linux/virt/kvm/arm/vgic/vgic-its.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * GICv3 ITS emulation
   4 *
   5 * Copyright (C) 2015,2016 ARM Ltd.
   6 * Author: Andre Przywara <andre.przywara@arm.com>
   7 */
   8
   9#include <linux/cpu.h>
  10#include <linux/kvm.h>
  11#include <linux/kvm_host.h>
  12#include <linux/interrupt.h>
  13#include <linux/list.h>
  14#include <linux/uaccess.h>
  15#include <linux/list_sort.h>
  16
  17#include <linux/irqchip/arm-gic-v3.h>
  18
  19#include <asm/kvm_emulate.h>
  20#include <asm/kvm_arm.h>
  21#include <asm/kvm_mmu.h>
  22
  23#include "vgic.h"
  24#include "vgic-mmio.h"
  25
  26static int vgic_its_save_tables_v0(struct vgic_its *its);
  27static int vgic_its_restore_tables_v0(struct vgic_its *its);
  28static int vgic_its_commit_v0(struct vgic_its *its);
  29static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
  30                             struct kvm_vcpu *filter_vcpu, bool needs_inv);
  31
  32/*
  33 * Creates a new (reference to a) struct vgic_irq for a given LPI.
  34 * If this LPI is already mapped on another ITS, we increase its refcount
  35 * and return a pointer to the existing structure.
  36 * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
  37 * This function returns a pointer to the _unlocked_ structure.
  38 */
  39static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
  40                                     struct kvm_vcpu *vcpu)
  41{
  42        struct vgic_dist *dist = &kvm->arch.vgic;
  43        struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
  44        unsigned long flags;
  45        int ret;
  46
  47        /* In this case there is no put, since we keep the reference. */
  48        if (irq)
  49                return irq;
  50
  51        irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
  52        if (!irq)
  53                return ERR_PTR(-ENOMEM);
  54
  55        INIT_LIST_HEAD(&irq->lpi_list);
  56        INIT_LIST_HEAD(&irq->ap_list);
  57        raw_spin_lock_init(&irq->irq_lock);
  58
  59        irq->config = VGIC_CONFIG_EDGE;
  60        kref_init(&irq->refcount);
  61        irq->intid = intid;
  62        irq->target_vcpu = vcpu;
  63        irq->group = 1;
  64
  65        raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
  66
  67        /*
  68         * There could be a race with another vgic_add_lpi(), so we need to
  69         * check that we don't add a second list entry with the same LPI.
  70         */
  71        list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
  72                if (oldirq->intid != intid)
  73                        continue;
  74
  75                /* Someone was faster with adding this LPI, lets use that. */
  76                kfree(irq);
  77                irq = oldirq;
  78
  79                /*
  80                 * This increases the refcount, the caller is expected to
  81                 * call vgic_put_irq() on the returned pointer once it's
  82                 * finished with the IRQ.
  83                 */
  84                vgic_get_irq_kref(irq);
  85
  86                goto out_unlock;
  87        }
  88
  89        list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
  90        dist->lpi_list_count++;
  91
  92out_unlock:
  93        raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
  94
  95        /*
  96         * We "cache" the configuration table entries in our struct vgic_irq's.
  97         * However we only have those structs for mapped IRQs, so we read in
  98         * the respective config data from memory here upon mapping the LPI.
  99         */
 100        ret = update_lpi_config(kvm, irq, NULL, false);
 101        if (ret)
 102                return ERR_PTR(ret);
 103
 104        ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
 105        if (ret)
 106                return ERR_PTR(ret);
 107
 108        return irq;
 109}
 110
 111struct its_device {
 112        struct list_head dev_list;
 113
 114        /* the head for the list of ITTEs */
 115        struct list_head itt_head;
 116        u32 num_eventid_bits;
 117        gpa_t itt_addr;
 118        u32 device_id;
 119};
 120
 121#define COLLECTION_NOT_MAPPED ((u32)~0)
 122
 123struct its_collection {
 124        struct list_head coll_list;
 125
 126        u32 collection_id;
 127        u32 target_addr;
 128};
 129
 130#define its_is_collection_mapped(coll) ((coll) && \
 131                                ((coll)->target_addr != COLLECTION_NOT_MAPPED))
 132
 133struct its_ite {
 134        struct list_head ite_list;
 135
 136        struct vgic_irq *irq;
 137        struct its_collection *collection;
 138        u32 event_id;
 139};
 140
 141/**
 142 * struct vgic_its_abi - ITS abi ops and settings
 143 * @cte_esz: collection table entry size
 144 * @dte_esz: device table entry size
 145 * @ite_esz: interrupt translation table entry size
 146 * @save tables: save the ITS tables into guest RAM
 147 * @restore_tables: restore the ITS internal structs from tables
 148 *  stored in guest RAM
 149 * @commit: initialize the registers which expose the ABI settings,
 150 *  especially the entry sizes
 151 */
 152struct vgic_its_abi {
 153        int cte_esz;
 154        int dte_esz;
 155        int ite_esz;
 156        int (*save_tables)(struct vgic_its *its);
 157        int (*restore_tables)(struct vgic_its *its);
 158        int (*commit)(struct vgic_its *its);
 159};
 160
 161#define ABI_0_ESZ       8
 162#define ESZ_MAX         ABI_0_ESZ
 163
 164static const struct vgic_its_abi its_table_abi_versions[] = {
 165        [0] = {
 166         .cte_esz = ABI_0_ESZ,
 167         .dte_esz = ABI_0_ESZ,
 168         .ite_esz = ABI_0_ESZ,
 169         .save_tables = vgic_its_save_tables_v0,
 170         .restore_tables = vgic_its_restore_tables_v0,
 171         .commit = vgic_its_commit_v0,
 172        },
 173};
 174
 175#define NR_ITS_ABIS     ARRAY_SIZE(its_table_abi_versions)
 176
 177inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
 178{
 179        return &its_table_abi_versions[its->abi_rev];
 180}
 181
 182static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
 183{
 184        const struct vgic_its_abi *abi;
 185
 186        its->abi_rev = rev;
 187        abi = vgic_its_get_abi(its);
 188        return abi->commit(its);
 189}
 190
 191/*
 192 * Find and returns a device in the device table for an ITS.
 193 * Must be called with the its_lock mutex held.
 194 */
 195static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
 196{
 197        struct its_device *device;
 198
 199        list_for_each_entry(device, &its->device_list, dev_list)
 200                if (device_id == device->device_id)
 201                        return device;
 202
 203        return NULL;
 204}
 205
 206/*
 207 * Find and returns an interrupt translation table entry (ITTE) for a given
 208 * Device ID/Event ID pair on an ITS.
 209 * Must be called with the its_lock mutex held.
 210 */
 211static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
 212                                  u32 event_id)
 213{
 214        struct its_device *device;
 215        struct its_ite *ite;
 216
 217        device = find_its_device(its, device_id);
 218        if (device == NULL)
 219                return NULL;
 220
 221        list_for_each_entry(ite, &device->itt_head, ite_list)
 222                if (ite->event_id == event_id)
 223                        return ite;
 224
 225        return NULL;
 226}
 227
 228/* To be used as an iterator this macro misses the enclosing parentheses */
 229#define for_each_lpi_its(dev, ite, its) \
 230        list_for_each_entry(dev, &(its)->device_list, dev_list) \
 231                list_for_each_entry(ite, &(dev)->itt_head, ite_list)
 232
 233#define GIC_LPI_OFFSET 8192
 234
 235#define VITS_TYPER_IDBITS 16
 236#define VITS_TYPER_DEVBITS 16
 237#define VITS_DTE_MAX_DEVID_OFFSET       (BIT(14) - 1)
 238#define VITS_ITE_MAX_EVENTID_OFFSET     (BIT(16) - 1)
 239
 240/*
 241 * Finds and returns a collection in the ITS collection table.
 242 * Must be called with the its_lock mutex held.
 243 */
 244static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
 245{
 246        struct its_collection *collection;
 247
 248        list_for_each_entry(collection, &its->collection_list, coll_list) {
 249                if (coll_id == collection->collection_id)
 250                        return collection;
 251        }
 252
 253        return NULL;
 254}
 255
 256#define LPI_PROP_ENABLE_BIT(p)  ((p) & LPI_PROP_ENABLED)
 257#define LPI_PROP_PRIORITY(p)    ((p) & 0xfc)
 258
 259/*
 260 * Reads the configuration data for a given LPI from guest memory and
 261 * updates the fields in struct vgic_irq.
 262 * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
 263 * VCPU. Unconditionally applies if filter_vcpu is NULL.
 264 */
 265static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
 266                             struct kvm_vcpu *filter_vcpu, bool needs_inv)
 267{
 268        u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
 269        u8 prop;
 270        int ret;
 271        unsigned long flags;
 272
 273        ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
 274                                  &prop, 1);
 275
 276        if (ret)
 277                return ret;
 278
 279        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 280
 281        if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
 282                irq->priority = LPI_PROP_PRIORITY(prop);
 283                irq->enabled = LPI_PROP_ENABLE_BIT(prop);
 284
 285                if (!irq->hw) {
 286                        vgic_queue_irq_unlock(kvm, irq, flags);
 287                        return 0;
 288                }
 289        }
 290
 291        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 292
 293        if (irq->hw)
 294                return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
 295
 296        return 0;
 297}
 298
 299/*
 300 * Create a snapshot of the current LPIs targeting @vcpu, so that we can
 301 * enumerate those LPIs without holding any lock.
 302 * Returns their number and puts the kmalloc'ed array into intid_ptr.
