linux/tools/perf/util/header.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <errno.h>
   3#include <inttypes.h>
   4#include "string2.h"
   5#include <sys/param.h>
   6#include <sys/types.h>
   7#include <byteswap.h>
   8#include <unistd.h>
   9#include <stdio.h>
  10#include <stdlib.h>
  11#include <linux/compiler.h>
  12#include <linux/list.h>
  13#include <linux/kernel.h>
  14#include <linux/bitops.h>
  15#include <linux/string.h>
  16#include <linux/stringify.h>
  17#include <linux/zalloc.h>
  18#include <sys/stat.h>
  19#include <sys/utsname.h>
  20#include <linux/time64.h>
  21#include <dirent.h>
  22#include <bpf/libbpf.h>
  23
  24#include "evlist.h"
  25#include "evsel.h"
  26#include "header.h"
  27#include "memswap.h"
  28#include "../perf.h"
  29#include "trace-event.h"
  30#include "session.h"
  31#include "symbol.h"
  32#include "debug.h"
  33#include "cpumap.h"
  34#include "pmu.h"
  35#include "vdso.h"
  36#include "strbuf.h"
  37#include "build-id.h"
  38#include "data.h"
  39#include <api/fs/fs.h>
  40#include "asm/bug.h"
  41#include "tool.h"
  42#include "time-utils.h"
  43#include "units.h"
  44#include "cputopo.h"
  45#include "bpf-event.h"
  46
  47#include <linux/ctype.h>
  48
  49/*
  50 * magic2 = "PERFILE2"
  51 * must be a numerical value to let the endianness
  52 * determine the memory layout. That way we are able
  53 * to detect endianness when reading the perf.data file
  54 * back.
  55 *
  56 * we check for legacy (PERFFILE) format.
  57 */
  58static const char *__perf_magic1 = "PERFFILE";
  59static const u64 __perf_magic2    = 0x32454c4946524550ULL;
  60static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
  61
  62#define PERF_MAGIC      __perf_magic2
  63
  64const char perf_version_string[] = PERF_VERSION;
  65
  66struct perf_file_attr {
  67        struct perf_event_attr  attr;
  68        struct perf_file_section        ids;
  69};
  70
  71struct feat_fd {
  72        struct perf_header      *ph;
  73        int                     fd;
  74        void                    *buf;   /* Either buf != NULL or fd >= 0 */
  75        ssize_t                 offset;
  76        size_t                  size;
  77        struct perf_evsel       *events;
  78};
  79
  80void perf_header__set_feat(struct perf_header *header, int feat)
  81{
  82        set_bit(feat, header->adds_features);
  83}
  84
  85void perf_header__clear_feat(struct perf_header *header, int feat)
  86{
  87        clear_bit(feat, header->adds_features);
  88}
  89
  90bool perf_header__has_feat(const struct perf_header *header, int feat)
  91{
  92        return test_bit(feat, header->adds_features);
  93}
  94
  95static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
  96{
  97        ssize_t ret = writen(ff->fd, buf, size);
  98
  99        if (ret != (ssize_t)size)
 100                return ret < 0 ? (int)ret : -1;
 101        return 0;
 102}
 103
 104static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
 105{
 106        /* struct perf_event_header::size is u16 */
 107        const size_t max_size = 0xffff - sizeof(struct perf_event_header);
 108        size_t new_size = ff->size;
 109        void *addr;
 110
 111        if (size + ff->offset > max_size)
 112                return -E2BIG;
 113
 114        while (size > (new_size - ff->offset))
 115                new_size <<= 1;
 116        new_size = min(max_size, new_size);
 117
 118        if (ff->size < new_size) {
 119                addr = realloc(ff->buf, new_size);
 120                if (!addr)
 121                        return -ENOMEM;
 122                ff->buf = addr;
 123                ff->size = new_size;
 124        }
 125
 126        memcpy(ff->buf + ff->offset, buf, size);
 127        ff->offset += size;
 128
 129        return 0;
 130}
 131
 132/* Return: 0 if succeded, -ERR if failed. */
 133int do_write(struct feat_fd *ff, const void *buf, size_t size)
 134{
 135        if (!ff->buf)
 136                return __do_write_fd(ff, buf, size);
 137        return __do_write_buf(ff, buf, size);
 138}
 139
 140/* Return: 0 if succeded, -ERR if failed. */
 141static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
 142{
 143        u64 *p = (u64 *) set;
 144        int i, ret;
 145
 146        ret = do_write(ff, &size, sizeof(size));
 147        if (ret < 0)
 148                return ret;
 149
 150        for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 151                ret = do_write(ff, p + i, sizeof(*p));
 152                if (ret < 0)
 153                        return ret;
 154        }
 155
 156        return 0;
 157}
 158
 159/* Return: 0 if succeded, -ERR if failed. */
 160int write_padded(struct feat_fd *ff, const void *bf,
 161                 size_t count, size_t count_aligned)
 162{
 163        static const char zero_buf[NAME_ALIGN];
 164        int err = do_write(ff, bf, count);
 165
 166        if (!err)
 167                err = do_write(ff, zero_buf, count_aligned - count);
 168
 169        return err;
 170}
 171
 172#define string_size(str)                                                \
 173        (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
 174
 175/* Return: 0 if succeded, -ERR if failed. */
 176static int do_write_string(struct feat_fd *ff, const char *str)
 177{
 178        u32 len, olen;
 179        int ret;
 180
 181        olen = strlen(str) + 1;
 182        len = PERF_ALIGN(olen, NAME_ALIGN);
 183
 184        /* write len, incl. \0 */
 185        ret = do_write(ff, &len, sizeof(len));
 186        if (ret < 0)
 187                return ret;
 188
 189        return write_padded(ff, str, olen, len);
 190}
 191
 192static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
 193{
 194        ssize_t ret = readn(ff->fd, addr, size);
 195
 196        if (ret != size)
 197                return ret < 0 ? (int)ret : -1;
 198        return 0;
 199}
 200
 201static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
 202{
 203        if (size > (ssize_t)ff->size - ff->offset)
 204                return -1;
 205
 206        memcpy(addr, ff->buf + ff->offset, size);
 207        ff->offset += size;
 208
 209        return 0;
 210
 211}
 212
 213static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
 214{
 215        if (!ff->buf)
 216                return __do_read_fd(ff, addr, size);
 217        return __do_read_buf(ff, addr, size);
 218}
 219
 220static int do_read_u32(struct feat_fd *ff, u32 *addr)
 221{
 222        int ret;
 223
 224        ret = __do_read(ff, addr, sizeof(*addr));
 225        if (ret)
 226                return ret;
 227
 228        if (ff->ph->needs_swap)
 229                *addr = bswap_32(*addr);
 230        return 0;
 231}
 232
 233static int do_read_u64(struct feat_fd *ff, u64 *addr)
 234{
 235        int ret;
 236
 237        ret = __do_read(ff, addr, sizeof(*addr));
 238        if (ret)
 239                return ret;
 240
 241        if (ff->ph->needs_swap)
 242                *addr = bswap_64(*addr);
 243        return 0;
 244}
 245
 246static char *do_read_string(struct feat_fd *ff)
 247{
 248        u32 len;
 249        char *buf;
 250
 251        if (do_read_u32(ff, &len))
 252                return NULL;
 253
 254        buf = malloc(len);
 255        if (!buf)
 256                return NULL;
 257
 258        if (!__do_read(ff, buf, len)) {
 259                /*
 260                 * strings are padded by zeroes
 261                 * thus the actual strlen of buf
 262                 * may be less than len
 263                 */
 264                return buf;
 265        }
 266
 267        free(buf);
 268        return NULL;
 269}
 270
 271/* Return: 0 if succeded, -ERR if failed. */
 272static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
 273{
 274        unsigned long *set;
 275        u64 size, *p;
 276        int i, ret;
 277
 278        ret = do_read_u64(ff, &size);
 279        if (ret)
 280                return ret;
 281
 282        set = bitmap_alloc(size);
 283        if (!set)
 284                return -ENOMEM;
 285
 286        p = (u64 *) set;
 287
 288        for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 289                ret = do_read_u64(ff, p + i);
 290                if (ret < 0) {
 291                        free(set);
 292                        return ret;
 293                }
 294        }
 295
 296        *pset  = set;
 297        *psize = size;
 298        return 0;
 299}
 300
 301static int write_tracing_data(struct feat_fd *ff,
 302                              struct perf_evlist *evlist)
 303{
 304        if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 305                return -1;
 306
 307        return read_tracing_data(ff->fd, &evlist->entries);
 308}
 309
 310static int write_build_id(struct feat_fd *ff,
 311                          struct perf_evlist *evlist __maybe_unused)
 312{
 313        struct perf_session *session;
 314        int err;
 315
 316        session = container_of(ff->ph, struct perf_session, header);
 317
 318        if (!perf_session__read_build_ids(session, true))
 319                return -1;
 320
 321        if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 322                return -1;
 323
 324        err = perf_session__write_buildid_table(session, ff);
 325        if (err < 0) {
 326                pr_debug("failed to write buildid table\n");
 327                return err;
 328        }
 329        perf_session__cache_build_ids(session);
 330
 331        return 0;
 332}
 333
 334static int write_hostname(struct feat_fd *ff,
 335                          struct perf_evlist *evlist __maybe_unused)
 336{
 337        struct utsname uts;
 338        int ret;
 339
 340        ret = uname(&uts);
 341        if (ret < 0)
 342                return -1;
 343
 344        return do_write_string(ff, uts.nodename);
 345}
 346
 347static int write_osrelease(struct feat_fd *ff,
 348                           struct perf_evlist *evlist __maybe_unused)
 349{
 350        struct utsname uts;
 351        int ret;
 352
 353        ret = uname(&uts);
 354        if (ret < 0)
 355                return -1;
 356
 357        return do_write_string(ff, uts.release);
 358}
 359
 360static int write_arch(struct feat_fd *ff,
 361                      struct perf_evlist *evlist __maybe_unused)
 362{
 363        struct utsname uts;
 364        int ret;
 365
 366        ret = uname(&uts);
 367        if (ret < 0)
 368                return -1;
 369
 370        return do_write_string(ff, uts.machine);
 371}
 372
 373static int write_version(struct feat_fd *ff,
 374                         struct perf_evlist *evlist __maybe_unused)
 375{
 376        return do_write_string(ff, perf_version_string);
 377}
 378
 379static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
 380{
 381        FILE *file;
 382        char *buf = NULL;
 383        char *s, *p;
 384        const char *search = cpuinfo_proc;
 385        size_t len = 0;
 386        int ret = -1;
 387
 388        if (!search)
 389                return -1;
 390
 391        file = fopen("/proc/cpuinfo", "r");
 392        if (!file)
 393                return -1;
 394
 395        while (getline(&buf, &len, file) > 0) {
 396                ret = strncmp(buf, search, strlen(search));
 397                if (!ret)
 398                        break;
 399        }
 400
 401        if (ret) {
 402                ret = -1;
 403                goto done;
 404        }
 405
 406        s = buf;
 407
 408        p = strchr(buf, ':');
 409        if (p && *(p+1) == ' ' && *(p+2))
 410                s = p + 2;
 411        p = strchr(s, '\n');
 412        if (p)
 413                *p = '\0';
 414
 415        /* squash extra space characters (branding string) */
 416        p = s;
 417        while (*p) {
 418                if (isspace(*p)) {
 419                        char *r = p + 1;
 420                        char *q = skip_spaces(r);
 421                        *p = ' ';
 422                        if (q != (p+1))
 423                                while ((*r++ = *q++));
 424                }
 425                p++;
 426        }
 427        ret = do_write_string(ff, s);
 428done:
 429        free(buf);
 430        fclose(file);
 431        return ret;
 432}
 433
 434static int write_cpudesc(struct feat_fd *ff,
 435                       struct perf_evlist *evlist __maybe_unused)
 436{
 437        const char *cpuinfo_procs[] = CPUINFO_PROC;
 438        unsigned int i;
 439
 440        for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
 441                int ret;
 442                ret = __write_cpudesc(ff, cpuinfo_procs[i]);
 443                if (ret >= 0)
 444                        return ret;
 445        }
 446        return -1;
 447}
 448
 449
 450static int write_nrcpus(struct feat_fd *ff,
 451                        struct perf_evlist *evlist __maybe_unused)
 452{
 453        long nr;
 454        u32 nrc, nra;
 455        int ret;
 456
 457        nrc = cpu__max_present_cpu();
 458
 459        nr = sysconf(_SC_NPROCESSORS_ONLN);
 460        if (nr < 0)
 461                return -1;
 462
 463        nra = (u32)(nr & UINT_MAX);
 464
 465        ret = do_write(ff, &nrc, sizeof(nrc));
 466        if (ret < 0)
 467                return ret;
 468
 469        return do_write(ff, &nra, sizeof(nra));
 470}
 471
 472static int write_event_desc(struct feat_fd *ff,
 473                            struct perf_evlist *evlist)
 474{
 475        struct perf_evsel *evsel;
 476        u32 nre, nri, sz;
 477        int ret;
 478
 479        nre = evlist->nr_entries;
 480
 481        /*
 482         * write number of events
 483         */
 484        ret = do_write(ff, &nre, sizeof(nre));
 485        if (ret < 0)
 486                return ret;
 487
 488        /*
 489         * size of perf_event_attr struct
 490         */
 491        sz = (u32)sizeof(evsel->attr);
 492        ret = do_write(ff, &sz, sizeof(sz));
 493        if (ret < 0)
 494                return ret;
 495
 496        evlist__for_each_entry(evlist, evsel) {
 497                ret = do_write(ff, &evsel->attr, sz);
