linux/virt/kvm/arm/vgic/vgic-mmio-v3.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * VGICv3 MMIO handling functions
   4 */
   5
   6#include <linux/irqchip/arm-gic-v3.h>
   7#include <linux/kvm.h>
   8#include <linux/kvm_host.h>
   9#include <kvm/iodev.h>
  10#include <kvm/arm_vgic.h>
  11
  12#include <asm/kvm_emulate.h>
  13#include <asm/kvm_arm.h>
  14#include <asm/kvm_mmu.h>
  15
  16#include "vgic.h"
  17#include "vgic-mmio.h"
  18
  19/* extract @num bytes at @offset bytes offset in data */
  20unsigned long extract_bytes(u64 data, unsigned int offset,
  21                            unsigned int num)
  22{
  23        return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
  24}
  25
  26/* allows updates of any half of a 64-bit register (or the whole thing) */
  27u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
  28                     unsigned long val)
  29{
  30        int lower = (offset & 4) * 8;
  31        int upper = lower + 8 * len - 1;
  32
  33        reg &= ~GENMASK_ULL(upper, lower);
  34        val &= GENMASK_ULL(len * 8 - 1, 0);
  35
  36        return reg | ((u64)val << lower);
  37}
  38
  39bool vgic_has_its(struct kvm *kvm)
  40{
  41        struct vgic_dist *dist = &kvm->arch.vgic;
  42
  43        if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
  44                return false;
  45
  46        return dist->has_its;
  47}
  48
  49bool vgic_supports_direct_msis(struct kvm *kvm)
  50{
  51        return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
  52}
  53
  54/*
  55 * The Revision field in the IIDR have the following meanings:
  56 *
  57 * Revision 2: Interrupt groups are guest-configurable and signaled using
  58 *             their configured groups.
  59 */
  60
  61static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
  62                                            gpa_t addr, unsigned int len)
  63{
  64        struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
  65        u32 value = 0;
  66
  67        switch (addr & 0x0c) {
  68        case GICD_CTLR:
  69                if (vgic->enabled)
  70                        value |= GICD_CTLR_ENABLE_SS_G1;
  71                value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
  72                break;
  73        case GICD_TYPER:
  74                value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
  75                value = (value >> 5) - 1;
  76                if (vgic_has_its(vcpu->kvm)) {
  77                        value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
  78                        value |= GICD_TYPER_LPIS;
  79                } else {
  80                        value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
  81                }
  82                break;
  83        case GICD_IIDR:
  84                value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
  85                        (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
  86                        (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
  87                break;
  88        default:
  89                return 0;
  90        }
  91
  92        return value;
  93}
  94
  95static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
  96                                    gpa_t addr, unsigned int len,
  97                                    unsigned long val)
  98{
  99        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 100        bool was_enabled = dist->enabled;
 101
 102        switch (addr & 0x0c) {
 103        case GICD_CTLR:
 104                dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
 105
 106                if (!was_enabled && dist->enabled)
 107                        vgic_kick_vcpus(vcpu->kvm);
 108                break;
 109        case GICD_TYPER:
 110        case GICD_IIDR:
 111                return;
 112        }
 113}
 114
 115static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
 116                                           gpa_t addr, unsigned int len,
 117                                           unsigned long val)
 118{
 119        switch (addr & 0x0c) {
 120        case GICD_IIDR:
 121                if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
 122                        return -EINVAL;
 123        }
 124
 125        vgic_mmio_write_v3_misc(vcpu, addr, len, val);
 126        return 0;
 127}
 128
 129static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
 130                                            gpa_t addr, unsigned int len)
 131{
 132        int intid = VGIC_ADDR_TO_INTID(addr, 64);
 133        struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
 134        unsigned long ret = 0;
 135
 136        if (!irq)
 137                return 0;
 138
 139        /* The upper word is RAZ for us. */
 140        if (!(addr & 4))
 141                ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
 142
 143        vgic_put_irq(vcpu->kvm, irq);
 144        return ret;
 145}
 146
 147static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
 148                                    gpa_t addr, unsigned int len,