 303 */
 304int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
 305{
 306        struct vgic_dist *dist = &kvm->arch.vgic;
 307        struct vgic_irq *irq;
 308        unsigned long flags;
 309        u32 *intids;
 310        int irq_count, i = 0;
 311
 312        /*
 313         * There is an obvious race between allocating the array and LPIs
 314         * being mapped/unmapped. If we ended up here as a result of a
 315         * command, we're safe (locks are held, preventing another
 316         * command). If coming from another path (such as enabling LPIs),
 317         * we must be careful not to overrun the array.
 318         */
 319        irq_count = READ_ONCE(dist->lpi_list_count);
 320        intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
 321        if (!intids)
 322                return -ENOMEM;
 323
 324        raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
 325        list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
 326                if (i == irq_count)
 327                        break;
 328                /* We don't need to "get" the IRQ, as we hold the list lock. */
 329                if (vcpu && irq->target_vcpu != vcpu)
 330                        continue;
 331                intids[i++] = irq->intid;
 332        }
 333        raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
 334
 335        *intid_ptr = intids;
 336        return i;
 337}
 338
 339static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
 340{
 341        int ret = 0;
 342        unsigned long flags;
 343
 344        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 345        irq->target_vcpu = vcpu;
 346        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 347
 348        if (irq->hw) {
 349                struct its_vlpi_map map;
 350
 351                ret = its_get_vlpi(irq->host_irq, &map);
 352                if (ret)
 353                        return ret;
 354
 355                map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
 356
 357                ret = its_map_vlpi(irq->host_irq, &map);
 358        }
 359
 360        return ret;
 361}
 362
 363/*
 364 * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
 365 * is targeting) to the VGIC's view, which deals with target VCPUs.
 366 * Needs to be called whenever either the collection for a LPIs has
 367 * changed or the collection itself got retargeted.
 368 */
 369static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
 370{
 371        struct kvm_vcpu *vcpu;
 372
 373        if (!its_is_collection_mapped(ite->collection))
 374                return;
 375
 376        vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
 377        update_affinity(ite->irq, vcpu);
 378}
 379
 380/*
 381 * Updates the target VCPU for every LPI targeting this collection.
 382 * Must be called with the its_lock mutex held.
 383 */
 384static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
 385                                       struct its_collection *coll)
 386{
 387        struct its_device *device;
 388        struct its_ite *ite;
 389
 390        for_each_lpi_its(device, ite, its) {
 391                if (!ite->collection || coll != ite->collection)
 392                        continue;
 393
 394                update_affinity_ite(kvm, ite);
 395        }
 396}
 397
 398static u32 max_lpis_propbaser(u64 propbaser)
 399{
 400        int nr_idbits = (propbaser & 0x1f) + 1;
 401
 402        return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
 403}
 404
 405/*
 406 * Sync the pending table pending bit of LPIs targeting @vcpu
 407 * with our own data structures. This relies on the LPI being
 408 * mapped before.
 409 */
 410static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
 411{
 412        gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
 413        struct vgic_irq *irq;
 414        int last_byte_offset = -1;
 415        int ret = 0;
 416        u32 *intids;
 417        int nr_irqs, i;
 418        unsigned long flags;
 419        u8 pendmask;
 420
 421        nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
 422        if (nr_irqs < 0)
 423                return nr_irqs;
 424
 425        for (i = 0; i < nr_irqs; i++) {
 426                int byte_offset, bit_nr;
 427
 428                byte_offset = intids[i] / BITS_PER_BYTE;
 429                bit_nr = intids[i] % BITS_PER_BYTE;
 430
 431                /*
 432                 * For contiguously allocated LPIs chances are we just read
 433                 * this very same byte in the last iteration. Reuse that.
 434                 */
 435                if (byte_offset != last_byte_offset) {
 436                        ret = kvm_read_guest_lock(vcpu->kvm,
 437                                                  pendbase + byte_offset,
 438                                                  &pendmask, 1);
 439                        if (ret) {
 440                                kfree(intids);
 441                                return ret;
 442                        }
 443                        last_byte_offset = byte_offset;
 444                }
 445
 446                irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
 447                raw_spin_lock_irqsave(&irq->irq_lock, flags);
 448                irq->pending_latch = pendmask & (1U << bit_nr);
 449                vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
 450                vgic_put_irq(vcpu->kvm, irq);
 451        }
 452
 453        kfree(intids);
 454
 455        return ret;
 456}
 457
 458static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
 459                                              struct vgic_its *its,
 460                                              gpa_t addr, unsigned int len)
 461{
 462        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
 463        u64 reg = GITS_TYPER_PLPIS;
 464
 465        /*
 466         * We use linear CPU numbers for redistributor addressing,
 467         * so GITS_TYPER.PTA is 0.
 468         * Also we force all PROPBASER registers to be the same, so
 469         * CommonLPIAff is 0 as well.
 470         * To avoid memory waste in the guest, we keep the number of IDBits and
 471         * DevBits low - as least for the time being.
 472         */
 473        reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
 474        reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
 475        reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
 476
 477        return extract_bytes(reg, addr & 7, len);
 478}
 479
 480static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
 481                                             struct vgic_its *its,
 482                                             gpa_t addr, unsigned int len)
 483{
 484        u32 val;
 485
 486        val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
 487        val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
 488        return val;
 489}
 490
 491static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
 492                                            struct vgic_its *its,
 493                                            gpa_t addr, unsigned int len,
 494                                            unsigned long val)
 495{
 496        u32 rev = GITS_IIDR_REV(val);
 497
 498        if (rev >= NR_ITS_ABIS)
 499                return -EINVAL;
 500        return vgic_its_set_abi(its, rev);
 501}
 502
 503static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
 504                                               struct vgic_its *its,
 505                                               gpa_t addr, unsigned int len)
 506{
 507        switch (addr & 0xffff) {
 508        case GITS_PIDR0:
 509                return 0x92;    /* part number, bits[7:0] */
 510        case GITS_PIDR1:
 511                return 0xb4;    /* part number, bits[11:8] */
 512        case GITS_PIDR2:
 513                return GIC_PIDR2_ARCH_GICv3 | 0x0b;
 514        case GITS_PIDR4:
 515                return 0x40;    /* This is a 64K software visible page */
 516        /* The following are the ID registers for (any) GIC. */
 517        case GITS_CIDR0:
 518                return 0x0d;
 519        case GITS_CIDR1:
 520                return 0xf0;
 521        case GITS_CIDR2:
 522                return 0x05;
 523        case GITS_CIDR3:
 524                return 0xb1;
 525        }
 526
 527        return 0;
 528}
 529
 530int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
 531                         u32 devid, u32 eventid, struct vgic_irq **irq)
 532{
 533        struct kvm_vcpu *vcpu;
 534        struct its_ite *ite;
 535
 536        if (!its->enabled)
 537                return -EBUSY;
 538
 539        ite = find_ite(its, devid, eventid);
 540        if (!ite || !its_is_collection_mapped(ite->collection))
 541                return E_ITS_INT_UNMAPPED_INTERRUPT;
 542
 543        vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
 544        if (!vcpu)
 545                return E_ITS_INT_UNMAPPED_INTERRUPT;
 546
 547        if (!vcpu->arch.vgic_cpu.lpis_enabled)
 548                return -EBUSY;
 549
 550        *irq = ite->irq;
 551        return 0;
 552}
 553
 554struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
 555{
 556        u64 address;
 557        struct kvm_io_device *kvm_io_dev;
 558        struct vgic_io_device *iodev;
 559
 560        if (!vgic_has_its(kvm))
 561                return ERR_PTR(-ENODEV);
 562
 563        if (!(msi->flags & KVM_MSI_VALID_DEVID))
 564                return ERR_PTR(-EINVAL);
 565
 566        address = (u64)msi->address_hi << 32 | msi->address_lo;
 567
 568        kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
 569        if (!kvm_io_dev)
 570                return ERR_PTR(-EINVAL);
 571
 572        if (kvm_io_dev->ops != &kvm_io_gic_ops)
 573                return ERR_PTR(-EINVAL);
 574
 575        iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
 576        if (iodev->iodev_type != IODEV_ITS)
 577                return ERR_PTR(-EINVAL);
 578
 579        return iodev->its;
 580}
 581
 582/*
 583 * Find the target VCPU and the LPI number for a given devid/eventid pair
 584 * and make this IRQ pending, possibly injecting it.
 585 * Must be called with the its_lock mutex held.
 586 * Returns 0 on success, a positive error value for any ITS mapping
 587 * related errors and negative error values for generic errors.
 588 */
 589static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
 590                                u32 devid, u32 eventid)
 591{
 592        struct vgic_irq *irq = NULL;
 593        unsigned long flags;
 594        int err;
 595
 596        err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
 597        if (err)
 598                return err;
 599
 600        if (irq->hw)
 601                return irq_set_irqchip_state(irq->host_irq,
 602                                             IRQCHIP_STATE_PENDING, true);
 603
 604        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 605        irq->pending_latch = true;
 606        vgic_queue_irq_unlock(kvm, irq, flags);
 607
 608        return 0;
 609}
 610
 611/*
 612 * Queries the KVM IO bus framework to get the ITS pointer from the given
 613 * doorbell address.
 614 * We then call vgic_its_trigger_msi() with the decoded data.
 615 * According to the KVM_SIGNAL_MSI API description returns 1 on success.
 616 */
 617int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
 618{
 619        struct vgic_its *its;
 620        int ret;
 621
 622        its = vgic_msi_to_its(kvm, msi);
 623        if (IS_ERR(its))
 624                return PTR_ERR(its);
 625
 626        mutex_lock(&its->its_lock);
 627        ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
 628        mutex_unlock(&its->its_lock);
 629
 630        if (ret < 0)
 631                return ret;
 632
 633        /*
 634         * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
 635         * if the guest has blocked the MSI. So we map any LPI mapping
 636         * related error to that.