 498                if (ret < 0)
 499                        return ret;
 500                /*
 501                 * write number of unique id per event
 502                 * there is one id per instance of an event
 503                 *
 504                 * copy into an nri to be independent of the
 505                 * type of ids,
 506                 */
 507                nri = evsel->ids;
 508                ret = do_write(ff, &nri, sizeof(nri));
 509                if (ret < 0)
 510                        return ret;
 511
 512                /*
 513                 * write event string as passed on cmdline
 514                 */
 515                ret = do_write_string(ff, perf_evsel__name(evsel));
 516                if (ret < 0)
 517                        return ret;
 518                /*
 519                 * write unique ids for this event
 520                 */
 521                ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
 522                if (ret < 0)
 523                        return ret;
 524        }
 525        return 0;
 526}
 527
 528static int write_cmdline(struct feat_fd *ff,
 529                         struct perf_evlist *evlist __maybe_unused)
 530{
 531        char pbuf[MAXPATHLEN], *buf;
 532        int i, ret, n;
 533
 534        /* actual path to perf binary */
 535        buf = perf_exe(pbuf, MAXPATHLEN);
 536
 537        /* account for binary path */
 538        n = perf_env.nr_cmdline + 1;
 539
 540        ret = do_write(ff, &n, sizeof(n));
 541        if (ret < 0)
 542                return ret;
 543
 544        ret = do_write_string(ff, buf);
 545        if (ret < 0)
 546                return ret;
 547
 548        for (i = 0 ; i < perf_env.nr_cmdline; i++) {
 549                ret = do_write_string(ff, perf_env.cmdline_argv[i]);
 550                if (ret < 0)
 551                        return ret;
 552        }
 553        return 0;
 554}
 555
 556
 557static int write_cpu_topology(struct feat_fd *ff,
 558                              struct perf_evlist *evlist __maybe_unused)
 559{
 560        struct cpu_topology *tp;
 561        u32 i;
 562        int ret, j;
 563
 564        tp = cpu_topology__new();
 565        if (!tp)
 566                return -1;
 567
 568        ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
 569        if (ret < 0)
 570                goto done;
 571
 572        for (i = 0; i < tp->core_sib; i++) {
 573                ret = do_write_string(ff, tp->core_siblings[i]);
 574                if (ret < 0)
 575                        goto done;
 576        }
 577        ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
 578        if (ret < 0)
 579                goto done;
 580
 581        for (i = 0; i < tp->thread_sib; i++) {
 582                ret = do_write_string(ff, tp->thread_siblings[i]);
 583                if (ret < 0)
 584                        break;
 585        }
 586
 587        ret = perf_env__read_cpu_topology_map(&perf_env);
 588        if (ret < 0)
 589                goto done;
 590
 591        for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 592                ret = do_write(ff, &perf_env.cpu[j].core_id,
 593                               sizeof(perf_env.cpu[j].core_id));
 594                if (ret < 0)
 595                        return ret;
 596                ret = do_write(ff, &perf_env.cpu[j].socket_id,
 597                               sizeof(perf_env.cpu[j].socket_id));
 598                if (ret < 0)
 599                        return ret;
 600        }
 601
 602        if (!tp->die_sib)
 603                goto done;
 604
 605        ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
 606        if (ret < 0)
 607                goto done;
 608
 609        for (i = 0; i < tp->die_sib; i++) {
 610                ret = do_write_string(ff, tp->die_siblings[i]);
 611                if (ret < 0)
 612                        goto done;
 613        }
 614
 615        for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 616                ret = do_write(ff, &perf_env.cpu[j].die_id,
 617                               sizeof(perf_env.cpu[j].die_id));
 618                if (ret < 0)
 619                        return ret;
 620        }
 621
 622done:
 623        cpu_topology__delete(tp);
 624        return ret;
 625}
 626
 627
 628
 629static int write_total_mem(struct feat_fd *ff,
 630                           struct perf_evlist *evlist __maybe_unused)
 631{
 632        char *buf = NULL;
 633        FILE *fp;
 634        size_t len = 0;
 635        int ret = -1, n;
 636        uint64_t mem;
 637
 638        fp = fopen("/proc/meminfo", "r");
 639        if (!fp)
 640                return -1;
 641
 642        while (getline(&buf, &len, fp) > 0) {
 643                ret = strncmp(buf, "MemTotal:", 9);
 644                if (!ret)
 645                        break;
 646        }
 647        if (!ret) {
 648                n = sscanf(buf, "%*s %"PRIu64, &mem);
 649                if (n == 1)
 650                        ret = do_write(ff, &mem, sizeof(mem));
 651        } else
 652                ret = -1;
 653        free(buf);
 654        fclose(fp);
 655        return ret;
 656}
 657
 658static int write_numa_topology(struct feat_fd *ff,
 659                               struct perf_evlist *evlist __maybe_unused)
 660{
 661        struct numa_topology *tp;
 662        int ret = -1;
 663        u32 i;
 664
 665        tp = numa_topology__new();
 666        if (!tp)
 667                return -ENOMEM;
 668
 669        ret = do_write(ff, &tp->nr, sizeof(u32));
 670        if (ret < 0)
 671                goto err;
 672
 673        for (i = 0; i < tp->nr; i++) {
 674                struct numa_topology_node *n = &tp->nodes[i];
 675
 676                ret = do_write(ff, &n->node, sizeof(u32));
 677                if (ret < 0)
 678                        goto err;
 679
 680                ret = do_write(ff, &n->mem_total, sizeof(u64));
 681                if (ret)
 682                        goto err;
 683
 684                ret = do_write(ff, &n->mem_free, sizeof(u64));
 685                if (ret)
 686                        goto err;
 687
 688                ret = do_write_string(ff, n->cpus);
 689                if (ret < 0)
 690                        goto err;
 691        }
 692
 693        ret = 0;
 694
 695err:
 696        numa_topology__delete(tp);
 697        return ret;
 698}
 699
 700/*
 701 * File format:
 702 *
 703 * struct pmu_mappings {
 704 *      u32     pmu_num;
 705 *      struct pmu_map {
 706 *              u32     type;
 707 *              char    name[];
 708 *      }[pmu_num];
 709 * };
 710 */
 711
 712static int write_pmu_mappings(struct feat_fd *ff,
 713                              struct perf_evlist *evlist __maybe_unused)
 714{
 715        struct perf_pmu *pmu = NULL;
 716        u32 pmu_num = 0;
 717        int ret;
 718
 719        /*
 720         * Do a first pass to count number of pmu to avoid lseek so this
 721         * works in pipe mode as well.
 722         */
 723        while ((pmu = perf_pmu__scan(pmu))) {
 724                if (!pmu->name)
 725                        continue;
 726                pmu_num++;
 727        }
 728
 729        ret = do_write(ff, &pmu_num, sizeof(pmu_num));
 730        if (ret < 0)
 731                return ret;
 732
 733        while ((pmu = perf_pmu__scan(pmu))) {
 734                if (!pmu->name)
 735                        continue;
 736
 737                ret = do_write(ff, &pmu->type, sizeof(pmu->type));
 738                if (ret < 0)
 739                        return ret;
 740
 741                ret = do_write_string(ff, pmu->name);
 742                if (ret < 0)
 743                        return ret;
 744        }
 745
 746        return 0;
 747}
 748
 749/*
 750 * File format:
 751 *
 752 * struct group_descs {
 753 *      u32     nr_groups;
 754 *      struct group_desc {
 755 *              char    name[];
 756 *              u32     leader_idx;
 757 *              u32     nr_members;
 758 *      }[nr_groups];
 759 * };
 760 */
 761static int write_group_desc(struct feat_fd *ff,
 762                            struct perf_evlist *evlist)
 763{
 764        u32 nr_groups = evlist->nr_groups;
 765        struct perf_evsel *evsel;
 766        int ret;
 767
 768        ret = do_write(ff, &nr_groups, sizeof(nr_groups));
 769        if (ret < 0)
 770                return ret;
 771
 772        evlist__for_each_entry(evlist, evsel) {
 773                if (perf_evsel__is_group_leader(evsel) &&
 774                    evsel->nr_members > 1) {
 775                        const char *name = evsel->group_name ?: "{anon_group}";
 776                        u32 leader_idx = evsel->idx;
 777                        u32 nr_members = evsel->nr_members;
 778
 779                        ret = do_write_string(ff, name);
 780                        if (ret < 0)
 781                                return ret;
 782
 783                        ret = do_write(ff, &leader_idx, sizeof(leader_idx));
 784                        if (ret < 0)
 785                                return ret;
 786
 787                        ret = do_write(ff, &nr_members, sizeof(nr_members));
 788                        if (ret < 0)
 789                                return ret;
 790                }
 791        }
 792        return 0;
 793}
 794
 795/*
 796 * Return the CPU id as a raw string.
 797 *
 798 * Each architecture should provide a more precise id string that
 799 * can be use to match the architecture's "mapfile".
 800 */
 801char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
 802{
 803        return NULL;
 804}
 805
 806/* Return zero when the cpuid from the mapfile.csv matches the
 807 * cpuid string generated on this platform.
 808 * Otherwise return non-zero.
 809 */
 810int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
 811{
 812        regex_t re;
 813        regmatch_t pmatch[1];
 814        int match;
 815
 816        if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
 817                /* Warn unable to generate match particular string. */
 818                pr_info("Invalid regular expression %s\n", mapcpuid);
 819                return 1;
 820        }
 821
 822        match = !regexec(&re, cpuid, 1, pmatch, 0);
 823        regfree(&re);
 824        if (match) {
 825                size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
 826
 827                /* Verify the entire string matched. */
 828                if (match_len == strlen(cpuid))
 829                        return 0;
 830        }
 831        return 1;
 832}
 833
 834/*
 835 * default get_cpuid(): nothing gets recorded
 836 * actual implementation must be in arch/$(SRCARCH)/util/header.c
 837 */
 838int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
 839{
 840        return -1;
 841}
 842
 843static int write_cpuid(struct feat_fd *ff,
 844                       struct perf_evlist *evlist __maybe_unused)
 845{
 846        char buffer[64];
 847        int ret;
 848
 849        ret = get_cpuid(buffer, sizeof(buffer));
 850        if (ret)
 851                return -1;
 852
 853        return do_write_string(ff, buffer);
 854}
 855
 856static int write_branch_stack(struct feat_fd *ff __maybe_unused,
 857                              struct perf_evlist *evlist __maybe_unused)
 858{
 859        return 0;
 860}
 861
 862static int write_auxtrace(struct feat_fd *ff,
 863                          struct perf_evlist *evlist __maybe_unused)
 864{
 865        struct perf_session *session;
 866        int err;
 867
 868        if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 869                return -1;
 870
 871        session = container_of(ff->ph, struct perf_session, header);
 872
 873        err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
 874        if (err < 0)
 875                pr_err("Failed to write auxtrace index\n");
 876        return err;
 877}
 878
 879static int write_clockid(struct feat_fd *ff,
 880                         struct perf_evlist *evlist __maybe_unused)
 881{
 882        return do_write(ff, &ff->ph->env.clockid_res_ns,
 883                        sizeof(ff->ph->env.clockid_res_ns));
 884}
 885
 886static int write_dir_format(struct feat_fd *ff,
 887                            struct perf_evlist *evlist __maybe_unused)
 888{
 889        struct perf_session *session;
 890        struct perf_data *data;
 891
 892        session = container_of(ff->ph, struct perf_session, header);
 893        data = session->data;
 894
 895        if (WARN_ON(!perf_data__is_dir(data)))
 896                return -1;
 897
 898        return do_write(ff, &data->dir.version, sizeof(data->dir.version));
 899}
 900
 901#ifdef HAVE_LIBBPF_SUPPORT
 902static int write_bpf_prog_info(struct feat_fd *ff,
 903                               struct perf_evlist *evlist __maybe_unused)
 904{
 905        struct perf_env *env = &ff->ph->env;
 906        struct rb_root *root;
 907        struct rb_node *next;
 908        int ret;
 909
 910        down_read(&env->bpf_progs.lock);
 911
 912        ret = do_write(ff, &env->bpf_progs.infos_cnt,
 913                       sizeof(env->bpf_progs.infos_cnt));
 914        if (ret < 0)
 915                goto out;
 916
 917        root = &env->bpf_progs.infos;
 918        next = rb_first(root);
 919        while (next) {
 920                struct bpf_prog_info_node *node;
 921                size_t len;
 922
 923                node = rb_entry(next, struct bpf_prog_info_node, rb_node);
 924                next = rb_next(&node->rb_node);
 925                len = sizeof(struct bpf_prog_info_linear) +
 926                        node->info_linear->data_len;
 927
 928                /* before writing to file, translate address to offset */
 929                bpf_program__bpil_addr_to_offs(node->info_linear);
 930                ret = do_write(ff, node->info_linear, len);
 931                /*
 932                 * translate back to address even when do_write() fails,
 933                 * so that this function never changes the data.