 149                                    unsigned long val)
 150{
 151        int intid = VGIC_ADDR_TO_INTID(addr, 64);
 152        struct vgic_irq *irq;
 153        unsigned long flags;
 154
 155        /* The upper word is WI for us since we don't implement Aff3. */
 156        if (addr & 4)
 157                return;
 158
 159        irq = vgic_get_irq(vcpu->kvm, NULL, intid);
 160
 161        if (!irq)
 162                return;
 163
 164        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 165
 166        /* We only care about and preserve Aff0, Aff1 and Aff2. */
 167        irq->mpidr = val & GENMASK(23, 0);
 168        irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
 169
 170        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 171        vgic_put_irq(vcpu->kvm, irq);
 172}
 173
 174static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
 175                                             gpa_t addr, unsigned int len)
 176{
 177        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 178
 179        return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
 180}
 181
 182
 183static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
 184                                     gpa_t addr, unsigned int len,
 185                                     unsigned long val)
 186{
 187        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 188        bool was_enabled = vgic_cpu->lpis_enabled;
 189
 190        if (!vgic_has_its(vcpu->kvm))
 191                return;
 192
 193        vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
 194
 195        if (was_enabled && !vgic_cpu->lpis_enabled)
 196                vgic_flush_pending_lpis(vcpu);
 197
 198        if (!was_enabled && vgic_cpu->lpis_enabled)
 199                vgic_enable_lpis(vcpu);
 200}
 201
 202static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
 203                                              gpa_t addr, unsigned int len)
 204{
 205        unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
 206        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 207        struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
 208        int target_vcpu_id = vcpu->vcpu_id;
 209        gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
 210                        (rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
 211        u64 value;
 212
 213        value = (u64)(mpidr & GENMASK(23, 0)) << 32;
 214        value |= ((target_vcpu_id & 0xffff) << 8);
 215
 216        if (addr == last_rdist_typer)
 217                value |= GICR_TYPER_LAST;
 218        if (vgic_has_its(vcpu->kvm))
 219                value |= GICR_TYPER_PLPIS;
 220
 221        return extract_bytes(value, addr & 7, len);
 222}
 223
 224static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
 225                                             gpa_t addr, unsigned int len)
 226{
 227        return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
 228}
 229
 230static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
 231                                              gpa_t addr, unsigned int len)
 232{
 233        switch (addr & 0xffff) {
 234        case GICD_PIDR2:
 235                /* report a GICv3 compliant implementation */
 236                return 0x3b;
 237        }
 238
 239        return 0;
 240}
 241
 242static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
 243                                                  gpa_t addr, unsigned int len)
 244{
 245        u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
 246        u32 value = 0;
 247        int i;
 248
 249        /*
 250         * pending state of interrupt is latched in pending_latch variable.
 251         * Userspace will save and restore pending state and line_level
 252         * separately.
 253         * Refer to Documentation/virt/kvm/devices/arm-vgic-v3.txt
 254         * for handling of ISPENDR and ICPENDR.
 255         */
 256        for (i = 0; i < len * 8; i++) {
 257                struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
 258
 259                if (irq->pending_latch)
 260                        value |= (1U << i);
 261
 262                vgic_put_irq(vcpu->kvm, irq);
 263        }
 264
 265        return value;
 266}
 267
 268static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
 269                                         gpa_t addr, unsigned int len,
 270                                         unsigned long val)
 271{
 272        u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
 273        int i;
 274        unsigned long flags;
 275
 276        for (i = 0; i < len * 8; i++) {
 277                struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
 278
 279                raw_spin_lock_irqsave(&irq->irq_lock, flags);
 280                if (test_bit(i, &val)) {
 281                        /*
 282                         * pending_latch is set irrespective of irq type
 283                         * (level or edge) to avoid dependency that VM should
 284                         * restore irq config before pending info.
