {
2527                rc = -1;
2528                goto out;
2529        }
2530
2531        if (timehist_skip_sample(sched, thread, evsel, sample))
2532                goto out;
2533
2534        tr = thread__get_runtime(thread);
2535        if (tr == NULL) {
2536                rc = -1;
2537                goto out;
2538        }
2539
2540        tprev = perf_evsel__get_time(evsel, sample->cpu);
2541
2542        /*
2543         * If start time given:
2544         * - sample time is under window user cares about - skip sample
2545         * - tprev is under window user cares about  - reset to start of window
2546         */
2547        if (ptime->start && ptime->start > t)
2548                goto out;
2549
2550        if (tprev && ptime->start > tprev)
2551                tprev = ptime->start;
2552
2553        /*
2554         * If end time given:
2555         * - previous sched event is out of window - we are done
2556         * - sample time is beyond window user cares about - reset it
2557         *   to close out stats for time window interest
2558         */
2559        if (ptime->end) {
2560                if (tprev > ptime->end)
2561                        goto out;
2562
2563                if (t > ptime->end)
2564                        t = ptime->end;
2565        }
2566
2567        if (!sched->idle_hist || thread->tid == 0) {
2568                timehist_update_runtime_stats(tr, t, tprev);
2569
2570                if (sched->idle_hist) {
2571                        struct idle_thread_runtime *itr = (void *)tr;
2572                        struct thread_runtime *last_tr;
2573
2574                        BUG_ON(thread->tid != 0);
2575
2576                        if (itr->last_thread == NULL)
2577                                goto out;
2578
2579                        /* add current idle time as last thread's runtime */
2580                        last_tr = thread__get_runtime(itr->last_thread);
2581                        if (last_tr == NULL)
2582                                goto out;
2583
2584                        timehist_update_runtime_stats(last_tr, t, tprev);
2585                        /*
2586                         * remove delta time of last thread as it's not updated
2587                         * and otherwise it will show an invalid value next
2588                         * time.  we only care total run time and run stat.
2589                         */
2590                        last_tr->dt_run = 0;
2591                        last_tr->dt_delay = 0;
2592                        last_tr->dt_sleep = 0;
2593                        last_tr->dt_iowait = 0;
2594                        last_tr->dt_preempt = 0;
2595
2596                        if (itr->cursor.nr)
2597                                callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2598
2599                        itr->last_thread = NULL;
2600                }
2601        }
2602
2603        if (!sched->summary_only)
2604                timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2605
2606out:
2607        if (sched->hist_time.start == 0 && t >= ptime->start)
2608                sched->hist_time.start = t;
2609        if (ptime->end == 0 || t <= ptime->end)
2610                sched->hist_time.end = t;
2611
2612        if (tr) {
2613                /* time of this sched_switch event becomes last time task seen */
2614                tr->last_time = sample->time;
2615
2616                /* last state is used to determine where to account wait time */
2617                tr->last_state = state;
2618
2619                /* sched out event for task so reset ready to run time */
2620                tr->ready_to_run = 0;
2621        }
2622
2623        perf_evsel__save_time(evsel, sample->time, sample->cpu);
2624
2625        return rc;
2626}
2627
2628static int timehist_sched_switch_event(struct perf_tool *tool,
2629                             union perf_event *event,
2630                             struct perf_evsel *evsel,
2631                             struct perf_sample *sample,
2632                             struct machine *machine __maybe_unused)
2633{
2634        return timehist_sched_change_event(tool, event, evsel, sample, machine);
2635}
2636
2637static int process_lost(struct perf_tool *tool __maybe_unused,
2638                        union perf_event *event,
2639                        struct perf_sample *sample,
2640                        struct machine *machine __maybe_unused)
2641{
2642        char tstr[64];
2643
2644        timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2645        printf("%15s ", tstr);
2646        printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2647
2648        return 0;
2649}
2650
2651
2652static void print_thread_runtime(struct thread *t,
2653                                 struct thread_runtime *r)
2654{
2655        double mean = avg_stats(&r->run_stats);
2656        float stddev;
2657
2658        printf("%*s   %5d  %9" PRIu64 " ",
2659               comm_width, timehist_get_commstr(t), t->ppid,
