linux/tools/perf/util/machine.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <dirent.h>
   3#include <errno.h>
   4#include <inttypes.h>
   5#include <regex.h>
   6#include "callchain.h"
   7#include "debug.h"
   8#include "event.h"
   9#include "evsel.h"
  10#include "hist.h"
  11#include "machine.h"
  12#include "map.h"
  13#include "symbol.h"
  14#include "sort.h"
  15#include "strlist.h"
  16#include "thread.h"
  17#include "vdso.h"
  18#include <stdbool.h>
  19#include <sys/types.h>
  20#include <sys/stat.h>
  21#include <unistd.h>
  22#include "unwind.h"
  23#include "linux/hash.h"
  24#include "asm/bug.h"
  25#include "bpf-event.h"
  26
  27#include <linux/ctype.h>
  28#include <symbol/kallsyms.h>
  29#include <linux/mman.h>
  30#include <linux/zalloc.h>
  31
  32static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
  33
  34static void dsos__init(struct dsos *dsos)
  35{
  36        INIT_LIST_HEAD(&dsos->head);
  37        dsos->root = RB_ROOT;
  38        init_rwsem(&dsos->lock);
  39}
  40
  41static void machine__threads_init(struct machine *machine)
  42{
  43        int i;
  44
  45        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
  46                struct threads *threads = &machine->threads[i];
  47                threads->entries = RB_ROOT_CACHED;
  48                init_rwsem(&threads->lock);
  49                threads->nr = 0;
  50                INIT_LIST_HEAD(&threads->dead);
  51                threads->last_match = NULL;
  52        }
  53}
  54
  55static int machine__set_mmap_name(struct machine *machine)
  56{
  57        if (machine__is_host(machine))
  58                machine->mmap_name = strdup("[kernel.kallsyms]");
  59        else if (machine__is_default_guest(machine))
  60                machine->mmap_name = strdup("[guest.kernel.kallsyms]");
  61        else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
  62                          machine->pid) < 0)
  63                machine->mmap_name = NULL;
  64
  65        return machine->mmap_name ? 0 : -ENOMEM;
  66}
  67
  68int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
  69{
  70        int err = -ENOMEM;
  71
  72        memset(machine, 0, sizeof(*machine));
  73        map_groups__init(&machine->kmaps, machine);
  74        RB_CLEAR_NODE(&machine->rb_node);
  75        dsos__init(&machine->dsos);
  76
  77        machine__threads_init(machine);
  78
  79        machine->vdso_info = NULL;
  80        machine->env = NULL;
  81
  82        machine->pid = pid;
  83
  84        machine->id_hdr_size = 0;
  85        machine->kptr_restrict_warned = false;
  86        machine->comm_exec = false;
  87        machine->kernel_start = 0;
  88        machine->vmlinux_map = NULL;
  89
  90        machine->root_dir = strdup(root_dir);
  91        if (machine->root_dir == NULL)
  92                return -ENOMEM;
  93
  94        if (machine__set_mmap_name(machine))
  95                goto out;
  96
  97        if (pid != HOST_KERNEL_ID) {
  98                struct thread *thread = machine__findnew_thread(machine, -1,
  99                                                                pid);
 100                char comm[64];
 101
 102                if (thread == NULL)
 103                        goto out;
 104
 105                snprintf(comm, sizeof(comm), "[guest/%d]", pid);
 106                thread__set_comm(thread, comm, 0);
 107                thread__put(thread);
 108        }
 109
 110        machine->current_tid = NULL;
 111        err = 0;
 112
 113out:
 114        if (err) {
 115                zfree(&machine->root_dir);
 116                zfree(&machine->mmap_name);
 117        }
 118        return 0;
 119}
 120
 121struct machine *machine__new_host(void)
 122{
 123        struct machine *machine = malloc(sizeof(*machine));
 124
 125        if (machine != NULL) {
 126                machine__init(machine, "", HOST_KERNEL_ID);
 127
 128                if (machine__create_kernel_maps(machine) < 0)
 129                        goto out_delete;
 130        }
 131
 132        return machine;
 133out_delete:
 134        free(machine);
 135        return NULL;
 136}
 137
 138struct machine *machine__new_kallsyms(void)
 139{
 140        struct machine *machine = machine__new_host();
 141        /*
 142         * FIXME:
 143         * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
 144         *    ask for not using the kcore parsing code, once this one is fixed
 145         *    to create a map per module.
 146         */
 147        if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
 148                machine__delete(machine);
 149                machine = NULL;
 150        }
 151
 152        return machine;
 153}
 154
 155static void dsos__purge(struct dsos *dsos)
 156{
 157        struct dso *pos, *n;
 158
 159        down_write(&dsos->lock);
 160
 161        list_for_each_entry_safe(pos, n, &dsos->head, node) {
 162                RB_CLEAR_NODE(&pos->rb_node);
 163                pos->root = NULL;
 164                list_del_init(&pos->node);
 165                dso__put(pos);
 166        }
 167
 168        up_write(&dsos->lock);
 169}
 170
 171static void dsos__exit(struct dsos *dsos)
 172{
 173        dsos__purge(dsos);
 174        exit_rwsem(&dsos->lock);
 175}
 176
 177void machine__delete_threads(struct machine *machine)
 178{
 179        struct rb_node *nd;
 180        int i;
 181
 182        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 183                struct threads *threads = &machine->threads[i];
 184                down_write(&threads->lock);
 185                nd = rb_first_cached(&threads->entries);
 186                while (nd) {
 187                        struct thread *t = rb_entry(nd, struct thread, rb_node);
 188
 189                        nd = rb_next(nd);
 190                        __machine__remove_thread(machine, t, false);
 191                }
 192                up_write(&threads->lock);
 193        }
 194}
 195
 196void machine__exit(struct machine *machine)
 197{
 198        int i;
 199
 200        if (machine == NULL)
 201                return;
 202
 203        machine__destroy_kernel_maps(machine);
 204        map_groups__exit(&machine->kmaps);
 205        dsos__exit(&machine->dsos);
 206        machine__exit_vdso(machine);
 207        zfree(&machine->root_dir);
 208        zfree(&machine->mmap_name);
 209        zfree(&machine->current_tid);
 210
 211        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 212                struct threads *threads = &machine->threads[i];
 213                struct thread *thread, *n;
 214                /*
 215                 * Forget about the dead, at this point whatever threads were
 216                 * left in the dead lists better have a reference count taken
 217                 * by who is using them, and then, when they drop those references
 218                 * and it finally hits zero, thread__put() will check and see that
 219                 * its not in the dead threads list and will not try to remove it
 220                 * from there, just calling thread__delete() straight away.
 221                 */
 222                list_for_each_entry_safe(thread, n, &threads->dead, node)
 223                        list_del_init(&thread->node);
 224
 225                exit_rwsem(&threads->lock);
 226        }
 227}
 228
 229void machine__delete(struct machine *machine)
 230{
 231        if (machine) {
 232                machine__exit(machine);
 233                free(machine);
 234        }
 235}
 236
 237void machines__init(struct machines *machines)
 238{
 239        machine__init(&machines->host, "", HOST_KERNEL_ID);
 240        machines->guests = RB_ROOT_CACHED;
 241}
 242
 243void machines__exit(struct machines *machines)
 244{
 245        machine__exit(&machines->host);
 246        /* XXX exit guest */
 247}
 248
 249struct machine *machines__add(struct machines *machines, pid_t pid,
 250                              const char *root_dir)
 251{
 252        struct rb_node **p = &machines->guests.rb_root.rb_node;
 253        struct rb_node *parent = NULL;
 254        struct machine *pos, *machine = malloc(sizeof(*machine));
 255        bool leftmost = true;
 256
 257        if (machine == NULL)
 258                return NULL;
 259
 260        if (machine__init(machine, root_dir, pid) != 0) {
 261                free(machine);
 262                return NULL;
 263        }
 264
 265        while (*p != NULL) {
 266                parent = *p;
 267                pos = rb_entry(parent, struct machine, rb_node);
 268                if (pid < pos->pid)
 269                        p = &(*p)->rb_left;
 270                else {
 271                        p = &(*p)->rb_right;
 272                        leftmost = false;
 273                }
 274        }
 275
 276        rb_link_node(&machine->rb_node, parent, p);
 277        rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
 278
 279        return machine;
 280}
 281
 282void machines__set_comm_exec(struct machines *machines, bool comm_exec)
 283{
 284        struct rb_node *nd;
 285
 286        machines->host.comm_exec = comm_exec;
 287
 288        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 289                struct machine *machine = rb_entry(nd, struct machine, rb_node);
 290
 291                machine->comm_exec = comm_exec;
 292        }
 293}
 294
 295struct machine *machines__find(struct machines *machines, pid_t pid)
 296{
 297        struct rb_node **p = &machines->guests.rb_root.rb_node;
 298        struct rb_node *parent = NULL;
 299        struct machine *machine;
 300        struct machine *default_machine = NULL;
 301
 302        if (pid == HOST_KERNEL_ID)
 303                return &machines->host;
 304
 305        while (*p != NULL) {
 306                parent = *p;
 307                machine = rb_entry(parent, struct machine, rb_node);
 308                if (pid < machine->pid)
 309                        p = &(*p)->rb_left;
 310                else if (pid > machine->pid)
 311                        p = &(*p)->rb_right;
 312                else
 313                        return machine;
 314                if (!machine->pid)
 315                        default_machine = machine;
 316        }
 317
 318        return default_machine;
 319}
 320
 321struct machine *machines__findnew(struct machines *machines, pid_t pid)
 322{
 323        char path[PATH_MAX];
 324        const char *root_dir = "";
 325        struct machine *machine = machines__find(machines, pid);
 326
 327        if (machine && (machine->pid == pid))
 328                goto out;
 329
 330        if ((pid != HOST_KERNEL_ID) &&
 331            (pid != DEFAULT_GUEST_KERNEL_ID) &&
 332            (symbol_conf.guestmount)) {
 333                sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
 334                if (access(path, R_OK)) {
 335                        static struct strlist *seen;
 336
 337                        if (!seen)
 338                                seen = strlist__new(NULL, NULL);
 339
 340                        if (!strlist__has_entry(seen, path)) {
 341                                pr_err("Can't access file %s\n", path);
 342                                strlist__add(seen, path);
 343                        }
 344                        machine = NULL;
 345                        goto out;
 346                }
 347                root_dir = path;
 348        }
 349
 350        machine = machines__add(machines, pid, root_dir);
 351out:
 352        return machine;
 353}
 354
 355void machines__process_guests(struct machines *machines,
 356                              machine__process_t process, void *data)
 357{
 358        struct rb_node *nd;
 359
 360        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 361                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 362                process(pos, data);
 363        }
 364}
 365
 366void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
 367{
 368        struct rb_node *node;
 369        struct machine *machine;
 370
 371        machines->host.id_hdr_size = id_hdr_size;
 372
 373        for (node = rb_first_cached(&machines->guests); node;
 374             node = rb_next(node)) {
 375                machine = rb_entry(node, struct machine, rb_node);
 376                machine->id_hdr_size = id_hdr_size;
 377        }
 378
 379        return;
 380}
 381
 382static void machine__update_thread_pid(struct machine *machine,
 383                                       struct thread *th, pid_t pid)
 384{
 385        struct thread *leader;
 386
 387        if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
 388                return;
 389
 390        th->pid_ = pid;
 391
 392        if (th->pid_ == th->tid)
 393                return;
 394
 395        leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
 396        if (!leader)
 397                goto out_err;
 398
 399        if (!leader->mg)
 400                leader->mg = map_groups__new(machine);
 401
 402        if (!leader->mg)
 403                goto out_err;
 404
 405        if (th->mg == leader->mg)
 406                return;
 407
 408        if (th->mg) {
 409                /*
 410                 * Maps are created from MMAP events which provide the pid and
 411                 * tid.  Consequently there never should be any maps on a thread
 412                 * with an unknown pid.  Just print an error if there are.