 637         */
 638        if (ret)
 639                return 0;
 640        else
 641                return 1;
 642}
 643
 644/* Requires the its_lock to be held. */
 645static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
 646{
 647        list_del(&ite->ite_list);
 648
 649        /* This put matches the get in vgic_add_lpi. */
 650        if (ite->irq) {
 651                if (ite->irq->hw)
 652                        WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
 653
 654                vgic_put_irq(kvm, ite->irq);
 655        }
 656
 657        kfree(ite);
 658}
 659
 660static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
 661{
 662        return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
 663}
 664
 665#define its_cmd_get_command(cmd)        its_cmd_mask_field(cmd, 0,  0,  8)
 666#define its_cmd_get_deviceid(cmd)       its_cmd_mask_field(cmd, 0, 32, 32)
 667#define its_cmd_get_size(cmd)           (its_cmd_mask_field(cmd, 1,  0,  5) + 1)
 668#define its_cmd_get_id(cmd)             its_cmd_mask_field(cmd, 1,  0, 32)
 669#define its_cmd_get_physical_id(cmd)    its_cmd_mask_field(cmd, 1, 32, 32)
 670#define its_cmd_get_collection(cmd)     its_cmd_mask_field(cmd, 2,  0, 16)
 671#define its_cmd_get_ittaddr(cmd)        (its_cmd_mask_field(cmd, 2,  8, 44) << 8)
 672#define its_cmd_get_target_addr(cmd)    its_cmd_mask_field(cmd, 2, 16, 32)
 673#define its_cmd_get_validbit(cmd)       its_cmd_mask_field(cmd, 2, 63,  1)
 674
 675/*
 676 * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
 677 * Must be called with the its_lock mutex held.
 678 */
 679static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
 680                                       u64 *its_cmd)
 681{
 682        u32 device_id = its_cmd_get_deviceid(its_cmd);
 683        u32 event_id = its_cmd_get_id(its_cmd);
 684        struct its_ite *ite;
 685
 686
 687        ite = find_ite(its, device_id, event_id);
 688        if (ite && ite->collection) {
 689                /*
 690                 * Though the spec talks about removing the pending state, we
 691                 * don't bother here since we clear the ITTE anyway and the
 692                 * pending state is a property of the ITTE struct.
 693                 */
 694                its_free_ite(kvm, ite);
 695                return 0;
 696        }
 697
 698        return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
 699}
 700
 701/*
 702 * The MOVI command moves an ITTE to a different collection.
 703 * Must be called with the its_lock mutex held.
 704 */
 705static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
 706                                    u64 *its_cmd)
 707{
 708        u32 device_id = its_cmd_get_deviceid(its_cmd);
 709        u32 event_id = its_cmd_get_id(its_cmd);
 710        u32 coll_id = its_cmd_get_collection(its_cmd);
 711        struct kvm_vcpu *vcpu;
 712        struct its_ite *ite;
 713        struct its_collection *collection;
 714
 715        ite = find_ite(its, device_id, event_id);
 716        if (!ite)
 717                return E_ITS_MOVI_UNMAPPED_INTERRUPT;
 718
 719        if (!its_is_collection_mapped(ite->collection))
 720                return E_ITS_MOVI_UNMAPPED_COLLECTION;
 721
 722        collection = find_collection(its, coll_id);
 723        if (!its_is_collection_mapped(collection))
 724                return E_ITS_MOVI_UNMAPPED_COLLECTION;
 725
 726        ite->collection = collection;
 727        vcpu = kvm_get_vcpu(kvm, collection->target_addr);
 728
 729        return update_affinity(ite->irq, vcpu);
 730}
 731
 732/*
 733 * Check whether an ID can be stored into the corresponding guest table.
 734 * For a direct table this is pretty easy, but gets a bit nasty for
 735 * indirect tables. We check whether the resulting guest physical address
 736 * is actually valid (covered by a memslot and guest accessible).
 737 * For this we have to read the respective first level entry.
 738 */
 739static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
 740                              gpa_t *eaddr)
 741{
 742        int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
 743        u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
 744        phys_addr_t base = GITS_BASER_ADDR_48_to_52(baser);
 745        int esz = GITS_BASER_ENTRY_SIZE(baser);
 746        int index, idx;
 747        gfn_t gfn;
 748        bool ret;
 749
 750        switch (type) {
 751        case GITS_BASER_TYPE_DEVICE:
 752                if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
 753                        return false;
 754                break;
 755        case GITS_BASER_TYPE_COLLECTION:
 756                /* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
 757                if (id >= BIT_ULL(16))
 758                        return false;
 759                break;
 760        default:
 761                return false;
 762        }
 763
 764        if (!(baser & GITS_BASER_INDIRECT)) {
 765                phys_addr_t addr;
 766
 767                if (id >= (l1_tbl_size / esz))
 768                        return false;
 769
 770                addr = base + id * esz;
 771                gfn = addr >> PAGE_SHIFT;
 772
 773                if (eaddr)
 774                        *eaddr = addr;
 775
 776                goto out;
 777        }
 778
 779        /* calculate and check the index into the 1st level */
 780        index = id / (SZ_64K / esz);
 781        if (index >= (l1_tbl_size / sizeof(u64)))
 782                return false;
 783
 784        /* Each 1st level entry is represented by a 64-bit value. */
 785        if (kvm_read_guest_lock(its->dev->kvm,
 786                           base + index * sizeof(indirect_ptr),
 787                           &indirect_ptr, sizeof(indirect_ptr)))
 788                return false;
 789
 790        indirect_ptr = le64_to_cpu(indirect_ptr);
 791
 792        /* check the valid bit of the first level entry */
 793        if (!(indirect_ptr & BIT_ULL(63)))
 794                return false;
 795
 796        /* Mask the guest physical address and calculate the frame number. */
 797        indirect_ptr &= GENMASK_ULL(51, 16);
 798
 799        /* Find the address of the actual entry */
 800        index = id % (SZ_64K / esz);
 801        indirect_ptr += index * esz;
 802        gfn = indirect_ptr >> PAGE_SHIFT;
 803
 804        if (eaddr)
 805                *eaddr = indirect_ptr;
 806
 807out:
 808        idx = srcu_read_lock(&its->dev->kvm->srcu);
 809        ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
 810        srcu_read_unlock(&its->dev->kvm->srcu, idx);
 811        return ret;
 812}
 813
 814static int vgic_its_alloc_collection(struct vgic_its *its,
 815                                     struct its_collection **colp,
 816                                     u32 coll_id)
 817{
 818        struct its_collection *collection;
 819
 820        if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
 821                return E_ITS_MAPC_COLLECTION_OOR;
 822
 823        collection = kzalloc(sizeof(*collection), GFP_KERNEL);
 824        if (!collection)
 825                return -ENOMEM;
 826
 827        collection->collection_id = coll_id;
 828        collection->target_addr = COLLECTION_NOT_MAPPED;
 829
 830        list_add_tail(&collection->coll_list, &its->collection_list);
 831        *colp = collection;
 832
 833        return 0;
 834}
 835
 836static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
 837{
 838        struct its_collection *collection;
 839        struct its_device *device;
 840        struct its_ite *ite;
 841
 842        /*
 843         * Clearing the mapping for that collection ID removes the
 844         * entry from the list. If there wasn't any before, we can
 845         * go home early.
 846         */
 847        collection = find_collection(its, coll_id);
 848        if (!collection)
 849                return;
 850
 851        for_each_lpi_its(device, ite, its)
 852                if (ite->collection &&
 853                    ite->collection->collection_id == coll_id)
 854                        ite->collection = NULL;
 855
 856        list_del(&collection->coll_list);
 857        kfree(collection);
 858}
 859
 860/* Must be called with its_lock mutex held */
 861static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
 862                                          struct its_collection *collection,
 863                                          u32 event_id)
 864{
 865        struct its_ite *ite;
 866
 867        ite = kzalloc(sizeof(*ite), GFP_KERNEL);
 868        if (!ite)
 869                return ERR_PTR(-ENOMEM);
 870
 871        ite->event_id   = event_id;
 872        ite->collection = collection;
 873
 874        list_add_tail(&ite->ite_list, &device->itt_head);
 875        return ite;
 876}
 877
 878/*
 879 * The MAPTI and MAPI commands map LPIs to ITTEs.
 880 * Must be called with its_lock mutex held.