2660               (u64) r->run_stats.n);
2661
2662        print_sched_time(r->total_run_time, 8);
2663        stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2664        print_sched_time(r->run_stats.min, 6);
2665        printf(" ");
2666        print_sched_time((u64) mean, 6);
2667        printf(" ");
2668        print_sched_time(r->run_stats.max, 6);
2669        printf("  ");
2670        printf("%5.2f", stddev);
2671        printf("   %5" PRIu64, r->migrations);
2672        printf("\n");
2673}
2674
2675static void print_thread_waittime(struct thread *t,
2676                                  struct thread_runtime *r)
2677{
2678        printf("%*s   %5d  %9" PRIu64 " ",
2679               comm_width, timehist_get_commstr(t), t->ppid,
2680               (u64) r->run_stats.n);
2681
2682        print_sched_time(r->total_run_time, 8);
2683        print_sched_time(r->total_sleep_time, 6);
2684        printf(" ");
2685        print_sched_time(r->total_iowait_time, 6);
2686        printf(" ");
2687        print_sched_time(r->total_preempt_time, 6);
2688        printf(" ");
2689        print_sched_time(r->total_delay_time, 6);
2690        printf("\n");
2691}
2692
2693struct total_run_stats {
2694        struct perf_sched *sched;
2695        u64  sched_count;
2696        u64  task_count;
2697        u64  total_run_time;
2698};
2699
2700static int __show_thread_runtime(struct thread *t, void *priv)
2701{
2702        struct total_run_stats *stats = priv;
2703        struct thread_runtime *r;
2704
2705        if (thread__is_filtered(t))
2706                return 0;
2707
2708        r = thread__priv(t);
2709        if (r && r->run_stats.n) {
2710                stats->task_count++;
2711                stats->sched_count += r->run_stats.n;
2712                stats->total_run_time += r->total_run_time;
2713
2714                if (stats->sched->show_state)
2715                        print_thread_waittime(t, r);
2716                else
2717                        print_thread_runtime(t, r);
2718        }
2719
2720        return 0;
2721}
2722
2723static int show_thread_runtime(struct thread *t, void *priv)
2724{
2725        if (t->dead)
2726                return 0;
2727
2728        return __show_thread_runtime(t, priv);
2729}
2730
2731static int show_deadthread_runtime(struct thread *t, void *priv)
2732{
2733        if (!t->dead)
2734                return 0;
2735
2736        return __show_thread_runtime(t, priv);
2737}
2738
2739static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2740{
2741        const char *sep = " <- ";
2742        struct callchain_list *chain;
2743        size_t ret = 0;
2744        char bf[1024];
2745        bool first;
2746
2747        if (node == NULL)
2748                return 0;
2749
2750        ret = callchain__fprintf_folded(fp, node->parent);
2751        first = (ret == 0);
2752
2753        list_for_each_entry(chain, &node->val, list) {
2754                if (chain->ip >= PERF_CONTEXT_MAX)
2755                        continue;
2756                if (chain->ms.sym && chain->ms.sym->ignore)
2757                        continue;
2758                ret += fprintf(fp, "%s%s", first ? "" : sep,
2759                               callchain_list__sym_name(chain, bf, sizeof(bf),
2760                                                        false));
2761                first = false;
2762        }
2763
2764        return ret;
2765}
2766
2767static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2768{
2769        size_t ret = 0;
2770        FILE *fp = stdout;
2771        struct callchain_node *chain;
2772        struct rb_node *rb_node = rb_first_cached(root);
2773
2774        printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2775        printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2776               graph_dotted_line);
2777
2778        while (rb_node) {
2779                chain = rb_entry(rb_node, struct callchain_node, rb_node);
2780                rb_node = rb_next(rb_node);
2781
2782                ret += fprintf(fp, "  ");
2783                print_sched_time(chain->hit, 12);
2784                ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2785                ret += fprintf(fp, " %8d  ", chain->count);
2786                ret += callchain__fprintf_folded(fp, chain);
2787                ret += fprintf(fp, "\n");
2788        }
2789
2790        return ret;
2791}
2792
2793static void timehist_print_summary(struct perf_sched *sched,
2794                                   struct perf_session *session)
2795{
2796        struct machine *m = &session->machines.host;
2797        struct total_run_stats totals;
2798        u64 task_count;
2799        struct thread *t;
2800        struct thread_runtime *r;
2801        int i;
2802        u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2803
2804        memset(&totals, 0, sizeof(totals));
2805        totals.sched = sched;
2806
2807        if (sched->idle_hist) {
2808                printf("\nIdle-time summary\n");