 413                 */
 414                if (!map_groups__empty(th->mg))
 415                        pr_err("Discarding thread maps for %d:%d\n",
 416                               th->pid_, th->tid);
 417                map_groups__put(th->mg);
 418        }
 419
 420        th->mg = map_groups__get(leader->mg);
 421out_put:
 422        thread__put(leader);
 423        return;
 424out_err:
 425        pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
 426        goto out_put;
 427}
 428
 429/*
 430 * Front-end cache - TID lookups come in blocks,
 431 * so most of the time we dont have to look up
 432 * the full rbtree:
 433 */
 434static struct thread*
 435__threads__get_last_match(struct threads *threads, struct machine *machine,
 436                          int pid, int tid)
 437{
 438        struct thread *th;
 439
 440        th = threads->last_match;
 441        if (th != NULL) {
 442                if (th->tid == tid) {
 443                        machine__update_thread_pid(machine, th, pid);
 444                        return thread__get(th);
 445                }
 446
 447                threads->last_match = NULL;
 448        }
 449
 450        return NULL;
 451}
 452
 453static struct thread*
 454threads__get_last_match(struct threads *threads, struct machine *machine,
 455                        int pid, int tid)
 456{
 457        struct thread *th = NULL;
 458
 459        if (perf_singlethreaded)
 460                th = __threads__get_last_match(threads, machine, pid, tid);
 461
 462        return th;
 463}
 464
 465static void
 466__threads__set_last_match(struct threads *threads, struct thread *th)
 467{
 468        threads->last_match = th;
 469}
 470
 471static void
 472threads__set_last_match(struct threads *threads, struct thread *th)
 473{
 474        if (perf_singlethreaded)
 475                __threads__set_last_match(threads, th);
 476}
 477
 478/*
 479 * Caller must eventually drop thread->refcnt returned with a successful
 480 * lookup/new thread inserted.
 481 */
 482static struct thread *____machine__findnew_thread(struct machine *machine,
 483                                                  struct threads *threads,
 484                                                  pid_t pid, pid_t tid,
 485                                                  bool create)
 486{
 487        struct rb_node **p = &threads->entries.rb_root.rb_node;
 488        struct rb_node *parent = NULL;
 489        struct thread *th;
 490        bool leftmost = true;
 491
 492        th = threads__get_last_match(threads, machine, pid, tid);
 493        if (th)
 494                return th;
 495
 496        while (*p != NULL) {
 497                parent = *p;
 498                th = rb_entry(parent, struct thread, rb_node);
 499
 500                if (th->tid == tid) {
 501                        threads__set_last_match(threads, th);
 502                        machine__update_thread_pid(machine, th, pid);
 503                        return thread__get(th);
 504                }
 505
 506                if (tid < th->tid)
 507                        p = &(*p)->rb_left;
 508                else {
 509                        p = &(*p)->rb_right;
 510                        leftmost = false;
 511                }
 512        }
 513
 514        if (!create)
 515                return NULL;
 516
 517        th = thread__new(pid, tid);
 518        if (th != NULL) {
 519                rb_link_node(&th->rb_node, parent, p);
 520                rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
 521
 522                /*
 523                 * We have to initialize map_groups separately
 524                 * after rb tree is updated.
 525                 *
 526                 * The reason is that we call machine__findnew_thread
 527                 * within thread__init_map_groups to find the thread
 528                 * leader and that would screwed the rb tree.
 529                 */
 530                if (thread__init_map_groups(th, machine)) {
 531                        rb_erase_cached(&th->rb_node, &threads->entries);
 532                        RB_CLEAR_NODE(&th->rb_node);
 533                        thread__put(th);
 534                        return NULL;
 535                }
 536                /*
 537                 * It is now in the rbtree, get a ref
 538                 */
 539                thread__get(th);
 540                threads__set_last_match(threads, th);
 541                ++threads->nr;
 542        }
 543
 544        return th;
 545}
 546
 547struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
 548{
 549        return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
 550}
 551
 552struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
 553                                       pid_t tid)
 554{
 555        struct threads *threads = machine__threads(machine, tid);
 556        struct thread *th;
 557
 558        down_write(&threads->lock);
 559        th = __machine__findnew_thread(machine, pid, tid);
 560        up_write(&threads->lock);
 561        return th;
 562}
 563
 564struct thread *machine__find_thread(struct machine *machine, pid_t pid,
 565                                    pid_t tid)
 566{
 567        struct threads *threads = machine__threads(machine, tid);
 568        struct thread *th;
 569
 570        down_read(&threads->lock);
 571        th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
 572        up_read(&threads->lock);
 573        return th;
 574}
 575
 576struct comm *machine__thread_exec_comm(struct machine *machine,
 577                                       struct thread *thread)
 578{
 579        if (machine->comm_exec)
 580                return thread__exec_comm(thread);
 581        else
 582                return thread__comm(thread);
 583}
 584
 585int machine__process_comm_event(struct machine *machine, union perf_event *event,
 586                                struct perf_sample *sample)
 587{
 588        struct thread *thread = machine__findnew_thread(machine,
 589                                                        event->comm.pid,
 590                                                        event->comm.tid);
 591        bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
 592        int err = 0;
 593
 594        if (exec)
 595                machine->comm_exec = true;
 596
 597        if (dump_trace)
 598                perf_event__fprintf_comm(event, stdout);
 599
 600        if (thread == NULL ||
 601            __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
 602                dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
 603                err = -1;
 604        }
 605
 606        thread__put(thread);
 607
 608        return err;
 609}
 610
 611int machine__process_namespaces_event(struct machine *machine __maybe_unused,
 612                                      union perf_event *event,
 613                                      struct perf_sample *sample __maybe_unused)
 614{
 615        struct thread *thread = machine__findnew_thread(machine,
 616                                                        event->namespaces.pid,
 617                                                        event->namespaces.tid);
 618        int err = 0;
 619
 620        WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
 621                  "\nWARNING: kernel seems to support more namespaces than perf"
 622                  " tool.\nTry updating the perf tool..\n\n");
 623
 624        WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
 625                  "\nWARNING: perf tool seems to support more namespaces than"
 626                  " the kernel.\nTry updating the kernel..\n\n");
 627
 628        if (dump_trace)
 629                perf_event__fprintf_namespaces(event, stdout);
 630
 631        if (thread == NULL ||
 632            thread__set_namespaces(thread, sample->time, &event->namespaces)) {
 633                dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
 634                err = -1;
 635        }
 636
 637        thread__put(thread);
 638
 639        return err;
 640}
 641
 642int machine__process_lost_event(struct machine *machine __maybe_unused,
 643                                union perf_event *event, struct perf_sample *sample __maybe_unused)
 644{
 645        dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
 646                    event->lost.id, event->lost.lost);
 647        return 0;
 648}
 649
 650int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
 651                                        union perf_event *event, struct perf_sample *sample)
 652{
 653        dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
 654                    sample->id, event->lost_samples.lost);
 655        return 0;
 656}
 657
 658static struct dso *machine__findnew_module_dso(struct machine *machine,
 659                                               struct kmod_path *m,
 660                                               const char *filename)
 661{
 662        struct dso *dso;
 663
 664        down_write(&machine->dsos.lock);
 665
 666        dso = __dsos__find(&machine->dsos, m->name, true);
 667        if (!dso) {
 668                dso = __dsos__addnew(&machine->dsos, m->name);
 669                if (dso == NULL)
 670                        goto out_unlock;
 671
 672                dso__set_module_info(dso, m, machine);
 673                dso__set_long_name(dso, strdup(filename), true);
 674        }
 675
 676        dso__get(dso);
 677out_unlock:
 678        up_write(&machine->dsos.lock);
 679        return dso;
 680}
 681
 682int machine__process_aux_event(struct machine *machine __maybe_unused,
 683                               union perf_event *event)
 684{
 685        if (dump_trace)
 686                perf_event__fprintf_aux(event, stdout);
 687        return 0;
 688}
 689
 690int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
 691                                        union perf_event *event)
 692{
 693        if (dump_trace)
 694                perf_event__fprintf_itrace_start(event, stdout);
 695        return 0;
 696}
 697
 698int machine__process_switch_event(struct machine *machine __maybe_unused,
 699                                  union perf_event *event)
 700{
 701        if (dump_trace)
 702                perf_event__fprintf_switch(event, stdout);
 703        return 0;
 704}
 705
 706static int machine__process_ksymbol_register(struct machine *machine,
 707                                             union perf_event *event,
 708                                             struct perf_sample *sample __maybe_unused)
 709{
 710        struct symbol *sym;
 711        struct map *map;
 712
 713        map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
 714        if (!map) {
 715                map = dso__new_map(event->ksymbol_event.name);
 716                if (!map)
 717                        return -ENOMEM;
 718
 719                map->start = event->ksymbol_event.addr;
 720                map->end = map->start + event->ksymbol_event.len;
 721                map_groups__insert(&machine->kmaps, map);
 722        }
 723
 724        sym = symbol__new(map->map_ip(map, map->start),
 725                          event->ksymbol_event.len,
 726                          0, 0, event->ksymbol_event.name);
 727        if (!sym)
 728                return -ENOMEM;
 729        dso__insert_symbol(map->dso, sym);
 730        return 0;
 731}
 732
 733static int machine__process_ksymbol_unregister(struct machine *machine,
 734                                               union perf_event *event,
 735                                               struct perf_sample *sample __maybe_unused)
 736{
 737        struct map *map;
 738
 739        map = map_groups__find(&machine->kmaps, event->ksymbol_event.addr);
 740        if (map)
 741                map_groups__remove(&machine->kmaps, map);
 742
 743        return 0;
 744}
 745
 746int machine__process_ksymbol(struct machine *machine __maybe_unused,
 747                             union perf_event *event,
 748                             struct perf_sample *sample)
 749{
 750        if (dump_trace)
 751                perf_event__fprintf_ksymbol(event, stdout);
 752
 753        if (event->ksymbol_event.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
 754                return machine__process_ksymbol_unregister(machine, event,
 755                                                           sample);
 756        return machine__process_ksymbol_register(machine, event, sample);
 757}
 758
 759static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
 760{
 761        const char *dup_filename;
 762
 763        if (!filename || !dso || !dso->long_name)
 764                return;
 765        if (dso->long_name[0] != '[')
 766                return;
 767        if (!strchr(filename, '/'))
 768                return;
 769
 770        dup_filename = strdup(filename);
 771        if (!dup_filename)
 772                return;
 773
 774        dso__set_long_name(dso, dup_filename, true);
 775}
 776
 777struct map *machine__findnew_module_map(struct machine *machine, u64 start,
 778                                        const char *filename)
 779{
 780        struct map *map = NULL;
 781        struct dso *dso = NULL;
 782        struct kmod_path m;
 783
 784        if (kmod_path__parse_name(&m, filename))
 785                return NULL;
 786
 787        map = map_groups__find_by_name(&machine->kmaps, m.name);
 788        if (map) {
 789                /*
 790                 * If the map's dso is an offline module, give dso__load()
 791                 * a chance to find the file path of that module by fixing
 792                 * long_name.
