linux/virt/kvm/arm/vgic/vgic-v4.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2017 ARM Ltd.
   4 * Author: Marc Zyngier <marc.zyngier@arm.com>
   5 */
   6
   7#include <linux/interrupt.h>
   8#include <linux/irq.h>
   9#include <linux/irqdomain.h>
  10#include <linux/kvm_host.h>
  11#include <linux/irqchip/arm-gic-v3.h>
  12
  13#include "vgic.h"
  14
  15/*
  16 * How KVM uses GICv4 (insert rude comments here):
  17 *
  18 * The vgic-v4 layer acts as a bridge between several entities:
  19 * - The GICv4 ITS representation offered by the ITS driver
  20 * - VFIO, which is in charge of the PCI endpoint
  21 * - The virtual ITS, which is the only thing the guest sees
  22 *
  23 * The configuration of VLPIs is triggered by a callback from VFIO,
  24 * instructing KVM that a PCI device has been configured to deliver
  25 * MSIs to a vITS.
  26 *
  27 * kvm_vgic_v4_set_forwarding() is thus called with the routing entry,
  28 * and this is used to find the corresponding vITS data structures
  29 * (ITS instance, device, event and irq) using a process that is
  30 * extremely similar to the injection of an MSI.
  31 *
  32 * At this stage, we can link the guest's view of an LPI (uniquely
  33 * identified by the routing entry) and the host irq, using the GICv4
  34 * driver mapping operation. Should the mapping succeed, we've then
  35 * successfully upgraded the guest's LPI to a VLPI. We can then start
  36 * with updating GICv4's view of the property table and generating an
  37 * INValidation in order to kickstart the delivery of this VLPI to the
  38 * guest directly, without software intervention. Well, almost.
  39 *
  40 * When the PCI endpoint is deconfigured, this operation is reversed
  41 * with VFIO calling kvm_vgic_v4_unset_forwarding().
  42 *
  43 * Once the VLPI has been mapped, it needs to follow any change the
  44 * guest performs on its LPI through the vITS. For that, a number of
  45 * command handlers have hooks to communicate these changes to the HW:
  46 * - Any invalidation triggers a call to its_prop_update_vlpi()
  47 * - The INT command results in a irq_set_irqchip_state(), which
  48 *   generates an INT on the corresponding VLPI.
  49 * - The CLEAR command results in a irq_set_irqchip_state(), which
  50 *   generates an CLEAR on the corresponding VLPI.
  51 * - DISCARD translates into an unmap, similar to a call to
  52 *   kvm_vgic_v4_unset_forwarding().
  53 * - MOVI is translated by an update of the existing mapping, changing
  54 *   the target vcpu, resulting in a VMOVI being generated.
  55 * - MOVALL is translated by a string of mapping updates (similar to
  56 *   the handling of MOVI). MOVALL is horrible.
  57 *
  58 * Note that a DISCARD/MAPTI sequence emitted from the guest without
  59 * reprogramming the PCI endpoint after MAPTI does not result in a
  60 * VLPI being mapped, as there is no callback from VFIO (the guest
  61 * will get the interrupt via the normal SW injection). Fixing this is
  62 * not trivial, and requires some horrible messing with the VFIO
  63 * internals. Not fun. Don't do that.
  64 *
  65 * Then there is the scheduling. Each time a vcpu is about to run on a
  66 * physical CPU, KVM must tell the corresponding redistributor about
  67 * it. And if we've migrated our vcpu from one CPU to another, we must
  68 * tell the ITS (so that the messages reach the right redistributor).
  69 * This is done in two steps: first issue a irq_set_affinity() on the
  70 * irq corresponding to the vcpu, then call its_schedule_vpe(). You
  71 * must be in a non-preemptible context. On exit, another call to
  72 * its_schedule_vpe() tells the redistributor that we're done with the
  73 * vcpu.
  74 *
  75 * Finally, the doorbell handling: Each vcpu is allocated an interrupt
  76 * which will fire each time a VLPI is made pending whilst the vcpu is
  77 * not running. Each time the vcpu gets blocked, the doorbell
  78 * interrupt gets enabled. When the vcpu is unblocked (for whatever
  79 * reason), the doorbell interrupt is disabled.
  80 */
  81
  82#define DB_IRQ_FLAGS    (IRQ_NOAUTOEN | IRQ_DISABLE_UNLAZY | IRQ_NO_BALANCING)
  83
  84static irqreturn_t vgic_v4_doorbell_handler(int irq, void *info)
  85{
  86        struct kvm_vcpu *vcpu = info;
  87
  88        vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last = true;
  89        kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
  90        kvm_vcpu_kick(vcpu);
  91
  92        return IRQ_HANDLED;
  93}
  94
  95/**
  96 * vgic_v4_init - Initialize the GICv4 data structures
  97 * @kvm:        Pointer to the VM being initialized
  98 *
  99 * We may be called each time a vITS is created, or when the
 100 * vgic is initialized. This relies on kvm->lock to be
 101 * held. In both cases, the number of vcpus should now be
 102 * fixed.