2809                printf("%*s  parent  sched-out  ", comm_width, "comm");
2810                printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2811        } else if (sched->show_state) {
2812                printf("\nWait-time summary\n");
2813                printf("%*s  parent   sched-in  ", comm_width, "comm");
2814                printf("   run-time      sleep      iowait     preempt       delay\n");
2815        } else {
2816                printf("\nRuntime summary\n");
2817                printf("%*s  parent   sched-in  ", comm_width, "comm");
2818                printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2819        }
2820        printf("%*s            (count)  ", comm_width, "");
2821        printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2822               sched->show_state ? "(msec)" : "%");
2823        printf("%.117s\n", graph_dotted_line);
2824
2825        machine__for_each_thread(m, show_thread_runtime, &totals);
2826        task_count = totals.task_count;
2827        if (!task_count)
2828                printf("<no still running tasks>\n");
2829
2830        printf("\nTerminated tasks:\n");
2831        machine__for_each_thread(m, show_deadthread_runtime, &totals);
2832        if (task_count == totals.task_count)
2833                printf("<no terminated tasks>\n");
2834
2835        /* CPU idle stats not tracked when samples were skipped */
2836        if (sched->skipped_samples && !sched->idle_hist)
2837                return;
2838
2839        printf("\nIdle stats:\n");
2840        for (i = 0; i < idle_max_cpu; ++i) {
2841                t = idle_threads[i];
2842                if (!t)
2843                        continue;
2844
2845                r = thread__priv(t);
2846                if (r && r->run_stats.n) {
2847                        totals.sched_count += r->run_stats.n;
2848                        printf("    CPU %2d idle for ", i);
2849                        print_sched_time(r->total_run_time, 6);
2850                        printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2851                } else
2852                        printf("    CPU %2d idle entire time window\n", i);
2853        }
2854
2855        if (sched->idle_hist && sched->show_callchain) {
2856                callchain_param.mode  = CHAIN_FOLDED;
2857                callchain_param.value = CCVAL_PERIOD;
2858
2859                callchain_register_param(&callchain_param);
2860
2861                printf("\nIdle stats by callchain:\n");
2862                for (i = 0; i < idle_max_cpu; ++i) {
2863                        struct idle_thread_runtime *itr;
2864
2865                        t = idle_threads[i];
2866                        if (!t)
2867                                continue;
2868
2869                        itr = thread__priv(t);
2870                        if (itr == NULL)
2871                                continue;
2872
2873                        callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2874                                             0, &callchain_param);
2875
2876                        printf("  CPU %2d:", i);
2877                        print_sched_time(itr->tr.total_run_time, 6);
2878                        printf(" msec\n");
2879                        timehist_print_idlehist_callchain(&itr->sorted_root);
2880                        printf("\n");
2881                }
2882        }
2883
2884        printf("\n"
2885               "    Total number of unique tasks: %" PRIu64 "\n"
2886               "Total number of context switches: %" PRIu64 "\n",
2887               totals.task_count, totals.sched_count);
2888
2889        printf("           Total run time (msec): ");
2890        print_sched_time(totals.total_run_time, 2);
2891        printf("\n");
2892
2893        printf("    Total scheduling time (msec): ");
2894        print_sched_time(hist_time, 2);
2895        printf(" (x %d)\n", sched->max_cpu);
2896}
2897
2898typedef int (*sched_handler)(struct perf_tool *tool,
2899                          union perf_event *event,
2900                          struct perf_evsel *evsel,
2901                          struct perf_sample *sample,
2902                          struct machine *machine);
2903
2904static int perf_timehist__process_sample(struct perf_tool *tool,
2905                                         union perf_event *event,
2906                                         struct perf_sample *sample,
2907                                         struct perf_evsel *evsel,
2908                                         struct machine *machine)
2909{
2910        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2911        int err = 0;
2912        int this_cpu = sample->cpu;
2913
2914        if (this_cpu > sched->max_cpu)
2915                sched->max_cpu = this_cpu;
2916
2917        if (evsel->handler != NULL) {
2918                sched_handler f = evsel->handler;
2919
2920                err = f(tool, event, evsel, sample, machine);
2921        }
2922
2923        return err;
2924}
2925
2926static int timehist_check_attr(struct perf_sched *sched,