 285                         */
 286                        irq->pending_latch = true;
 287                        vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
 288                } else {
 289                        irq->pending_latch = false;
 290                        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 291                }
 292
 293                vgic_put_irq(vcpu->kvm, irq);
 294        }
 295
 296        return 0;
 297}
 298
 299/* We want to avoid outer shareable. */
 300u64 vgic_sanitise_shareability(u64 field)
 301{
 302        switch (field) {
 303        case GIC_BASER_OuterShareable:
 304                return GIC_BASER_InnerShareable;
 305        default:
 306                return field;
 307        }
 308}
 309
 310/* Avoid any inner non-cacheable mapping. */
 311u64 vgic_sanitise_inner_cacheability(u64 field)
 312{
 313        switch (field) {
 314        case GIC_BASER_CACHE_nCnB:
 315        case GIC_BASER_CACHE_nC:
 316                return GIC_BASER_CACHE_RaWb;
 317        default:
 318                return field;
 319        }
 320}
 321
 322/* Non-cacheable or same-as-inner are OK. */
 323u64 vgic_sanitise_outer_cacheability(u64 field)
 324{
 325        switch (field) {
 326        case GIC_BASER_CACHE_SameAsInner:
 327        case GIC_BASER_CACHE_nC:
 328                return field;
 329        default:
 330                return GIC_BASER_CACHE_nC;
 331        }
 332}
 333
 334u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
 335                        u64 (*sanitise_fn)(u64))
 336{
 337        u64 field = (reg & field_mask) >> field_shift;
 338
 339        field = sanitise_fn(field) << field_shift;
 340        return (reg & ~field_mask) | field;
 341}
 342
 343#define PROPBASER_RES0_MASK                                             \
 344        (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
 345#define PENDBASER_RES0_MASK                                             \
 346        (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |      \
 347         GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
 348
 349static u64 vgic_sanitise_pendbaser(u64 reg)
 350{
 351        reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
 352                                  GICR_PENDBASER_SHAREABILITY_SHIFT,
 353                                  vgic_sanitise_shareability);
 354        reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
 355                                  GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
 356                                  vgic_sanitise_inner_cacheability);
 357        reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
 358                                  GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
 359                                  vgic_sanitise_outer_cacheability);
 360
 361        reg &= ~PENDBASER_RES0_MASK;
 362
 363        return reg;
 364}
 365
 366static u64 vgic_sanitise_propbaser(u64 reg)
 367{
 368        reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
 369                                  GICR_PROPBASER_SHAREABILITY_SHIFT,
 370                                  vgic_sanitise_shareability);
 371        reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
 372                                  GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
 373                                  vgic_sanitise_inner_cacheability);
 374        reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
 375                                  GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
 376                                  vgic_sanitise_outer_cacheability);
 377
 378        reg &= ~PROPBASER_RES0_MASK;
 379        return reg;
 380}
 381
 382static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
 383                                             gpa_t addr, unsigned int len)
 384{
 385        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 386
 387        return extract_bytes(dist->propbaser, addr & 7, len);
 388}
 389
 390static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
 391                                     gpa_t addr, unsigned int len,
 392                                     unsigned long val)
 393{
 394        struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
 395        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 396        u64 old_propbaser, propbaser;
 397
 398        /* Storing a value with LPIs already enabled is undefined */
 399        if (vgic_cpu->lpis_enabled)
 400                return;
 401
 402        do {
 403                old_propbaser = READ_ONCE(dist->propbaser);
 404                propbaser = old_propbaser;
 405                propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
 406                propbaser = vgic_sanitise_propbaser(propbaser);
 407        } while (cmpxchg64(&dist->propbaser, old_propbaser,
 408                           propbaser) != old_propbaser);
 409}
 410
 411static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
 412                                             gpa_t addr, unsigned int len)
 413{
 414        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 415
 416        return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
 417}
 418
 419static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
 420                                     gpa_t addr, unsigned int len,
 421                                     unsigned long val)
 422{
 423        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 424        u64 old_pendbaser, pendbaser;
 425
 426        /* Storing a value with LPIs already enabled is undefined */
 427        if (vgic_cpu->lpis_enabled)
 428                return;
 429
 430        do {
 431                old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
 432                pendbaser = old_pendbaser;
 433                pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
 434                pendbaser = vgic_sanitise_pendbaser(pendbaser);
 435        } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
 436                           pendbaser) != old_pendbaser);
 437}
 438
 439/*
 440 * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
 441 * redistributors, while SPIs are covered by registers in the distributor
 442 * block. Trying to set private IRQs in this block gets ignored.
 443 * We take some special care here to fix the calculation of the register
 444 * offset.