 793                 */
 794                dso__adjust_kmod_long_name(map->dso, filename);
 795                goto out;
 796        }
 797
 798        dso = machine__findnew_module_dso(machine, &m, filename);
 799        if (dso == NULL)
 800                goto out;
 801
 802        map = map__new2(start, dso);
 803        if (map == NULL)
 804                goto out;
 805
 806        map_groups__insert(&machine->kmaps, map);
 807
 808        /* Put the map here because map_groups__insert alread got it */
 809        map__put(map);
 810out:
 811        /* put the dso here, corresponding to  machine__findnew_module_dso */
 812        dso__put(dso);
 813        zfree(&m.name);
 814        return map;
 815}
 816
 817size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
 818{
 819        struct rb_node *nd;
 820        size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
 821
 822        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 823                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 824                ret += __dsos__fprintf(&pos->dsos.head, fp);
 825        }
 826
 827        return ret;
 828}
 829
 830size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
 831                                     bool (skip)(struct dso *dso, int parm), int parm)
 832{
 833        return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
 834}
 835
 836size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
 837                                     bool (skip)(struct dso *dso, int parm), int parm)
 838{
 839        struct rb_node *nd;
 840        size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
 841
 842        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
 843                struct machine *pos = rb_entry(nd, struct machine, rb_node);
 844                ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
 845        }
 846        return ret;
 847}
 848
 849size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
 850{
 851        int i;
 852        size_t printed = 0;
 853        struct dso *kdso = machine__kernel_map(machine)->dso;
 854
 855        if (kdso->has_build_id) {
 856                char filename[PATH_MAX];
 857                if (dso__build_id_filename(kdso, filename, sizeof(filename),
 858                                           false))
 859                        printed += fprintf(fp, "[0] %s\n", filename);
 860        }
 861
 862        for (i = 0; i < vmlinux_path__nr_entries; ++i)
 863                printed += fprintf(fp, "[%d] %s\n",
 864                                   i + kdso->has_build_id, vmlinux_path[i]);
 865
 866        return printed;
 867}
 868
 869size_t machine__fprintf(struct machine *machine, FILE *fp)
 870{
 871        struct rb_node *nd;
 872        size_t ret;
 873        int i;
 874
 875        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
 876                struct threads *threads = &machine->threads[i];
 877
 878                down_read(&threads->lock);
 879
 880                ret = fprintf(fp, "Threads: %u\n", threads->nr);
 881
 882                for (nd = rb_first_cached(&threads->entries); nd;
 883                     nd = rb_next(nd)) {
 884                        struct thread *pos = rb_entry(nd, struct thread, rb_node);
 885
 886                        ret += thread__fprintf(pos, fp);
 887                }
 888
 889                up_read(&threads->lock);
 890        }
 891        return ret;
 892}
 893
 894static struct dso *machine__get_kernel(struct machine *machine)
 895{
 896        const char *vmlinux_name = machine->mmap_name;
 897        struct dso *kernel;
 898
 899        if (machine__is_host(machine)) {
 900                if (symbol_conf.vmlinux_name)
 901                        vmlinux_name = symbol_conf.vmlinux_name;
 902
 903                kernel = machine__findnew_kernel(machine, vmlinux_name,
 904                                                 "[kernel]", DSO_TYPE_KERNEL);
 905        } else {
 906                if (symbol_conf.default_guest_vmlinux_name)
 907                        vmlinux_name = symbol_conf.default_guest_vmlinux_name;
 908
 909                kernel = machine__findnew_kernel(machine, vmlinux_name,
 910                                                 "[guest.kernel]",
 911                                                 DSO_TYPE_GUEST_KERNEL);
 912        }
 913
 914        if (kernel != NULL && (!kernel->has_build_id))
 915                dso__read_running_kernel_build_id(kernel, machine);
 916
 917        return kernel;
 918}
 919
 920struct process_args {
 921        u64 start;
 922};
 923
 924void machine__get_kallsyms_filename(struct machine *machine, char *buf,
 925                                    size_t bufsz)
 926{
 927        if (machine__is_default_guest(machine))
 928                scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
 929        else
 930                scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
 931}
 932
 933const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
 934
 935/* Figure out the start address of kernel map from /proc/kallsyms.
 936 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
 937 * symbol_name if it's not that important.
 938 */
 939static int machine__get_running_kernel_start(struct machine *machine,
 940                                             const char **symbol_name,
 941                                             u64 *start, u64 *end)
 942{
 943        char filename[PATH_MAX];
 944        int i, err = -1;
 945        const char *name;
 946        u64 addr = 0;
 947
 948        machine__get_kallsyms_filename(machine, filename, PATH_MAX);
 949
 950        if (symbol__restricted_filename(filename, "/proc/kallsyms"))
 951                return 0;
 952
 953        for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
 954                err = kallsyms__get_function_start(filename, name, &addr);
 955                if (!err)
 956                        break;
 957        }
 958
 959        if (err)
 960                return -1;
 961
 962        if (symbol_name)
 963                *symbol_name = name;
 964
 965        *start = addr;
 966
 967        err = kallsyms__get_function_start(filename, "_etext", &addr);
 968        if (!err)
 969                *end = addr;
 970
 971        return 0;
 972}
 973
 974int machine__create_extra_kernel_map(struct machine *machine,
 975                                     struct dso *kernel,
 976                                     struct extra_kernel_map *xm)
 977{
 978        struct kmap *kmap;
 979        struct map *map;
 980
 981        map = map__new2(xm->start, kernel);
 982        if (!map)
 983                return -1;
 984
 985        map->end   = xm->end;
 986        map->pgoff = xm->pgoff;
 987
 988        kmap = map__kmap(map);
 989
 990        kmap->kmaps = &machine->kmaps;
 991        strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
 992
 993        map_groups__insert(&machine->kmaps, map);
 994
 995        pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
 996                  kmap->name, map->start, map->end);
 997
 998        map__put(map);
 999
1000        return 0;
1001}
1002
1003static u64 find_entry_trampoline(struct dso *dso)
1004{
1005        /* Duplicates are removed so lookup all aliases */
1006        const char *syms[] = {
1007                "_entry_trampoline",
1008                "__entry_trampoline_start",
1009                "entry_SYSCALL_64_trampoline",
1010        };
1011        struct symbol *sym = dso__first_symbol(dso);
1012        unsigned int i;
1013
1014        for (; sym; sym = dso__next_symbol(sym)) {
1015                if (sym->binding != STB_GLOBAL)
1016                        continue;
1017                for (i = 0; i < ARRAY_SIZE(syms); i++) {
1018                        if (!strcmp(sym->name, syms[i]))
1019                                return sym->start;
1020                }
1021        }
1022
1023        return 0;
1024}
1025
1026/*
1027 * These values can be used for kernels that do not have symbols for the entry
1028 * trampolines in kallsyms.
1029 */
1030#define X86_64_CPU_ENTRY_AREA_PER_CPU   0xfffffe0000000000ULL
1031#define X86_64_CPU_ENTRY_AREA_SIZE      0x2c000
1032#define X86_64_ENTRY_TRAMPOLINE         0x6000
1033
1034/* Map x86_64 PTI entry trampolines */
1035int machine__map_x86_64_entry_trampolines(struct machine *machine,
1036                                          struct dso *kernel)
1037{
1038        struct map_groups *kmaps = &machine->kmaps;
1039        struct maps *maps = &kmaps->maps;
1040        int nr_cpus_avail, cpu;
1041        bool found = false;
1042        struct map *map;
1043        u64 pgoff;
1044
1045        /*
1046         * In the vmlinux case, pgoff is a virtual address which must now be
1047         * mapped to a vmlinux offset.