2927                               struct perf_evlist *evlist)
2928{
2929        struct perf_evsel *evsel;
2930        struct evsel_runtime *er;
2931
2932        list_for_each_entry(evsel, &evlist->entries, node) {
2933                er = perf_evsel__get_runtime(evsel);
2934                if (er == NULL) {
2935                        pr_err("Failed to allocate memory for evsel runtime data\n");
2936                        return -1;
2937                }
2938
2939                if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2940                        pr_info("Samples do not have callchains.\n");
2941                        sched->show_callchain = 0;
2942                        symbol_conf.use_callchain = 0;
2943                }
2944        }
2945
2946        return 0;
2947}
2948
2949static int perf_sched__timehist(struct perf_sched *sched)
2950{
2951        const struct perf_evsel_str_handler handlers[] = {
2952                { "sched:sched_switch",       timehist_sched_switch_event, },
2953                { "sched:sched_wakeup",       timehist_sched_wakeup_event, },
2954                { "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2955        };
2956        const struct perf_evsel_str_handler migrate_handlers[] = {
2957                { "sched:sched_migrate_task", timehist_migrate_task_event, },
2958        };
2959        struct perf_data data = {
2960                .path  = input_name,
2961                .mode  = PERF_DATA_MODE_READ,
2962                .force = sched->force,
2963        };
2964
2965        struct perf_session *session;
2966        struct perf_evlist *evlist;
2967        int err = -1;
2968
2969        /*
2970         * event handlers for timehist option
2971         */
2972        sched->tool.sample       = perf_timehist__process_sample;
2973        sched->tool.mmap         = perf_event__process_mmap;
2974        sched->tool.comm         = perf_event__process_comm;
2975        sched->tool.exit         = perf_event__process_exit;
2976        sched->tool.fork         = perf_event__process_fork;
2977        sched->tool.lost         = process_lost;
2978        sched->tool.attr         = perf_event__process_attr;
2979        sched->tool.tracing_data = perf_event__process_tracing_data;
2980        sched->tool.build_id     = perf_event__process_build_id;
2981
2982        sched->tool.ordered_events = true;
2983        sched->tool.ordering_requires_timestamps = true;
2984
2985        symbol_conf.use_callchain = sched->show_callchain;
2986
2987        session = perf_session__new(&data, false, &sched->tool);
2988        if (session == NULL)
2989                return -ENOMEM;
2990
2991        evlist = session->evlist;
2992
2993        symbol__init(&session->header.env);
2994
2995        if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
2996                pr_err("Invalid time string\n");
2997                return -EINVAL;
2998        }
2999
3000        if (timehist_check_attr(sched, evlist) != 0)
3001                goto out;
3002
3003        setup_pager();
3004
3005        /* setup per-evsel handlers */
3006        if (perf_session__set_tracepoints_handlers(session, handlers))
3007                goto out;
3008
3009        /* sched_switch event at a minimum needs to exist */
3010        if (!perf_evlist__find_tracepoint_by_name(session->evlist,
3011                                                  "sched:sched_switch")) {
3012                pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3013                goto out;
3014        }
3015
3016        if (sched->show_migrations &&
3017            perf_session__set_tracepoints_handlers(session, migrate_handlers))
3018                goto out;
3019
3020        /* pre-allocate struct for per-CPU idle stats */
3021        sched->max_cpu = session->header.env.nr_cpus_online;
3022        if (sched->max_cpu == 0)
3023                sched->max_cpu = 4;
3024        if (init_idle_threads(sched->max_cpu))
3025                goto out;
3026
3027        /* summary_only implies summary option, but don't overwrite summary if set */
3028        if (sched->summary_only)
3029                sched->summary = sched->summary_only;
3030
3031        if (!sched->summary_only)
3032                timehist_header(sched);
3033
3034        err = perf_session__process_events(session);
3035        if (err) {
3036                pr_err("Failed to process events, error %d", err);
3037                goto out;
3038        }
3039
3040        sched->nr_events      = evlist->stats.nr_events[0];
3041        sched->nr_lost_events = evlist->stats.total_lost;
3042        sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3043
3044        if (sched->summary)
3045                timehist_print_summary(sched, session);
3046
3047out:
3048        free_idle_threads();
3049        perf_session__delete(session);
3050
3051        return err;
3052}
3053
3054
3055static void print_bad_events(struct perf_sched *sched)
3056{