 445 */
 446#define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
 447        {                                                               \
 448                .reg_offset = off,                                      \
 449                .bits_per_irq = bpi,                                    \
 450                .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,                \
 451                .access_flags = acc,                                    \
 452                .read = vgic_mmio_read_raz,                             \
 453                .write = vgic_mmio_write_wi,                            \
 454        }, {                                                            \
 455                .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,   \
 456                .bits_per_irq = bpi,                                    \
 457                .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,       \
 458                .access_flags = acc,                                    \
 459                .read = rd,                                             \
 460                .write = wr,                                            \
 461                .uaccess_read = ur,                                     \
 462                .uaccess_write = uw,                                    \
 463        }
 464
 465static const struct vgic_register_region vgic_v3_dist_registers[] = {
 466        REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
 467                vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
 468                NULL, vgic_mmio_uaccess_write_v3_misc,
 469                16, VGIC_ACCESS_32bit),
 470        REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
 471                vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
 472                VGIC_ACCESS_32bit),
 473        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
 474                vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
 475                VGIC_ACCESS_32bit),
 476        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
 477                vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
 478                VGIC_ACCESS_32bit),
 479        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
 480                vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
 481                VGIC_ACCESS_32bit),
 482        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
 483                vgic_mmio_read_pending, vgic_mmio_write_spending,
 484                vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
 485                VGIC_ACCESS_32bit),
 486        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
 487                vgic_mmio_read_pending, vgic_mmio_write_cpending,
 488                vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
 489                VGIC_ACCESS_32bit),
 490        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
 491                vgic_mmio_read_active, vgic_mmio_write_sactive,
 492                NULL, vgic_mmio_uaccess_write_sactive, 1,
 493                VGIC_ACCESS_32bit),
 494        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
 495                vgic_mmio_read_active, vgic_mmio_write_cactive,
 496                NULL, vgic_mmio_uaccess_write_cactive,
 497                1, VGIC_ACCESS_32bit),
 498        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
 499                vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
 500                8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
 501        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
 502                vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
 503                VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
 504        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
 505                vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
 506                VGIC_ACCESS_32bit),
 507        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
 508                vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
 509                VGIC_ACCESS_32bit),
 510        REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
 511                vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
 512                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
 513        REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
 514                vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
 515                VGIC_ACCESS_32bit),
 516};
 517
 518static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
 519        REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
 520                vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
 521                VGIC_ACCESS_32bit),
 522        REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
 523                vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
 524                VGIC_ACCESS_32bit),
 525        REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
 526                vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
 527                VGIC_ACCESS_32bit),
 528        REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
 529                vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
 530                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
 531        REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
 532                vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
 533                VGIC_ACCESS_32bit),
 534        REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
 535                vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
 536                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
 537        REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
 538                vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
 539                VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
 540        REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
 541                vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
 542                VGIC_ACCESS_32bit),
 543};
 544
 545static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
 546        REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
 547                vgic_mmio_read_group, vgic_mmio_write_group, 4,
 548                VGIC_ACCESS_32bit),
 549        REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
 550                vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
 551                VGIC_ACCESS_32bit),
 552        REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
 553                vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
 554                VGIC_ACCESS_32bit),
 555        REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISPENDR0,
 556                vgic_mmio_read_pending, vgic_mmio_write_spending,
 557                vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
 558                VGIC_ACCESS_32bit),
 559        REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICPENDR0,
 560                vgic_mmio_read_pending, vgic_mmio_write_cpending,
 561                vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
 562                VGIC_ACCESS_32bit),
 563        REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISACTIVER0,
 564                vgic_mmio_read_active, vgic_mmio_write_sactive,
 565                NULL, vgic_mmio_uaccess_write_sactive,
 566                4, VGIC_ACCESS_32bit),
 567        REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICACTIVER0,
 568                vgic_mmio_read_active, vgic_mmio_write_cactive,
 569                NULL, vgic_mmio_uaccess_write_cactive,
 570                4, VGIC_ACCESS_32bit),
 571        REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
 572                vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
 573                VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
 574        REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
 575                vgic_mmio_read_config, vgic_mmio_write_config, 8,
 576                VGIC_ACCESS_32bit),
 577        REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
 578                vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
 579                VGIC_ACCESS_32bit),
 580        REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
 581                vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
 582                VGIC_ACCESS_32bit),
 583};
 584
 585unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
 586{
 587        dev->regions = vgic_v3_dist_registers;
 588        dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
 589
 590        kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
 591
 592        return SZ_64K;
 593}
 594
 595/**
 596 * vgic_register_redist_iodev - register a single redist iodev
 597 * @vcpu:    The VCPU to which the redistributor belongs
 598 *
 599 * Register a KVM iodev for this VCPU's redistributor using the address
 600 * provided.