1048         */
1049        for (map = maps__first(maps); map; map = map__next(map)) {
1050                struct kmap *kmap = __map__kmap(map);
1051                struct map *dest_map;
1052
1053                if (!kmap || !is_entry_trampoline(kmap->name))
1054                        continue;
1055
1056                dest_map = map_groups__find(kmaps, map->pgoff);
1057                if (dest_map != map)
1058                        map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1059                found = true;
1060        }
1061        if (found || machine->trampolines_mapped)
1062                return 0;
1063
1064        pgoff = find_entry_trampoline(kernel);
1065        if (!pgoff)
1066                return 0;
1067
1068        nr_cpus_avail = machine__nr_cpus_avail(machine);
1069
1070        /* Add a 1 page map for each CPU's entry trampoline */
1071        for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1072                u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1073                         cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1074                         X86_64_ENTRY_TRAMPOLINE;
1075                struct extra_kernel_map xm = {
1076                        .start = va,
1077                        .end   = va + page_size,
1078                        .pgoff = pgoff,
1079                };
1080
1081                strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1082
1083                if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1084                        return -1;
1085        }
1086
1087        machine->trampolines_mapped = nr_cpus_avail;
1088
1089        return 0;
1090}
1091
1092int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1093                                             struct dso *kernel __maybe_unused)
1094{
1095        return 0;
1096}
1097
1098static int
1099__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1100{
1101        struct kmap *kmap;
1102        struct map *map;
1103
1104        /* In case of renewal the kernel map, destroy previous one */
1105        machine__destroy_kernel_maps(machine);
1106
1107        machine->vmlinux_map = map__new2(0, kernel);
1108        if (machine->vmlinux_map == NULL)
1109                return -1;
1110
1111        machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1112        map = machine__kernel_map(machine);
1113        kmap = map__kmap(map);
1114        if (!kmap)
1115                return -1;
1116
1117        kmap->kmaps = &machine->kmaps;
1118        map_groups__insert(&machine->kmaps, map);
1119
1120        return 0;
1121}
1122
1123void machine__destroy_kernel_maps(struct machine *machine)
1124{
1125        struct kmap *kmap;
1126        struct map *map = machine__kernel_map(machine);
1127
1128        if (map == NULL)
1129                return;
1130
1131        kmap = map__kmap(map);
1132        map_groups__remove(&machine->kmaps, map);
1133        if (kmap && kmap->ref_reloc_sym) {
1134                zfree((char **)&kmap->ref_reloc_sym->name);
1135                zfree(&kmap->ref_reloc_sym);
1136        }
1137
1138        map__zput(machine->vmlinux_map);
1139}
1140
1141int machines__create_guest_kernel_maps(struct machines *machines)
1142{
1143        int ret = 0;
1144        struct dirent **namelist = NULL;
1145        int i, items = 0;
1146        char path[PATH_MAX];
1147        pid_t pid;
1148        char *endp;
1149
1150        if (symbol_conf.default_guest_vmlinux_name ||
1151            symbol_conf.default_guest_modules ||
1152            symbol_conf.default_guest_kallsyms) {
1153                machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1154        }
1155
1156        if (symbol_conf.guestmount) {
1157                items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1158                if (items <= 0)
1159                        return -ENOENT;
1160                for (i = 0; i < items; i++) {
1161                        if (!isdigit(namelist[i]->d_name[0])) {
1162                                /* Filter out . and .. */
1163                                continue;
1164                        }
1165                        pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1166                        if ((*endp != '\0') ||
1167                            (endp == namelist[i]->d_name) ||
1168                            (errno == ERANGE)) {
1169                                pr_debug("invalid directory (%s). Skipping.\n",
1170                                         namelist[i]->d_name);
1171                                continue;
1172                        }
1173                        sprintf(path, "%s/%s/proc/kallsyms",
1174                                symbol_conf.guestmount,
1175                                namelist[i]->d_name);
1176                        ret = access(path, R_OK);
1177                        if (ret) {
1178                                pr_debug("Can't access file %s\n", path);
1179                                goto failure;
1180                        }
1181                        machines__create_kernel_maps(machines, pid);
1182                }
1183failure:
1184                free(namelist);
1185        }
1186
1187        return ret;
1188}
1189
1190void machines__destroy_kernel_maps(struct machines *machines)
1191{
1192        struct rb_node *next = rb_first_cached(&machines->guests);
1193
1194        machine__destroy_kernel_maps(&machines->host);
1195
1196        while (next) {
1197                struct machine *pos = rb_entry(next, struct machine, rb_node);
1198
1199                next = rb_next(&pos->rb_node);
1200                rb_erase_cached(&pos->rb_node, &machines->guests);
1201                machine__delete(pos);
1202        }
1203}
1204
1205int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1206{
1207        struct machine *machine = machines__findnew(machines, pid);
1208
1209        if (machine == NULL)
1210                return -1;
1211
1212        return machine__create_kernel_maps(machine);
1213}
1214
1215int machine__load_kallsyms(struct machine *machine, const char *filename)
1216{
1217        struct map *map = machine__kernel_map(machine);
1218        int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1219
1220        if (ret > 0) {
1221                dso__set_loaded(map->dso);
1222                /*
1223                 * Since /proc/kallsyms will have multiple sessions for the
1224                 * kernel, with modules between them, fixup the end of all
1225                 * sections.
1226                 */
1227                map_groups__fixup_end(&machine->kmaps);
1228        }
1229
1230        return ret;
1231}
1232
1233int machine__load_vmlinux_path(struct machine *machine)
1234{
1235        struct map *map = machine__kernel_map(machine);
1236        int ret = dso__load_vmlinux_path(map->dso, map);
1237
1238        if (ret > 0)
1239                dso__set_loaded(map->dso);
1240
1241        return ret;
1242}
1243
1244static char *get_kernel_version(const char *root_dir)
1245{
1246        char version[PATH_MAX];
1247        FILE *file;
1248        char *name, *tmp;
1249        const char *prefix = "Linux version ";
1250
1251        sprintf(version, "%s/proc/version", root_dir);
1252        file = fopen(version, "r");
1253        if (!file)
1254                return NULL;
1255
1256        tmp = fgets(version, sizeof(version), file);
1257        fclose(file);
1258        if (!tmp)
1259                return NULL;
1260
1261        name = strstr(version, prefix);
1262        if (!name)
1263                return NULL;
1264        name += strlen(prefix);
1265        tmp = strchr(name, ' ');
1266        if (tmp)
1267                *tmp = '\0';
1268
1269        return strdup(name);
1270}
1271
1272static bool is_kmod_dso(struct dso *dso)
1273{
1274        return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1275               dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1276}
1277
1278static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1279                                       struct kmod_path *m)
1280{
1281        char *long_name;
1282        struct map *map = map_groups__find_by_name(mg, m->name);
1283
1284        if (map == NULL)
1285                return 0;
1286
1287        long_name = strdup(path);
1288        if (long_name == NULL)
1289                return -ENOMEM;
1290
1291        dso__set_long_name(map->dso, long_name, true);
1292        dso__kernel_module_get_build_id(map->dso, "");
1293
1294        /*
1295         * Full name could reveal us kmod compression, so
1296         * we need to update the symtab_type if needed.
1297         */
1298        if (m->comp && is_kmod_dso(map->dso)) {
1299                map->dso->symtab_type++;
1300                map->dso->comp = m->comp;
1301        }
1302
1303        return 0;
1304}
1305
1306static int map_groups__set_modules_path_dir(struct map_groups *mg,
1307                                const char *dir_name, int depth)
1308{
1309        struct dirent *dent;
1310        DIR *dir = opendir(dir_name);
1311        int ret = 0;
1312
1313        if (!dir) {
1314                pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1315                return -1;
1316        }
1317
1318        while ((dent = readdir(dir)) != NULL) {
1319                char path[PATH_MAX];
1320                struct stat st;
1321
1322                /*sshfs might return bad dent->d_type, so we have to stat*/
1323                snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1324                if (stat(path, &st))
1325                        continue;
1326
1327                if (S_ISDIR(st.st_mode)) {
1328                        if (!strcmp(dent->d_name, ".") ||
1329                            !strcmp(dent->d_name, ".."))
1330                                continue;
1331
1332                        /* Do not follow top-level source and build symlinks */
1333                        if (depth == 0) {
1334                                if (!strcmp(dent->d_name, "source") ||
1335                                    !strcmp(dent->d_name, "build"))
1336                                        continue;
1337                        }
1338
1339                        ret = map_groups__set_modules_path_dir(mg, path,
1340                                                               depth + 1);
1341                        if (ret < 0)
1342                                goto out;
1343                } else {
1344                        struct kmod_path m;
1345
1346                        ret = kmod_path__parse_name(&m, dent->d_name);
1347                        if (ret)
1348                                goto out;
1349
1350                        if (m.kmod)
1351                                ret = map_groups__set_module_path(mg, path, &m);
1352
1353                        zfree(&m.name);
1354
1355                        if (ret)
1356                                goto out;
1357                }
1358        }
1359
1360out:
1361        closedir(dir);
1362        return ret;
1363}
1364
1365static int machine__set_modules_path(struct machine *machine)
1366{
1367        char *version;
1368        char modules_path[PATH_MAX];
1369
1370        version = get_kernel_version(machine->root_dir);
1371        if (!version)
1372                return -1;
1373
1374        snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1375                 machine->root_dir, version);
1376        free(version);
1377
1378        return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1379}
1380int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1381                                u64 *size __maybe_unused,
1382                                const char *name __maybe_unused)
1383{
1384        return 0;
1385}
1386
1387static int machine__create_module(void *arg, const char *name, u64 start,
1388                                  u64 size)
1389{
1390        struct machine *machine = arg;
1391        struct map *map;
1392
1393        if (arch__fix_module_text_start(&start, &size, name) < 0)
1394                return -1;
1395
1396        map = machine__findnew_module_map(machine, start, name);
1397        if (map == NULL)
1398                return -1;
1399        map->end = start + size;
1400
1401        dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1402
1403        return 0;
1404}
1405
1406static int machine__create_modules(struct machine *machine)
1407{
1408        const char *modules;
1409        char path[PATH_MAX];
1410
1411        if (machine__is_default_guest(machine)) {
1412                modules = symbol_conf.default_guest_modules;
1413        } else {
1414                snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1415                modules = path;
1416        }
1417
1418        if (symbol__restricted_filename(modules, "/proc/modules"))
1419                return -1;
1420
1421        if (modules__parse(modules, machine, machine__create_module))
1422                return -1;
1423
1424        if (!machine__set_modules_path(machine))
1425                return 0;
1426
1427        pr_debug("Problems setting modules path maps, continuing anyway...\n");
1428
1429        return 0;
1430}
1431
1432static void machine__set_kernel_mmap(struct machine *machine,
1433                                     u64 start, u64 end)
1434{
1435        machine->vmlinux_map->start = start;
1436        machine->vmlinux_map->end   = end;
1437        /*
1438         * Be a bit paranoid here, some perf.data file came with
1439         * a zero sized synthesized MMAP event for the kernel.