 881 */
 882static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
 883                                    u64 *its_cmd)
 884{
 885        u32 device_id = its_cmd_get_deviceid(its_cmd);
 886        u32 event_id = its_cmd_get_id(its_cmd);
 887        u32 coll_id = its_cmd_get_collection(its_cmd);
 888        struct its_ite *ite;
 889        struct kvm_vcpu *vcpu = NULL;
 890        struct its_device *device;
 891        struct its_collection *collection, *new_coll = NULL;
 892        struct vgic_irq *irq;
 893        int lpi_nr;
 894
 895        device = find_its_device(its, device_id);
 896        if (!device)
 897                return E_ITS_MAPTI_UNMAPPED_DEVICE;
 898
 899        if (event_id >= BIT_ULL(device->num_eventid_bits))
 900                return E_ITS_MAPTI_ID_OOR;
 901
 902        if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
 903                lpi_nr = its_cmd_get_physical_id(its_cmd);
 904        else
 905                lpi_nr = event_id;
 906        if (lpi_nr < GIC_LPI_OFFSET ||
 907            lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
 908                return E_ITS_MAPTI_PHYSICALID_OOR;
 909
 910        /* If there is an existing mapping, behavior is UNPREDICTABLE. */
 911        if (find_ite(its, device_id, event_id))
 912                return 0;
 913
 914        collection = find_collection(its, coll_id);
 915        if (!collection) {
 916                int ret = vgic_its_alloc_collection(its, &collection, coll_id);
 917                if (ret)
 918                        return ret;
 919                new_coll = collection;
 920        }
 921
 922        ite = vgic_its_alloc_ite(device, collection, event_id);
 923        if (IS_ERR(ite)) {
 924                if (new_coll)
 925                        vgic_its_free_collection(its, coll_id);
 926                return PTR_ERR(ite);
 927        }
 928
 929        if (its_is_collection_mapped(collection))
 930                vcpu = kvm_get_vcpu(kvm, collection->target_addr);
 931
 932        irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
 933        if (IS_ERR(irq)) {
 934                if (new_coll)
 935                        vgic_its_free_collection(its, coll_id);
 936                its_free_ite(kvm, ite);
 937                return PTR_ERR(irq);
 938        }
 939        ite->irq = irq;
 940
 941        return 0;
 942}
 943
 944/* Requires the its_lock to be held. */
 945static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
 946{
 947        struct its_ite *ite, *temp;
 948
 949        /*
 950         * The spec says that unmapping a device with still valid
 951         * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
 952         * since we cannot leave the memory unreferenced.
 953         */
 954        list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
 955                its_free_ite(kvm, ite);
 956
 957        list_del(&device->dev_list);
 958        kfree(device);
 959}
 960
 961/* its lock must be held */
 962static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
 963{
 964        struct its_device *cur, *temp;
 965
 966        list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
 967                vgic_its_free_device(kvm, cur);
 968}
 969
 970/* its lock must be held */
 971static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
 972{
 973        struct its_collection *cur, *temp;
 974
 975        list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
 976                vgic_its_free_collection(its, cur->collection_id);
 977}
 978
 979/* Must be called with its_lock mutex held */
 980static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
 981                                                u32 device_id, gpa_t itt_addr,
 982                                                u8 num_eventid_bits)
 983{
 984        struct its_device *device;
 985
 986        device = kzalloc(sizeof(*device), GFP_KERNEL);
 987        if (!device)
 988                return ERR_PTR(-ENOMEM);
 989
 990        device->device_id = device_id;
 991        device->itt_addr = itt_addr;
 992        device->num_eventid_bits = num_eventid_bits;
 993        INIT_LIST_HEAD(&device->itt_head);
 994
 995        list_add_tail(&device->dev_list, &its->device_list);
 996        return device;
 997}
 998
 999/*
1000 * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1001 * Must be called with the its_lock mutex held.
1002 */
1003static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1004                                    u64 *its_cmd)
1005{
1006        u32 device_id = its_cmd_get_deviceid(its_cmd);
1007        bool valid = its_cmd_get_validbit(its_cmd);
1008        u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1009        gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1010        struct its_device *device;
1011
1012        if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1013                return E_ITS_MAPD_DEVICE_OOR;
1014
1015        if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1016                return E_ITS_MAPD_ITTSIZE_OOR;
1017
1018        device = find_its_device(its, device_id);
1019
1020        /*
1021         * The spec says that calling MAPD on an already mapped device
1022         * invalidates all cached data for this device. We implement this
1023         * by removing the mapping and re-establishing it.
1024         */
1025        if (device)
1026                vgic_its_free_device(kvm, device);
1027
1028        /*
1029         * The spec does not say whether unmapping a not-mapped device
1030         * is an error, so we are done in any case.
1031         */
1032        if (!valid)
1033                return 0;
1034
1035        device = vgic_its_alloc_device(its, device_id, itt_addr,
1036                                       num_eventid_bits);
1037
1038        return PTR_ERR_OR_ZERO(device);
1039}
1040
1041/*
1042 * The MAPC command maps collection IDs to redistributors.
1043 * Must be called with the its_lock mutex held.
1044 */
1045static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1046                                    u64 *its_cmd)
1047{
1048        u16 coll_id;
1049        u32 target_addr;
1050        struct its_collection *collection;
1051        bool valid;
1052
1053        valid = its_cmd_get_validbit(its_cmd);
1054        coll_id = its_cmd_get_collection(its_cmd);
1055        target_addr = its_cmd_get_target_addr(its_cmd);
1056
1057        if (target_addr >= atomic_read(&kvm->online_vcpus))
1058                return E_ITS_MAPC_PROCNUM_OOR;
1059
1060        if (!valid) {
1061                vgic_its_free_collection(its, coll_id);
1062        } else {
1063                collection = find_collection(its, coll_id);
1064
1065                if (!collection) {
1066                        int ret;
1067
1068                        ret = vgic_its_alloc_collection(its, &collection,
1069                                                        coll_id);
1070                        if (ret)
1071                                return ret;
1072                        collection->target_addr = target_addr;
1073                } else {
1074                        collection->target_addr = target_addr;
1075                        update_affinity_collection(kvm, its, collection);
1076                }
1077        }
1078
1079        return 0;
1080}
1081
1082/*
1083 * The CLEAR command removes the pending state for a particular LPI.
1084 * Must be called with the its_lock mutex held.
1085 */
1086static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1087                                     u64 *its_cmd)
1088{
1089        u32 device_id = its_cmd_get_deviceid(its_cmd);
1090        u32 event_id = its_cmd_get_id(its_cmd);
1091        struct its_ite *ite;
1092
1093
1094        ite = find_ite(its, device_id, event_id);
1095        if (!ite)
1096                return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1097
1098        ite->irq->pending_latch = false;
1099
1100        if (ite->irq->hw)
1101                return irq_set_irqchip_state(ite->irq->host_irq,
1102                                             IRQCHIP_STATE_PENDING, false);
1103
1104        return 0;
1105}
1106
1107/*
1108 * The INV command syncs the configuration bits from the memory table.
1109 * Must be called with the its_lock mutex held.
1110 */
1111static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1112                                   u64 *its_cmd)
1113{
1114        u32 device_id = its_cmd_get_deviceid(its_cmd);
1115        u32 event_id = its_cmd_get_id(its_cmd);
1116        struct its_ite *ite;
1117
1118
1119        ite = find_ite(its, device_id, event_id);
1120        if (!ite)
1121                return E_ITS_INV_UNMAPPED_INTERRUPT;
1122
1123        return update_lpi_config(kvm, ite->irq, NULL, true);
1124}
1125
1126/*
1127 * The INVALL command requests flushing of all IRQ data in this collection.
1128 * Find the VCPU mapped to that collection, then iterate over the VM's list
1129 * of mapped LPIs and update the configuration for each IRQ which targets
1130 * the specified vcpu. The configuration will be read from the in-memory
1131 * configuration table.
1132 * Must be called with the its_lock mutex held.
1133 */
1134static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1135                                      u64 *its_cmd)
1136{
1137        u32 coll_id = its_cmd_get_collection(its_cmd);
1138        struct its_collection *collection;
1139        struct kvm_vcpu *vcpu;
1140        struct vgic_irq *irq;
1141        u32 *intids;
1142        int irq_count, i;
1143
1144        collection = find_collection(its, coll_id);
1145        if (!its_is_collection_mapped(collection))
1146                return E_ITS_INVALL_UNMAPPED_COLLECTION;
1147
1148        vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1149
1150        irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1151        if (irq_count < 0)
1152                return irq_count;
1153
1154        for (i = 0; i < irq_count; i++) {
1155                irq = vgic_get_irq(kvm, NULL, intids[i]);
1156                if (!irq)
1157                        continue;
1158                update_lpi_config(kvm, irq, vcpu, false);
1159                vgic_put_irq(kvm, irq);
1160        }
1161
1162        kfree(intids);
1163
1164        if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1165                its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1166
1167        return 0;
1168}
1169
1170/*
1171 * The MOVALL command moves the pending state of all IRQs targeting one
1172 * redistributor to another. We don't hold the pending state in the VCPUs,
1173 * but in the IRQs instead, so there is really not much to do for us here.
1174 * However the spec says that no IRQ must target the old redistributor
1175 * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1176 * This command affects all LPIs in the system that target that redistributor.
1177 */
1178static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1179                                      u64 *its_cmd)
1180{
1181        u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1182        u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1183        struct kvm_vcpu *vcpu1, *vcpu2;
1184        struct vgic_irq *irq;
1185        u32 *intids;
1186        int irq_count, i;
1187
1188        if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1189            target2_addr >= atomic_read(&kvm->online_vcpus))
1190                return E_ITS_MOVALL_PROCNUM_OOR;
1191
1192        if (target1_addr == target2_addr)
1193                return 0;
1194
1195        vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1196        vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1197
1198        irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1199        if (irq_count < 0)
1200                return irq_count;
1201
1202        for (i = 0; i < irq_count; i++) {
1203                irq = vgic_get_irq(kvm, NULL, intids[i]);
1204
1205                update_affinity(irq, vcpu2);
1206
1207                vgic_put_irq(kvm, irq);
1208        }
1209
1210        kfree(intids);
1211        return 0;
1212}
1213
1214/*
1215 * The INT command injects the LPI associated with that DevID/EvID pair.
1216 * Must be called with the its_lock mutex held.
1217 */
1218static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1219                                   u64 *its_cmd)
1220{
1221        u32 msi_data = its_cmd_get_id(its_cmd);
1222        u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1223
1224        return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1225}
1226
1227/*
1228 * This function is called with the its_cmd lock held, but the ITS data
1229 * structure lock dropped.
