linux/virt/kvm/arm/vgic/vgic.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2015, 2016 ARM Ltd.
   4 */
   5
   6#include <linux/interrupt.h>
   7#include <linux/irq.h>
   8#include <linux/kvm.h>
   9#include <linux/kvm_host.h>
  10#include <linux/list_sort.h>
  11#include <linux/nospec.h>
  12
  13#include <asm/kvm_hyp.h>
  14
  15#include "vgic.h"
  16
  17#define CREATE_TRACE_POINTS
  18#include "trace.h"
  19
  20struct vgic_global kvm_vgic_global_state __ro_after_init = {
  21        .gicv3_cpuif = STATIC_KEY_FALSE_INIT,
  22};
  23
  24/*
  25 * Locking order is always:
  26 * kvm->lock (mutex)
  27 *   its->cmd_lock (mutex)
  28 *     its->its_lock (mutex)
  29 *       vgic_cpu->ap_list_lock         must be taken with IRQs disabled
  30 *         kvm->lpi_list_lock           must be taken with IRQs disabled
  31 *           vgic_irq->irq_lock         must be taken with IRQs disabled
  32 *
  33 * As the ap_list_lock might be taken from the timer interrupt handler,
  34 * we have to disable IRQs before taking this lock and everything lower
  35 * than it.
  36 *
  37 * If you need to take multiple locks, always take the upper lock first,
  38 * then the lower ones, e.g. first take the its_lock, then the irq_lock.
  39 * If you are already holding a lock and need to take a higher one, you
  40 * have to drop the lower ranking lock first and re-aquire it after having
  41 * taken the upper one.
  42 *
  43 * When taking more than one ap_list_lock at the same time, always take the
  44 * lowest numbered VCPU's ap_list_lock first, so:
  45 *   vcpuX->vcpu_id < vcpuY->vcpu_id:
  46 *     raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
  47 *     raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
  48 *
  49 * Since the VGIC must support injecting virtual interrupts from ISRs, we have
  50 * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
  51 * spinlocks for any lock that may be taken while injecting an interrupt.
  52 */
  53
  54/*
  55 * Iterate over the VM's list of mapped LPIs to find the one with a
  56 * matching interrupt ID and return a reference to the IRQ structure.
  57 */
  58static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
  59{
  60        struct vgic_dist *dist = &kvm->arch.vgic;
  61        struct vgic_irq *irq = NULL;
  62        unsigned long flags;
  63
  64        raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
  65
  66        list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
  67                if (irq->intid != intid)
  68                        continue;
  69
  70                /*
  71                 * This increases the refcount, the caller is expected to
  72                 * call vgic_put_irq() later once it's finished with the IRQ.
  73                 */
  74                vgic_get_irq_kref(irq);
  75                goto out_unlock;
  76        }
  77        irq = NULL;
  78
  79out_unlock:
  80        raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
  81
  82        return irq;
  83}
  84
  85/*
  86 * This looks up the virtual interrupt ID to get the corresponding
  87 * struct vgic_irq. It also increases the refcount, so any caller is expected
  88 * to call vgic_put_irq() once it's finished with this IRQ.
  89 */
  90struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
  91                              u32 intid)
  92{
  93        /* SGIs and PPIs */
  94        if (intid <= VGIC_MAX_PRIVATE) {
  95                intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1);
  96                return &vcpu->arch.vgic_cpu.private_irqs[intid];
  97        }
  98
  99        /* SPIs */
 100        if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
 101                intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
 102                return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
 103        }
 104
 105        /* LPIs */
 106        if (intid >= VGIC_MIN_LPI)
 107                return vgic_get_lpi(kvm, intid);
 108
 109        WARN(1, "Looking up struct vgic_irq for reserved INTID");
 110        return NULL;
 111}
 112
 113/*
 114 * We can't do anything in here, because we lack the kvm pointer to
 115 * lock and remove the item from the lpi_list. So we keep this function
 116 * empty and use the return value of kref_put() to trigger the freeing.