 934                 */
 935                bpf_program__bpil_offs_to_addr(node->info_linear);
 936                if (ret < 0)
 937                        goto out;
 938        }
 939out:
 940        up_read(&env->bpf_progs.lock);
 941        return ret;
 942}
 943#else // HAVE_LIBBPF_SUPPORT
 944static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
 945                               struct perf_evlist *evlist __maybe_unused)
 946{
 947        return 0;
 948}
 949#endif // HAVE_LIBBPF_SUPPORT
 950
 951static int write_bpf_btf(struct feat_fd *ff,
 952                         struct perf_evlist *evlist __maybe_unused)
 953{
 954        struct perf_env *env = &ff->ph->env;
 955        struct rb_root *root;
 956        struct rb_node *next;
 957        int ret;
 958
 959        down_read(&env->bpf_progs.lock);
 960
 961        ret = do_write(ff, &env->bpf_progs.btfs_cnt,
 962                       sizeof(env->bpf_progs.btfs_cnt));
 963
 964        if (ret < 0)
 965                goto out;
 966
 967        root = &env->bpf_progs.btfs;
 968        next = rb_first(root);
 969        while (next) {
 970                struct btf_node *node;
 971
 972                node = rb_entry(next, struct btf_node, rb_node);
 973                next = rb_next(&node->rb_node);
 974                ret = do_write(ff, &node->id,
 975                               sizeof(u32) * 2 + node->data_size);
 976                if (ret < 0)
 977                        goto out;
 978        }
 979out:
 980        up_read(&env->bpf_progs.lock);
 981        return ret;
 982}
 983
 984static int cpu_cache_level__sort(const void *a, const void *b)
 985{
 986        struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
 987        struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
 988
 989        return cache_a->level - cache_b->level;
 990}
 991
 992static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
 993{
 994        if (a->level != b->level)
 995                return false;
 996
 997        if (a->line_size != b->line_size)
 998                return false;
 999
1000        if (a->sets != b->sets)
1001                return false;
1002
1003        if (a->ways != b->ways)
1004                return false;
1005
1006        if (strcmp(a->type, b->type))
1007                return false;
1008
1009        if (strcmp(a->size, b->size))
1010                return false;
1011
1012        if (strcmp(a->map, b->map))
1013                return false;
1014
1015        return true;
1016}
1017
1018static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1019{
1020        char path[PATH_MAX], file[PATH_MAX];
1021        struct stat st;
1022        size_t len;
1023
1024        scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1025        scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1026
1027        if (stat(file, &st))
1028                return 1;
1029
1030        scnprintf(file, PATH_MAX, "%s/level", path);
1031        if (sysfs__read_int(file, (int *) &cache->level))
1032                return -1;
1033
1034        scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1035        if (sysfs__read_int(file, (int *) &cache->line_size))
1036                return -1;
1037
1038        scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1039        if (sysfs__read_int(file, (int *) &cache->sets))
1040                return -1;
1041
1042        scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1043        if (sysfs__read_int(file, (int *) &cache->ways))
1044                return -1;
1045
1046        scnprintf(file, PATH_MAX, "%s/type", path);
1047        if (sysfs__read_str(file, &cache->type, &len))
1048                return -1;
1049
1050        cache->type[len] = 0;
1051        cache->type = strim(cache->type);
1052
1053        scnprintf(file, PATH_MAX, "%s/size", path);
1054        if (sysfs__read_str(file, &cache->size, &len)) {
1055                zfree(&cache->type);
1056                return -1;
1057        }
1058
1059        cache->size[len] = 0;
1060        cache->size = strim(cache->size);
1061
1062        scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1063        if (sysfs__read_str(file, &cache->map, &len)) {
1064                zfree(&cache->map);
1065                zfree(&cache->type);
1066                return -1;
1067        }
1068
1069        cache->map[len] = 0;
1070        cache->map = strim(cache->map);
1071        return 0;
1072}
1073
1074static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1075{
1076        fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1077}
1078
1079static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1080{
1081        u32 i, cnt = 0;
1082        long ncpus;
1083        u32 nr, cpu;
1084        u16 level;
1085
1086        ncpus = sysconf(_SC_NPROCESSORS_CONF);
1087        if (ncpus < 0)
1088                return -1;
1089
1090        nr = (u32)(ncpus & UINT_MAX);
1091
1092        for (cpu = 0; cpu < nr; cpu++) {
1093                for (level = 0; level < 10; level++) {
1094                        struct cpu_cache_level c;
1095                        int err;
1096
1097                        err = cpu_cache_level__read(&c, cpu, level);
1098                        if (err < 0)
1099                                return err;
1100
1101                        if (err == 1)
1102                                break;
1103
1104                        for (i = 0; i < cnt; i++) {
1105                                if (cpu_cache_level__cmp(&c, &caches[i]))
1106                                        break;
1107                        }
1108
1109                        if (i == cnt)
1110                                caches[cnt++] = c;
1111                        else
1112                                cpu_cache_level__free(&c);
1113
1114                        if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1115                                goto out;
1116                }
1117        }
1118 out:
1119        *cntp = cnt;
1120        return 0;
1121}
1122
1123#define MAX_CACHES (MAX_NR_CPUS * 4)
1124
1125static int write_cache(struct feat_fd *ff,
1126                       struct perf_evlist *evlist __maybe_unused)
1127{
1128        struct cpu_cache_level caches[MAX_CACHES];
1129        u32 cnt = 0, i, version = 1;
1130        int ret;
1131
1132        ret = build_caches(caches, MAX_CACHES, &cnt);
1133        if (ret)
1134                goto out;
1135
1136        qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1137
1138        ret = do_write(ff, &version, sizeof(u32));
1139        if (ret < 0)
1140                goto out;
1141
1142        ret = do_write(ff, &cnt, sizeof(u32));
1143        if (ret < 0)
1144                goto out;
1145
1146        for (i = 0; i < cnt; i++) {
1147                struct cpu_cache_level *c = &caches[i];
1148
1149                #define _W(v)                                   \
1150                        ret = do_write(ff, &c->v, sizeof(u32)); \
1151                        if (ret < 0)                            \
1152                                goto out;
1153
1154                _W(level)
1155                _W(line_size)
1156                _W(sets)
1157                _W(ways)
1158                #undef _W
1159
1160                #define _W(v)                                           \
1161                        ret = do_write_string(ff, (const char *) c->v); \
1162                        if (ret < 0)                                    \
1163                                goto out;
1164
1165                _W(type)
1166                _W(size)
1167                _W(map)
1168                #undef _W
1169        }
1170
1171out:
1172        for (i = 0; i < cnt; i++)
1173                cpu_cache_level__free(&caches[i]);
1174        return ret;
1175}
1176
1177static int write_stat(struct feat_fd *ff __maybe_unused,
1178                      struct perf_evlist *evlist __maybe_unused)
1179{
1180        return 0;
1181}
1182
1183static int write_sample_time(struct feat_fd *ff,
1184                             struct perf_evlist *evlist)
1185{
1186        int ret;
1187
1188        ret = do_write(ff, &evlist->first_sample_time,
1189                       sizeof(evlist->first_sample_time));
1190        if (ret < 0)
1191                return ret;
1192
1193        return do_write(ff, &evlist->last_sample_time,
1194                        sizeof(evlist->last_sample_time));
1195}
1196
1197
1198static int memory_node__read(struct memory_node *n, unsigned long idx)
1199{
1200        unsigned int phys, size = 0;
1201        char path[PATH_MAX];
1202        struct dirent *ent;
1203        DIR *dir;
1204
1205#define for_each_memory(mem, dir)                                       \
1206        while ((ent = readdir(dir)))                                    \
1207                if (strcmp(ent->d_name, ".") &&                         \
1208                    strcmp(ent->d_name, "..") &&                        \
1209                    sscanf(ent->d_name, "memory%u", &mem) == 1)
1210
1211        scnprintf(path, PATH_MAX,
1212                  "%s/devices/system/node/node%lu",
1213                  sysfs__mountpoint(), idx);
1214
1215        dir = opendir(path);
1216        if (!dir) {
1217                pr_warning("failed: cant' open memory sysfs data\n");
1218                return -1;
1219        }
1220
1221        for_each_memory(phys, dir) {
1222                size = max(phys, size);
1223        }
1224
1225        size++;
1226
1227        n->set = bitmap_alloc(size);
1228        if (!n->set) {
1229                closedir(dir);
1230                return -ENOMEM;
1231        }
1232
1233        n->node = idx;
1234        n->size = size;
1235
1236        rewinddir(dir);
1237
1238        for_each_memory(phys, dir) {
1239                set_bit(phys, n->set);
1240        }
1241
1242        closedir(dir);
1243        return 0;
1244}
1245
1246static int memory_node__sort(const void *a, const void *b)
1247{
1248        const struct memory_node *na = a;
1249        const struct memory_node *nb = b;
1250
1251        return na->node - nb->node;
1252}
1253
1254static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1255{
1256        char path[PATH_MAX];
1257        struct dirent *ent;
1258        DIR *dir;
1259        u64 cnt = 0;
1260        int ret = 0;
1261
1262        scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1263                  sysfs__mountpoint());
1264
1265        dir = opendir(path);
1266        if (!dir) {
1267                pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1268                          __func__, path);
1269                return -1;
1270        }
1271
1272        while (!ret && (ent = readdir(dir))) {
1273                unsigned int idx;
1274                int r;
1275
1276                if (!strcmp(ent->d_name, ".") ||
1277                    !strcmp(ent->d_name, ".."))
1278                        continue;
1279
1280                r = sscanf(ent->d_name, "node%u", &idx);
1281                if (r != 1)
1282                        continue;
1283
1284                if (WARN_ONCE(cnt >= size,
1285                              "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1286                        return -1;
1287
1288                ret = memory_node__read(&nodes[cnt++], idx);
1289        }
1290
1291        *cntp = cnt;
1292        closedir(dir);
1293
1294        if (!ret)
1295                qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1296
1297        return ret;
1298}
1299
1300#define MAX_MEMORY_NODES 2000
1301
1302/*
1303 * The MEM_TOPOLOGY holds physical memory map for every
1304 * node in system. The format of data is as follows:
1305 *
1306 *  0 - version          | for future changes
1307 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1308 * 16 - count            | number of nodes
1309 *
1310 * For each node we store map of physical indexes for
1311 * each node:
1312 *
1313 * 32 - node id          | node index
1314 * 40 - size             | size of bitmap
1315 * 48 - bitmap           | bitmap of memory indexes that belongs to node
1316 */
1317static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1318                              struct perf_evlist *evlist __maybe_unused)
1319{
1320        static struct memory_node nodes[MAX_MEMORY_NODES];
1321        u64 bsize, version = 1, i, nr;
1322        int ret;
1323
1324        ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1325                              (unsigned long long *) &bsize);
1326        if (ret)
1327                return ret;
1328
1329        ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1330        if (ret)
1331                return ret;
1332
1333        ret = do_write(ff, &version, sizeof(version));
1334        if (ret < 0)
1335                goto out;
1336
1337        ret = do_write(ff, &bsize, sizeof(bsize));
1338        if (ret < 0)
1339                goto out;
1340
1341        ret = do_write(ff, &nr, sizeof(nr));
1342        if (ret < 0)
1343                goto out;
1344
1345        for (i = 0; i < nr; i++) {
1346                struct memory_node *n = &nodes[i];
1347
1348                #define _W(v)                                           \
1349                        ret = do_write(ff, &n->v, sizeof(n->v));        \
1350                        if (ret < 0)                                    \
1351                                goto out;
1352
1353                _W(node)
1354                _W(size)
1355
1356                #undef _W
1357
1358                ret = do_write_bitmap(ff, n->set, n->size);
1359                if (ret < 0)
1360                        goto out;
1361        }
1362
1363out:
1364        return ret;
1365}
1366
1367static int write_compressed(struct feat_fd *ff __maybe_unused,
1368                            struct perf_evlist *evlist __maybe_unused)
1369{
1370        int ret;
1371
1372        ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1373        if (ret)
1374                return ret;
1375
1376        ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1377        if (ret)
1378                return ret;
1379
1380        ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1381        if (ret)
1382                return ret;
1383
1384        ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1385        if (ret)
1386                return ret;
1387
1388        return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1389}
1390
1391static void print_hostname(struct feat_fd *ff, FILE *fp)
1392{
1393        fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1394}
1395
1396static void print_osrelease(struct feat_fd *ff, FILE *fp)
1397{
1398        fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1399}
1400
1401static void print_arch(struct feat_fd *ff, FILE *fp)
1402{
1403        fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1404}
1405
1406static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1407{
1408        fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1409}
1410
1411static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1412{
1413        fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1414        fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1415}
1416
1417static void print_version(struct feat_fd *ff, FILE *fp)
1418{
1419        fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1420}
1421
1422static void print_cmdline(struct feat_fd *ff, FILE *fp)
1423{
1424        int nr, i;
1425
1426        nr = ff->ph->env.nr_cmdline;
1427
1428        fprintf(fp, "# cmdline : ");
1429
1430        for (i = 0; i < nr; i++) {
1431                char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1432                if (!argv_i) {
1433                        fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1434                } else {
1435                        char *mem = argv_i;
1436                        do {
1437                                char *quote = strchr(argv_i, '\'');
1438                                if (!quote)
1439                                        break;
1440                                *quote++ = '\0';
1441                                fprintf(fp, "%s\\\'", argv_i);
1442                                argv_i = quote;
1443                        } while (1);
1444                        fprintf(fp, "%s ", argv_i);
1445                        free(mem);
1446                }
1447        }
1448        fputc('\n', fp);
1449}
1450
1451static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1452{
1453        struct perf_header *ph = ff->ph;
1454        int cpu_nr = ph->env.nr_cpus_avail;
1455        int nr, i;
1456        char *str;
1457
1458        nr = ph->env.nr_sibling_cores;
1459        str = ph->env.sibling_cores;
1460
1461        for (i = 0; i < nr; i++) {
1462                fprintf(fp, "# sibling sockets : %s\n", str);
1463                str += strlen(str) + 1;
1464        }
1465
1466        if (ph->env.nr_sibling_dies) {
1467                nr = ph->env.nr_sibling_dies;
1468                str = ph->env.sibling_dies;
1469
1470                for (i = 0; i < nr; i++) {
1471                        fprintf(fp, "# sibling dies    : %s\n", str);
1472                        str += strlen(str) + 1;
1473                }
1474        }
1475
1476        nr = ph->env.nr_sibling_threads;
1477        str = ph->env.sibling_threads;
1478
1479        for (i = 0; i < nr; i++) {
1480                fprintf(fp, "# sibling threads : %s\n", str);
1481                str += strlen(str) + 1;
1482        }
1483
1484        if (ph->env.nr_sibling_dies) {
1485                if (ph->env.cpu != NULL) {
1486                        for (i = 0; i < cpu_nr; i++)
1487                                fprintf(fp, "# CPU %d: Core ID %d, "
1488                                            "Die ID %d, Socket ID %d\n",
1489                                            i, ph->env.cpu[i].core_id,
1490                                            ph->env.cpu[i].die_id,
1491                                            ph->env.cpu[i].socket_id);
1492                } else
1493                        fprintf(fp, "# Core ID, Die ID and Socket ID "
1494                                    "information is not available\n");
1495        } else {
1496                if (ph->env.cpu != NULL) {
1497                        for (i = 0; i < cpu_nr; i++)
1498                                fprintf(fp, "# CPU %d: Core ID %d, "
1499                                            "Socket ID %d\n",
1500                                            i, ph->env.cpu[i].core_id,
1501                                            ph->env.cpu[i].socket_id);
1502                } else
1503                        fprintf(fp, "# Core ID and Socket ID "
1504                                    "information is not available\n");
1505        }
1506}
1507
1508static void print_clockid(struct feat_fd *ff, FILE *fp)
1509{
1510        fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1511                ff->ph->env.clockid_res_ns * 1000);
1512}
1513
1514static void print_dir_format(struct feat_fd *ff, FILE *fp)
1515{
1516        struct perf_session *session;
1517        struct perf_data *data;
1518
1519        session = container_of(ff->ph, struct perf_session, header);
1520        data = session->data;
1521
1522        fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1523}
1524
1525static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1526{
1527        struct perf_env *env = &ff->ph->env;
1528        struct rb_root *root;
1529        struct rb_node *next;
1530
1531        down_read(&env->bpf_progs.lock);
1532
1533        root = &env->bpf_progs.infos;
1534        next = rb_first(root);
1535
1536        while (next) {
1537                struct bpf_prog_info_node *node;
1538
1539                node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1540                next = rb_next(&node->rb_node);
1541
1542                bpf_event__print_bpf_prog_info(&node->info_linear->info,
1543                                               env, fp);
1544        }
1545
1546        up_read(&env->bpf_progs.lock);
1547}
1548
1549static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1550{
1551        struct perf_env *env = &ff->ph->env;
1552        struct rb_root *root;
1553        struct rb_node *next;
1554
1555        down_read(&env->bpf_progs.lock);
1556
1557        root = &env->bpf_progs.btfs;
1558        next = rb_first(root);
1559
1560        while (next) {
1561                struct btf_node *node;
1562
1563                node = rb_entry(next, struct btf_node, rb_node);
1564                next = rb_next(&node->rb_node);
1565                fprintf(fp, "# btf info of id %u\n", node->id);
1566        }
1567
1568        up_read(&env->bpf_progs.lock);
1569}
1570
1571static void free_event_desc(struct perf_evsel *events)
1572{
1573        struct perf_evsel *evsel;
1574
1575        if (!events)
1576                return;
1577
1578        for (evsel = events; evsel->attr.size; evsel++) {
1579                zfree(&evsel->name);
1580                zfree(&evsel->id);
1581        }
1582
1583        free(events);
1584}
1585
1586static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1587{
1588        struct perf_evsel *evsel, *events = NULL;
1589        u64 *id;
1590        void *buf = NULL;
1591        u32 nre, sz, nr, i, j;
1592        size_t msz;
1593
1594        /* number of events */
1595        if (do_read_u32(ff, &nre))
1596                goto error;
1597
1598        if (do_read_u32(ff, &sz))
1599                goto error;
1600
1601        /* buffer to hold on file attr struct */
1602        buf = malloc(sz);
1603        if (!buf)
1604                goto error;
1605
1606        /* the last event terminates with evsel->attr.size == 0: */
1607        events = calloc(nre + 1, sizeof(*events));
1608        if (!events)
1609                goto error;
1610
1611        msz = sizeof(evsel->attr);
1612        if (sz < msz)
1613                msz = sz;
1614
1615        for (i = 0, evsel = events; i < nre; evsel++, i++) {
1616                evsel->idx = i;
1617
1618                /*
1619                 * must read entire on-file attr struct to
1620                 * sync up with layout.