3057        if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3058                printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3059                        (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3060                        sched->nr_unordered_timestamps, sched->nr_timestamps);
3061        }
3062        if (sched->nr_lost_events && sched->nr_events) {
3063                printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3064                        (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3065                        sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3066        }
3067        if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3068                printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3069                        (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3070                        sched->nr_context_switch_bugs, sched->nr_timestamps);
3071                if (sched->nr_lost_events)
3072                        printf(" (due to lost events?)");
3073                printf("\n");
3074        }
3075}
3076
3077static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3078{
3079        struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3080        struct work_atoms *this;
3081        const char *comm = thread__comm_str(data->thread), *this_comm;
3082        bool leftmost = true;
3083
3084        while (*new) {
3085                int cmp;
3086
3087                this = container_of(*new, struct work_atoms, node);
3088                parent = *new;
3089
3090                this_comm = thread__comm_str(this->thread);
3091                cmp = strcmp(comm, this_comm);
3092                if (cmp > 0) {
3093                        new = &((*new)->rb_left);
3094                } else if (cmp < 0) {
3095                        new = &((*new)->rb_right);
3096                        leftmost = false;
3097                } else {
3098                        this->num_merged++;
3099                        this->total_runtime += data->total_runtime;
3100                        this->nb_atoms += data->nb_atoms;
3101                        this->total_lat += data->total_lat;
3102                        list_splice(&data->work_list, &this->work_list);
3103                        if (this->max_lat < data->max_lat) {
3104                                this->max_lat = data->max_lat;
3105                                this->max_lat_at = data->max_lat_at;
3106                        }
3107                        zfree(&data);
3108                        return;
3109                }
3110        }
3111
3112        data->num_merged++;
3113        rb_link_node(&data->node, parent, new);
3114        rb_insert_color_cached(&data->node, root, leftmost);
3115}
3116
3117static void perf_sched__merge_lat(struct perf_sched *sched)
3118{
3119        struct work_atoms *data;
3120        struct rb_node *node;
3121
3122        if (sched->skip_merge)
3123                return;
3124
3125        while ((node = rb_first_cached(&sched->atom_root))) {
3126                rb_erase_cached(node, &sched->atom_root);
3127                data = rb_entry(node, struct work_atoms, node);
3128                __merge_work_atoms(&sched->merged_atom_root, data);
3129        }
3130}
3131
3132static int perf_sched__lat(struct perf_sched *sched)
3133{
3134        struct rb_node *next;
3135
3136        setup_pager();
3137
3138        if (perf_sched__read_events(sched))
3139                return -1;
3140
3141        perf_sched__merge_lat(sched);
3142        perf_sched__sort_lat(sched);
3143
3144        printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3145        printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
3146        printf(" -----------------------------------------------------------------------------------------------------------------\n");
3147
3148        next = rb_first_cached(&sched->sorted_atom_root);
3149
3150        while (next) {
3151                struct work_atoms *work_list;
3152
3153                work_list = rb_entry(next, struct work_atoms, node);
3154                output_lat_thread(sched, work_list);
3155                next = rb_next(next);
3156                thread__zput(work_list->thread);
3157        }
3158
3159        printf(" -----------------------------------------------------------------------------------------------------------------\n");
3160        printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3161                (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3162
3163        printf(" ---------------------------------------------------\n");
3164
3165        print_bad_events(sched);
3166        printf("\n");
3167
3168        return 0;
3169}
3170
3171static int setup_map_cpus(struct perf_sched *sched)
3172{
3173        struct cpu_map *map;
3174
3175        sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3176
3177        if (sched->map.comp) {
3178                sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3179                if (!sched->map.comp_cpus)