1230 */
1231static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1232                                   u64 *its_cmd)
1233{
1234        int ret = -ENODEV;
1235
1236        mutex_lock(&its->its_lock);
1237        switch (its_cmd_get_command(its_cmd)) {
1238        case GITS_CMD_MAPD:
1239                ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1240                break;
1241        case GITS_CMD_MAPC:
1242                ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1243                break;
1244        case GITS_CMD_MAPI:
1245                ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1246                break;
1247        case GITS_CMD_MAPTI:
1248                ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1249                break;
1250        case GITS_CMD_MOVI:
1251                ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1252                break;
1253        case GITS_CMD_DISCARD:
1254                ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1255                break;
1256        case GITS_CMD_CLEAR:
1257                ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1258                break;
1259        case GITS_CMD_MOVALL:
1260                ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1261                break;
1262        case GITS_CMD_INT:
1263                ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1264                break;
1265        case GITS_CMD_INV:
1266                ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1267                break;
1268        case GITS_CMD_INVALL:
1269                ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1270                break;
1271        case GITS_CMD_SYNC:
1272                /* we ignore this command: we are in sync all of the time */
1273                ret = 0;
1274                break;
1275        }
1276        mutex_unlock(&its->its_lock);
1277
1278        return ret;
1279}
1280
1281static u64 vgic_sanitise_its_baser(u64 reg)
1282{
1283        reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1284                                  GITS_BASER_SHAREABILITY_SHIFT,
1285                                  vgic_sanitise_shareability);
1286        reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1287                                  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1288                                  vgic_sanitise_inner_cacheability);
1289        reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1290                                  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1291                                  vgic_sanitise_outer_cacheability);
1292
1293        /* We support only one (ITS) page size: 64K */
1294        reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1295
1296        return reg;
1297}
1298
1299static u64 vgic_sanitise_its_cbaser(u64 reg)
1300{
1301        reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1302                                  GITS_CBASER_SHAREABILITY_SHIFT,
1303                                  vgic_sanitise_shareability);
1304        reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1305                                  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1306                                  vgic_sanitise_inner_cacheability);
1307        reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1308                                  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1309                                  vgic_sanitise_outer_cacheability);
1310
1311        /* Sanitise the physical address to be 64k aligned. */
1312        reg &= ~GENMASK_ULL(15, 12);
1313
1314        return reg;
1315}
1316
1317static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1318                                               struct vgic_its *its,
1319                                               gpa_t addr, unsigned int len)
1320{
1321        return extract_bytes(its->cbaser, addr & 7, len);
1322}
1323
1324static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1325                                       gpa_t addr, unsigned int len,
1326                                       unsigned long val)
1327{
1328        /* When GITS_CTLR.Enable is 1, this register is RO. */
1329        if (its->enabled)
1330                return;
1331
1332        mutex_lock(&its->cmd_lock);
1333        its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1334        its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1335        its->creadr = 0;
1336        /*
1337         * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1338         * it to CREADR to make sure we start with an empty command buffer.
1339         */
1340        its->cwriter = its->creadr;
1341        mutex_unlock(&its->cmd_lock);
1342}
1343
1344#define ITS_CMD_BUFFER_SIZE(baser)      ((((baser) & 0xff) + 1) << 12)
1345#define ITS_CMD_SIZE                    32
1346#define ITS_CMD_OFFSET(reg)             ((reg) & GENMASK(19, 5))
1347
1348/* Must be called with the cmd_lock held. */
1349static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1350{
1351        gpa_t cbaser;
1352        u64 cmd_buf[4];
1353
1354        /* Commands are only processed when the ITS is enabled. */
1355        if (!its->enabled)
1356                return;
1357
1358        cbaser = GITS_CBASER_ADDRESS(its->cbaser);
1359
1360        while (its->cwriter != its->creadr) {
1361                int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1362                                              cmd_buf, ITS_CMD_SIZE);
1363                /*
1364                 * If kvm_read_guest() fails, this could be due to the guest
1365                 * programming a bogus value in CBASER or something else going
1366                 * wrong from which we cannot easily recover.
1367                 * According to section 6.3.2 in the GICv3 spec we can just
1368                 * ignore that command then.
1369                 */
1370                if (!ret)
1371                        vgic_its_handle_command(kvm, its, cmd_buf);
1372
1373                its->creadr += ITS_CMD_SIZE;
1374                if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1375                        its->creadr = 0;
1376        }
1377}
1378
1379/*
1380 * By writing to CWRITER the guest announces new commands to be processed.
1381 * To avoid any races in the first place, we take the its_cmd lock, which
1382 * protects our ring buffer variables, so that there is only one user
1383 * per ITS handling commands at a given time.
1384 */
1385static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1386                                        gpa_t addr, unsigned int len,
1387                                        unsigned long val)
1388{
1389        u64 reg;
1390
1391        if (!its)
1392                return;
1393
1394        mutex_lock(&its->cmd_lock);
1395
1396        reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1397        reg = ITS_CMD_OFFSET(reg);
1398        if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1399                mutex_unlock(&its->cmd_lock);
1400                return;
1401        }
1402        its->cwriter = reg;
1403
1404        vgic_its_process_commands(kvm, its);
1405
1406        mutex_unlock(&its->cmd_lock);
1407}
1408
1409static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1410                                                struct vgic_its *its,
1411                                                gpa_t addr, unsigned int len)
1412{
1413        return extract_bytes(its->cwriter, addr & 0x7, len);
1414}
1415
1416static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1417                                               struct vgic_its *its,
1418                                               gpa_t addr, unsigned int len)
1419{
1420        return extract_bytes(its->creadr, addr & 0x7, len);
1421}
1422
1423static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1424                                              struct vgic_its *its,
1425                                              gpa_t addr, unsigned int len,
1426                                              unsigned long val)
1427{
1428        u32 cmd_offset;
1429        int ret = 0;
1430
1431        mutex_lock(&its->cmd_lock);
1432
1433        if (its->enabled) {
1434                ret = -EBUSY;
1435                goto out;
1436        }
1437
1438        cmd_offset = ITS_CMD_OFFSET(val);
1439        if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1440                ret = -EINVAL;
1441                goto out;
1442        }
1443
1444        its->creadr = cmd_offset;
1445out:
1446        mutex_unlock(&its->cmd_lock);
1447        return ret;
1448}
1449
1450#define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
1451static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1452                                              struct vgic_its *its,
1453                                              gpa_t addr, unsigned int len)
1454{
1455        u64 reg;
1456
1457        switch (BASER_INDEX(addr)) {
1458        case 0:
1459                reg = its->baser_device_table;
1460                break;
1461        case 1:
1462                reg = its->baser_coll_table;
1463                break;
1464        default:
1465                reg = 0;
1466                break;
1467        }
1468
1469        return extract_bytes(reg, addr & 7, len);
1470}
1471
1472#define GITS_BASER_RO_MASK      (GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
1473static void vgic_mmio_write_its_baser(struct kvm *kvm,
1474                                      struct vgic_its *its,
1475                                      gpa_t addr, unsigned int len,
1476                                      unsigned long val)
1477{
1478        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1479        u64 entry_size, table_type;
1480        u64 reg, *regptr, clearbits = 0;
1481
1482        /* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1483        if (its->enabled)
1484                return;
1485
1486        switch (BASER_INDEX(addr)) {
1487        case 0:
1488                regptr = &its->baser_device_table;
1489                entry_size = abi->dte_esz;
1490                table_type = GITS_BASER_TYPE_DEVICE;
1491                break;
1492        case 1:
1493                regptr = &its->baser_coll_table;
1494                entry_size = abi->cte_esz;
1495                table_type = GITS_BASER_TYPE_COLLECTION;
1496                clearbits = GITS_BASER_INDIRECT;
1497                break;
1498        default:
1499                return;
1500        }
1501
1502        reg = update_64bit_reg(*regptr, addr & 7, len, val);
1503        reg &= ~GITS_BASER_RO_MASK;
1504        reg &= ~clearbits;
1505
1506        reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1507        reg |= table_type << GITS_BASER_TYPE_SHIFT;
1508        reg = vgic_sanitise_its_baser(reg);
1509
1510        *regptr = reg;
1511
1512        if (!(reg & GITS_BASER_VALID)) {
1513                /* Take the its_lock to prevent a race with a save/restore */
1514                mutex_lock(&its->its_lock);
1515                switch (table_type) {
1516                case GITS_BASER_TYPE_DEVICE:
1517                        vgic_its_free_device_list(kvm, its);
1518                        break;
1519                case GITS_BASER_TYPE_COLLECTION:
1520                        vgic_its_free_collection_list(kvm, its);
1521                        break;
1522                }
1523                mutex_unlock(&its->its_lock);
1524        }
1525}
1526
1527static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1528                                             struct vgic_its *its,
1529                                             gpa_t addr, unsigned int len)
1530{
1531        u32 reg = 0;
1532
1533        mutex_lock(&its->cmd_lock);
1534        if (its->creadr == its->cwriter)
1535                reg |= GITS_CTLR_QUIESCENT;
1536        if (its->enabled)
1537                reg |= GITS_CTLR_ENABLE;
1538        mutex_unlock(&its->cmd_lock);
1539
1540        return reg;
1541}
1542
1543static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1544                                     gpa_t addr, unsigned int len,
1545                                     unsigned long val)
1546{
1547        mutex_lock(&its->cmd_lock);
1548
1549        /*
1550         * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1551         * device/collection BASER are invalid
1552         */
1553        if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1554                (!(its->baser_device_table & GITS_BASER_VALID) ||
1555                 !(its->baser_coll_table & GITS_BASER_VALID) ||
1556                 !(its->cbaser & GITS_CBASER_VALID)))
1557                goto out;
1558
1559        its->enabled = !!(val & GITS_CTLR_ENABLE);
1560
1561        /*
1562         * Try to process any pending commands. This function bails out early
1563         * if the ITS is disabled or no commands have been queued.