1440         */
1441        if (start == 0 && end == 0)
1442                machine->vmlinux_map->end = ~0ULL;
1443}
1444
1445static void machine__update_kernel_mmap(struct machine *machine,
1446                                     u64 start, u64 end)
1447{
1448        struct map *map = machine__kernel_map(machine);
1449
1450        map__get(map);
1451        map_groups__remove(&machine->kmaps, map);
1452
1453        machine__set_kernel_mmap(machine, start, end);
1454
1455        map_groups__insert(&machine->kmaps, map);
1456        map__put(map);
1457}
1458
1459int machine__create_kernel_maps(struct machine *machine)
1460{
1461        struct dso *kernel = machine__get_kernel(machine);
1462        const char *name = NULL;
1463        struct map *map;
1464        u64 start = 0, end = ~0ULL;
1465        int ret;
1466
1467        if (kernel == NULL)
1468                return -1;
1469
1470        ret = __machine__create_kernel_maps(machine, kernel);
1471        if (ret < 0)
1472                goto out_put;
1473
1474        if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1475                if (machine__is_host(machine))
1476                        pr_debug("Problems creating module maps, "
1477                                 "continuing anyway...\n");
1478                else
1479                        pr_debug("Problems creating module maps for guest %d, "
1480                                 "continuing anyway...\n", machine->pid);
1481        }
1482
1483        if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1484                if (name &&
1485                    map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1486                        machine__destroy_kernel_maps(machine);
1487                        ret = -1;
1488                        goto out_put;
1489                }
1490
1491                /*
1492                 * we have a real start address now, so re-order the kmaps
1493                 * assume it's the last in the kmaps
1494                 */
1495                machine__update_kernel_mmap(machine, start, end);
1496        }
1497
1498        if (machine__create_extra_kernel_maps(machine, kernel))
1499                pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1500
1501        if (end == ~0ULL) {
1502                /* update end address of the kernel map using adjacent module address */
1503                map = map__next(machine__kernel_map(machine));
1504                if (map)
1505                        machine__set_kernel_mmap(machine, start, map->start);
1506        }
1507
1508out_put:
1509        dso__put(kernel);
1510        return ret;
1511}
1512
1513static bool machine__uses_kcore(struct machine *machine)
1514{
1515        struct dso *dso;
1516
1517        list_for_each_entry(dso, &machine->dsos.head, node) {
1518                if (dso__is_kcore(dso))
1519                        return true;
1520        }
1521
1522        return false;
1523}
1524
1525static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1526                                             union perf_event *event)
1527{
1528        return machine__is(machine, "x86_64") &&
1529               is_entry_trampoline(event->mmap.filename);
1530}
1531
1532static int machine__process_extra_kernel_map(struct machine *machine,
1533                                             union perf_event *event)
1534{
1535        struct map *kernel_map = machine__kernel_map(machine);
1536        struct dso *kernel = kernel_map ? kernel_map->dso : NULL;
1537        struct extra_kernel_map xm = {
1538                .start = event->mmap.start,
1539                .end   = event->mmap.start + event->mmap.len,
1540                .pgoff = event->mmap.pgoff,
1541        };
1542
1543        if (kernel == NULL)
1544                return -1;
1545
1546        strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1547
1548        return machine__create_extra_kernel_map(machine, kernel, &xm);
1549}
1550
1551static int machine__process_kernel_mmap_event(struct machine *machine,
1552                                              union perf_event *event)
1553{
1554        struct map *map;
1555        enum dso_kernel_type kernel_type;
1556        bool is_kernel_mmap;
1557
1558        /* If we have maps from kcore then we do not need or want any others */
1559        if (machine__uses_kcore(machine))
1560                return 0;
1561
1562        if (machine__is_host(machine))
1563                kernel_type = DSO_TYPE_KERNEL;
1564        else
1565                kernel_type = DSO_TYPE_GUEST_KERNEL;
1566
1567        is_kernel_mmap = memcmp(event->mmap.filename,
1568                                machine->mmap_name,
1569                                strlen(machine->mmap_name) - 1) == 0;
1570        if (event->mmap.filename[0] == '/' ||
1571            (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1572                map = machine__findnew_module_map(machine, event->mmap.start,
1573                                                  event->mmap.filename);
1574                if (map == NULL)
1575                        goto out_problem;
1576
1577                map->end = map->start + event->mmap.len;
1578        } else if (is_kernel_mmap) {
1579                const char *symbol_name = (event->mmap.filename +
1580                                strlen(machine->mmap_name));
1581                /*
1582                 * Should be there already, from the build-id table in
1583                 * the header.
1584                 */
1585                struct dso *kernel = NULL;
1586                struct dso *dso;
1587
1588                down_read(&machine->dsos.lock);
1589
1590                list_for_each_entry(dso, &machine->dsos.head, node) {
1591
1592                        /*
1593                         * The cpumode passed to is_kernel_module is not the
1594                         * cpumode of *this* event. If we insist on passing
1595                         * correct cpumode to is_kernel_module, we should
1596                         * record the cpumode when we adding this dso to the
1597                         * linked list.
1598                         *
1599                         * However we don't really need passing correct
1600                         * cpumode.  We know the correct cpumode must be kernel
1601                         * mode (if not, we should not link it onto kernel_dsos
1602                         * list).
1603                         *
1604                         * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1605                         * is_kernel_module() treats it as a kernel cpumode.
1606                         */
1607
1608                        if (!dso->kernel ||
1609                            is_kernel_module(dso->long_name,
1610                                             PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1611                                continue;
1612
1613
1614                        kernel = dso;
1615                        break;
1616                }
1617
1618                up_read(&machine->dsos.lock);
1619
1620                if (kernel == NULL)
1621                        kernel = machine__findnew_dso(machine, machine->mmap_name);
1622                if (kernel == NULL)
1623                        goto out_problem;
1624
1625                kernel->kernel = kernel_type;
1626                if (__machine__create_kernel_maps(machine, kernel) < 0) {
1627                        dso__put(kernel);
1628                        goto out_problem;
1629                }
1630
1631                if (strstr(kernel->long_name, "vmlinux"))
1632                        dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1633
1634                machine__update_kernel_mmap(machine, event->mmap.start,
1635                                         event->mmap.start + event->mmap.len);
1636
1637                /*
1638                 * Avoid using a zero address (kptr_restrict) for the ref reloc
1639                 * symbol. Effectively having zero here means that at record
1640                 * time /proc/sys/kernel/kptr_restrict was non zero.
1641                 */
1642                if (event->mmap.pgoff != 0) {
1643                        map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1644                                                        symbol_name,
1645                                                        event->mmap.pgoff);
1646                }
1647
1648                if (machine__is_default_guest(machine)) {
1649                        /*
1650                         * preload dso of guest kernel and modules
1651                         */
1652                        dso__load(kernel, machine__kernel_map(machine));
1653                }
1654        } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1655                return machine__process_extra_kernel_map(machine, event);
1656        }
1657        return 0;
1658out_problem:
1659        return -1;
1660}
1661
1662int machine__process_mmap2_event(struct machine *machine,
1663                                 union perf_event *event,
1664                                 struct perf_sample *sample)
1665{
1666        struct thread *thread;
1667        struct map *map;
1668        int ret = 0;
1669
1670        if (dump_trace)
1671                perf_event__fprintf_mmap2(event, stdout);
1672
1673        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1674            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1675                ret = machine__process_kernel_mmap_event(machine, event);
1676                if (ret < 0)
1677                        goto out_problem;
1678                return 0;
1679        }
1680
1681        thread = machine__findnew_thread(machine, event->mmap2.pid,
1682                                        event->mmap2.tid);
1683        if (thread == NULL)
1684                goto out_problem;
1685
1686        map = map__new(machine, event->mmap2.start,
1687                        event->mmap2.len, event->mmap2.pgoff,
1688                        event->mmap2.maj,
1689                        event->mmap2.min, event->mmap2.ino,
1690                        event->mmap2.ino_generation,
1691                        event->mmap2.prot,
1692                        event->mmap2.flags,
1693                        event->mmap2.filename, thread);
1694
1695        if (map == NULL)
1696                goto out_problem_map;
1697
1698        ret = thread__insert_map(thread, map);
1699        if (ret)
1700                goto out_problem_insert;
1701
1702        thread__put(thread);
1703        map__put(map);
1704        return 0;
1705
1706out_problem_insert:
1707        map__put(map);
1708out_problem_map:
1709        thread__put(thread);
1710out_problem:
1711        dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1712        return 0;
1713}
1714
1715int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1716                                struct perf_sample *sample)
1717{
1718        struct thread *thread;
1719        struct map *map;
1720        u32 prot = 0;
1721        int ret = 0;
1722
1723        if (dump_trace)
1724                perf_event__fprintf_mmap(event, stdout);
1725
1726        if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1727            sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1728                ret = machine__process_kernel_mmap_event(machine, event);
1729                if (ret < 0)
1730                        goto out_problem;
1731                return 0;
1732        }
1733
1734        thread = machine__findnew_thread(machine, event->mmap.pid,
1735                                         event->mmap.tid);
1736        if (thread == NULL)
1737                goto out_problem;
1738
1739        if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1740                prot = PROT_EXEC;
1741
1742        map = map__new(machine, event->mmap.start,
1743                        event->mmap.len, event->mmap.pgoff,
1744                        0, 0, 0, 0, prot, 0,
1745                        event->mmap.filename,
1746                        thread);
1747
1748        if (map == NULL)
1749                goto out_problem_map;
1750
1751        ret = thread__insert_map(thread, map);
1752        if (ret)
1753                goto out_problem_insert;
1754
1755        thread__put(thread);
1756        map__put(map);
1757        return 0;
1758
1759out_problem_insert:
1760        map__put(map);
1761out_problem_map:
1762        thread__put(thread);
1763out_problem:
1764        dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1765        return 0;
1766}
1767
1768static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1769{
1770        struct threads *threads = machine__threads(machine, th->tid);
1771
1772        if (threads->last_match == th)
1773                threads__set_last_match(threads, NULL);
1774
1775        if (lock)
1776                down_write(&threads->lock);
1777
1778        BUG_ON(refcount_read(&th->refcnt) == 0);
1779
1780        rb_erase_cached(&th->rb_node, &threads->entries);
1781        RB_CLEAR_NODE(&th->rb_node);
1782        --threads->nr;
1783        /*
1784         * Move it first to the dead_threads list, then drop the reference,
1785         * if this is the last reference, then the thread__delete destructor
1786         * will be called and we will remove it from the dead_threads list.