 103 */
 104int vgic_v4_init(struct kvm *kvm)
 105{
 106        struct vgic_dist *dist = &kvm->arch.vgic;
 107        struct kvm_vcpu *vcpu;
 108        int i, nr_vcpus, ret;
 109
 110        if (!kvm_vgic_global_state.has_gicv4)
 111                return 0; /* Nothing to see here... move along. */
 112
 113        if (dist->its_vm.vpes)
 114                return 0;
 115
 116        nr_vcpus = atomic_read(&kvm->online_vcpus);
 117
 118        dist->its_vm.vpes = kcalloc(nr_vcpus, sizeof(*dist->its_vm.vpes),
 119                                    GFP_KERNEL);
 120        if (!dist->its_vm.vpes)
 121                return -ENOMEM;
 122
 123        dist->its_vm.nr_vpes = nr_vcpus;
 124
 125        kvm_for_each_vcpu(i, vcpu, kvm)
 126                dist->its_vm.vpes[i] = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
 127
 128        ret = its_alloc_vcpu_irqs(&dist->its_vm);
 129        if (ret < 0) {
 130                kvm_err("VPE IRQ allocation failure\n");
 131                kfree(dist->its_vm.vpes);
 132                dist->its_vm.nr_vpes = 0;
 133                dist->its_vm.vpes = NULL;
 134                return ret;
 135        }
 136
 137        kvm_for_each_vcpu(i, vcpu, kvm) {
 138                int irq = dist->its_vm.vpes[i]->irq;
 139
 140                /*
 141                 * Don't automatically enable the doorbell, as we're
 142                 * flipping it back and forth when the vcpu gets
 143                 * blocked. Also disable the lazy disabling, as the
 144                 * doorbell could kick us out of the guest too
 145                 * early...
 146                 */
 147                irq_set_status_flags(irq, DB_IRQ_FLAGS);
 148                ret = request_irq(irq, vgic_v4_doorbell_handler,
 149                                  0, "vcpu", vcpu);
 150                if (ret) {
 151                        kvm_err("failed to allocate vcpu IRQ%d\n", irq);
 152                        /*
 153                         * Trick: adjust the number of vpes so we know
 154                         * how many to nuke on teardown...
 155                         */
 156                        dist->its_vm.nr_vpes = i;
 157                        break;
 158                }
 159        }
 160
 161        if (ret)
 162                vgic_v4_teardown(kvm);
 163
 164        return ret;
 165}
 166
 167/**
 168 * vgic_v4_teardown - Free the GICv4 data structures
 169 * @kvm:        Pointer to the VM being destroyed
 170 *
 171 * Relies on kvm->lock to be held.
 172 */
 173void vgic_v4_teardown(struct kvm *kvm)
 174{
 175        struct its_vm *its_vm = &kvm->arch.vgic.its_vm;
 176        int i;
 177
 178        if (!its_vm->vpes)
 179                return;
 180
 181        for (i = 0; i < its_vm->nr_vpes; i++) {
 182                struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, i);
 183                int irq = its_vm->vpes[i]->irq;
 184
 185                irq_clear_status_flags(irq, DB_IRQ_FLAGS);
 186                free_irq(irq, vcpu);
 187        }
 188
 189        its_free_vcpu_irqs(its_vm);
 190        kfree(its_vm->vpes);
 191        its_vm->nr_vpes = 0;
 192        its_vm->vpes = NULL;
 193}
 194
 195int vgic_v4_sync_hwstate(struct kvm_vcpu *vcpu)
 196{
 197        if (!vgic_supports_direct_msis(vcpu->kvm))
 198                return 0;
 199
 200        return its_schedule_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe, false);
 201}
 202
 203int vgic_v4_flush_hwstate(struct kvm_vcpu *vcpu)
 204{
 205        int irq = vcpu->arch.vgic_cpu.vgic_v3.its_vpe.irq;
 206        int err;
 207
 208        if (!vgic_supports_direct_msis(vcpu->kvm))
 209                return 0;
 210
 211        /*
 212         * Before making the VPE resident, make sure the redistributor
 213         * corresponding to our current CPU expects us here. See the
 214         * doc in drivers/irqchip/irq-gic-v4.c to understand how this
 215         * turns into a VMOVP command at the ITS level.