3180                        return -1;
3181        }
3182
3183        if (!sched->map.cpus_str)
3184                return 0;
3185
3186        map = cpu_map__new(sched->map.cpus_str);
3187        if (!map) {
3188                pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3189                return -1;
3190        }
3191
3192        sched->map.cpus = map;
3193        return 0;
3194}
3195
3196static int setup_color_pids(struct perf_sched *sched)
3197{
3198        struct thread_map *map;
3199
3200        if (!sched->map.color_pids_str)
3201                return 0;
3202
3203        map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3204        if (!map) {
3205                pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3206                return -1;
3207        }
3208
3209        sched->map.color_pids = map;
3210        return 0;
3211}
3212
3213static int setup_color_cpus(struct perf_sched *sched)
3214{
3215        struct cpu_map *map;
3216
3217        if (!sched->map.color_cpus_str)
3218                return 0;
3219
3220        map = cpu_map__new(sched->map.color_cpus_str);
3221        if (!map) {
3222                pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3223                return -1;
3224        }
3225
3226        sched->map.color_cpus = map;
3227        return 0;
3228}
3229
3230static int perf_sched__map(struct perf_sched *sched)
3231{
3232        if (setup_map_cpus(sched))
3233                return -1;
3234
3235        if (setup_color_pids(sched))
3236                return -1;
3237
3238        if (setup_color_cpus(sched))
3239                return -1;
3240
3241        setup_pager();
3242        if (perf_sched__read_events(sched))
3243                return -1;
3244        print_bad_events(sched);
3245        return 0;
3246}
3247
3248static int perf_sched__replay(struct perf_sched *sched)
3249{
3250        unsigned long i;
3251
3252        calibrate_run_measurement_overhead(sched);
3253        calibrate_sleep_measurement_overhead(sched);
3254
3255        test_calibrations(sched);
3256
3257        if (perf_sched__read_events(sched))
3258                return -1;
3259
3260        printf("nr_run_events:        %ld\n", sched->nr_run_events);
3261        printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3262        printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3263
3264        if (sched->targetless_wakeups)
3265                printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3266        if (sched->multitarget_wakeups)
3267                printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3268        if (sched->nr_run_events_optimized)
3269                printf("run atoms optimized: %ld\n",
3270                        sched->nr_run_events_optimized);
3271
3272        print_task_traces(sched);
3273        add_cross_task_wakeups(sched);
3274
3275        create_tasks(sched);
3276        printf("------------------------------------------------------------\n");
3277        for (i = 0; i < sched->replay_repeat; i++)
3278                run_one_test(sched);
3279
3280        return 0;
3281}
3282
3283static void setup_sorting(struct perf_sched *sched, const struct option *options,
3284                          const char * const usage_msg[])
3285{
3286        char *tmp, *tok, *str = strdup(sched->sort_order);
3287
3288        for (tok = strtok_r(str, ", ", &tmp);
3289                        tok; tok = strtok_r(NULL, ", ", &tmp)) {
3290                if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3291                        usage_with_options_msg(usage_msg, options,
3292                                        "Unknown --sort key: `%s'", tok);
3293                }
3294        }
3295
3296        free(str);
3297
3298        sort_dimension__add("pid", &sched->cmp_pid);
3299}
3300
3301static int __cmd_record(int argc, const char **argv)
3302{
3303        unsigned int rec_argc, i, j;
3304        const char **rec_argv;
3305        const char * const record_args[] = {
3306                "record",
3307                "-a",
3308                "-R",
3309                "-m", "1024",
3310                "-c", "1",
3311                "-e", "sched:sched_switch",
3312                "-e", "sched:sched_stat_wait",
3313                "-e", "sched:sched_stat_sleep",
3314                "-e", "sched:sched_stat_iowait",
3315                "-e", "sched:sched_stat_runtime",
3316                "-e", "sched:sched_process_fork",
3317                "-e", "sched:sched_wakeup",
3318                "-e", "sched:sched_wakeup_new",
3319                "-e", "sched:sched_migrate_task",
3320        };
3321
3322        rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3323        rec_argv = calloc(rec_argc + 1, sizeof(char *));
3324
3325        if (rec_argv == NULL)
3326                return -ENOMEM;
3327
3328        for (i = 0; i < ARRAY_SIZE(record_args); i++)
3329                rec_argv[i] = strdup(record_args[i]);
3330
3331        for (j = 1; j < (unsigned int)argc; j++, i++)
3332                rec_argv[i] = argv[j];