1787         */
1788        list_add_tail(&th->node, &threads->dead);
1789
1790        /*
1791         * We need to do the put here because if this is the last refcount,
1792         * then we will be touching the threads->dead head when removing the
1793         * thread.
1794         */
1795        thread__put(th);
1796
1797        if (lock)
1798                up_write(&threads->lock);
1799}
1800
1801void machine__remove_thread(struct machine *machine, struct thread *th)
1802{
1803        return __machine__remove_thread(machine, th, true);
1804}
1805
1806int machine__process_fork_event(struct machine *machine, union perf_event *event,
1807                                struct perf_sample *sample)
1808{
1809        struct thread *thread = machine__find_thread(machine,
1810                                                     event->fork.pid,
1811                                                     event->fork.tid);
1812        struct thread *parent = machine__findnew_thread(machine,
1813                                                        event->fork.ppid,
1814                                                        event->fork.ptid);
1815        bool do_maps_clone = true;
1816        int err = 0;
1817
1818        if (dump_trace)
1819                perf_event__fprintf_task(event, stdout);
1820
1821        /*
1822         * There may be an existing thread that is not actually the parent,
1823         * either because we are processing events out of order, or because the
1824         * (fork) event that would have removed the thread was lost. Assume the
1825         * latter case and continue on as best we can.
1826         */
1827        if (parent->pid_ != (pid_t)event->fork.ppid) {
1828                dump_printf("removing erroneous parent thread %d/%d\n",
1829                            parent->pid_, parent->tid);
1830                machine__remove_thread(machine, parent);
1831                thread__put(parent);
1832                parent = machine__findnew_thread(machine, event->fork.ppid,
1833                                                 event->fork.ptid);
1834        }
1835
1836        /* if a thread currently exists for the thread id remove it */
1837        if (thread != NULL) {
1838                machine__remove_thread(machine, thread);
1839                thread__put(thread);
1840        }
1841
1842        thread = machine__findnew_thread(machine, event->fork.pid,
1843                                         event->fork.tid);
1844        /*
1845         * When synthesizing FORK events, we are trying to create thread
1846         * objects for the already running tasks on the machine.
1847         *
1848         * Normally, for a kernel FORK event, we want to clone the parent's
1849         * maps because that is what the kernel just did.
1850         *
1851         * But when synthesizing, this should not be done.  If we do, we end up
1852         * with overlapping maps as we process the sythesized MMAP2 events that
1853         * get delivered shortly thereafter.
1854         *
1855         * Use the FORK event misc flags in an internal way to signal this
1856         * situation, so we can elide the map clone when appropriate.
1857         */
1858        if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1859                do_maps_clone = false;
1860
1861        if (thread == NULL || parent == NULL ||
1862            thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1863                dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1864                err = -1;
1865        }
1866        thread__put(thread);
1867        thread__put(parent);
1868
1869        return err;
1870}
1871
1872int machine__process_exit_event(struct machine *machine, union perf_event *event,
1873                                struct perf_sample *sample __maybe_unused)
1874{
1875        struct thread *thread = machine__find_thread(machine,
1876                                                     event->fork.pid,
1877                                                     event->fork.tid);
1878
1879        if (dump_trace)
1880                perf_event__fprintf_task(event, stdout);
1881
1882        if (thread != NULL) {
1883                thread__exited(thread);
1884                thread__put(thread);
1885        }
1886
1887        return 0;
1888}
1889
1890int machine__process_event(struct machine *machine, union perf_event *event,
1891                           struct perf_sample *sample)
1892{
1893        int ret;
1894
1895        switch (event->header.type) {
1896        case PERF_RECORD_COMM:
1897                ret = machine__process_comm_event(machine, event, sample); break;
1898        case PERF_RECORD_MMAP:
1899                ret = machine__process_mmap_event(machine, event, sample); break;
1900        case PERF_RECORD_NAMESPACES:
1901                ret = machine__process_namespaces_event(machine, event, sample); break;
1902        case PERF_RECORD_MMAP2:
1903                ret = machine__process_mmap2_event(machine, event, sample); break;
1904        case PERF_RECORD_FORK:
1905                ret = machine__process_fork_event(machine, event, sample); break;
1906        case PERF_RECORD_EXIT:
1907                ret = machine__process_exit_event(machine, event, sample); break;
1908        case PERF_RECORD_LOST:
1909                ret = machine__process_lost_event(machine, event, sample); break;
1910        case PERF_RECORD_AUX:
1911                ret = machine__process_aux_event(machine, event); break;
1912        case PERF_RECORD_ITRACE_START:
1913                ret = machine__process_itrace_start_event(machine, event); break;
1914        case PERF_RECORD_LOST_SAMPLES:
1915                ret = machine__process_lost_samples_event(machine, event, sample); break;
1916        case PERF_RECORD_SWITCH:
1917        case PERF_RECORD_SWITCH_CPU_WIDE:
1918                ret = machine__process_switch_event(machine, event); break;
1919        case PERF_RECORD_KSYMBOL:
1920                ret = machine__process_ksymbol(machine, event, sample); break;
1921        case PERF_RECORD_BPF_EVENT:
1922                ret = machine__process_bpf_event(machine, event, sample); break;
1923        default:
1924                ret = -1;
1925                break;
1926        }
1927
1928        return ret;
1929}
1930
1931static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1932{
1933        if (!regexec(regex, sym->name, 0, NULL, 0))
1934                return 1;
1935        return 0;
1936}
1937
1938static void ip__resolve_ams(struct thread *thread,
1939                            struct addr_map_symbol *ams,
1940                            u64 ip)
1941{
1942        struct addr_location al;
1943
1944        memset(&al, 0, sizeof(al));
1945        /*
1946         * We cannot use the header.misc hint to determine whether a
1947         * branch stack address is user, kernel, guest, hypervisor.
1948         * Branches may straddle the kernel/user/hypervisor boundaries.
1949         * Thus, we have to try consecutively until we find a match
1950         * or else, the symbol is unknown
1951         */
1952        thread__find_cpumode_addr_location(thread, ip, &al);
1953
1954        ams->addr = ip;
1955        ams->al_addr = al.addr;
1956        ams->sym = al.sym;
1957        ams->map = al.map;
1958        ams->phys_addr = 0;
1959}
1960
1961static void ip__resolve_data(struct thread *thread,
1962                             u8 m, struct addr_map_symbol *ams,
1963                             u64 addr, u64 phys_addr)
1964{
1965        struct addr_location al;
1966
1967        memset(&al, 0, sizeof(al));
1968
1969        thread__find_symbol(thread, m, addr, &al);
1970
1971        ams->addr = addr;
1972        ams->al_addr = al.addr;
1973        ams->sym = al.sym;
1974        ams->map = al.map;
1975        ams->phys_addr = phys_addr;
1976}
1977
1978struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1979                                     struct addr_location *al)
1980{
1981        struct mem_info *mi = mem_info__new();
1982
1983        if (!mi)
1984                return NULL;
1985
1986        ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1987        ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1988                         sample->addr, sample->phys_addr);
1989        mi->data_src.val = sample->data_src;
1990
1991        return mi;
1992}
1993
1994static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1995{
1996        char *srcline = NULL;
1997
1998        if (!map || callchain_param.key == CCKEY_FUNCTION)
1999                return srcline;
2000
2001        srcline = srcline__tree_find(&map->dso->srclines, ip);
2002        if (!srcline) {
2003                bool show_sym = false;
2004                bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2005
2006                srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
2007                                      sym, show_sym, show_addr, ip);
2008                srcline__tree_insert(&map->dso->srclines, ip, srcline);
2009        }
2010
2011        return srcline;
2012}
2013
2014struct iterations {
2015        int nr_loop_iter;
2016        u64 cycles;
2017};
2018
2019static int add_callchain_ip(struct thread *thread,
2020                            struct callchain_cursor *cursor,
2021                            struct symbol **parent,
2022                            struct addr_location *root_al,
2023                            u8 *cpumode,
2024                            u64 ip,
2025                            bool branch,
2026                            struct branch_flags *flags,
2027                            struct iterations *iter,
2028                            u64 branch_from)
2029{
2030        struct addr_location al;
2031        int nr_loop_iter = 0;
2032        u64 iter_cycles = 0;
2033        const char *srcline = NULL;
2034
2035        al.filtered = 0;
2036        al.sym = NULL;
2037        if (!cpumode) {
2038                thread__find_cpumode_addr_location(thread, ip, &al);
2039        } else {
2040                if (ip >= PERF_CONTEXT_MAX) {
2041                        switch (ip) {
2042                        case PERF_CONTEXT_HV:
2043                                *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2044                                break;
2045                        case PERF_CONTEXT_KERNEL:
2046                                *cpumode = PERF_RECORD_MISC_KERNEL;
2047                                break;
2048                        case PERF_CONTEXT_USER:
2049                                *cpumode = PERF_RECORD_MISC_USER;
2050                                break;
2051                        default:
2052                                pr_debug("invalid callchain context: "
2053                                         "%"PRId64"\n", (s64) ip);
2054                                /*
2055                                 * It seems the callchain is corrupted.
2056                                 * Discard all.