 216         */
 217        err = irq_set_affinity(irq, cpumask_of(smp_processor_id()));
 218        if (err)
 219                return err;
 220
 221        err = its_schedule_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe, true);
 222        if (err)
 223                return err;
 224
 225        /*
 226         * Now that the VPE is resident, let's get rid of a potential
 227         * doorbell interrupt that would still be pending.
 228         */
 229        err = irq_set_irqchip_state(irq, IRQCHIP_STATE_PENDING, false);
 230
 231        return err;
 232}
 233
 234static struct vgic_its *vgic_get_its(struct kvm *kvm,
 235                                     struct kvm_kernel_irq_routing_entry *irq_entry)
 236{
 237        struct kvm_msi msi  = (struct kvm_msi) {
 238                .address_lo     = irq_entry->msi.address_lo,
 239                .address_hi     = irq_entry->msi.address_hi,
 240                .data           = irq_entry->msi.data,
 241                .flags          = irq_entry->msi.flags,
 242                .devid          = irq_entry->msi.devid,
 243        };
 244
 245        return vgic_msi_to_its(kvm, &msi);
 246}
 247
 248int kvm_vgic_v4_set_forwarding(struct kvm *kvm, int virq,
 249                               struct kvm_kernel_irq_routing_entry *irq_entry)
 250{
 251        struct vgic_its *its;
 252        struct vgic_irq *irq;
 253        struct its_vlpi_map map;
 254        int ret;
 255
 256        if (!vgic_supports_direct_msis(kvm))
 257                return 0;
 258
 259        /*
 260         * Get the ITS, and escape early on error (not a valid
 261         * doorbell for any of our vITSs).
 262         */
 263        its = vgic_get_its(kvm, irq_entry);
 264        if (IS_ERR(its))
 265                return 0;
 266
 267        mutex_lock(&its->its_lock);
 268
 269        /* Perform then actual DevID/EventID -> LPI translation. */
 270        ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
 271                                   irq_entry->msi.data, &irq);
 272        if (ret)
 273                goto out;
 274
 275        /*
 276         * Emit the mapping request. If it fails, the ITS probably
 277         * isn't v4 compatible, so let's silently bail out. Holding
 278         * the ITS lock should ensure that nothing can modify the
 279         * target vcpu.
 280         */
 281        map = (struct its_vlpi_map) {
 282                .vm             = &kvm->arch.vgic.its_vm,
 283                .vpe            = &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe,
 284                .vintid         = irq->intid,
 285                .properties     = ((irq->priority & 0xfc) |
 286                                   (irq->enabled ? LPI_PROP_ENABLED : 0) |
 287                                   LPI_PROP_GROUP1),
 288                .db_enabled     = true,
 289        };
 290
 291        ret = its_map_vlpi(virq, &map);
 292        if (ret)
 293                goto out;
 294
 295        irq->hw         = true;
 296        irq->host_irq   = virq;
 297
 298out:
 299        mutex_unlock(&its->its_lock);
 300        return ret;
 301}
 302
 303int kvm_vgic_v4_unset_forwarding(struct kvm *kvm, int virq,
 304                                 struct kvm_kernel_irq_routing_entry *irq_entry)
 305{
 306        struct vgic_its *its;
 307        struct vgic_irq *irq;
 308        int ret;
 309
 310        if (!vgic_supports_direct_msis(kvm))
 311                return 0;
 312
 313        /*
 314         * Get the ITS, and escape early on error (not a valid
 315         * doorbell for any of our vITSs).
 316         */
 317        its = vgic_get_its(kvm, irq_entry);
 318        if (IS_ERR(its))
 319                return 0;
 320
 321        mutex_lock(&its->its_lock);
 322
 323        ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
 324                                   irq_entry->msi.data, &irq);
 325        if (ret)
 326                goto out;
 327
 328        WARN_ON(!(irq->hw && irq->host_irq == virq));
 329        if (irq->hw) {
 330                irq->hw = false;
 331                ret = its_unmap_vlpi(virq);
 332        }
 333
 334out:
 335        mutex_unlock(&its->its_lock);
 336        return ret;
 337}
 338
 339void kvm_vgic_v4_enable_doorbell(struct kvm_vcpu *vcpu)
 340{
 341        if (vgic_supports_direct_msis(vcpu->kvm)) {
 342                int irq = vcpu->arch.vgic_cpu.vgic_v3.its_vpe.irq;
 343                if (irq)
 344                        enable_irq(irq);
 345        }
 346}
 347
 348void kvm_vgic_v4_disable_doorbell(struct kvm_vcpu *vcpu)
 349{
 350        if (vgic_supports_direct_msis(vcpu->kvm)) {
 351                int irq = vcpu->arch.vgic_cpu.vgic_v3.its_vpe.irq;
 352                if (irq)
 353                        disable_irq(irq);
 354        }
 355}
 356