 601 *
 602 * Return 0 on success, -ERRNO otherwise.
 603 */
 604int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
 605{
 606        struct kvm *kvm = vcpu->kvm;
 607        struct vgic_dist *vgic = &kvm->arch.vgic;
 608        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 609        struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
 610        struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
 611        struct vgic_redist_region *rdreg;
 612        gpa_t rd_base, sgi_base;
 613        int ret;
 614
 615        if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
 616                return 0;
 617
 618        /*
 619         * We may be creating VCPUs before having set the base address for the
 620         * redistributor region, in which case we will come back to this
 621         * function for all VCPUs when the base address is set.  Just return
 622         * without doing any work for now.
 623         */
 624        rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
 625        if (!rdreg)
 626                return 0;
 627
 628        if (!vgic_v3_check_base(kvm))
 629                return -EINVAL;
 630
 631        vgic_cpu->rdreg = rdreg;
 632
 633        rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
 634        sgi_base = rd_base + SZ_64K;
 635
 636        kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
 637        rd_dev->base_addr = rd_base;
 638        rd_dev->iodev_type = IODEV_REDIST;
 639        rd_dev->regions = vgic_v3_rdbase_registers;
 640        rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
 641        rd_dev->redist_vcpu = vcpu;
 642
 643        mutex_lock(&kvm->slots_lock);
 644        ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
 645                                      SZ_64K, &rd_dev->dev);
 646        mutex_unlock(&kvm->slots_lock);
 647
 648        if (ret)
 649                return ret;
 650
 651        kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
 652        sgi_dev->base_addr = sgi_base;
 653        sgi_dev->iodev_type = IODEV_REDIST;
 654        sgi_dev->regions = vgic_v3_sgibase_registers;
 655        sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
 656        sgi_dev->redist_vcpu = vcpu;
 657
 658        mutex_lock(&kvm->slots_lock);
 659        ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
 660                                      SZ_64K, &sgi_dev->dev);
 661        if (ret) {
 662                kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
 663                                          &rd_dev->dev);
 664                goto out;
 665        }
 666
 667        rdreg->free_index++;
 668out:
 669        mutex_unlock(&kvm->slots_lock);
 670        return ret;
 671}
 672
 673static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
 674{
 675        struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
 676        struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
 677
 678        kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
 679        kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &sgi_dev->dev);
 680}
 681
 682static int vgic_register_all_redist_iodevs(struct kvm *kvm)
 683{
 684        struct kvm_vcpu *vcpu;
 685        int c, ret = 0;
 686
 687        kvm_for_each_vcpu(c, vcpu, kvm) {
 688                ret = vgic_register_redist_iodev(vcpu);
 689                if (ret)
 690                        break;
 691        }
 692
 693        if (ret) {
 694                /* The current c failed, so we start with the previous one. */
 695                mutex_lock(&kvm->slots_lock);
 696                for (c--; c >= 0; c--) {
 697                        vcpu = kvm_get_vcpu(kvm, c);
 698                        vgic_unregister_redist_iodev(vcpu);
 699                }
 700                mutex_unlock(&kvm->slots_lock);
 701        }
 702
 703        return ret;
 704}
 705
 706/**
 707 * vgic_v3_insert_redist_region - Insert a new redistributor region
 708 *
 709 * Performs various checks before inserting the rdist region in the list.
 710 * Those tests depend on whether the size of the rdist region is known
 711 * (ie. count != 0). The list is sorted by rdist region index.