1621                 */
1622                if (__do_read(ff, buf, sz))
1623                        goto error;
1624
1625                if (ff->ph->needs_swap)
1626                        perf_event__attr_swap(buf);
1627
1628                memcpy(&evsel->attr, buf, msz);
1629
1630                if (do_read_u32(ff, &nr))
1631                        goto error;
1632
1633                if (ff->ph->needs_swap)
1634                        evsel->needs_swap = true;
1635
1636                evsel->name = do_read_string(ff);
1637                if (!evsel->name)
1638                        goto error;
1639
1640                if (!nr)
1641                        continue;
1642
1643                id = calloc(nr, sizeof(*id));
1644                if (!id)
1645                        goto error;
1646                evsel->ids = nr;
1647                evsel->id = id;
1648
1649                for (j = 0 ; j < nr; j++) {
1650                        if (do_read_u64(ff, id))
1651                                goto error;
1652                        id++;
1653                }
1654        }
1655out:
1656        free(buf);
1657        return events;
1658error:
1659        free_event_desc(events);
1660        events = NULL;
1661        goto out;
1662}
1663
1664static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1665                                void *priv __maybe_unused)
1666{
1667        return fprintf(fp, ", %s = %s", name, val);
1668}
1669
1670static void print_event_desc(struct feat_fd *ff, FILE *fp)
1671{
1672        struct perf_evsel *evsel, *events;
1673        u32 j;
1674        u64 *id;
1675
1676        if (ff->events)
1677                events = ff->events;
1678        else
1679                events = read_event_desc(ff);
1680
1681        if (!events) {
1682                fprintf(fp, "# event desc: not available or unable to read\n");
1683                return;
1684        }
1685
1686        for (evsel = events; evsel->attr.size; evsel++) {
1687                fprintf(fp, "# event : name = %s, ", evsel->name);
1688
1689                if (evsel->ids) {
1690                        fprintf(fp, ", id = {");
1691                        for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1692                                if (j)
1693                                        fputc(',', fp);
1694                                fprintf(fp, " %"PRIu64, *id);
1695                        }
1696                        fprintf(fp, " }");
1697                }
1698
1699                perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1700
1701                fputc('\n', fp);
1702        }
1703
1704        free_event_desc(events);
1705        ff->events = NULL;
1706}
1707
1708static void print_total_mem(struct feat_fd *ff, FILE *fp)
1709{
1710        fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1711}
1712
1713static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1714{
1715        int i;
1716        struct numa_node *n;
1717
1718        for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1719                n = &ff->ph->env.numa_nodes[i];
1720
1721                fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1722                            " free = %"PRIu64" kB\n",
1723                        n->node, n->mem_total, n->mem_free);
1724
1725                fprintf(fp, "# node%u cpu list : ", n->node);
1726                cpu_map__fprintf(n->map, fp);
1727        }
1728}
1729
1730static void print_cpuid(struct feat_fd *ff, FILE *fp)
1731{
1732        fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1733}
1734
1735static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1736{
1737        fprintf(fp, "# contains samples with branch stack\n");
1738}
1739
1740static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1741{
1742        fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1743}
1744
1745static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1746{
1747        fprintf(fp, "# contains stat data\n");
1748}
1749
1750static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1751{
1752        int i;
1753
1754        fprintf(fp, "# CPU cache info:\n");
1755        for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1756                fprintf(fp, "#  ");
1757                cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1758        }
1759}
1760
1761static void print_compressed(struct feat_fd *ff, FILE *fp)
1762{
1763        fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1764                ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1765                ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1766}
1767
1768static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1769{
1770        const char *delimiter = "# pmu mappings: ";
1771        char *str, *tmp;
1772        u32 pmu_num;
1773        u32 type;
1774
1775        pmu_num = ff->ph->env.nr_pmu_mappings;
1776        if (!pmu_num) {
1777                fprintf(fp, "# pmu mappings: not available\n");
1778                return;
1779        }
1780
1781        str = ff->ph->env.pmu_mappings;
1782
1783        while (pmu_num) {
1784                type = strtoul(str, &tmp, 0);
1785                if (*tmp != ':')
1786                        goto error;
1787
1788                str = tmp + 1;
1789                fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1790
1791                delimiter = ", ";
1792                str += strlen(str) + 1;
1793                pmu_num--;
1794        }
1795
1796        fprintf(fp, "\n");
1797
1798        if (!pmu_num)
1799                return;
1800error:
1801        fprintf(fp, "# pmu mappings: unable to read\n");
1802}
1803
1804static void print_group_desc(struct feat_fd *ff, FILE *fp)
1805{
1806        struct perf_session *session;
1807        struct perf_evsel *evsel;
1808        u32 nr = 0;
1809
1810        session = container_of(ff->ph, struct perf_session, header);
1811
1812        evlist__for_each_entry(session->evlist, evsel) {
1813                if (perf_evsel__is_group_leader(evsel) &&
1814                    evsel->nr_members > 1) {
1815                        fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1816                                perf_evsel__name(evsel));
1817
1818                        nr = evsel->nr_members - 1;
1819                } else if (nr) {
1820                        fprintf(fp, ",%s", perf_evsel__name(evsel));
1821
1822                        if (--nr == 0)
1823                                fprintf(fp, "}\n");
1824                }
1825        }
1826}
1827
1828static void print_sample_time(struct feat_fd *ff, FILE *fp)
1829{
1830        struct perf_session *session;
1831        char time_buf[32];
1832        double d;
1833
1834        session = container_of(ff->ph, struct perf_session, header);
1835
1836        timestamp__scnprintf_usec(session->evlist->first_sample_time,
1837                                  time_buf, sizeof(time_buf));
1838        fprintf(fp, "# time of first sample : %s\n", time_buf);
1839
1840        timestamp__scnprintf_usec(session->evlist->last_sample_time,
1841                                  time_buf, sizeof(time_buf));
1842        fprintf(fp, "# time of last sample : %s\n", time_buf);
1843
1844        d = (double)(session->evlist->last_sample_time -
1845                session->evlist->first_sample_time) / NSEC_PER_MSEC;
1846
1847        fprintf(fp, "# sample duration : %10.3f ms\n", d);
1848}
1849
1850static void memory_node__fprintf(struct memory_node *n,
1851                                 unsigned long long bsize, FILE *fp)
1852{
1853        char buf_map[100], buf_size[50];
1854        unsigned long long size;
1855
1856        size = bsize * bitmap_weight(n->set, n->size);
1857        unit_number__scnprintf(buf_size, 50, size);
1858
1859        bitmap_scnprintf(n->set, n->size, buf_map, 100);
1860        fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1861}
1862
1863static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1864{
1865        struct memory_node *nodes;
1866        int i, nr;
1867
1868        nodes = ff->ph->env.memory_nodes;
1869        nr    = ff->ph->env.nr_memory_nodes;
1870
1871        fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1872                nr, ff->ph->env.memory_bsize);
1873
1874        for (i = 0; i < nr; i++) {
1875                memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1876        }
1877}
1878
1879static int __event_process_build_id(struct build_id_event *bev,
1880                                    char *filename,
1881                                    struct perf_session *session)
1882{
1883        int err = -1;
1884        struct machine *machine;
1885        u16 cpumode;
1886        struct dso *dso;
1887        enum dso_kernel_type dso_type;
1888
1889        machine = perf_session__findnew_machine(session, bev->pid);
1890        if (!machine)
1891                goto out;
1892
1893        cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1894
1895        switch (cpumode) {
1896        case PERF_RECORD_MISC_KERNEL:
1897                dso_type = DSO_TYPE_KERNEL;
1898                break;
1899        case PERF_RECORD_MISC_GUEST_KERNEL:
1900                dso_type = DSO_TYPE_GUEST_KERNEL;
1901                break;
1902        case PERF_RECORD_MISC_USER:
1903        case PERF_RECORD_MISC_GUEST_USER:
1904                dso_type = DSO_TYPE_USER;
1905                break;
1906        default:
1907                goto out;
1908        }
1909
1910        dso = machine__findnew_dso(machine, filename);
1911        if (dso != NULL) {
1912                char sbuild_id[SBUILD_ID_SIZE];
1913
1914                dso__set_build_id(dso, &bev->build_id);
1915
1916                if (dso_type != DSO_TYPE_USER) {
1917                        struct kmod_path m = { .name = NULL, };
1918
1919                        if (!kmod_path__parse_name(&m, filename) && m.kmod)
1920                                dso__set_module_info(dso, &m, machine);
1921                        else
1922                                dso->kernel = dso_type;
1923
1924                        free(m.name);
1925                }
1926
1927                build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1928                                  sbuild_id);
1929                pr_debug("build id event received for %s: %s\n",
1930                         dso->long_name, sbuild_id);
1931                dso__put(dso);
1932        }
1933
1934        err = 0;
1935out:
1936        return err;
1937}
1938
1939static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1940                                                 int input, u64 offset, u64 size)
1941{
1942        struct perf_session *session = container_of(header, struct perf_session, header);
1943        struct {
1944                struct perf_event_header   header;
1945                u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1946                char                       filename[0];
1947        } old_bev;
1948        struct build_id_event bev;
1949        char filename[PATH_MAX];
1950        u64 limit = offset + size;
1951
1952        while (offset < limit) {
1953                ssize_t len;
1954
1955                if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1956                        return -1;
1957
1958                if (header->needs_swap)
1959                        perf_event_header__bswap(&old_bev.header);
1960
1961                len = old_bev.header.size - sizeof(old_bev);
1962                if (readn(input, filename, len) != len)
1963                        return -1;
1964
1965                bev.header = old_bev.header;
1966
1967                /*
1968                 * As the pid is the missing value, we need to fill
1969                 * it properly. The header.misc value give us nice hint.
1970                 */
1971                bev.pid = HOST_KERNEL_ID;
1972                if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1973                    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1974                        bev.pid = DEFAULT_GUEST_KERNEL_ID;
1975
1976                memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1977                __event_process_build_id(&bev, filename, session);
1978
1979                offset += bev.header.size;
1980        }
1981
1982        return 0;
1983}
1984
1985static int perf_header__read_build_ids(struct perf_header *header,
1986                                       int input, u64 offset, u64 size)
1987{
1988        struct perf_session *session = container_of(header, struct perf_session, header);
1989        struct build_id_event bev;
1990        char filename[PATH_MAX];
1991        u64 limit = offset + size, orig_offset = offset;
1992        int err = -1;
1993
1994        while (offset < limit) {
1995                ssize_t len;
1996
1997                if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1998                        goto out;
1999
2000                if (header->needs_swap)
2001                        perf_event_header__bswap(&bev.header);
2002
2003                len = bev.header.size - sizeof(bev);
2004                if (readn(input, filename, len) != len)
2005                        goto out;
2006                /*
2007                 * The a1645ce1 changeset:
2008                 *
2009                 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2010                 *
2011                 * Added a field to struct build_id_event that broke the file
2012                 * format.
2013                 *
2014                 * Since the kernel build-id is the first entry, process the
2015                 * table using the old format if the well known
2016                 * '[kernel.kallsyms]' string for the kernel build-id has the
2017                 * first 4 characters chopped off (where the pid_t sits).
2018                 */
2019                if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2020                        if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2021                                return -1;
2022                        return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2023                }
2024
2025                __event_process_build_id(&bev, filename, session);
2026
2027                offset += bev.header.size;
2028        }
2029        err = 0;
2030out:
2031        return err;
2032}
2033
2034/* Macro for features that simply need to read and store a string. */
2035#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2036static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2037{\
2038        ff->ph->env.__feat_env = do_read_string(ff); \
2039        return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2040}
2041
2042FEAT_PROCESS_STR_FUN(hostname, hostname);
2043FEAT_PROCESS_STR_FUN(osrelease, os_release);
2044FEAT_PROCESS_STR_FUN(version, version);
2045FEAT_PROCESS_STR_FUN(arch, arch);
2046FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2047FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2048
2049static int process_tracing_data(struct feat_fd *ff, void *data)
2050{
2051        ssize_t ret = trace_report(ff->fd, data, false);
2052
2053        return ret < 0 ? -1 : 0;
2054}
2055
2056static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2057{
2058        if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2059                pr_debug("Failed to read buildids, continuing...\n");
2060        return 0;
2061}
2062
2063static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2064{
2065        int ret;
2066        u32 nr_cpus_avail, nr_cpus_online;
2067
2068        ret = do_read_u32(ff, &nr_cpus_avail);
2069        if (ret)
2070                return ret;
2071
2072        ret = do_read_u32(ff, &nr_cpus_online);
2073        if (ret)
2074                return ret;
2075        ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2076        ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2077        return 0;
2078}
2079
2080static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2081{
2082        u64 total_mem;
2083        int ret;
2084
2085        ret = do_read_u64(ff, &total_mem);
2086        if (ret)
2087                return -1;
2088        ff->ph->env.total_mem = (unsigned long long)total_mem;
2089        return 0;
2090}
2091
2092static struct perf_evsel *
2093perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
2094{
2095        struct perf_evsel *evsel;
2096
2097        evlist__for_each_entry(evlist, evsel) {
2098                if (evsel->idx == idx)
2099                        return evsel;
2100        }
2101
2102        return NULL;
2103}
2104
2105static void
2106perf_evlist__set_event_name(struct perf_evlist *evlist,
2107                            struct perf_evsel *event)
2108{
2109        struct perf_evsel *evsel;
2110
2111        if (!event->name)
2112                return;
2113
2114        evsel = perf_evlist__find_by_index(evlist, event->idx);
2115        if (!evsel)
2116                return;
2117
2118        if (evsel->name)
2119                return;
2120
2121        evsel->name = strdup(event->name);
2122}
2123
2124static int
2125process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2126{
2127        struct perf_session *session;
2128        struct perf_evsel *evsel, *events = read_event_desc(ff);
2129
2130        if (!events)
2131                return 0;
2132
2133        session = container_of(ff->ph, struct perf_session, header);
2134
2135        if (session->data->is_pipe) {
2136                /* Save events for reading later by print_event_desc,
2137                 * since they can't be read again in pipe mode. */
2138                ff->events = events;
2139        }
2140
2141        for (evsel = events; evsel->attr.size; evsel++)
2142                perf_evlist__set_event_name(session->evlist, evsel);
2143
2144        if (!session->data->is_pipe)
2145                free_event_desc(events);
2146
2147        return 0;
2148}
2149
2150static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2151{
2152        char *str, *cmdline = NULL, **argv = NULL;
2153        u32 nr, i, len = 0;
2154
2155        if (do_read_u32(ff, &nr))
2156                return -1;
2157
2158        ff->ph->env.nr_cmdline = nr;
2159
2160        cmdline = zalloc(ff->size + nr + 1);
2161        if (!cmdline)
2162                return -1;
2163
2164        argv = zalloc(sizeof(char *) * (nr + 1));
2165        if (!argv)
2166                goto error;
2167
2168        for (i = 0; i < nr; i++) {
2169                str = do_read_string(ff);
2170                if (!str)
2171                        goto error;
2172
2173                argv[i] = cmdline + len;
2174                memcpy(argv[i], str, strlen(str) + 1);
2175                len += strlen(str) + 1;
2176                free(str);
2177        }
2178        ff->ph->env.cmdline = cmdline;
2179        ff->ph->env.cmdline_argv = (const char **) argv;
2180        return 0;
2181
2182error:
2183        free(argv);
2184        free(cmdline);
2185        return -1;
2186}
2187
2188static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2189{
2190        u32 nr, i;
2191        char *str;
2192        struct strbuf sb;
2193        int cpu_nr = ff->ph->env.nr_cpus_avail;
2194        u64 size = 0;
2195        struct perf_header *ph = ff->ph;
2196        bool do_core_id_test = true;
2197
2198        ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2199        if (!ph->env.cpu)
2200                return -1;
2201
2202        if (do_read_u32(ff, &nr))
2203                goto free_cpu;
2204
2205        ph->env.nr_sibling_cores = nr;
2206        size += sizeof(u32);
2207        if (strbuf_init(&sb, 128) < 0)
2208                goto free_cpu;
2209
2210        for (i = 0; i < nr; i++) {
2211                str = do_read_string(ff);
2212                if (!str)
2213                        goto error;
2214
2215                /* include a NULL character at the end */
2216                if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2217                        goto error;
2218                size += string_size(str);
2219                free(str);
2220        }
2221        ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2222
2223        if (do_read_u32(ff, &nr))
2224                return -1;
2225
2226        ph->env.nr_sibling_threads = nr;
2227        size += sizeof(u32);
2228
2229        for (i = 0; i < nr; i++) {
2230                str = do_read_string(ff);
2231                if (!str)
2232                        goto error;
2233
2234                /* include a NULL character at the end */
2235                if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2236                        goto error;
2237                size += string_size(str);
2238                free(str);
2239        }
2240        ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2241
2242        /*
2243         * The header may be from old perf,
2244         * which doesn't include core id and socket id information.