1564         */
1565        vgic_its_process_commands(kvm, its);
1566
1567out:
1568        mutex_unlock(&its->cmd_lock);
1569}
1570
1571#define REGISTER_ITS_DESC(off, rd, wr, length, acc)             \
1572{                                                               \
1573        .reg_offset = off,                                      \
1574        .len = length,                                          \
1575        .access_flags = acc,                                    \
1576        .its_read = rd,                                         \
1577        .its_write = wr,                                        \
1578}
1579
1580#define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1581{                                                               \
1582        .reg_offset = off,                                      \
1583        .len = length,                                          \
1584        .access_flags = acc,                                    \
1585        .its_read = rd,                                         \
1586        .its_write = wr,                                        \
1587        .uaccess_its_write = uwr,                               \
1588}
1589
1590static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1591                              gpa_t addr, unsigned int len, unsigned long val)
1592{
1593        /* Ignore */
1594}
1595
1596static struct vgic_register_region its_registers[] = {
1597        REGISTER_ITS_DESC(GITS_CTLR,
1598                vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1599                VGIC_ACCESS_32bit),
1600        REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1601                vgic_mmio_read_its_iidr, its_mmio_write_wi,
1602                vgic_mmio_uaccess_write_its_iidr, 4,
1603                VGIC_ACCESS_32bit),
1604        REGISTER_ITS_DESC(GITS_TYPER,
1605                vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1606                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1607        REGISTER_ITS_DESC(GITS_CBASER,
1608                vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1609                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1610        REGISTER_ITS_DESC(GITS_CWRITER,
1611                vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1612                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1613        REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1614                vgic_mmio_read_its_creadr, its_mmio_write_wi,
1615                vgic_mmio_uaccess_write_its_creadr, 8,
1616                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1617        REGISTER_ITS_DESC(GITS_BASER,
1618                vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1619                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1620        REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1621                vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1622                VGIC_ACCESS_32bit),
1623};
1624
1625/* This is called on setting the LPI enable bit in the redistributor. */
1626void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1627{
1628        if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1629                its_sync_lpi_pending_table(vcpu);
1630}
1631
1632static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1633                                   u64 addr)
1634{
1635        struct vgic_io_device *iodev = &its->iodev;
1636        int ret;
1637
1638        mutex_lock(&kvm->slots_lock);
1639        if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1640                ret = -EBUSY;
1641                goto out;
1642        }
1643
1644        its->vgic_its_base = addr;
1645        iodev->regions = its_registers;
1646        iodev->nr_regions = ARRAY_SIZE(its_registers);
1647        kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1648
1649        iodev->base_addr = its->vgic_its_base;
1650        iodev->iodev_type = IODEV_ITS;
1651        iodev->its = its;
1652        ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1653                                      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1654out:
1655        mutex_unlock(&kvm->slots_lock);
1656
1657        return ret;
1658}
1659
1660#define INITIAL_BASER_VALUE                                               \
1661        (GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)                | \
1662         GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)         | \
1663         GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)             | \
1664         GITS_BASER_PAGE_SIZE_64K)
1665
1666#define INITIAL_PROPBASER_VALUE                                           \
1667        (GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)            | \
1668         GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)     | \
1669         GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1670
1671static int vgic_its_create(struct kvm_device *dev, u32 type)
1672{
1673        struct vgic_its *its;
1674
1675        if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1676                return -ENODEV;
1677
1678        its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1679        if (!its)
1680                return -ENOMEM;
1681
1682        if (vgic_initialized(dev->kvm)) {
1683                int ret = vgic_v4_init(dev->kvm);
1684                if (ret < 0) {
1685                        kfree(its);
1686                        return ret;
1687                }
1688        }
1689
1690        mutex_init(&its->its_lock);
1691        mutex_init(&its->cmd_lock);
1692
1693        its->vgic_its_base = VGIC_ADDR_UNDEF;
1694
1695        INIT_LIST_HEAD(&its->device_list);
1696        INIT_LIST_HEAD(&its->collection_list);
1697
1698        dev->kvm->arch.vgic.msis_require_devid = true;
1699        dev->kvm->arch.vgic.has_its = true;
1700        its->enabled = false;
1701        its->dev = dev;
1702
1703        its->baser_device_table = INITIAL_BASER_VALUE                   |
1704                ((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1705        its->baser_coll_table = INITIAL_BASER_VALUE |
1706                ((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1707        dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1708
1709        dev->private = its;
1710
1711        return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1712}
1713
1714static void vgic_its_destroy(struct kvm_device *kvm_dev)
1715{
1716        struct kvm *kvm = kvm_dev->kvm;
1717        struct vgic_its *its = kvm_dev->private;
1718
1719        mutex_lock(&its->its_lock);
1720
1721        vgic_its_free_device_list(kvm, its);
1722        vgic_its_free_collection_list(kvm, its);
1723
1724        mutex_unlock(&its->its_lock);
1725        kfree(its);
1726        kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1727}
1728
1729static int vgic_its_has_attr_regs(struct kvm_device *dev,
1730                                  struct kvm_device_attr *attr)
1731{
1732        const struct vgic_register_region *region;
1733        gpa_t offset = attr->attr;
1734        int align;
1735
1736        align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1737
1738        if (offset & align)
1739                return -EINVAL;
1740
1741        region = vgic_find_mmio_region(its_registers,
1742                                       ARRAY_SIZE(its_registers),
1743                                       offset);
1744        if (!region)
1745                return -ENXIO;
1746
1747        return 0;
1748}
1749
1750static int vgic_its_attr_regs_access(struct kvm_device *dev,
1751                                     struct kvm_device_attr *attr,
1752                                     u64 *reg, bool is_write)
1753{
1754        const struct vgic_register_region *region;
1755        struct vgic_its *its;
1756        gpa_t addr, offset;
1757        unsigned int len;
1758        int align, ret = 0;
1759
1760        its = dev->private;
1761        offset = attr->attr;
1762
1763        /*
1764         * Although the spec supports upper/lower 32-bit accesses to
1765         * 64-bit ITS registers, the userspace ABI requires 64-bit
1766         * accesses to all 64-bit wide registers. We therefore only
1767         * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1768         * registers
1769         */
1770        if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1771                align = 0x3;
1772        else
1773                align = 0x7;
1774
1775        if (offset & align)
1776                return -EINVAL;
1777
1778        mutex_lock(&dev->kvm->lock);
1779
1780        if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1781                ret = -ENXIO;
1782                goto out;
1783        }
1784
1785        region = vgic_find_mmio_region(its_registers,
1786                                       ARRAY_SIZE(its_registers),
1787                                       offset);
1788        if (!region) {
1789                ret = -ENXIO;
1790                goto out;
1791        }
1792
1793        if (!lock_all_vcpus(dev->kvm)) {
1794                ret = -EBUSY;
1795                goto out;
1796        }
1797
1798        addr = its->vgic_its_base + offset;
1799
1800        len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1801
1802        if (is_write) {
1803                if (region->uaccess_its_write)
1804                        ret = region->uaccess_its_write(dev->kvm, its, addr,
1805                                                        len, *reg);
1806                else
1807                        region->its_write(dev->kvm, its, addr, len, *reg);
1808        } else {
1809                *reg = region->its_read(dev->kvm, its, addr, len);
1810        }
1811        unlock_all_vcpus(dev->kvm);
1812out:
1813        mutex_unlock(&dev->kvm->lock);
1814        return ret;
1815}
1816
1817static u32 compute_next_devid_offset(struct list_head *h,
1818                                     struct its_device *dev)
1819{
1820        struct its_device *next;
1821        u32 next_offset;
1822
1823        if (list_is_last(&dev->dev_list, h))
1824                return 0;
1825        next = list_next_entry(dev, dev_list);
1826        next_offset = next->device_id - dev->device_id;
1827
1828        return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
1829}
1830
1831static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
1832{
1833        struct its_ite *next;
1834        u32 next_offset;
1835
1836        if (list_is_last(&ite->ite_list, h))
1837                return 0;
1838        next = list_next_entry(ite, ite_list);
1839        next_offset = next->event_id - ite->event_id;
1840
1841        return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
1842}
1843
1844/**
1845 * entry_fn_t - Callback called on a table entry restore path
1846 * @its: its handle
1847 * @id: id of the entry
1848 * @entry: pointer to the entry
1849 * @opaque: pointer to an opaque data
1850 *
1851 * Return: < 0 on error, 0 if last element was identified, id offset to next
1852 * element otherwise
1853 */
1854typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
1855                          void *opaque);
1856
1857/**
1858 * scan_its_table - Scan a contiguous table in guest RAM and applies a function
1859 * to each entry
1860 *
1861 * @its: its handle
1862 * @base: base gpa of the table
1863 * @size: size of the table in bytes
1864 * @esz: entry size in bytes
1865 * @start_id: the ID of the first entry in the table
1866 * (non zero for 2d level tables)
1867 * @fn: function to apply on each entry
1868 *
1869 * Return: < 0 on error, 0 if last element was identified, 1 otherwise
1870 * (the last element may not be found on second level tables)
1871 */
1872static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
1873                          int start_id, entry_fn_t fn, void *opaque)
1874{
1875        struct kvm *kvm = its->dev->kvm;
1876        unsigned long len = size;
1877        int id = start_id;
1878        gpa_t gpa = base;
1879        char entry[ESZ_MAX];
1880        int ret;
1881
1882        memset(entry, 0, esz);
1883
1884        while (len > 0) {
1885                int next_offset;
1886                size_t byte_offset;
1887
1888                ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
1889                if (ret)
1890                        return ret;
1891
1892                next_offset = fn(its, id, entry, opaque);
1893                if (next_offset <= 0)
1894                        return next_offset;
1895
1896                byte_offset = next_offset * esz;
1897                id += next_offset;
1898                gpa += byte_offset;
1899                len -= byte_offset;
1900        }
1901        return 1;
1902}
1903
1904/**
1905 * vgic_its_save_ite - Save an interrupt translation entry at @gpa
1906 */
1907static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
1908                              struct its_ite *ite, gpa_t gpa, int ite_esz)
1909{
1910        struct kvm *kvm = its->dev->kvm;
1911        u32 next_offset;
1912        u64 val;
1913
1914        next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
1915        val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
1916               ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
1917                ite->collection->collection_id;
1918        val = cpu_to_le64(val);
1919        return kvm_write_guest_lock(kvm, gpa, &val, ite_esz);
1920}
1921
1922/**
1923 * vgic_its_restore_ite - restore an interrupt translation entry
1924 * @event_id: id used for indexing