 712 *
 713 * @kvm: kvm handle
 714 * @index: redist region index
 715 * @base: base of the new rdist region
 716 * @count: number of redistributors the region is made of (0 in the old style
 717 * single region, whose size is induced from the number of vcpus)
 718 *
 719 * Return 0 on success, < 0 otherwise
 720 */
 721static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
 722                                        gpa_t base, uint32_t count)
 723{
 724        struct vgic_dist *d = &kvm->arch.vgic;
 725        struct vgic_redist_region *rdreg;
 726        struct list_head *rd_regions = &d->rd_regions;
 727        size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
 728        int ret;
 729
 730        /* single rdist region already set ?*/
 731        if (!count && !list_empty(rd_regions))
 732                return -EINVAL;
 733
 734        /* cross the end of memory ? */
 735        if (base + size < base)
 736                return -EINVAL;
 737
 738        if (list_empty(rd_regions)) {
 739                if (index != 0)
 740                        return -EINVAL;
 741        } else {
 742                rdreg = list_last_entry(rd_regions,
 743                                        struct vgic_redist_region, list);
 744                if (index != rdreg->index + 1)
 745                        return -EINVAL;
 746
 747                /* Cannot add an explicitly sized regions after legacy region */
 748                if (!rdreg->count)
 749                        return -EINVAL;
 750        }
 751
 752        /*
 753         * For legacy single-region redistributor regions (!count),
 754         * check that the redistributor region does not overlap with the
 755         * distributor's address space.
 756         */
 757        if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
 758                vgic_dist_overlap(kvm, base, size))
 759                return -EINVAL;
 760
 761        /* collision with any other rdist region? */
 762        if (vgic_v3_rdist_overlap(kvm, base, size))
 763                return -EINVAL;
 764
 765        rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
 766        if (!rdreg)
 767                return -ENOMEM;
 768
 769        rdreg->base = VGIC_ADDR_UNDEF;
 770
 771        ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
 772        if (ret)
 773                goto free;
 774
 775        rdreg->base = base;
 776        rdreg->count = count;
 777        rdreg->free_index = 0;
 778        rdreg->index = index;
 779
 780        list_add_tail(&rdreg->list, rd_regions);
 781        return 0;
 782free:
 783        kfree(rdreg);
 784        return ret;
 785}
 786
 787int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
 788{
 789        int ret;
 790
 791        ret = vgic_v3_insert_redist_region(kvm, index, addr, count);
 792        if (ret)
 793                return ret;
 794
 795        /*
 796         * Register iodevs for each existing VCPU.  Adding more VCPUs
 797         * afterwards will register the iodevs when needed.
 798         */
 799        ret = vgic_register_all_redist_iodevs(kvm);
 800        if (ret)
 801                return ret;
 802
 803        return 0;
 804}
 805
 806int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
 807{
 808        const struct vgic_register_region *region;
 809        struct vgic_io_device iodev;
 810        struct vgic_reg_attr reg_attr;
 811        struct kvm_vcpu *vcpu;
 812        gpa_t addr;
 813        int ret;
 814
 815        ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
 816        if (ret)
 817                return ret;
 818
 819        vcpu = reg_attr.vcpu;
 820        addr = reg_attr.addr;
 821
 822        switch (attr->group) {
 823        case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
 824                iodev.regions = vgic_v3_dist_registers;
 825                iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
 826                iodev.base_addr = 0;
 827                break;
 828        case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
 829                iodev.regions = vgic_v3_rdbase_registers;
 830                iodev.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
 831                iodev.base_addr = 0;
 832                break;
 833        }
 834        case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
 835                u64 reg, id;
 836
 837                id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
 838                return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
 839        }
 840        default:
 841                return -ENXIO;
 842        }
 843
 844        /* We only support aligned 32-bit accesses. */
 845        if (addr & 3)
 846                return -ENXIO;
 847
 848        region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
 849        if (!region)
 850                return -ENXIO;
 851
 852        return 0;
 853}
 854/*
 855 * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
 856 * generation register ICC_SGI1R_EL1) with a given VCPU.
 857 * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
 858 * return -1.
 859 */
 860static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
 861{
 862        unsigned long affinity;
 863        int level0;
 864
 865        /*
 866         * Split the current VCPU's MPIDR into affinity level 0 and the
 867         * rest as this is what we have to compare against.