3333
3334        BUG_ON(i != rec_argc);
3335
3336        return cmd_record(i, rec_argv);
3337}
3338
3339int cmd_sched(int argc, const char **argv)
3340{
3341        static const char default_sort_order[] = "avg, max, switch, runtime";
3342        struct perf_sched sched = {
3343                .tool = {
3344                        .sample          = perf_sched__process_tracepoint_sample,
3345                        .comm            = perf_sched__process_comm,
3346                        .namespaces      = perf_event__process_namespaces,
3347                        .lost            = perf_event__process_lost,
3348                        .fork            = perf_sched__process_fork_event,
3349                        .ordered_events = true,
3350                },
3351                .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
3352                .sort_list            = LIST_HEAD_INIT(sched.sort_list),
3353                .start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3354                .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3355                .sort_order           = default_sort_order,
3356                .replay_repeat        = 10,
3357                .profile_cpu          = -1,
3358                .next_shortname1      = 'A',
3359                .next_shortname2      = '0',
3360                .skip_merge           = 0,
3361                .show_callchain       = 1,
3362                .max_stack            = 5,
3363        };
3364        const struct option sched_options[] = {
3365        OPT_STRING('i', "input", &input_name, "file",
3366                    "input file name"),
3367        OPT_INCR('v', "verbose", &verbose,
3368                    "be more verbose (show symbol address, etc)"),
3369        OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3370                    "dump raw trace in ASCII"),
3371        OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3372        OPT_END()
3373        };
3374        const struct option latency_options[] = {
3375        OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3376                   "sort by key(s): runtime, switch, avg, max"),
3377        OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3378                    "CPU to profile on"),
3379        OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3380                    "latency stats per pid instead of per comm"),
3381        OPT_PARENT(sched_options)
3382        };
3383        const struct option replay_options[] = {
3384        OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3385                     "repeat the workload replay N times (-1: infinite)"),
3386        OPT_PARENT(sched_options)
3387        };
3388        const struct option map_options[] = {
3389        OPT_BOOLEAN(0, "compact", &sched.map.comp,
3390                    "map output in compact mode"),
3391        OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3392                   "highlight given pids in map"),
3393        OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3394                    "highlight given CPUs in map"),
3395        OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3396                    "display given CPUs in map"),
3397        OPT_PARENT(sched_options)
3398        };
3399        const struct option timehist_options[] = {
3400        OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3401                   "file", "vmlinux pathname"),
3402        OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3403                   "file", "kallsyms pathname"),
3404        OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3405                    "Display call chains if present (default on)"),
3406        OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3407                   "Maximum number of functions to display backtrace."),
3408        OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3409                    "Look for files with symbols relative to this directory"),
3410        OPT_BOOLEAN('s', "summary", &sched.summary_only,
3411                    "Show only syscall summary with statistics"),
3412        OPT_BOOLEAN('S', "with-summary", &sched.summary,
3413                    "Show all syscalls and summary with statistics"),
3414        OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3415        OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3416        OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3417        OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3418        OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3419        OPT_STRING(0, "time", &sched.time_str, "str",
3420                   "Time span for analysis (start,stop)"),
3421        OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3422        OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3423                   "analyze events only for given process id(s)"),
3424        OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3425                   "analyze events only for given thread id(s)"),