1925 * @ptr: pointer to the ITE entry
1926 * @opaque: pointer to the its_device
1927 */
1928static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
1929                                void *ptr, void *opaque)
1930{
1931        struct its_device *dev = (struct its_device *)opaque;
1932        struct its_collection *collection;
1933        struct kvm *kvm = its->dev->kvm;
1934        struct kvm_vcpu *vcpu = NULL;
1935        u64 val;
1936        u64 *p = (u64 *)ptr;
1937        struct vgic_irq *irq;
1938        u32 coll_id, lpi_id;
1939        struct its_ite *ite;
1940        u32 offset;
1941
1942        val = *p;
1943
1944        val = le64_to_cpu(val);
1945
1946        coll_id = val & KVM_ITS_ITE_ICID_MASK;
1947        lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
1948
1949        if (!lpi_id)
1950                return 1; /* invalid entry, no choice but to scan next entry */
1951
1952        if (lpi_id < VGIC_MIN_LPI)
1953                return -EINVAL;
1954
1955        offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
1956        if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
1957                return -EINVAL;
1958
1959        collection = find_collection(its, coll_id);
1960        if (!collection)
1961                return -EINVAL;
1962
1963        ite = vgic_its_alloc_ite(dev, collection, event_id);
1964        if (IS_ERR(ite))
1965                return PTR_ERR(ite);
1966
1967        if (its_is_collection_mapped(collection))
1968                vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1969
1970        irq = vgic_add_lpi(kvm, lpi_id, vcpu);
1971        if (IS_ERR(irq))
1972                return PTR_ERR(irq);
1973        ite->irq = irq;
1974
1975        return offset;
1976}
1977
1978static int vgic_its_ite_cmp(void *priv, struct list_head *a,
1979                            struct list_head *b)
1980{
1981        struct its_ite *itea = container_of(a, struct its_ite, ite_list);
1982        struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
1983
1984        if (itea->event_id < iteb->event_id)
1985                return -1;
1986        else
1987                return 1;
1988}
1989
1990static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
1991{
1992        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1993        gpa_t base = device->itt_addr;
1994        struct its_ite *ite;
1995        int ret;
1996        int ite_esz = abi->ite_esz;
1997
1998        list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
1999
2000        list_for_each_entry(ite, &device->itt_head, ite_list) {
2001                gpa_t gpa = base + ite->event_id * ite_esz;
2002
2003                /*
2004                 * If an LPI carries the HW bit, this means that this
2005                 * interrupt is controlled by GICv4, and we do not
2006                 * have direct access to that state. Let's simply fail
2007                 * the save operation...
2008                 */
2009                if (ite->irq->hw)
2010                        return -EACCES;
2011
2012                ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2013                if (ret)
2014                        return ret;
2015        }
2016        return 0;
2017}
2018
2019/**
2020 * vgic_its_restore_itt - restore the ITT of a device
2021 *
2022 * @its: its handle
2023 * @dev: device handle
2024 *
2025 * Return 0 on success, < 0 on error
2026 */
2027static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2028{
2029        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2030        gpa_t base = dev->itt_addr;
2031        int ret;
2032        int ite_esz = abi->ite_esz;
2033        size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2034
2035        ret = scan_its_table(its, base, max_size, ite_esz, 0,
2036                             vgic_its_restore_ite, dev);
2037
2038        /* scan_its_table returns +1 if all ITEs are invalid */
2039        if (ret > 0)
2040                ret = 0;
2041
2042        return ret;
2043}
2044
2045/**
2046 * vgic_its_save_dte - Save a device table entry at a given GPA
2047 *
2048 * @its: ITS handle
2049 * @dev: ITS device
2050 * @ptr: GPA
2051 */
2052static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2053                             gpa_t ptr, int dte_esz)
2054{
2055        struct kvm *kvm = its->dev->kvm;
2056        u64 val, itt_addr_field;
2057        u32 next_offset;
2058
2059        itt_addr_field = dev->itt_addr >> 8;
2060        next_offset = compute_next_devid_offset(&its->device_list, dev);
2061        val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2062               ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2063               (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2064                (dev->num_eventid_bits - 1));
2065        val = cpu_to_le64(val);
2066        return kvm_write_guest_lock(kvm, ptr, &val, dte_esz);
2067}
2068
2069/**
2070 * vgic_its_restore_dte - restore a device table entry
2071 *
2072 * @its: its handle
2073 * @id: device id the DTE corresponds to
2074 * @ptr: kernel VA where the 8 byte DTE is located
2075 * @opaque: unused
2076 *
2077 * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2078 * next dte otherwise
2079 */
2080static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2081                                void *ptr, void *opaque)
2082{
2083        struct its_device *dev;
2084        gpa_t itt_addr;
2085        u8 num_eventid_bits;
2086        u64 entry = *(u64 *)ptr;
2087        bool valid;
2088        u32 offset;
2089        int ret;
2090
2091        entry = le64_to_cpu(entry);
2092
2093        valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2094        num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2095        itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2096                        >> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2097
2098        if (!valid)
2099                return 1;
2100
2101        /* dte entry is valid */
2102        offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2103
2104        dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2105        if (IS_ERR(dev))
2106                return PTR_ERR(dev);
2107
2108        ret = vgic_its_restore_itt(its, dev);
2109        if (ret) {
2110                vgic_its_free_device(its->dev->kvm, dev);
2111                return ret;
2112        }
2113
2114        return offset;
2115}
2116
2117static int vgic_its_device_cmp(void *priv, struct list_head *a,
2118                               struct list_head *b)
2119{
2120        struct its_device *deva = container_of(a, struct its_device, dev_list);
2121        struct its_device *devb = container_of(b, struct its_device, dev_list);
2122
2123        if (deva->device_id < devb->device_id)
2124                return -1;
2125        else
2126                return 1;
2127}
2128
2129/**
2130 * vgic_its_save_device_tables - Save the device table and all ITT
2131 * into guest RAM
2132 *
2133 * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2134 * returns the GPA of the device entry
2135 */
2136static int vgic_its_save_device_tables(struct vgic_its *its)
2137{
2138        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2139        u64 baser = its->baser_device_table;
2140        struct its_device *dev;
2141        int dte_esz = abi->dte_esz;
2142
2143        if (!(baser & GITS_BASER_VALID))
2144                return 0;
2145
2146        list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2147
2148        list_for_each_entry(dev, &its->device_list, dev_list) {
2149                int ret;
2150                gpa_t eaddr;
2151
2152                if (!vgic_its_check_id(its, baser,
2153                                       dev->device_id, &eaddr))
2154                        return -EINVAL;
2155
2156                ret = vgic_its_save_itt(its, dev);
2157                if (ret)
2158                        return ret;
2159
2160                ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2161                if (ret)
2162                        return ret;
2163        }
2164        return 0;
2165}
2166
2167/**
2168 * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2169 *
2170 * @its: its handle
2171 * @id: index of the entry in the L1 table
2172 * @addr: kernel VA
2173 * @opaque: unused
2174 *
2175 * L1 table entries are scanned by steps of 1 entry
2176 * Return < 0 if error, 0 if last dte was found when scanning the L2
2177 * table, +1 otherwise (meaning next L1 entry must be scanned)
2178 */
2179static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2180                         void *opaque)
2181{
2182        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2183        int l2_start_id = id * (SZ_64K / abi->dte_esz);
2184        u64 entry = *(u64 *)addr;
2185        int dte_esz = abi->dte_esz;
2186        gpa_t gpa;
2187        int ret;
2188
2189        entry = le64_to_cpu(entry);
2190
2191        if (!(entry & KVM_ITS_L1E_VALID_MASK))
2192                return 1;
2193
2194        gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2195
2196        ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2197                             l2_start_id, vgic_its_restore_dte, NULL);
2198
2199        return ret;
2200}
2201
2202/**
2203 * vgic_its_restore_device_tables - Restore the device table and all ITT
2204 * from guest RAM to internal data structs
2205 */
2206static int vgic_its_restore_device_tables(struct vgic_its *its)
2207{
2208        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2209        u64 baser = its->baser_device_table;
2210        int l1_esz, ret;
2211        int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2212        gpa_t l1_gpa;
2213
2214        if (!(baser & GITS_BASER_VALID))
2215                return 0;
2216
2217        l1_gpa = GITS_BASER_ADDR_48_to_52(baser);
2218
2219        if (baser & GITS_BASER_INDIRECT) {
2220                l1_esz = GITS_LVL1_ENTRY_SIZE;
2221                ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2222                                     handle_l1_dte, NULL);
2223        } else {
2224                l1_esz = abi->dte_esz;
2225                ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2226                                     vgic_its_restore_dte, NULL);
2227        }
2228
2229        /* scan_its_table returns +1 if all entries are invalid */
2230        if (ret > 0)
2231                ret = 0;
2232
2233        return ret;
2234}
2235
2236static int vgic_its_save_cte(struct vgic_its *its,
2237                             struct its_collection *collection,
2238                             gpa_t gpa, int esz)
2239{
2240        u64 val;
2241
2242        val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2243               ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2244               collection->collection_id);
2245        val = cpu_to_le64(val);
2246        return kvm_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2247}
2248
2249static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2250{
2251        struct its_collection *collection;
2252        struct kvm *kvm = its->dev->kvm;
2253        u32 target_addr, coll_id;
2254        u64 val;
2255        int ret;
2256
2257        BUG_ON(esz > sizeof(val));
2258        ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2259        if (ret)
2260                return ret;
2261        val = le64_to_cpu(val);
2262        if (!(val & KVM_ITS_CTE_VALID_MASK))
2263                return 0;
2264
2265        target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2266        coll_id = val & KVM_ITS_CTE_ICID_MASK;
2267
2268        if (target_addr >= atomic_read(&kvm->online_vcpus))
2269                return -EINVAL;
2270
2271        collection = find_collection(its, coll_id);
2272        if (collection)
2273                return -EEXIST;
2274        ret = vgic_its_alloc_collection(its, &collection, coll_id);
2275        if (ret)
2276                return ret;
2277        collection->target_addr = target_addr;
2278        return 1;
2279}
2280
2281/**
2282 * vgic_its_save_collection_table - Save the collection table into
2283 * guest RAM
2284 */
2285static int vgic_its_save_collection_table(struct vgic_its *its)
2286{
2287        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2288        u64 baser = its->baser_coll_table;
2289        gpa_t gpa = GITS_BASER_ADDR_48_to_52(baser);
2290        struct its_collection *collection;
2291        u64 val;
2292        size_t max_size, filled = 0;
2293        int ret, cte_esz = abi->cte_esz;
2294
2295        if (!(baser & GITS_BASER_VALID))
2296                return 0;
2297
2298        max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2299
2300        list_for_each_entry(collection, &its->collection_list, coll_list) {
2301                ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2302                if (ret)
2303                        return ret;
2304                gpa += cte_esz;
2305                filled += cte_esz;
2306        }
2307
2308        if (filled == max_size)
2309                return 0;
2310
2311        /*
2312         * table is not fully filled, add a last dummy element
2313         * with valid bit unset
2314         */
2315        val = 0;
2316        BUG_ON(cte_esz > sizeof(val));
2317        ret = kvm_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2318        return ret;
2319}
2320
2321/**
2322 * vgic_its_restore_collection_table - reads the collection table
2323 * in guest memory and restores the ITS internal state. Requires the
2324 * BASER registers to be restored before.