 117 */
 118static void vgic_irq_release(struct kref *ref)
 119{
 120}
 121
 122void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
 123{
 124        struct vgic_dist *dist = &kvm->arch.vgic;
 125        unsigned long flags;
 126
 127        if (irq->intid < VGIC_MIN_LPI)
 128                return;
 129
 130        raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
 131        if (!kref_put(&irq->refcount, vgic_irq_release)) {
 132                raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
 133                return;
 134        };
 135
 136        list_del(&irq->lpi_list);
 137        dist->lpi_list_count--;
 138        raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
 139
 140        kfree(irq);
 141}
 142
 143void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
 144{
 145        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 146        struct vgic_irq *irq, *tmp;
 147        unsigned long flags;
 148
 149        raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
 150
 151        list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
 152                if (irq->intid >= VGIC_MIN_LPI) {
 153                        raw_spin_lock(&irq->irq_lock);
 154                        list_del(&irq->ap_list);
 155                        irq->vcpu = NULL;
 156                        raw_spin_unlock(&irq->irq_lock);
 157                        vgic_put_irq(vcpu->kvm, irq);
 158                }
 159        }
 160
 161        raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
 162}
 163
 164void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
 165{
 166        WARN_ON(irq_set_irqchip_state(irq->host_irq,
 167                                      IRQCHIP_STATE_PENDING,
 168                                      pending));
 169}
 170
 171bool vgic_get_phys_line_level(struct vgic_irq *irq)
 172{
 173        bool line_level;
 174
 175        BUG_ON(!irq->hw);
 176
 177        if (irq->get_input_level)
 178                return irq->get_input_level(irq->intid);
 179
 180        WARN_ON(irq_get_irqchip_state(irq->host_irq,
 181                                      IRQCHIP_STATE_PENDING,
 182                                      &line_level));
 183        return line_level;
 184}
 185
 186/* Set/Clear the physical active state */
 187void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
 188{
 189
 190        BUG_ON(!irq->hw);
 191        WARN_ON(irq_set_irqchip_state(irq->host_irq,
 192                                      IRQCHIP_STATE_ACTIVE,
 193                                      active));
 194}
 195
 196/**
 197 * kvm_vgic_target_oracle - compute the target vcpu for an irq
 198 *
 199 * @irq:        The irq to route. Must be already locked.
 200 *
 201 * Based on the current state of the interrupt (enabled, pending,
 202 * active, vcpu and target_vcpu), compute the next vcpu this should be
 203 * given to. Return NULL if this shouldn't be injected at all.
 204 *
 205 * Requires the IRQ lock to be held.
 206 */
 207static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
 208{
 209        lockdep_assert_held(&irq->irq_lock);
 210
 211        /* If the interrupt is active, it must stay on the current vcpu */
 212        if (irq->active)
 213                return irq->vcpu ? : irq->target_vcpu;
 214
 215        /*
 216         * If the IRQ is not active but enabled and pending, we should direct
 217         * it to its configured target VCPU.
 218         * If the distributor is disabled, pending interrupts shouldn't be
 219         * forwarded.
 220         */
 221        if (irq->enabled && irq_is_pending(irq)) {
 222                if (unlikely(irq->target_vcpu &&
 223                             !irq->target_vcpu->kvm->arch.vgic.enabled))
 224                        return NULL;
 225
 226                return irq->target_vcpu;
 227        }
 228
 229        /* If neither active nor pending and enabled, then this IRQ should not
 230         * be queued to any VCPU.
 231         */
 232        return NULL;
 233}
 234
 235/*
 236 * The order of items in the ap_lists defines how we'll pack things in LRs as
 237 * well, the first items in the list being the first things populated in the
 238 * LRs.
 239 *
 240 * A hard rule is that active interrupts can never be pushed out of the LRs
 241 * (and therefore take priority) since we cannot reliably trap on deactivation
 242 * of IRQs and therefore they have to be present in the LRs.
 243 *
 244 * Otherwise things should be sorted by the priority field and the GIC
 245 * hardware support will take care of preemption of priority groups etc.
 246 *
 247 * Return negative if "a" sorts before "b", 0 to preserve order, and positive
 248 * to sort "b" before "a".
 249 */
 250static int vgic_irq_cmp(void *priv, struct list_head *a, struct list_head *b)
 251{
 252        struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
 253        struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
 254        bool penda, pendb;
 255        int ret;
 256
 257        /*
 258         * list_sort may call this function with the same element when
 259         * the list is fairly long.