2245         */
2246        if (ff->size <= size) {
2247                zfree(&ph->env.cpu);
2248                return 0;
2249        }
2250
2251        /* On s390 the socket_id number is not related to the numbers of cpus.
2252         * The socket_id number might be higher than the numbers of cpus.
2253         * This depends on the configuration.
2254         */
2255        if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
2256                do_core_id_test = false;
2257
2258        for (i = 0; i < (u32)cpu_nr; i++) {
2259                if (do_read_u32(ff, &nr))
2260                        goto free_cpu;
2261
2262                ph->env.cpu[i].core_id = nr;
2263                size += sizeof(u32);
2264
2265                if (do_read_u32(ff, &nr))
2266                        goto free_cpu;
2267
2268                if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2269                        pr_debug("socket_id number is too big."
2270                                 "You may need to upgrade the perf tool.\n");
2271                        goto free_cpu;
2272                }
2273
2274                ph->env.cpu[i].socket_id = nr;
2275                size += sizeof(u32);
2276        }
2277
2278        /*
2279         * The header may be from old perf,
2280         * which doesn't include die information.
2281         */
2282        if (ff->size <= size)
2283                return 0;
2284
2285        if (do_read_u32(ff, &nr))
2286                return -1;
2287
2288        ph->env.nr_sibling_dies = nr;
2289        size += sizeof(u32);
2290
2291        for (i = 0; i < nr; i++) {
2292                str = do_read_string(ff);
2293                if (!str)
2294                        goto error;
2295
2296                /* include a NULL character at the end */
2297                if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2298                        goto error;
2299                size += string_size(str);
2300                free(str);
2301        }
2302        ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2303
2304        for (i = 0; i < (u32)cpu_nr; i++) {
2305                if (do_read_u32(ff, &nr))
2306                        goto free_cpu;
2307
2308                ph->env.cpu[i].die_id = nr;
2309        }
2310
2311        return 0;
2312
2313error:
2314        strbuf_release(&sb);
2315free_cpu:
2316        zfree(&ph->env.cpu);
2317        return -1;
2318}
2319
2320static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2321{
2322        struct numa_node *nodes, *n;
2323        u32 nr, i;
2324        char *str;
2325
2326        /* nr nodes */
2327        if (do_read_u32(ff, &nr))
2328                return -1;
2329
2330        nodes = zalloc(sizeof(*nodes) * nr);
2331        if (!nodes)
2332                return -ENOMEM;
2333
2334        for (i = 0; i < nr; i++) {
2335                n = &nodes[i];
2336
2337                /* node number */
2338                if (do_read_u32(ff, &n->node))
2339                        goto error;
2340
2341                if (do_read_u64(ff, &n->mem_total))
2342                        goto error;
2343
2344                if (do_read_u64(ff, &n->mem_free))
2345                        goto error;
2346
2347                str = do_read_string(ff);
2348                if (!str)
2349                        goto error;
2350
2351                n->map = cpu_map__new(str);
2352                if (!n->map)
2353                        goto error;
2354
2355                free(str);
2356        }
2357        ff->ph->env.nr_numa_nodes = nr;
2358        ff->ph->env.numa_nodes = nodes;
2359        return 0;
2360
2361error:
2362        free(nodes);
2363        return -1;
2364}
2365
2366static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2367{
2368        char *name;
2369        u32 pmu_num;
2370        u32 type;
2371        struct strbuf sb;
2372
2373        if (do_read_u32(ff, &pmu_num))
2374                return -1;
2375
2376        if (!pmu_num) {
2377                pr_debug("pmu mappings not available\n");
2378                return 0;
2379        }
2380
2381        ff->ph->env.nr_pmu_mappings = pmu_num;
2382        if (strbuf_init(&sb, 128) < 0)
2383                return -1;
2384
2385        while (pmu_num) {
2386                if (do_read_u32(ff, &type))
2387                        goto error;
2388
2389                name = do_read_string(ff);
2390                if (!name)
2391                        goto error;
2392
2393                if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2394                        goto error;
2395                /* include a NULL character at the end */
2396                if (strbuf_add(&sb, "", 1) < 0)
2397                        goto error;
2398
2399                if (!strcmp(name, "msr"))
2400                        ff->ph->env.msr_pmu_type = type;
2401
2402                free(name);
2403                pmu_num--;
2404        }
2405        ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2406        return 0;
2407
2408error:
2409        strbuf_release(&sb);
2410        return -1;
2411}
2412
2413static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2414{
2415        size_t ret = -1;
2416        u32 i, nr, nr_groups;
2417        struct perf_session *session;
2418        struct perf_evsel *evsel, *leader = NULL;
2419        struct group_desc {
2420                char *name;
2421                u32 leader_idx;
2422                u32 nr_members;
2423        } *desc;
2424
2425        if (do_read_u32(ff, &nr_groups))
2426                return -1;
2427
2428        ff->ph->env.nr_groups = nr_groups;
2429        if (!nr_groups) {
2430                pr_debug("group desc not available\n");
2431                return 0;
2432        }
2433
2434        desc = calloc(nr_groups, sizeof(*desc));
2435        if (!desc)
2436                return -1;
2437
2438        for (i = 0; i < nr_groups; i++) {
2439                desc[i].name = do_read_string(ff);
2440                if (!desc[i].name)
2441                        goto out_free;
2442
2443                if (do_read_u32(ff, &desc[i].leader_idx))
2444                        goto out_free;
2445
2446                if (do_read_u32(ff, &desc[i].nr_members))
2447                        goto out_free;
2448        }
2449
2450        /*
2451         * Rebuild group relationship based on the group_desc
2452         */
2453        session = container_of(ff->ph, struct perf_session, header);
2454        session->evlist->nr_groups = nr_groups;
2455
2456        i = nr = 0;
2457        evlist__for_each_entry(session->evlist, evsel) {
2458                if (evsel->idx == (int) desc[i].leader_idx) {
2459                        evsel->leader = evsel;
2460                        /* {anon_group} is a dummy name */
2461                        if (strcmp(desc[i].name, "{anon_group}")) {
2462                                evsel->group_name = desc[i].name;
2463                                desc[i].name = NULL;
2464                        }
2465                        evsel->nr_members = desc[i].nr_members;
2466
2467                        if (i >= nr_groups || nr > 0) {
2468                                pr_debug("invalid group desc\n");
2469                                goto out_free;
2470                        }
2471
2472                        leader = evsel;
2473                        nr = evsel->nr_members - 1;
2474                        i++;
2475                } else if (nr) {
2476                        /* This is a group member */
2477                        evsel->leader = leader;
2478
2479                        nr--;
2480                }
2481        }
2482
2483        if (i != nr_groups || nr != 0) {
2484                pr_debug("invalid group desc\n");
2485                goto out_free;
2486        }
2487
2488        ret = 0;
2489out_free:
2490        for (i = 0; i < nr_groups; i++)
2491                zfree(&desc[i].name);
2492        free(desc);
2493
2494        return ret;
2495}
2496
2497static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2498{
2499        struct perf_session *session;
2500        int err;
2501
2502        session = container_of(ff->ph, struct perf_session, header);
2503
2504        err = auxtrace_index__process(ff->fd, ff->size, session,
2505                                      ff->ph->needs_swap);
2506        if (err < 0)
2507                pr_err("Failed to process auxtrace index\n");
2508        return err;
2509}
2510
2511static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2512{
2513        struct cpu_cache_level *caches;
2514        u32 cnt, i, version;
2515
2516        if (do_read_u32(ff, &version))
2517                return -1;
2518
2519        if (version != 1)
2520                return -1;
2521
2522        if (do_read_u32(ff, &cnt))
2523                return -1;
2524
2525        caches = zalloc(sizeof(*caches) * cnt);
2526        if (!caches)
2527                return -1;
2528
2529        for (i = 0; i < cnt; i++) {
2530                struct cpu_cache_level c;
2531
2532                #define _R(v)                                           \
2533                        if (do_read_u32(ff, &c.v))\
2534                                goto out_free_caches;                   \
2535
2536                _R(level)
2537                _R(line_size)
2538                _R(sets)
2539                _R(ways)
2540                #undef _R
2541
2542                #define _R(v)                                   \
2543                        c.v = do_read_string(ff);               \
2544                        if (!c.v)                               \
2545                                goto out_free_caches;
2546
2547                _R(type)
2548                _R(size)
2549                _R(map)
2550                #undef _R
2551
2552                caches[i] = c;
2553        }
2554
2555        ff->ph->env.caches = caches;
2556        ff->ph->env.caches_cnt = cnt;
2557        return 0;
2558out_free_caches:
2559        free(caches);
2560        return -1;
2561}
2562
2563static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2564{
2565        struct perf_session *session;
2566        u64 first_sample_time, last_sample_time;
2567        int ret;
2568
2569        session = container_of(ff->ph, struct perf_session, header);
2570
2571        ret = do_read_u64(ff, &first_sample_time);
2572        if (ret)
2573                return -1;
2574
2575        ret = do_read_u64(ff, &last_sample_time);
2576        if (ret)
2577                return -1;
2578
2579        session->evlist->first_sample_time = first_sample_time;
2580        session->evlist->last_sample_time = last_sample_time;
2581        return 0;
2582}
2583
2584static int process_mem_topology(struct feat_fd *ff,
2585                                void *data __maybe_unused)
2586{
2587        struct memory_node *nodes;
2588        u64 version, i, nr, bsize;
2589        int ret = -1;
2590
2591        if (do_read_u64(ff, &version))
2592                return -1;
2593
2594        if (version != 1)
2595                return -1;
2596
2597        if (do_read_u64(ff, &bsize))
2598                return -1;
2599
2600        if (do_read_u64(ff, &nr))
2601                return -1;
2602
2603        nodes = zalloc(sizeof(*nodes) * nr);
2604        if (!nodes)
2605                return -1;
2606
2607        for (i = 0; i < nr; i++) {
2608                struct memory_node n;
2609
2610                #define _R(v)                           \
2611                        if (do_read_u64(ff, &n.v))      \
2612                                goto out;               \
2613
2614                _R(node)
2615                _R(size)
2616
2617                #undef _R
2618
2619                if (do_read_bitmap(ff, &n.set, &n.size))
2620                        goto out;
2621
2622                nodes[i] = n;
2623        }
2624
2625        ff->ph->env.memory_bsize    = bsize;
2626        ff->ph->env.memory_nodes    = nodes;
2627        ff->ph->env.nr_memory_nodes = nr;
2628        ret = 0;
2629
2630out:
2631        if (ret)
2632                free(nodes);
2633        return ret;
2634}
2635
2636static int process_clockid(struct feat_fd *ff,
2637                           void *data __maybe_unused)
2638{
2639        if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2640                return -1;
2641
2642        return 0;
2643}
2644
2645static int process_dir_format(struct feat_fd *ff,
2646                              void *_data __maybe_unused)
2647{
2648        struct perf_session *session;
2649        struct perf_data *data;
2650
2651        session = container_of(ff->ph, struct perf_session, header);
2652        data = session->data;
2653
2654        if (WARN_ON(!perf_data__is_dir(data)))
2655                return -1;
2656
2657        return do_read_u64(ff, &data->dir.version);
2658}
2659
2660#ifdef HAVE_LIBBPF_SUPPORT
2661static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2662{
2663        struct bpf_prog_info_linear *info_linear;
2664        struct bpf_prog_info_node *info_node;
2665        struct perf_env *env = &ff->ph->env;
2666        u32 count, i;
2667        int err = -1;
2668
2669        if (ff->ph->needs_swap) {
2670                pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2671                return 0;
2672        }
2673
2674        if (do_read_u32(ff, &count))
2675                return -1;
2676
2677        down_write(&env->bpf_progs.lock);
2678
2679        for (i = 0; i < count; ++i) {
2680                u32 info_len, data_len;
2681
2682                info_linear = NULL;
2683                info_node = NULL;
2684                if (do_read_u32(ff, &info_len))
2685                        goto out;
2686                if (do_read_u32(ff, &data_len))
2687                        goto out;
2688
2689                if (info_len > sizeof(struct bpf_prog_info)) {
2690                        pr_warning("detected invalid bpf_prog_info\n");
2691                        goto out;
2692                }
2693
2694                info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2695                                     data_len);
2696                if (!info_linear)
2697                        goto out;
2698                info_linear->info_len = sizeof(struct bpf_prog_info);
2699                info_linear->data_len = data_len;
2700                if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2701                        goto out;
2702                if (__do_read(ff, &info_linear->info, info_len))
2703                        goto out;
2704                if (info_len < sizeof(struct bpf_prog_info))
2705                        memset(((void *)(&info_linear->info)) + info_len, 0,
2706                               sizeof(struct bpf_prog_info) - info_len);
2707
2708                if (__do_read(ff, info_linear->data, data_len))
2709                        goto out;
2710
2711                info_node = malloc(sizeof(struct bpf_prog_info_node));
2712                if (!info_node)
2713                        goto out;
2714
2715                /* after reading from file, translate offset to address */
2716                bpf_program__bpil_offs_to_addr(info_linear);
2717                info_node->info_linear = info_linear;
2718                perf_env__insert_bpf_prog_info(env, info_node);
2719        }
2720
2721        up_write(&env->bpf_progs.lock);
2722        return 0;
2723out:
2724        free(info_linear);
2725        free(info_node);
2726        up_write(&env->bpf_progs.lock);
2727        return err;
2728}
2729#else // HAVE_LIBBPF_SUPPORT
2730static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2731{
2732        return 0;
2733}
2734#endif // HAVE_LIBBPF_SUPPORT
2735
2736static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2737{
2738        struct perf_env *env = &ff->ph->env;
2739        struct btf_node *node = NULL;
2740        u32 count, i;
2741        int err = -1;
2742
2743        if (ff->ph->needs_swap) {
2744                pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2745                return 0;
2746        }
2747
2748        if (do_read_u32(ff, &count))
2749                return -1;
2750
2751        down_write(&env->bpf_progs.lock);
2752
2753        for (i = 0; i < count; ++i) {
2754                u32 id, data_size;
2755
2756                if (do_read_u32(ff, &id))
2757                        goto out;
2758                if (do_read_u32(ff, &data_size))
2759                        goto out;
2760
2761                node = malloc(sizeof(struct btf_node) + data_size);
2762                if (!node)
2763                        goto out;
2764
2765                node->id = id;
2766                node->data_size = data_size;
2767
2768                if (__do_read(ff, node->data, data_size))
2769                        goto out;
2770
2771                perf_env__insert_btf(env, node);