2057                                 */
2058                                callchain_cursor_reset(cursor);
2059                                return 1;
2060                        }
2061                        return 0;
2062                }
2063                thread__find_symbol(thread, *cpumode, ip, &al);
2064        }
2065
2066        if (al.sym != NULL) {
2067                if (perf_hpp_list.parent && !*parent &&
2068                    symbol__match_regex(al.sym, &parent_regex))
2069                        *parent = al.sym;
2070                else if (have_ignore_callees && root_al &&
2071                  symbol__match_regex(al.sym, &ignore_callees_regex)) {
2072                        /* Treat this symbol as the root,
2073                           forgetting its callees. */
2074                        *root_al = al;
2075                        callchain_cursor_reset(cursor);
2076                }
2077        }
2078
2079        if (symbol_conf.hide_unresolved && al.sym == NULL)
2080                return 0;
2081
2082        if (iter) {
2083                nr_loop_iter = iter->nr_loop_iter;
2084                iter_cycles = iter->cycles;
2085        }
2086
2087        srcline = callchain_srcline(al.map, al.sym, al.addr);
2088        return callchain_cursor_append(cursor, ip, al.map, al.sym,
2089                                       branch, flags, nr_loop_iter,
2090                                       iter_cycles, branch_from, srcline);
2091}
2092
2093struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2094                                           struct addr_location *al)
2095{
2096        unsigned int i;
2097        const struct branch_stack *bs = sample->branch_stack;
2098        struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2099
2100        if (!bi)
2101                return NULL;
2102
2103        for (i = 0; i < bs->nr; i++) {
2104                ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2105                ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2106                bi[i].flags = bs->entries[i].flags;
2107        }
2108        return bi;
2109}
2110
2111static void save_iterations(struct iterations *iter,
2112                            struct branch_entry *be, int nr)
2113{
2114        int i;
2115
2116        iter->nr_loop_iter++;
2117        iter->cycles = 0;
2118
2119        for (i = 0; i < nr; i++)
2120                iter->cycles += be[i].flags.cycles;
2121}
2122
2123#define CHASHSZ 127
2124#define CHASHBITS 7
2125#define NO_ENTRY 0xff
2126
2127#define PERF_MAX_BRANCH_DEPTH 127
2128
2129/* Remove loops. */
2130static int remove_loops(struct branch_entry *l, int nr,
2131                        struct iterations *iter)
2132{
2133        int i, j, off;
2134        unsigned char chash[CHASHSZ];
2135
2136        memset(chash, NO_ENTRY, sizeof(chash));
2137
2138        BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2139
2140        for (i = 0; i < nr; i++) {
2141                int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2142
2143                /* no collision handling for now */
2144                if (chash[h] == NO_ENTRY) {
2145                        chash[h] = i;
2146                } else if (l[chash[h]].from == l[i].from) {
2147                        bool is_loop = true;
2148                        /* check if it is a real loop */
2149                        off = 0;
2150                        for (j = chash[h]; j < i && i + off < nr; j++, off++)
2151                                if (l[j].from != l[i + off].from) {
2152                                        is_loop = false;
2153                                        break;
2154                                }
2155                        if (is_loop) {
2156                                j = nr - (i + off);
2157                                if (j > 0) {
2158                                        save_iterations(iter + i + off,
2159                                                l + i, off);
2160
2161                                        memmove(iter + i, iter + i + off,
2162                                                j * sizeof(*iter));
2163
2164                                        memmove(l + i, l + i + off,
2165                                                j * sizeof(*l));
2166                                }
2167
2168                                nr -= off;
2169                        }
2170                }
2171        }
2172        return nr;
2173}
2174
2175/*
2176 * Recolve LBR callstack chain sample
2177 * Return:
2178 * 1 on success get LBR callchain information
2179 * 0 no available LBR callchain information, should try fp
2180 * negative error code on other errors.
2181 */
2182static int resolve_lbr_callchain_sample(struct thread *thread,
2183                                        struct callchain_cursor *cursor,
2184                                        struct perf_sample *sample,
2185                                        struct symbol **parent,
2186                                        struct addr_location *root_al,
2187                                        int max_stack)
2188{
2189        struct ip_callchain *chain = sample->callchain;
2190        int chain_nr = min(max_stack, (int)chain->nr), i;
2191        u8 cpumode = PERF_RECORD_MISC_USER;
2192        u64 ip, branch_from = 0;
2193
2194        for (i = 0; i < chain_nr; i++) {
2195                if (chain->ips[i] == PERF_CONTEXT_USER)
2196                        break;
2197        }
2198
2199        /* LBR only affects the user callchain */
2200        if (i != chain_nr) {
2201                struct branch_stack *lbr_stack = sample->branch_stack;
2202                int lbr_nr = lbr_stack->nr, j, k;
2203                bool branch;
2204                struct branch_flags *flags;
2205                /*
2206                 * LBR callstack can only get user call chain.
2207                 * The mix_chain_nr is kernel call chain
2208                 * number plus LBR user call chain number.
2209                 * i is kernel call chain number,
2210                 * 1 is PERF_CONTEXT_USER,
2211                 * lbr_nr + 1 is the user call chain number.
2212                 * For details, please refer to the comments
2213                 * in callchain__printf
2214                 */
2215                int mix_chain_nr = i + 1 + lbr_nr + 1;
2216
2217                for (j = 0; j < mix_chain_nr; j++) {
2218                        int err;
2219                        branch = false;
2220                        flags = NULL;
2221
2222                        if (callchain_param.order == ORDER_CALLEE) {
2223                                if (j < i + 1)
2224                                        ip = chain->ips[j];
2225                                else if (j > i + 1) {
2226                                        k = j - i - 2;
2227                                        ip = lbr_stack->entries[k].from;
2228                                        branch = true;
2229                                        flags = &lbr_stack->entries[k].flags;
2230                                } else {
2231                                        ip = lbr_stack->entries[0].to;
2232                                        branch = true;
2233                                        flags = &lbr_stack->entries[0].flags;
2234                                        branch_from =
2235                                                lbr_stack->entries[0].from;
2236                                }
2237                        } else {
2238                                if (j < lbr_nr) {
2239                                        k = lbr_nr - j - 1;
2240                                        ip = lbr_stack->entries[k].from;
2241                                        branch = true;
2242                                        flags = &lbr_stack->entries[k].flags;
2243                                }
2244                                else if (j > lbr_nr)
2245                                        ip = chain->ips[i + 1 - (j - lbr_nr)];
2246                                else {
2247                                        ip = lbr_stack->entries[0].to;
2248                                        branch = true;
2249                                        flags = &lbr_stack->entries[0].flags;
2250                                        branch_from =
2251                                                lbr_stack->entries[0].from;
2252                                }
2253                        }
2254
2255                        err = add_callchain_ip(thread, cursor, parent,
2256                                               root_al, &cpumode, ip,
2257                                               branch, flags, NULL,
2258                                               branch_from);
2259                        if (err)
2260                                return (err < 0) ? err : 0;
2261                }
2262                return 1;
2263        }
2264
2265        return 0;
2266}
2267
2268static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2269                             struct callchain_cursor *cursor,
2270                             struct symbol **parent,
2271                             struct addr_location *root_al,
2272                             u8 *cpumode, int ent)
2273{
2274        int err = 0;
2275
2276        while (--ent >= 0) {
2277                u64 ip = chain->ips[ent];
2278
2279                if (ip >= PERF_CONTEXT_MAX) {
2280                        err = add_callchain_ip(thread, cursor, parent,
2281                                               root_al, cpumode, ip,
2282                                               false, NULL, NULL, 0);
2283                        break;
2284                }
2285        }
2286        return err;
2287}
2288
2289static int thread__resolve_callchain_sample(struct thread *thread,
2290                                            struct callchain_cursor *cursor,
2291                                            struct perf_evsel *evsel,
2292                                            struct perf_sample *sample,
2293                                            struct symbol **parent,
2294                                            struct addr_location *root_al,
2295                                            int max_stack)
2296{
2297        struct branch_stack *branch = sample->branch_stack;
2298        struct ip_callchain *chain = sample->callchain;
2299        int chain_nr = 0;
2300        u8 cpumode = PERF_RECORD_MISC_USER;
2301        int i, j, err, nr_entries;
2302        int skip_idx = -1;
2303        int first_call = 0;
2304
2305        if (chain)
2306                chain_nr = chain->nr;
2307
2308        if (perf_evsel__has_branch_callstack(evsel)) {
2309                err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2310                                                   root_al, max_stack);
2311                if (err)
2312                        return (err < 0) ? err : 0;
2313        }
2314
2315        /*
2316         * Based on DWARF debug information, some architectures skip
2317         * a callchain entry saved by the kernel.
2318         */
2319        skip_idx = arch_skip_callchain_idx(thread, chain);
2320
2321        /*
2322         * Add branches to call stack for easier browsing. This gives
2323         * more context for a sample than just the callers.
2324         *
2325         * This uses individual histograms of paths compared to the
2326         * aggregated histograms the normal LBR mode uses.
2327         *
2328         * Limitations for now:
2329         * - No extra filters
2330         * - No annotations (should annotate somehow)
2331         */
2332
2333        if (branch && callchain_param.branch_callstack) {
2334                int nr = min(max_stack, (int)branch->nr);
2335                struct branch_entry be[nr];
2336                struct iterations iter[nr];
2337
2338                if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2339                        pr_warning("corrupted branch chain. skipping...\n");
2340                        goto check_calls;
2341                }
2342
2343                for (i = 0; i < nr; i++) {
2344                        if (callchain_param.order == ORDER_CALLEE) {
2345                                be[i] = branch->entries[i];
2346
2347                                if (chain == NULL)
2348                                        continue;
2349
2350                                /*
2351                                 * Check for overlap into the callchain.
2352                                 * The return address is one off compared to
2353                                 * the branch entry. To adjust for this
2354                                 * assume the calling instruction is not longer
2355                                 * than 8 bytes.