 260         */
 261        if (unlikely(irqa == irqb))
 262                return 0;
 263
 264        raw_spin_lock(&irqa->irq_lock);
 265        raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
 266
 267        if (irqa->active || irqb->active) {
 268                ret = (int)irqb->active - (int)irqa->active;
 269                goto out;
 270        }
 271
 272        penda = irqa->enabled && irq_is_pending(irqa);
 273        pendb = irqb->enabled && irq_is_pending(irqb);
 274
 275        if (!penda || !pendb) {
 276                ret = (int)pendb - (int)penda;
 277                goto out;
 278        }
 279
 280        /* Both pending and enabled, sort by priority */
 281        ret = irqa->priority - irqb->priority;
 282out:
 283        raw_spin_unlock(&irqb->irq_lock);
 284        raw_spin_unlock(&irqa->irq_lock);
 285        return ret;
 286}
 287
 288/* Must be called with the ap_list_lock held */
 289static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
 290{
 291        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 292
 293        lockdep_assert_held(&vgic_cpu->ap_list_lock);
 294
 295        list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
 296}
 297
 298/*
 299 * Only valid injection if changing level for level-triggered IRQs or for a
 300 * rising edge, and in-kernel connected IRQ lines can only be controlled by
 301 * their owner.
 302 */
 303static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
 304{
 305        if (irq->owner != owner)
 306                return false;
 307
 308        switch (irq->config) {
 309        case VGIC_CONFIG_LEVEL:
 310                return irq->line_level != level;
 311        case VGIC_CONFIG_EDGE:
 312                return level;
 313        }
 314
 315        return false;
 316}
 317
 318/*
 319 * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
 320 * Do the queuing if necessary, taking the right locks in the right order.
 321 * Returns true when the IRQ was queued, false otherwise.
 322 *
 323 * Needs to be entered with the IRQ lock already held, but will return
 324 * with all locks dropped.
 325 */
 326bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
 327                           unsigned long flags)
 328{
 329        struct kvm_vcpu *vcpu;
 330
 331        lockdep_assert_held(&irq->irq_lock);
 332
 333retry:
 334        vcpu = vgic_target_oracle(irq);
 335        if (irq->vcpu || !vcpu) {
 336                /*
 337                 * If this IRQ is already on a VCPU's ap_list, then it
 338                 * cannot be moved or modified and there is no more work for
 339                 * us to do.
 340                 *
 341                 * Otherwise, if the irq is not pending and enabled, it does
 342                 * not need to be inserted into an ap_list and there is also
 343                 * no more work for us to do.
 344                 */
 345                raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 346
 347                /*
 348                 * We have to kick the VCPU here, because we could be
 349                 * queueing an edge-triggered interrupt for which we
 350                 * get no EOI maintenance interrupt. In that case,
 351                 * while the IRQ is already on the VCPU's AP list, the
 352                 * VCPU could have EOI'ed the original interrupt and
 353                 * won't see this one until it exits for some other
 354                 * reason.
 355                 */
 356                if (vcpu) {
 357                        kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
 358                        kvm_vcpu_kick(vcpu);
 359                }
 360                return false;
 361        }
 362
 363        /*
 364         * We must unlock the irq lock to take the ap_list_lock where
 365         * we are going to insert this new pending interrupt.
 366         */
 367        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 368
 369        /* someone can do stuff here, which we re-check below */
 370
 371        raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
 372        raw_spin_lock(&irq->irq_lock);
 373
 374        /*
 375         * Did something change behind our backs?
 376         *
 377         * There are two cases:
 378         * 1) The irq lost its pending state or was disabled behind our
 379         *    backs and/or it was queued to another VCPU's ap_list.
 380         * 2) Someone changed the affinity on this irq behind our
 381         *    backs and we are now holding the wrong ap_list_lock.
 382         *
 383         * In both cases, drop the locks and retry.
 384         */
 385
 386        if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
 387                raw_spin_unlock(&irq->irq_lock);
 388                raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
 389                                           flags);
 390
 391                raw_spin_lock_irqsave(&irq->irq_lock, flags);
 392                goto retry;
 393        }
 394
 395        /*
 396         * Grab a reference to the irq to reflect the fact that it is
 397         * now in the ap_list.
 398         */
 399        vgic_get_irq_kref(irq);
 400        list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
 401        irq->vcpu = vcpu;
 402
 403        raw_spin_unlock(&irq->irq_lock);
 404        raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
 405
 406        kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
 407        kvm_vcpu_kick(vcpu);
 408
 409        return true;
 410}
 411
 412/**
 413 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
 414 * @kvm:     The VM structure pointer
 415 * @cpuid:   The CPU for PPIs
 416 * @intid:   The INTID to inject a new state to.
 417 * @level:   Edge-triggered:  true:  to trigger the interrupt
 418 *                            false: to ignore the call
 419 *           Level-sensitive  true:  raise the input signal
 420 *                            false: lower the input signal
 421 * @owner:   The opaque pointer to the owner of the IRQ being raised to verify
 422 *           that the caller is allowed to inject this IRQ.  Userspace
 423 *           injections will have owner == NULL.