2772                node = NULL;
2773        }
2774
2775        err = 0;
2776out:
2777        up_write(&env->bpf_progs.lock);
2778        free(node);
2779        return err;
2780}
2781
2782static int process_compressed(struct feat_fd *ff,
2783                              void *data __maybe_unused)
2784{
2785        if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2786                return -1;
2787
2788        if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2789                return -1;
2790
2791        if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2792                return -1;
2793
2794        if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2795                return -1;
2796
2797        if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2798                return -1;
2799
2800        return 0;
2801}
2802
2803struct feature_ops {
2804        int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2805        void (*print)(struct feat_fd *ff, FILE *fp);
2806        int (*process)(struct feat_fd *ff, void *data);
2807        const char *name;
2808        bool full_only;
2809        bool synthesize;
2810};
2811
2812#define FEAT_OPR(n, func, __full_only) \
2813        [HEADER_##n] = {                                        \
2814                .name       = __stringify(n),                   \
2815                .write      = write_##func,                     \
2816                .print      = print_##func,                     \
2817                .full_only  = __full_only,                      \
2818                .process    = process_##func,                   \
2819                .synthesize = true                              \
2820        }
2821
2822#define FEAT_OPN(n, func, __full_only) \
2823        [HEADER_##n] = {                                        \
2824                .name       = __stringify(n),                   \
2825                .write      = write_##func,                     \
2826                .print      = print_##func,                     \
2827                .full_only  = __full_only,                      \
2828                .process    = process_##func                    \
2829        }
2830
2831/* feature_ops not implemented: */
2832#define print_tracing_data      NULL
2833#define print_build_id          NULL
2834
2835#define process_branch_stack    NULL
2836#define process_stat            NULL
2837
2838
2839static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2840        FEAT_OPN(TRACING_DATA,  tracing_data,   false),
2841        FEAT_OPN(BUILD_ID,      build_id,       false),
2842        FEAT_OPR(HOSTNAME,      hostname,       false),
2843        FEAT_OPR(OSRELEASE,     osrelease,      false),
2844        FEAT_OPR(VERSION,       version,        false),
2845        FEAT_OPR(ARCH,          arch,           false),
2846        FEAT_OPR(NRCPUS,        nrcpus,         false),
2847        FEAT_OPR(CPUDESC,       cpudesc,        false),
2848        FEAT_OPR(CPUID,         cpuid,          false),
2849        FEAT_OPR(TOTAL_MEM,     total_mem,      false),
2850        FEAT_OPR(EVENT_DESC,    event_desc,     false),
2851        FEAT_OPR(CMDLINE,       cmdline,        false),
2852        FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
2853        FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
2854        FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
2855        FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
2856        FEAT_OPR(GROUP_DESC,    group_desc,     false),
2857        FEAT_OPN(AUXTRACE,      auxtrace,       false),
2858        FEAT_OPN(STAT,          stat,           false),
2859        FEAT_OPN(CACHE,         cache,          true),
2860        FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
2861        FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
2862        FEAT_OPR(CLOCKID,       clockid,        false),
2863        FEAT_OPN(DIR_FORMAT,    dir_format,     false),
2864        FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
2865        FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2866        FEAT_OPR(COMPRESSED,    compressed,     false),
2867};
2868
2869struct header_print_data {
2870        FILE *fp;
2871        bool full; /* extended list of headers */
2872};
2873
2874static int perf_file_section__fprintf_info(struct perf_file_section *section,
2875                                           struct perf_header *ph,
2876                                           int feat, int fd, void *data)
2877{
2878        struct header_print_data *hd = data;
2879        struct feat_fd ff;
2880
2881        if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2882                pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2883                                "%d, continuing...\n", section->offset, feat);
2884                return 0;
2885        }
2886        if (feat >= HEADER_LAST_FEATURE) {
2887                pr_warning("unknown feature %d\n", feat);
2888                return 0;
2889        }
2890        if (!feat_ops[feat].print)
2891                return 0;
2892
2893        ff = (struct  feat_fd) {
2894                .fd = fd,
2895                .ph = ph,
2896        };
2897
2898        if (!feat_ops[feat].full_only || hd->full)
2899                feat_ops[feat].print(&ff, hd->fp);
2900        else
2901                fprintf(hd->fp, "# %s info available, use -I to display\n",
2902                        feat_ops[feat].name);
2903
2904        return 0;
2905}
2906
2907int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2908{
2909        struct header_print_data hd;
2910        struct perf_header *header = &session->header;
2911        int fd = perf_data__fd(session->data);
2912        struct stat st;
2913        time_t stctime;
2914        int ret, bit;
2915
2916        hd.fp = fp;
2917        hd.full = full;
2918
2919        ret = fstat(fd, &st);
2920        if (ret == -1)
2921                return -1;
2922
2923        stctime = st.st_ctime;
2924        fprintf(fp, "# captured on    : %s", ctime(&stctime));
2925
2926        fprintf(fp, "# header version : %u\n", header->version);
2927        fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2928        fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2929        fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2930
2931        perf_header__process_sections(header, fd, &hd,
2932                                      perf_file_section__fprintf_info);
2933
2934        if (session->data->is_pipe)
2935                return 0;
2936
2937        fprintf(fp, "# missing features: ");
2938        for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2939                if (bit)
2940                        fprintf(fp, "%s ", feat_ops[bit].name);
2941        }
2942
2943        fprintf(fp, "\n");
2944        return 0;
2945}
2946
2947static int do_write_feat(struct feat_fd *ff, int type,
2948                         struct perf_file_section **p,
2949                         struct perf_evlist *evlist)
2950{
2951        int err;
2952        int ret = 0;
2953
2954        if (perf_header__has_feat(ff->ph, type)) {
2955                if (!feat_ops[type].write)
2956                        return -1;
2957
2958                if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2959                        return -1;
2960
2961                (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2962
2963                err = feat_ops[type].write(ff, evlist);
2964                if (err < 0) {
2965                        pr_debug("failed to write feature %s\n", feat_ops[type].name);
2966
2967                        /* undo anything written */
2968                        lseek(ff->fd, (*p)->offset, SEEK_SET);
2969
2970                        return -1;
2971                }
2972                (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2973                (*p)++;
2974        }
2975        return ret;
2976}
2977
2978static int perf_header__adds_write(struct perf_header *header,
2979                                   struct perf_evlist *evlist, int fd)
2980{
2981        int nr_sections;
2982        struct feat_fd ff;
2983        struct perf_file_section *feat_sec, *p;
2984        int sec_size;
2985        u64 sec_start;
2986        int feat;
2987        int err;
2988
2989        ff = (struct feat_fd){
2990                .fd  = fd,
2991                .ph = header,
2992        };
2993
2994        nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2995        if (!nr_sections)
2996                return 0;
2997
2998        feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2999        if (feat_sec == NULL)
3000                return -ENOMEM;
3001
3002        sec_size = sizeof(*feat_sec) * nr_sections;
3003
3004        sec_start = header->feat_offset;
3005        lseek(fd, sec_start + sec_size, SEEK_SET);
3006
3007        for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3008                if (do_write_feat(&ff, feat, &p, evlist))
3009                        perf_header__clear_feat(header, feat);
3010        }
3011
3012        lseek(fd, sec_start, SEEK_SET);
3013        /*
3014         * may write more than needed due to dropped feature, but
3015         * this is okay, reader will skip the missing entries
3016         */
3017        err = do_write(&ff, feat_sec, sec_size);
3018        if (err < 0)
3019                pr_debug("failed to write feature section\n");
3020        free(feat_sec);
3021        return err;
3022}
3023
3024int perf_header__write_pipe(int fd)
3025{
3026        struct perf_pipe_file_header f_header;
3027        struct feat_fd ff;
3028        int err;
3029
3030        ff = (struct feat_fd){ .fd = fd };
3031
3032        f_header = (struct perf_pipe_file_header){
3033                .magic     = PERF_MAGIC,
3034                .size      = sizeof(f_header),
3035        };
3036
3037        err = do_write(&ff, &f_header, sizeof(f_header));
3038        if (err < 0) {
3039                pr_debug("failed to write perf pipe header\n");
3040                return err;
3041        }
3042
3043        return 0;
3044}
3045
3046int perf_session__write_header(struct perf_session *session,
3047                               struct perf_evlist *evlist,
3048                               int fd, bool at_exit)
3049{
3050        struct perf_file_header f_header;
3051        struct perf_file_attr   f_attr;
3052        struct perf_header *header = &session->header;
3053        struct perf_evsel *evsel;
3054        struct feat_fd ff;
3055        u64 attr_offset;
3056        int err;
3057
3058        ff = (struct feat_fd){ .fd = fd};
3059        lseek(fd, sizeof(f_header), SEEK_SET);
3060
3061        evlist__for_each_entry(session->evlist, evsel) {
3062                evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3063                err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
3064                if (err < 0) {
3065                        pr_debug("failed to write perf header\n");
3066                        return err;
3067                }
3068        }
3069
3070        attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3071
3072        evlist__for_each_entry(evlist, evsel) {
3073                f_attr = (struct perf_file_attr){
3074                        .attr = evsel->attr,
3075                        .ids  = {
3076                                .offset = evsel->id_offset,
3077                                .size   = evsel->ids * sizeof(u64),
3078                        }
3079                };
3080                err = do_write(&ff, &f_attr, sizeof(f_attr));
3081                if (err < 0) {
3082                        pr_debug("failed to write perf header attribute\n");
3083                        return err;
3084                }
3085        }
3086
3087        if (!header->data_offset)
3088                header->data_offset = lseek(fd, 0, SEEK_CUR);
3089        header->feat_offset = header->data_offset + header->data_size;
3090
3091        if (at_exit) {
3092                err = perf_header__adds_write(header, evlist, fd);
3093                if (err < 0)
3094                        return err;
3095        }
3096
3097        f_header = (struct perf_file_header){
3098                .magic     = PERF_MAGIC,
3099                .size      = sizeof(f_header),
3100                .attr_size = sizeof(f_attr),
3101                .attrs = {
3102                        .offset = attr_offset,
3103                        .size   = evlist->nr_entries * sizeof(f_attr),
3104                },
3105                .data = {
3106                        .offset = header->data_offset,
3107                        .size   = header->data_size,
3108                },
3109                /* event_types is ignored, store zeros */
3110        };
3111
3112        memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3113
3114        lseek(fd, 0, SEEK_SET);
3115        err = do_write(&ff, &f_header, sizeof(f_header));
3116        if (err < 0) {
3117                pr_debug("failed to write perf header\n");
3118                return err;
3119        }
3120        lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3121
3122        return 0;
3123}
3124
3125static int perf_header__getbuffer64(struct perf_header *header,
3126                                    int fd, void *buf, size_t size)
3127{
3128        if (readn(fd, buf, size) <= 0)
3129                return -1;
3130
3131        if (header->needs_swap)
3132                mem_bswap_64(buf, size);
3133
3134        return 0;
3135}
3136
3137int perf_header__process_sections(struct perf_header *header, int fd,
3138                                  void *data,
3139                                  int (*process)(struct perf_file_section *section,
3140                                                 struct perf_header *ph,
3141                                                 int feat, int fd, void *data))
3142{
3143        struct perf_file_section *feat_sec, *sec;
3144        int nr_sections;
3145        int sec_size;
3146        int feat;
3147        int err;
3148
3149        nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3150        if (!nr_sections)
3151                return 0;
3152
3153        feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3154        if (!feat_sec)
3155                return -1;
3156
3157        sec_size = sizeof(*feat_sec) * nr_sections;
3158
3159        lseek(fd, header->feat_offset, SEEK_SET);
3160
3161        err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3162        if (err < 0)
3163                goto out_free;
3164
3165        for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3166                err = process(sec++, header, feat, fd, data);
3167                if (err < 0)
3168                        goto out_free;
3169        }
3170        err = 0;
3171out_free:
3172        free(feat_sec);
3173        return err;
3174}
3175
3176static const int attr_file_abi_sizes[] = {
3177        [0] = PERF_ATTR_SIZE_VER0,
3178        [1] = PERF_ATTR_SIZE_VER1,
3179        [2] = PERF_ATTR_SIZE_VER2,
3180        [3] = PERF_ATTR_SIZE_VER3,
3181        [4] = PERF_ATTR_SIZE_VER4,
3182        0,
3183};
3184
3185/*
3186 * In the legacy file format, the magic number is not used to encode endianness.
3187 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3188 * on ABI revisions, we need to try all combinations for all endianness to
3189 * detect the endianness.
3190 */
3191static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3192{
3193        uint64_t ref_size, attr_size;
3194        int i;
3195
3196        for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3197                ref_size = attr_file_abi_sizes[i]
3198                         + sizeof(struct perf_file_section);
3199                if (hdr_sz != ref_size) {
3200                        attr_size = bswap_64(hdr_sz);
3201                        if (attr_size != ref_size)
3202                                continue;
3203
3204                        ph->needs_swap = true;
3205                }
3206                pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3207                         i,
3208                         ph->needs_swap);
3209                return 0;
3210        }
3211        /* could not determine endianness */
3212        return -1;
3213}
3214
3215#define PERF_PIPE_HDR_VER0      16
3216
3217static const size_t attr_pipe_abi_sizes[] = {
3218        [0] = PERF_PIPE_HDR_VER0,
3219        0,
3220};
3221
3222/*
3223 * In the legacy pipe format, there is an implicit assumption that endiannesss
3224 * between host recording the samples, and host parsing the samples is the
3225 * same. This is not always the case given that the pipe output may always be
3226 * redirected into a file and analyzed on a different machine with possibly a
3227 * different endianness and perf_event ABI revsions in the perf tool itself.