2356                                 */
2357                                if (i == skip_idx ||
2358                                    chain->ips[first_call] >= PERF_CONTEXT_MAX)
2359                                        first_call++;
2360                                else if (be[i].from < chain->ips[first_call] &&
2361                                    be[i].from >= chain->ips[first_call] - 8)
2362                                        first_call++;
2363                        } else
2364                                be[i] = branch->entries[branch->nr - i - 1];
2365                }
2366
2367                memset(iter, 0, sizeof(struct iterations) * nr);
2368                nr = remove_loops(be, nr, iter);
2369
2370                for (i = 0; i < nr; i++) {
2371                        err = add_callchain_ip(thread, cursor, parent,
2372                                               root_al,
2373                                               NULL, be[i].to,
2374                                               true, &be[i].flags,
2375                                               NULL, be[i].from);
2376
2377                        if (!err)
2378                                err = add_callchain_ip(thread, cursor, parent, root_al,
2379                                                       NULL, be[i].from,
2380                                                       true, &be[i].flags,
2381                                                       &iter[i], 0);
2382                        if (err == -EINVAL)
2383                                break;
2384                        if (err)
2385                                return err;
2386                }
2387
2388                if (chain_nr == 0)
2389                        return 0;
2390
2391                chain_nr -= nr;
2392        }
2393
2394check_calls:
2395        if (callchain_param.order != ORDER_CALLEE) {
2396                err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2397                                        &cpumode, chain->nr - first_call);
2398                if (err)
2399                        return (err < 0) ? err : 0;
2400        }
2401        for (i = first_call, nr_entries = 0;
2402             i < chain_nr && nr_entries < max_stack; i++) {
2403                u64 ip;
2404
2405                if (callchain_param.order == ORDER_CALLEE)
2406                        j = i;
2407                else
2408                        j = chain->nr - i - 1;
2409
2410#ifdef HAVE_SKIP_CALLCHAIN_IDX
2411                if (j == skip_idx)
2412                        continue;
2413#endif
2414                ip = chain->ips[j];
2415                if (ip < PERF_CONTEXT_MAX)
2416                       ++nr_entries;
2417                else if (callchain_param.order != ORDER_CALLEE) {
2418                        err = find_prev_cpumode(chain, thread, cursor, parent,
2419                                                root_al, &cpumode, j);
2420                        if (err)
2421                                return (err < 0) ? err : 0;
2422                        continue;
2423                }
2424
2425                err = add_callchain_ip(thread, cursor, parent,
2426                                       root_al, &cpumode, ip,
2427                                       false, NULL, NULL, 0);
2428
2429                if (err)
2430                        return (err < 0) ? err : 0;
2431        }
2432
2433        return 0;
2434}
2435
2436static int append_inlines(struct callchain_cursor *cursor,
2437                          struct map *map, struct symbol *sym, u64 ip)
2438{
2439        struct inline_node *inline_node;
2440        struct inline_list *ilist;
2441        u64 addr;
2442        int ret = 1;
2443
2444        if (!symbol_conf.inline_name || !map || !sym)
2445                return ret;
2446
2447        addr = map__map_ip(map, ip);
2448        addr = map__rip_2objdump(map, addr);
2449
2450        inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2451        if (!inline_node) {
2452                inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2453                if (!inline_node)
2454                        return ret;
2455                inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2456        }
2457
2458        list_for_each_entry(ilist, &inline_node->val, list) {
2459                ret = callchain_cursor_append(cursor, ip, map,
2460                                              ilist->symbol, false,
2461                                              NULL, 0, 0, 0, ilist->srcline);
2462
2463                if (ret != 0)
2464                        return ret;
2465        }
2466
2467        return ret;
2468}
2469
2470static int unwind_entry(struct unwind_entry *entry, void *arg)
2471{
2472        struct callchain_cursor *cursor = arg;
2473        const char *srcline = NULL;
2474        u64 addr = entry->ip;
2475
2476        if (symbol_conf.hide_unresolved && entry->sym == NULL)
2477                return 0;
2478
2479        if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2480                return 0;
2481
2482        /*
2483         * Convert entry->ip from a virtual address to an offset in
2484         * its corresponding binary.
2485         */
2486        if (entry->map)
2487                addr = map__map_ip(entry->map, entry->ip);
2488
2489        srcline = callchain_srcline(entry->map, entry->sym, addr);
2490        return callchain_cursor_append(cursor, entry->ip,
2491                                       entry->map, entry->sym,
2492                                       false, NULL, 0, 0, 0, srcline);
2493}
2494
2495static int thread__resolve_callchain_unwind(struct thread *thread,
2496                                            struct callchain_cursor *cursor,
2497                                            struct perf_evsel *evsel,
2498                                            struct perf_sample *sample,
2499                                            int max_stack)
2500{
2501        /* Can we do dwarf post unwind? */
2502        if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2503              (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2504                return 0;
2505
2506        /* Bail out if nothing was captured. */
2507        if ((!sample->user_regs.regs) ||
2508            (!sample->user_stack.size))
2509                return 0;
2510
2511        return unwind__get_entries(unwind_entry, cursor,
2512                                   thread, sample, max_stack);
2513}
2514
2515int thread__resolve_callchain(struct thread *thread,
2516                              struct callchain_cursor *cursor,
2517                              struct perf_evsel *evsel,
2518                              struct perf_sample *sample,
2519                              struct symbol **parent,
2520                              struct addr_location *root_al,
2521                              int max_stack)
2522{
2523        int ret = 0;
2524
2525        callchain_cursor_reset(cursor);
2526
2527        if (callchain_param.order == ORDER_CALLEE) {
2528                ret = thread__resolve_callchain_sample(thread, cursor,
2529                                                       evsel, sample,
2530                                                       parent, root_al,
2531                                                       max_stack);
2532                if (ret)
2533                        return ret;
2534                ret = thread__resolve_callchain_unwind(thread, cursor,
2535                                                       evsel, sample,
2536                                                       max_stack);
2537        } else {
2538                ret = thread__resolve_callchain_unwind(thread, cursor,
2539                                                       evsel, sample,
2540                                                       max_stack);
2541                if (ret)
2542                        return ret;
2543                ret = thread__resolve_callchain_sample(thread, cursor,
2544                                                       evsel, sample,
2545                                                       parent, root_al,
2546                                                       max_stack);
2547        }
2548
2549        return ret;
2550}
2551
2552int machine__for_each_thread(struct machine *machine,
2553                             int (*fn)(struct thread *thread, void *p),
2554                             void *priv)
2555{
2556        struct threads *threads;
2557        struct rb_node *nd;
2558        struct thread *thread;
2559        int rc = 0;
2560        int i;
2561
2562        for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2563                threads = &machine->threads[i];
2564                for (nd = rb_first_cached(&threads->entries); nd;
2565                     nd = rb_next(nd)) {
2566                        thread = rb_entry(nd, struct thread, rb_node);
2567                        rc = fn(thread, priv);
2568                        if (rc != 0)
2569                                return rc;
2570                }
2571
2572                list_for_each_entry(thread, &threads->dead, node) {
2573                        rc = fn(thread, priv);
2574                        if (rc != 0)
2575                                return rc;
2576                }
2577        }
2578        return rc;
2579}
2580
2581int machines__for_each_thread(struct machines *machines,
2582                              int (*fn)(struct thread *thread, void *p),
2583                              void *priv)
2584{
2585        struct rb_node *nd;
2586        int rc = 0;
2587
2588        rc = machine__for_each_thread(&machines->host, fn, priv);
2589        if (rc != 0)
2590                return rc;
2591
2592        for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2593                struct machine *machine = rb_entry(nd, struct machine, rb_node);
2594
2595                rc = machine__for_each_thread(machine, fn, priv);
2596                if (rc != 0)
2597                        return rc;
2598        }
2599        return rc;
2600}
2601
2602int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2603                                  struct target *target, struct thread_map *threads,
2604                                  perf_event__handler_t process, bool data_mmap,
2605                                  unsigned int nr_threads_synthesize)
2606{
2607        if (target__has_task(target))
2608                return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap);
2609        else if (target__has_cpu(target))
2610                return perf_event__synthesize_threads(tool, process,
2611                                                      machine, data_mmap,
2612                                                      nr_threads_synthesize);
2613        /* command specified */
2614        return 0;
2615}
2616
2617pid_t machine__get_current_tid(struct machine *machine, int cpu)
2618{
2619        if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2620                return -1;
2621
2622        return machine->current_tid[cpu];
2623}
2624
2625int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2626                             pid_t tid)
2627{
2628        struct thread *thread;
2629
2630        if (cpu < 0)
2631                return -EINVAL;
2632
2633        if (!machine->current_tid) {
2634                int i;
2635
2636                machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2637                if (!machine->current_tid)
2638                        return -ENOMEM;
2639                for (i = 0; i < MAX_NR_CPUS; i++)
2640                        machine->current_tid[i] = -1;
2641        }
2642
2643        if (cpu >= MAX_NR_CPUS) {
2644                pr_err("Requested CPU %d too large. ", cpu);
2645                pr_err("Consider raising MAX_NR_CPUS\n");
2646                return -EINVAL;
2647        }
2648
2649        machine->current_tid[cpu] = tid;
2650
2651        thread = machine__findnew_thread(machine, pid, tid);
2652        if (!thread)
2653                return -ENOMEM;
2654
2655        thread->cpu = cpu;
2656        thread__put(thread);
2657
2658        return 0;
2659}
2660
2661/*
2662 * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2663 * normalized arch is needed.
2664 */
2665bool machine__is(struct machine *machine, const char *arch)
2666{
2667        return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2668}
2669
2670int machine__nr_cpus_avail(struct machine *machine)
2671{
2672        return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2673}
2674
2675int machine__get_kernel_start(struct machine *machine)
2676{
2677        struct map *map = machine__kernel_map(machine);
2678        int err = 0;
2679
2680        /*
2681         * The only addresses above 2^63 are kernel addresses of a 64-bit
2682         * kernel.  Note that addresses are unsigned so that on a 32-bit system
2683         * all addresses including kernel addresses are less than 2^32.  In
2684         * that case (32-bit system), if the kernel mapping is unknown, all
2685         * addresses will be assumed to be in user space - see
2686         * machine__kernel_ip().
2687         */
2688        machine->kernel_start = 1ULL << 63;
2689        if (map) {
2690                err = map__load(map);
2691                /*
2692                 * On x86_64, PTI entry trampolines are less than the
2693                 * start of kernel text, but still above 2^63. So leave
2694                 * kernel_start = 1ULL << 63 for x86_64.
2695                 */
2696                if (!err && !machine__is(machine, "x86_64"))
2697                        machine->kernel_start = map->start;
2698        }
2699        return err;
2700}
2701
2702u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2703{
2704        u8 addr_cpumode = cpumode;
2705        bool kernel_ip;
2706
2707        if (!machine->single_address_space)
2708                goto out;
2709
2710        kernel_ip = machine__kernel_ip(machine, addr);
2711        switch (cpumode) {
2712        case PERF_RECORD_MISC_KERNEL:
2713        case PERF_RECORD_MISC_USER:
2714                addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2715                                           PERF_RECORD_MISC_USER;
2716                break;
2717        case PERF_RECORD_MISC_GUEST_KERNEL:
2718        case PERF_RECORD_MISC_GUEST_USER:
2719                addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2720                                           PERF_RECORD_MISC_GUEST_USER;
2721                break;
2722        default:
2723                break;
2724        }
2725out:
2726        return addr_cpumode;
2727}
2728
2729struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2730{
2731        return dsos__findnew(&machine->dsos, filename);
2732}
2733
2734char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2735{
2736        struct machine *machine = vmachine;
2737        struct map *map;
2738        struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2739
2740        if (sym == NULL)
2741                return NULL;
2742
2743        *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2744        *addrp = map->unmap_ip(map, sym->start);
2745        return sym->name;
2746}
2747