 868         */
 869        affinity = kvm_vcpu_get_mpidr_aff(vcpu);
 870        level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
 871        affinity &= ~MPIDR_LEVEL_MASK;
 872
 873        /* bail out if the upper three levels don't match */
 874        if (sgi_aff != affinity)
 875                return -1;
 876
 877        /* Is this VCPU's bit set in the mask ? */
 878        if (!(sgi_cpu_mask & BIT(level0)))
 879                return -1;
 880
 881        return level0;
 882}
 883
 884/*
 885 * The ICC_SGI* registers encode the affinity differently from the MPIDR,
 886 * so provide a wrapper to use the existing defines to isolate a certain
 887 * affinity level.
 888 */
 889#define SGI_AFFINITY_LEVEL(reg, level) \
 890        ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
 891        >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
 892
 893/**
 894 * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
 895 * @vcpu: The VCPU requesting a SGI
 896 * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
 897 * @allow_group1: Does the sysreg access allow generation of G1 SGIs
 898 *
 899 * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
 900 * This will trap in sys_regs.c and call this function.
 901 * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
 902 * target processors as well as a bitmask of 16 Aff0 CPUs.
 903 * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
 904 * check for matching ones. If this bit is set, we signal all, but not the
 905 * calling VCPU.
 906 */
 907void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
 908{
 909        struct kvm *kvm = vcpu->kvm;
 910        struct kvm_vcpu *c_vcpu;
 911        u16 target_cpus;
 912        u64 mpidr;
 913        int sgi, c;
 914        int vcpu_id = vcpu->vcpu_id;
 915        bool broadcast;
 916        unsigned long flags;
 917
 918        sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
 919        broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
 920        target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
 921        mpidr = SGI_AFFINITY_LEVEL(reg, 3);
 922        mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
 923        mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
 924
 925        /*
 926         * We iterate over all VCPUs to find the MPIDRs matching the request.
 927         * If we have handled one CPU, we clear its bit to detect early
 928         * if we are already finished. This avoids iterating through all
 929         * VCPUs when most of the times we just signal a single VCPU.
 930         */
 931        kvm_for_each_vcpu(c, c_vcpu, kvm) {
 932                struct vgic_irq *irq;
 933
 934                /* Exit early if we have dealt with all requested CPUs */
 935                if (!broadcast && target_cpus == 0)
 936                        break;
 937
 938                /* Don't signal the calling VCPU */
 939                if (broadcast && c == vcpu_id)
 940                        continue;
 941
 942                if (!broadcast) {
 943                        int level0;
 944
 945                        level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
 946                        if (level0 == -1)
 947                                continue;
 948
 949                        /* remove this matching VCPU from the mask */
 950                        target_cpus &= ~BIT(level0);
 951                }
 952
 953                irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
 954
 955                raw_spin_lock_irqsave(&irq->irq_lock, flags);
 956
 957                /*
 958                 * An access targetting Group0 SGIs can only generate
 959                 * those, while an access targetting Group1 SGIs can
 960                 * generate interrupts of either group.
 961                 */
 962                if (!irq->group || allow_group1) {
 963                        irq->pending_latch = true;
 964                        vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
 965                } else {
 966                        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 967                }
 968
 969                vgic_put_irq(vcpu->kvm, irq);
 970        }
 971}
 972
 973int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
 974                         int offset, u32 *val)
 975{
 976        struct vgic_io_device dev = {
 977                .regions = vgic_v3_dist_registers,
 978                .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
 979        };
 980
 981        return vgic_uaccess(vcpu, &dev, is_write, offset, val);
 982}
 983
 984int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
 985                           int offset, u32 *val)
 986{
 987        struct vgic_io_device rd_dev = {
 988                .regions = vgic_v3_rdbase_registers,
 989                .nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers),
 990        };
 991
 992        struct vgic_io_device sgi_dev = {
 993                .regions = vgic_v3_sgibase_registers,
 994                .nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers),
 995        };
 996
 997        /* SGI_base is the next 64K frame after RD_base */
 998        if (offset >= SZ_64K)
 999                return vgic_uaccess(vcpu, &sgi_dev, is_write, offset - SZ_64K,
1000                                    val);
1001        else
1002                return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1003}
1004
1005int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1006                                    u32 intid, u64 *val)
1007{
1008        if (intid % 32)
1009                return -EINVAL;
1010
1011        if (is_write)
1012                vgic_write_irq_line_level_info(vcpu, intid, *val);
1013        else
1014                *val = vgic_read_irq_line_level_info(vcpu, intid);
1015
1016        return 0;
1017}
1018