3426        OPT_PARENT(sched_options)
3427        };
3428
3429        const char * const latency_usage[] = {
3430                "perf sched latency [<options>]",
3431                NULL
3432        };
3433        const char * const replay_usage[] = {
3434                "perf sched replay [<options>]",
3435                NULL
3436        };
3437        const char * const map_usage[] = {
3438                "perf sched map [<options>]",
3439                NULL
3440        };
3441        const char * const timehist_usage[] = {
3442                "perf sched timehist [<options>]",
3443                NULL
3444        };
3445        const char *const sched_subcommands[] = { "record", "latency", "map",
3446                                                  "replay", "script",
3447                                                  "timehist", NULL };
3448        const char *sched_usage[] = {
3449                NULL,
3450                NULL
3451        };
3452        struct trace_sched_handler lat_ops  = {
3453                .wakeup_event       = latency_wakeup_event,
3454                .switch_event       = latency_switch_event,
3455                .runtime_event      = latency_runtime_event,
3456                .migrate_task_event = latency_migrate_task_event,
3457        };
3458        struct trace_sched_handler map_ops  = {
3459                .switch_event       = map_switch_event,
3460        };
3461        struct trace_sched_handler replay_ops  = {
3462                .wakeup_event       = replay_wakeup_event,
3463                .switch_event       = replay_switch_event,
3464                .fork_event         = replay_fork_event,
3465        };
3466        unsigned int i;
3467
3468        for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3469                sched.curr_pid[i] = -1;
3470
3471        argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3472                                        sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3473        if (!argc)
3474                usage_with_options(sched_usage, sched_options);
3475
3476        /*
3477         * Aliased to 'perf script' for now:
3478         */
3479        if (!strcmp(argv[0], "script"))
3480                return cmd_script(argc, argv);
3481
3482        if (!strncmp(argv[0], "rec", 3)) {
3483                return __cmd_record(argc, argv);
3484        } else if (!strncmp(argv[0], "lat", 3)) {
3485                sched.tp_handler = &lat_ops;
3486                if (argc > 1) {
3487                        argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3488                        if (argc)
3489                                usage_with_options(latency_usage, latency_options);
3490                }
3491                setup_sorting(&sched, latency_options, latency_usage);
3492                return perf_sched__lat(&sched);
3493        } else if (!strcmp(argv[0], "map")) {
3494                if (argc) {
3495                        argc = parse_options(argc, argv, map_options, map_usage, 0);
3496                        if (argc)
3497                                usage_with_options(map_usage, map_options);
3498                }
3499                sched.tp_handler = &map_ops;
3500                setup_sorting(&sched, latency_options, latency_usage);
3501                return perf_sched__map(&sched);
3502        } else if (!strncmp(argv[0], "rep", 3)) {
3503                sched.tp_handler = &replay_ops;
3504                if (argc) {
3505                        argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3506                        if (argc)
3507                                usage_with_options(replay_usage, replay_options);
3508                }
3509                return perf_sched__replay(&sched);
3510        } else if (!strcmp(argv[0], "timehist")) {
3511                if (argc) {
3512                        argc = parse_options(argc, argv, timehist_options,
3513                                             timehist_usage, 0);
3514                        if (argc)
3515                                usage_with_options(timehist_usage, timehist_options);
3516                }
3517                if ((sched.show_wakeups || sched.show_next) &&
3518                    sched.summary_only) {
3519                        pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3520                        parse_options_usage(timehist_usage, timehist_options, "s", true);
3521                        if (sched.show_wakeups)
3522                                parse_options_usage(NULL, timehist_options, "w", true);
3523                        if (sched.show_next)
3524                                parse_options_usage(NULL, timehist_options, "n", true);
3525                        return -EINVAL;
3526                }
3527
3528                return perf_sched__timehist(&sched);
3529        } else {
3530                usage_with_options(sched_usage, sched_options);
3531        }
3532
3533        return 0;
3534}
3535