2325 */
2326static int vgic_its_restore_collection_table(struct vgic_its *its)
2327{
2328        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2329        u64 baser = its->baser_coll_table;
2330        int cte_esz = abi->cte_esz;
2331        size_t max_size, read = 0;
2332        gpa_t gpa;
2333        int ret;
2334
2335        if (!(baser & GITS_BASER_VALID))
2336                return 0;
2337
2338        gpa = GITS_BASER_ADDR_48_to_52(baser);
2339
2340        max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2341
2342        while (read < max_size) {
2343                ret = vgic_its_restore_cte(its, gpa, cte_esz);
2344                if (ret <= 0)
2345                        break;
2346                gpa += cte_esz;
2347                read += cte_esz;
2348        }
2349
2350        if (ret > 0)
2351                return 0;
2352
2353        return ret;
2354}
2355
2356/**
2357 * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2358 * according to v0 ABI
2359 */
2360static int vgic_its_save_tables_v0(struct vgic_its *its)
2361{
2362        int ret;
2363
2364        ret = vgic_its_save_device_tables(its);
2365        if (ret)
2366                return ret;
2367
2368        return vgic_its_save_collection_table(its);
2369}
2370
2371/**
2372 * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2373 * to internal data structs according to V0 ABI
2374 *
2375 */
2376static int vgic_its_restore_tables_v0(struct vgic_its *its)
2377{
2378        int ret;
2379
2380        ret = vgic_its_restore_collection_table(its);
2381        if (ret)
2382                return ret;
2383
2384        return vgic_its_restore_device_tables(its);
2385}
2386
2387static int vgic_its_commit_v0(struct vgic_its *its)
2388{
2389        const struct vgic_its_abi *abi;
2390
2391        abi = vgic_its_get_abi(its);
2392        its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2393        its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2394
2395        its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2396                                        << GITS_BASER_ENTRY_SIZE_SHIFT);
2397
2398        its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2399                                        << GITS_BASER_ENTRY_SIZE_SHIFT);
2400        return 0;
2401}
2402
2403static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2404{
2405        /* We need to keep the ABI specific field values */
2406        its->baser_coll_table &= ~GITS_BASER_VALID;
2407        its->baser_device_table &= ~GITS_BASER_VALID;
2408        its->cbaser = 0;
2409        its->creadr = 0;
2410        its->cwriter = 0;
2411        its->enabled = 0;
2412        vgic_its_free_device_list(kvm, its);
2413        vgic_its_free_collection_list(kvm, its);
2414}
2415
2416static int vgic_its_has_attr(struct kvm_device *dev,
2417                             struct kvm_device_attr *attr)
2418{
2419        switch (attr->group) {
2420        case KVM_DEV_ARM_VGIC_GRP_ADDR:
2421                switch (attr->attr) {
2422                case KVM_VGIC_ITS_ADDR_TYPE:
2423                        return 0;
2424                }
2425                break;
2426        case KVM_DEV_ARM_VGIC_GRP_CTRL:
2427                switch (attr->attr) {
2428                case KVM_DEV_ARM_VGIC_CTRL_INIT:
2429                        return 0;
2430                case KVM_DEV_ARM_ITS_CTRL_RESET:
2431                        return 0;
2432                case KVM_DEV_ARM_ITS_SAVE_TABLES:
2433                        return 0;
2434                case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2435                        return 0;
2436                }
2437                break;
2438        case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2439                return vgic_its_has_attr_regs(dev, attr);
2440        }
2441        return -ENXIO;
2442}
2443
2444static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2445{
2446        const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2447        int ret = 0;
2448
2449        if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2450                return 0;
2451
2452        mutex_lock(&kvm->lock);
2453        mutex_lock(&its->its_lock);
2454
2455        if (!lock_all_vcpus(kvm)) {
2456                mutex_unlock(&its->its_lock);
2457                mutex_unlock(&kvm->lock);
2458                return -EBUSY;
2459        }
2460
2461        switch (attr) {
2462        case KVM_DEV_ARM_ITS_CTRL_RESET:
2463                vgic_its_reset(kvm, its);
2464                break;
2465        case KVM_DEV_ARM_ITS_SAVE_TABLES:
2466                ret = abi->save_tables(its);
2467                break;
2468        case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2469                ret = abi->restore_tables(its);
2470                break;
2471        }
2472
2473        unlock_all_vcpus(kvm);
2474        mutex_unlock(&its->its_lock);
2475        mutex_unlock(&kvm->lock);
2476        return ret;
2477}
2478
2479static int vgic_its_set_attr(struct kvm_device *dev,
2480                             struct kvm_device_attr *attr)
2481{
2482        struct vgic_its *its = dev->private;
2483        int ret;
2484
2485        switch (attr->group) {
2486        case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2487                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2488                unsigned long type = (unsigned long)attr->attr;
2489                u64 addr;
2490
2491                if (type != KVM_VGIC_ITS_ADDR_TYPE)
2492                        return -ENODEV;
2493
2494                if (copy_from_user(&addr, uaddr, sizeof(addr)))
2495                        return -EFAULT;
2496
2497                ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2498                                        addr, SZ_64K);
2499                if (ret)
2500                        return ret;
2501
2502                return vgic_register_its_iodev(dev->kvm, its, addr);
2503        }
2504        case KVM_DEV_ARM_VGIC_GRP_CTRL:
2505                return vgic_its_ctrl(dev->kvm, its, attr->attr);
2506        case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2507                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2508                u64 reg;
2509
2510                if (get_user(reg, uaddr))
2511                        return -EFAULT;
2512
2513                return vgic_its_attr_regs_access(dev, attr, &reg, true);
2514        }
2515        }
2516        return -ENXIO;
2517}
2518
2519static int vgic_its_get_attr(struct kvm_device *dev,
2520                             struct kvm_device_attr *attr)
2521{
2522        switch (attr->group) {
2523        case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2524                struct vgic_its *its = dev->private;
2525                u64 addr = its->vgic_its_base;
2526                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2527                unsigned long type = (unsigned long)attr->attr;
2528
2529                if (type != KVM_VGIC_ITS_ADDR_TYPE)
2530                        return -ENODEV;
2531
2532                if (copy_to_user(uaddr, &addr, sizeof(addr)))
2533                        return -EFAULT;
2534                break;
2535        }
2536        case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2537                u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2538                u64 reg;
2539                int ret;
2540
2541                ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2542                if (ret)
2543                        return ret;
2544                return put_user(reg, uaddr);
2545        }
2546        default:
2547                return -ENXIO;
2548        }
2549
2550        return 0;
2551}
2552
2553static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2554        .name = "kvm-arm-vgic-its",
2555        .create = vgic_its_create,
2556        .destroy = vgic_its_destroy,
2557        .set_attr = vgic_its_set_attr,
2558        .get_attr = vgic_its_get_attr,
2559        .has_attr = vgic_its_has_attr,
2560};
2561
2562int kvm_vgic_register_its_device(void)
2563{
2564        return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2565                                       KVM_DEV_TYPE_ARM_VGIC_ITS);
2566}
2567