3228 */
3229static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3230{
3231        u64 attr_size;
3232        int i;
3233
3234        for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3235                if (hdr_sz != attr_pipe_abi_sizes[i]) {
3236                        attr_size = bswap_64(hdr_sz);
3237                        if (attr_size != hdr_sz)
3238                                continue;
3239
3240                        ph->needs_swap = true;
3241                }
3242                pr_debug("Pipe ABI%d perf.data file detected\n", i);
3243                return 0;
3244        }
3245        return -1;
3246}
3247
3248bool is_perf_magic(u64 magic)
3249{
3250        if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3251                || magic == __perf_magic2
3252                || magic == __perf_magic2_sw)
3253                return true;
3254
3255        return false;
3256}
3257
3258static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3259                              bool is_pipe, struct perf_header *ph)
3260{
3261        int ret;
3262
3263        /* check for legacy format */
3264        ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3265        if (ret == 0) {
3266                ph->version = PERF_HEADER_VERSION_1;
3267                pr_debug("legacy perf.data format\n");
3268                if (is_pipe)
3269                        return try_all_pipe_abis(hdr_sz, ph);
3270
3271                return try_all_file_abis(hdr_sz, ph);
3272        }
3273        /*
3274         * the new magic number serves two purposes:
3275         * - unique number to identify actual perf.data files
3276         * - encode endianness of file
3277         */
3278        ph->version = PERF_HEADER_VERSION_2;
3279
3280        /* check magic number with one endianness */
3281        if (magic == __perf_magic2)
3282                return 0;
3283
3284        /* check magic number with opposite endianness */
3285        if (magic != __perf_magic2_sw)
3286                return -1;
3287
3288        ph->needs_swap = true;
3289
3290        return 0;
3291}
3292
3293int perf_file_header__read(struct perf_file_header *header,
3294                           struct perf_header *ph, int fd)
3295{
3296        ssize_t ret;
3297
3298        lseek(fd, 0, SEEK_SET);
3299
3300        ret = readn(fd, header, sizeof(*header));
3301        if (ret <= 0)
3302                return -1;
3303
3304        if (check_magic_endian(header->magic,
3305                               header->attr_size, false, ph) < 0) {
3306                pr_debug("magic/endian check failed\n");
3307                return -1;
3308        }
3309
3310        if (ph->needs_swap) {
3311                mem_bswap_64(header, offsetof(struct perf_file_header,
3312                             adds_features));
3313        }
3314
3315        if (header->size != sizeof(*header)) {
3316                /* Support the previous format */
3317                if (header->size == offsetof(typeof(*header), adds_features))
3318                        bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3319                else
3320                        return -1;
3321        } else if (ph->needs_swap) {
3322                /*
3323                 * feature bitmap is declared as an array of unsigned longs --
3324                 * not good since its size can differ between the host that
3325                 * generated the data file and the host analyzing the file.
3326                 *
3327                 * We need to handle endianness, but we don't know the size of
3328                 * the unsigned long where the file was generated. Take a best
3329                 * guess at determining it: try 64-bit swap first (ie., file
3330                 * created on a 64-bit host), and check if the hostname feature
3331                 * bit is set (this feature bit is forced on as of fbe96f2).
3332                 * If the bit is not, undo the 64-bit swap and try a 32-bit
3333                 * swap. If the hostname bit is still not set (e.g., older data
3334                 * file), punt and fallback to the original behavior --
3335                 * clearing all feature bits and setting buildid.
3336                 */
3337                mem_bswap_64(&header->adds_features,
3338                            BITS_TO_U64(HEADER_FEAT_BITS));
3339
3340                if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3341                        /* unswap as u64 */
3342                        mem_bswap_64(&header->adds_features,
3343                                    BITS_TO_U64(HEADER_FEAT_BITS));
3344
3345                        /* unswap as u32 */
3346                        mem_bswap_32(&header->adds_features,
3347                                    BITS_TO_U32(HEADER_FEAT_BITS));
3348                }
3349
3350                if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3351                        bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3352                        set_bit(HEADER_BUILD_ID, header->adds_features);
3353                }
3354        }
3355
3356        memcpy(&ph->adds_features, &header->adds_features,
3357               sizeof(ph->adds_features));
3358
3359        ph->data_offset  = header->data.offset;
3360        ph->data_size    = header->data.size;
3361        ph->feat_offset  = header->data.offset + header->data.size;
3362        return 0;
3363}
3364
3365static int perf_file_section__process(struct perf_file_section *section,
3366                                      struct perf_header *ph,
3367                                      int feat, int fd, void *data)
3368{
3369        struct feat_fd fdd = {
3370                .fd     = fd,
3371                .ph     = ph,
3372                .size   = section->size,
3373                .offset = section->offset,
3374        };
3375
3376        if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3377                pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3378                          "%d, continuing...\n", section->offset, feat);
3379                return 0;
3380        }
3381
3382        if (feat >= HEADER_LAST_FEATURE) {
3383                pr_debug("unknown feature %d, continuing...\n", feat);
3384                return 0;
3385        }
3386
3387        if (!feat_ops[feat].process)
3388                return 0;
3389
3390        return feat_ops[feat].process(&fdd, data);
3391}
3392
3393static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3394                                       struct perf_header *ph, int fd,
3395                                       bool repipe)
3396{
3397        struct feat_fd ff = {
3398                .fd = STDOUT_FILENO,
3399                .ph = ph,
3400        };
3401        ssize_t ret;
3402
3403        ret = readn(fd, header, sizeof(*header));
3404        if (ret <= 0)
3405                return -1;
3406
3407        if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3408                pr_debug("endian/magic failed\n");
3409                return -1;
3410        }
3411
3412        if (ph->needs_swap)
3413                header->size = bswap_64(header->size);
3414
3415        if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3416                return -1;
3417
3418        return 0;
3419}
3420
3421static int perf_header__read_pipe(struct perf_session *session)
3422{
3423        struct perf_header *header = &session->header;
3424        struct perf_pipe_file_header f_header;
3425
3426        if (perf_file_header__read_pipe(&f_header, header,
3427                                        perf_data__fd(session->data),
3428                                        session->repipe) < 0) {
3429                pr_debug("incompatible file format\n");
3430                return -EINVAL;
3431        }
3432
3433        return 0;
3434}
3435
3436static int read_attr(int fd, struct perf_header *ph,
3437                     struct perf_file_attr *f_attr)
3438{
3439        struct perf_event_attr *attr = &f_attr->attr;
3440        size_t sz, left;
3441        size_t our_sz = sizeof(f_attr->attr);
3442        ssize_t ret;
3443
3444        memset(f_attr, 0, sizeof(*f_attr));
3445
3446        /* read minimal guaranteed structure */
3447        ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3448        if (ret <= 0) {
3449                pr_debug("cannot read %d bytes of header attr\n",
3450                         PERF_ATTR_SIZE_VER0);
3451                return -1;
3452        }
3453
3454        /* on file perf_event_attr size */
3455        sz = attr->size;
3456
3457        if (ph->needs_swap)
3458                sz = bswap_32(sz);
3459
3460        if (sz == 0) {
3461                /* assume ABI0 */
3462                sz =  PERF_ATTR_SIZE_VER0;
3463        } else if (sz > our_sz) {
3464                pr_debug("file uses a more recent and unsupported ABI"
3465                         " (%zu bytes extra)\n", sz - our_sz);
3466                return -1;
3467        }
3468        /* what we have not yet read and that we know about */
3469        left = sz - PERF_ATTR_SIZE_VER0;
3470        if (left) {
3471                void *ptr = attr;
3472                ptr += PERF_ATTR_SIZE_VER0;
3473
3474                ret = readn(fd, ptr, left);
3475        }
3476        /* read perf_file_section, ids are read in caller */
3477        ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3478
3479        return ret <= 0 ? -1 : 0;
3480}
3481
3482static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3483                                                struct tep_handle *pevent)
3484{
3485        struct tep_event *event;
3486        char bf[128];
3487
3488        /* already prepared */
3489        if (evsel->tp_format)
3490                return 0;
3491
3492        if (pevent == NULL) {
3493                pr_debug("broken or missing trace data\n");
3494                return -1;
3495        }
3496
3497        event = tep_find_event(pevent, evsel->attr.config);
3498        if (event == NULL) {
3499                pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3500                return -1;
3501        }
3502
3503        if (!evsel->name) {
3504                snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3505                evsel->name = strdup(bf);
3506                if (evsel->name == NULL)
3507                        return -1;
3508        }
3509
3510        evsel->tp_format = event;
3511        return 0;
3512}
3513
3514static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3515                                                  struct tep_handle *pevent)
3516{
3517        struct perf_evsel *pos;
3518
3519        evlist__for_each_entry(evlist, pos) {
3520                if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3521                    perf_evsel__prepare_tracepoint_event(pos, pevent))
3522                        return -1;
3523        }
3524
3525        return 0;
3526}
3527
3528int perf_session__read_header(struct perf_session *session)
3529{
3530        struct perf_data *data = session->data;
3531        struct perf_header *header = &session->header;
3532        struct perf_file_header f_header;
3533        struct perf_file_attr   f_attr;
3534        u64                     f_id;
3535        int nr_attrs, nr_ids, i, j;
3536        int fd = perf_data__fd(data);
3537
3538        session->evlist = perf_evlist__new();
3539        if (session->evlist == NULL)
3540                return -ENOMEM;
3541
3542        session->evlist->env = &header->env;
3543        session->machines.host.env = &header->env;
3544        if (perf_data__is_pipe(data))
3545                return perf_header__read_pipe(session);
3546
3547        if (perf_file_header__read(&f_header, header, fd) < 0)
3548                return -EINVAL;
3549
3550        /*
3551         * Sanity check that perf.data was written cleanly; data size is
3552         * initialized to 0 and updated only if the on_exit function is run.
3553         * If data size is still 0 then the file contains only partial
3554         * information.  Just warn user and process it as much as it can.
3555         */
3556        if (f_header.data.size == 0) {
3557                pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3558                           "Was the 'perf record' command properly terminated?\n",
3559                           data->file.path);
3560        }
3561
3562        if (f_header.attr_size == 0) {
3563                pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3564                       "Was the 'perf record' command properly terminated?\n",
3565                       data->file.path);
3566                return -EINVAL;
3567        }
3568
3569        nr_attrs = f_header.attrs.size / f_header.attr_size;
3570        lseek(fd, f_header.attrs.offset, SEEK_SET);
3571
3572        for (i = 0; i < nr_attrs; i++) {
3573                struct perf_evsel *evsel;
3574                off_t tmp;
3575
3576                if (read_attr(fd, header, &f_attr) < 0)
3577                        goto out_errno;
3578
3579                if (header->needs_swap) {
3580                        f_attr.ids.size   = bswap_64(f_attr.ids.size);
3581                        f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3582                        perf_event__attr_swap(&f_attr.attr);
3583                }
3584
3585                tmp = lseek(fd, 0, SEEK_CUR);
3586                evsel = perf_evsel__new(&f_attr.attr);
3587
3588                if (evsel == NULL)
3589                        goto out_delete_evlist;
3590
3591                evsel->needs_swap = header->needs_swap;
3592                /*
3593                 * Do it before so that if perf_evsel__alloc_id fails, this
3594                 * entry gets purged too at perf_evlist__delete().
3595                 */
3596                perf_evlist__add(session->evlist, evsel);
3597
3598                nr_ids = f_attr.ids.size / sizeof(u64);
3599                /*
3600                 * We don't have the cpu and thread maps on the header, so
3601                 * for allocating the perf_sample_id table we fake 1 cpu and
3602                 * hattr->ids threads.
3603                 */
3604                if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3605                        goto out_delete_evlist;
3606
3607                lseek(fd, f_attr.ids.offset, SEEK_SET);
3608
3609                for (j = 0; j < nr_ids; j++) {
3610                        if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3611                                goto out_errno;
3612
3613                        perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3614                }
3615
3616                lseek(fd, tmp, SEEK_SET);
3617        }
3618
3619        perf_header__process_sections(header, fd, &session->tevent,
3620                                      perf_file_section__process);
3621
3622        if (perf_evlist__prepare_tracepoint_events(session->evlist,
3623                                                   session->tevent.pevent))
3624                goto out_delete_evlist;
3625
3626        return 0;
3627out_errno:
3628        return -errno;
3629
3630out_delete_evlist:
3631        perf_evlist__delete(session->evlist);
3632        session->evlist = NULL;
3633        return -ENOMEM;
3634}
3635
3636int perf_event__synthesize_attr(struct perf_tool *tool,
3637                                struct perf_event_attr *attr, u32 ids, u64 *id,
3638                                perf_event__handler_t process)
3639{
3640        union perf_event *ev;
3641        size_t size;
3642        int err;
3643
3644        size = sizeof(struct perf_event_attr);
3645        size = PERF_ALIGN(size, sizeof(u64));
3646        size += sizeof(struct perf_event_header);
3647        size += ids * sizeof(u64);
3648
3649        ev = zalloc(size);
3650
3651        if (ev == NULL)
3652                return -ENOMEM;
3653
3654        ev->attr.attr = *attr;
3655        memcpy(ev->attr.id, id, ids * sizeof(u64));
3656
3657        ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3658        ev->attr.header.size = (u16)size;
3659
3660        if (ev->attr.header.size == size)
3661                err = process(tool, ev, NULL, NULL);
3662        else
3663                err = -E2BIG;
3664
3665        free(ev);
3666
3667        return err;
3668}
3669
3670int perf_event__synthesize_features(struct perf_tool *tool,
3671                                    struct perf_session *session,
3672                                    struct perf_evlist *evlist,
3673                                    perf_event__handler_t process)
3674{
3675        struct perf_header *header = &session->header;
3676        struct feat_fd ff;
3677        struct feature_event *fe;
3678        size_t sz, sz_hdr;
3679        int feat, ret;
3680
3681        sz_hdr = sizeof(fe->header);
3682        sz = sizeof(union perf_event);
3683        /* get a nice alignment */
3684        sz = PERF_ALIGN(sz, page_size);
3685
3686        memset(&ff, 0, sizeof(ff));
3687
3688        ff.buf = malloc(sz);
3689        if (!ff.buf)
3690                return -ENOMEM;
3691
3692        ff.size = sz - sz_hdr;
3693        ff.ph = &session->header;
3694
3695        for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3696                if (!feat_ops[feat].synthesize) {
3697                        pr_debug("No record header feature for header :%d\n", feat);
3698                        continue;
3699                }
3700
3701                ff.offset = sizeof(*fe);
3702
3703                ret = feat_ops[feat].write(&ff, evlist);
3704                if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3705                        pr_debug("Error writing feature\n");
3706                        continue;
3707                }
3708                /* ff.buf may have changed due to realloc in do_write() */
3709                fe = ff.buf;
3710                memset(fe, 0, sizeof(*fe));
3711
3712                fe->feat_id = feat;
3713                fe->header.type = PERF_RECORD_HEADER_FEATURE;
3714                fe->header.size = ff.offset;
3715
3716                ret = process(tool, ff.buf, NULL, NULL);
3717                if (ret) {
3718                        free(ff.buf);
3719                        return ret;
3720                }
3721        }
3722
3723        /* Send HEADER_LAST_FEATURE mark. */
3724        fe = ff.buf;
3725        fe->feat_id     = HEADER_LAST_FEATURE;
3726        fe->header.type = PERF_RECORD_HEADER_FEATURE;
3727        fe->header.size = sizeof(*fe);
3728
3729        ret = process(tool, ff.buf, NULL, NULL);
3730
3731        free(ff.buf);
3732        return ret;
3733}
3734
3735int perf_event__process_feature(struct perf_session *session,
3736                                union perf_event *event)
3737{
3738        struct perf_tool *tool = session->tool;
3739        struct feat_fd ff = { .fd = 0 };
3740        struct feature_event *fe = (struct feature_event *)event;
3741        int type = fe->header.type;
3742        u64 feat = fe->feat_id;
3743
3744        if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3745                pr_warning("invalid record type %d in pipe-mode\n", type);
3746                return 0;
3747        }
3748        if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3749                pr_warning("invalid record type %d in pipe-mode\n", type);
3750                return -1;
3751        }
3752
3753        if (!feat_ops[feat].process)
3754                return 0;
3755
3756        ff.buf  = (void *)fe->data;
3757        ff.size = event->header.size - sizeof(*fe);
3758        ff.ph = &session->header;
3759
3760        if (feat_ops[feat].process(&ff, NULL))
3761                return -1;
3762
3763        if (!feat_ops[feat].print || !tool->show_feat_hdr)
3764                return 0;
3765
3766        if (!feat_ops[feat].full_only ||
3767            tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3768                feat_ops[feat].print(&ff, stdout);
3769        } else {
3770                fprintf(stdout, "# %s info available, use -I to display\n",
3771                        feat_ops[feat].name);
3772        }
3773
3774        return 0;
3775}
3776
3777static struct event_update_event *
3778event_update_event__new(size_t size, u64 type, u64 id)
3779{
3780        struct event_update_event *ev;
3781
3782        size += sizeof(*ev);
3783        size  = PERF_ALIGN(size, sizeof(u64));
3784
3785        ev = zalloc(size);
3786        if (ev) {
3787                ev->header.type = PERF_RECORD_EVENT_UPDATE;
3788                ev->header.size = (u16)size;
3789                ev->type = type;
3790                ev->id = id;
3791        }
3792        return ev;
3793}
3794
3795int
3796perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3797                                         struct perf_evsel *evsel,
3798                                         perf_event__handler_t process)
3799{
3800        struct event_update_event *ev;
3801        size_t size = strlen(evsel->unit);
3802        int err;
3803
3804        ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3805        if (ev == NULL)
3806                return -ENOMEM;
3807
3808        strlcpy(ev->data, evsel->unit, size + 1);
3809        err = process(tool, (union perf_event *)ev, NULL, NULL);
3810        free(ev);
3811        return err;
3812}
3813
3814int
3815perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3816                                          struct perf_evsel *evsel,
3817                                          perf_event__handler_t process)
3818{
3819        struct event_update_event *ev;
3820        struct event_update_event_scale *ev_data;
3821        int err;
3822
3823        ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3824        if (ev == NULL)
3825                return -ENOMEM;
3826
3827        ev_data = (struct event_update_event_scale *) ev->data;
3828        ev_data->scale = evsel->scale;
3829        err = process(tool, (union perf_event*) ev, NULL, NULL);
3830        free(ev);
3831        return err;
3832}
3833
3834int
3835perf_event__synthesize_event_update_name(struct perf_tool *tool,
3836                                         struct perf_evsel *evsel,
3837                                         perf_event__handler_t process)
3838{
3839        struct event_update_event *ev;
3840        size_t len = strlen(evsel->name);
3841        int err;
3842
3843        ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3844        if (ev == NULL)
3845                return -ENOMEM;
3846
3847        strlcpy(ev->data, evsel->name, len + 1);
3848        err = process(tool, (union perf_event*) ev, NULL, NULL);
3849        free(ev);
3850        return err;
3851}
3852
3853int
3854perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3855                                        struct perf_evsel *evsel,
3856                                        perf_event__handler_t process)
3857{
3858        size_t size = sizeof(struct event_update_event);
3859        struct event_update_event *ev;
3860        int max, err;
3861        u16 type;
3862
3863        if (!evsel->own_cpus)
3864                return 0;
3865
3866        ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3867        if (!ev)
3868                return -ENOMEM;
3869
3870        ev->header.type = PERF_RECORD_EVENT_UPDATE;
3871        ev->header.size = (u16)size;
3872        ev->type = PERF_EVENT_UPDATE__CPUS;
3873        ev->id   = evsel->id[0];
3874
3875        cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3876                                 evsel->own_cpus,
3877                                 type, max);
3878
3879        err = process(tool, (union perf_event*) ev, NULL, NULL);
3880        free(ev);
3881        return err;
3882}
3883
3884size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3885{
3886        struct event_update_event *ev = &event->event_update;
3887        struct event_update_event_scale *ev_scale;
3888        struct event_update_event_cpus *ev_cpus;
3889        struct cpu_map *map;
3890        size_t ret;
3891
3892        ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3893
3894        switch (ev->type) {
3895        case PERF_EVENT_UPDATE__SCALE:
3896                ev_scale = (struct event_update_event_scale *) ev->data;
3897                ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3898                break;
3899        case PERF_EVENT_UPDATE__UNIT:
3900                ret += fprintf(fp, "... unit:  %s\n", ev->data);
3901                break;
3902        case PERF_EVENT_UPDATE__NAME:
3903                ret += fprintf(fp, "... name:  %s\n", ev->data);
3904                break;
3905        case PERF_EVENT_UPDATE__CPUS:
3906                ev_cpus = (struct event_update_event_cpus *) ev->data;
3907                ret += fprintf(fp, "... ");
3908
3909                map = cpu_map__new_data(&ev_cpus->cpus);
3910                if (map)
3911                        ret += cpu_map__fprintf(map, fp);
3912                else
3913                        ret += fprintf(fp, "failed to get cpus\n");
3914                break;
3915        default:
3916                ret += fprintf(fp, "... unknown type\n");
3917                break;
3918        }
3919
3920        return ret;
3921}
3922
3923int perf_event__synthesize_attrs(struct perf_tool *tool,
3924                                 struct perf_evlist *evlist,
3925                                 perf_event__handler_t process)
3926{
3927        struct perf_evsel *evsel;
3928        int err = 0;
3929
3930        evlist__for_each_entry(evlist, evsel) {
3931                err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3932                                                  evsel->id, process);
3933                if (err) {
3934                        pr_debug("failed to create perf header attribute\n");
3935                        return err;
3936                }
3937        }
3938
3939        return err;
3940}
3941
3942static bool has_unit(struct perf_evsel *counter)
3943{
3944        return counter->unit && *counter->unit;
3945}
3946
3947static bool has_scale(struct perf_evsel *counter)
3948{
3949        return counter->scale != 1;
3950}
3951
3952int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3953                                      struct perf_evlist *evsel_list,
3954                                      perf_event__handler_t process,
3955                                      bool is_pipe)
3956{
3957        struct perf_evsel *counter;
3958        int err;
3959
3960        /*
3961         * Synthesize other events stuff not carried within
3962         * attr event - unit, scale, name
3963         */
3964        evlist__for_each_entry(evsel_list, counter) {
3965                if (!counter->supported)
3966                        continue;
3967
3968                /*
3969                 * Synthesize unit and scale only if it's defined.
3970                 */
3971                if (has_unit(counter)) {
3972                        err = perf_event__synthesize_event_update_unit(tool, counter, process);
3973                        if (err < 0) {
3974                                pr_err("Couldn't synthesize evsel unit.\n");
3975                                return err;
3976                        }
3977                }
3978
3979                if (has_scale(counter)) {
3980                        err = perf_event__synthesize_event_update_scale(tool, counter, process);
3981                        if (err < 0) {
3982                                pr_err("Couldn't synthesize evsel counter.\n");
3983                                return err;
3984                        }
3985                }
3986
3987                if (counter->own_cpus) {
3988                        err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3989                        if (err < 0) {
3990                                pr_err("Couldn't synthesize evsel cpus.\n");
3991                                return err;
3992                        }
3993                }
3994
3995                /*
3996                 * Name is needed only for pipe output,
3997                 * perf.data carries event names.
3998                 */
3999                if (is_pipe) {
4000                        err = perf_event__synthesize_event_update_name(tool, counter, process);
4001                        if (err < 0) {
4002                                pr_err("Couldn't synthesize evsel name.\n");
4003                                return err;
4004                        }
4005                }
4006        }
4007        return 0;
4008}
4009
4010int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4011                             union perf_event *event,
4012                             struct perf_evlist **pevlist)
4013{
4014        u32 i, ids, n_ids;
4015        struct perf_evsel *evsel;
4016        struct perf_evlist *evlist = *pevlist;
4017
4018        if (evlist == NULL) {
4019                *pevlist = evlist = perf_evlist__new();
4020                if (evlist == NULL)
4021                        return -ENOMEM;
4022        }
4023
4024        evsel = perf_evsel__new(&event->attr.attr);
4025        if (evsel == NULL)
4026                return -ENOMEM;
4027
4028        perf_evlist__add(evlist, evsel);
4029
4030        ids = event->header.size;
4031        ids -= (void *)&event->attr.id - (void *)event;
4032        n_ids = ids / sizeof(u64);
4033        /*
4034         * We don't have the cpu and thread maps on the header, so
4035         * for allocating the perf_sample_id table we fake 1 cpu and
4036         * hattr->ids threads.
4037         */
4038        if (perf_evsel__alloc_id(evsel, 1, n_ids))
4039                return -ENOMEM;
4040
4041        for (i = 0; i < n_ids; i++) {
4042                perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
4043        }
4044
4045        return 0;
4046}
4047
4048int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4049                                     union perf_event *event,
4050                                     struct perf_evlist **pevlist)
4051{
4052        struct event_update_event *ev = &event->event_update;
4053        struct event_update_event_scale *ev_scale;
4054        struct event_update_event_cpus *ev_cpus;
4055        struct perf_evlist *evlist;
4056        struct perf_evsel *evsel;
4057        struct cpu_map *map;
4058
4059        if (!pevlist || *pevlist == NULL)
4060                return -EINVAL;
4061
4062        evlist = *pevlist;
4063
4064        evsel = perf_evlist__id2evsel(evlist, ev->id);
4065        if (evsel == NULL)
4066                return -EINVAL;
4067
4068        switch (ev->type) {
4069        case PERF_EVENT_UPDATE__UNIT:
4070                evsel->unit = strdup(ev->data);
4071                break;
4072        case PERF_EVENT_UPDATE__NAME:
4073                evsel->name = strdup(ev->data);
4074                break;
4075        case PERF_EVENT_UPDATE__SCALE:
4076                ev_scale = (struct event_update_event_scale *) ev->data;
4077                evsel->scale = ev_scale->scale;
4078                break;
4079        case PERF_EVENT_UPDATE__CPUS:
4080                ev_cpus = (struct event_update_event_cpus *) ev->data;
4081
4082                map = cpu_map__new_data(&ev_cpus->cpus);
4083                if (map)
4084                        evsel->own_cpus = map;
4085                else
4086                        pr_err("failed to get event_update cpus\n");
4087        default:
4088                break;
4089        }
4090
4091        return 0;
4092}
4093
4094int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
4095                                        struct perf_evlist *evlist,
4096                                        perf_event__handler_t process)
4097{
4098        union perf_event ev;
4099        struct tracing_data *tdata;
4100        ssize_t size = 0, aligned_size = 0, padding;
4101        struct feat_fd ff;
4102        int err __maybe_unused = 0;
4103
4104        /*
4105         * We are going to store the size of the data followed
4106         * by the data contents. Since the fd descriptor is a pipe,
4107         * we cannot seek back to store the size of the data once
4108         * we know it. Instead we:
4109         *
4110         * - write the tracing data to the temp file
4111         * - get/write the data size to pipe
4112         * - write the tracing data from the temp file
4113         *   to the pipe
4114         */
4115        tdata = tracing_data_get(&evlist->entries, fd, true);
4116        if (!tdata)
4117                return -1;
4118
4119        memset(&ev, 0, sizeof(ev));
4120
4121        ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
4122        size = tdata->size;
4123        aligned_size = PERF_ALIGN(size, sizeof(u64));
4124        padding = aligned_size - size;
4125        ev.tracing_data.header.size = sizeof(ev.tracing_data);
4126        ev.tracing_data.size = aligned_size;
4127
4128        process(tool, &ev, NULL, NULL);
4129
4130        /*
4131         * The put function will copy all the tracing data
4132         * stored in temp file to the pipe.
4133         */
4134        tracing_data_put(tdata);
4135
4136        ff = (struct feat_fd){ .fd = fd };
4137        if (write_padded(&ff, NULL, 0, padding))
4138                return -1;
4139
4140        return aligned_size;
4141}
4142
4143int perf_event__process_tracing_data(struct perf_session *session,
4144                                     union perf_event *event)
4145{
4146        ssize_t size_read, padding, size = event->tracing_data.size;
4147        int fd = perf_data__fd(session->data);
4148        off_t offset = lseek(fd, 0, SEEK_CUR);
4149        char buf[BUFSIZ];
4150
4151        /* setup for reading amidst mmap */
4152        lseek(fd, offset + sizeof(struct tracing_data_event),
4153              SEEK_SET);
4154
4155        size_read = trace_report(fd, &session->tevent,
4156                                 session->repipe);
4157        padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4158
4159        if (readn(fd, buf, padding) < 0) {
4160                pr_err("%s: reading input file", __func__);
4161                return -1;
4162        }
4163        if (session->repipe) {
4164                int retw = write(STDOUT_FILENO, buf, padding);
4165                if (retw <= 0 || retw != padding) {
4166                        pr_err("%s: repiping tracing data padding", __func__);
4167                        return -1;
4168                }
4169        }
4170
4171        if (size_read + padding != size) {
4172                pr_err("%s: tracing data size mismatch", __func__);
4173                return -1;
4174        }
4175
4176        perf_evlist__prepare_tracepoint_events(session->evlist,
4177                                               session->tevent.pevent);
4178
4179        return size_read + padding;
4180}
4181
4182int perf_event__synthesize_build_id(struct perf_tool *tool,
4183                                    struct dso *pos, u16 misc,
4184                                    perf_event__handler_t process,
4185                                    struct machine *machine)
4186{
4187        union perf_event ev;
4188        size_t len;
4189        int err = 0;
4190
4191        if (!pos->hit)
4192                return err;
4193
4194        memset(&ev, 0, sizeof(ev));
4195
4196        len = pos->long_name_len + 1;
4197        len = PERF_ALIGN(len, NAME_ALIGN);
4198        memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
4199        ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
4200        ev.build_id.header.misc = misc;
4201        ev.build_id.pid = machine->pid;
4202        ev.build_id.header.size = sizeof(ev.build_id) + len;
4203        memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
4204
4205        err = process(tool, &ev, NULL, machine);
4206
4207        return err;
4208}
4209
4210int perf_event__process_build_id(struct perf_session *session,
4211                                 union perf_event *event)
4212{
4213        __event_process_build_id(&event->build_id,
4214                                 event->build_id.filename,
4215                                 session);
4216        return 0;
4217}
4218