 424 *
 425 * The VGIC is not concerned with devices being active-LOW or active-HIGH for
 426 * level-sensitive interrupts.  You can think of the level parameter as 1
 427 * being HIGH and 0 being LOW and all devices being active-HIGH.
 428 */
 429int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
 430                        bool level, void *owner)
 431{
 432        struct kvm_vcpu *vcpu;
 433        struct vgic_irq *irq;
 434        unsigned long flags;
 435        int ret;
 436
 437        trace_vgic_update_irq_pending(cpuid, intid, level);
 438
 439        ret = vgic_lazy_init(kvm);
 440        if (ret)
 441                return ret;
 442
 443        vcpu = kvm_get_vcpu(kvm, cpuid);
 444        if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
 445                return -EINVAL;
 446
 447        irq = vgic_get_irq(kvm, vcpu, intid);
 448        if (!irq)
 449                return -EINVAL;
 450
 451        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 452
 453        if (!vgic_validate_injection(irq, level, owner)) {
 454                /* Nothing to see here, move along... */
 455                raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 456                vgic_put_irq(kvm, irq);
 457                return 0;
 458        }
 459
 460        if (irq->config == VGIC_CONFIG_LEVEL)
 461                irq->line_level = level;
 462        else
 463                irq->pending_latch = true;
 464
 465        vgic_queue_irq_unlock(kvm, irq, flags);
 466        vgic_put_irq(kvm, irq);
 467
 468        return 0;
 469}
 470
 471/* @irq->irq_lock must be held */
 472static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
 473                            unsigned int host_irq,
 474                            bool (*get_input_level)(int vindid))
 475{
 476        struct irq_desc *desc;
 477        struct irq_data *data;
 478
 479        /*
 480         * Find the physical IRQ number corresponding to @host_irq
 481         */
 482        desc = irq_to_desc(host_irq);
 483        if (!desc) {
 484                kvm_err("%s: no interrupt descriptor\n", __func__);
 485                return -EINVAL;
 486        }
 487        data = irq_desc_get_irq_data(desc);
 488        while (data->parent_data)
 489                data = data->parent_data;
 490
 491        irq->hw = true;
 492        irq->host_irq = host_irq;
 493        irq->hwintid = data->hwirq;
 494        irq->get_input_level = get_input_level;
 495        return 0;
 496}
 497
 498/* @irq->irq_lock must be held */
 499static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
 500{
 501        irq->hw = false;
 502        irq->hwintid = 0;
 503        irq->get_input_level = NULL;
 504}
 505
 506int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
 507                          u32 vintid, bool (*get_input_level)(int vindid))
 508{
 509        struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
 510        unsigned long flags;
 511        int ret;
 512
 513        BUG_ON(!irq);
 514
 515        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 516        ret = kvm_vgic_map_irq(vcpu, irq, host_irq, get_input_level);
 517        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 518        vgic_put_irq(vcpu->kvm, irq);
 519
 520        return ret;
 521}
 522
 523/**
 524 * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
 525 * @vcpu: The VCPU pointer
 526 * @vintid: The INTID of the interrupt
 527 *
 528 * Reset the active and pending states of a mapped interrupt.  Kernel
 529 * subsystems injecting mapped interrupts should reset their interrupt lines
 530 * when we are doing a reset of the VM.
 531 */
 532void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
 533{
 534        struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
 535        unsigned long flags;
 536
 537        if (!irq->hw)
 538                goto out;
 539
 540        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 541        irq->active = false;
 542        irq->pending_latch = false;
 543        irq->line_level = false;
 544        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 545out:
 546        vgic_put_irq(vcpu->kvm, irq);
 547}
 548
 549int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
 550{
 551        struct vgic_irq *irq;
 552        unsigned long flags;
 553
 554        if (!vgic_initialized(vcpu->kvm))
 555                return -EAGAIN;
 556
 557        irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
 558        BUG_ON(!irq);
 559
 560        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 561        kvm_vgic_unmap_irq(irq);
 562        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 563        vgic_put_irq(vcpu->kvm, irq);
 564
 565        return 0;
 566}
 567
 568/**
 569 * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
 570 *
 571 * @vcpu:   Pointer to the VCPU (used for PPIs)
 572 * @intid:  The virtual INTID identifying the interrupt (PPI or SPI)
 573 * @owner:  Opaque pointer to the owner
 574 *
 575 * Returns 0 if intid is not already used by another in-kernel device and the
 576 * owner is set, otherwise returns an error code.
 577 */
 578int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
 579{
 580        struct vgic_irq *irq;
 581        unsigned long flags;
 582        int ret = 0;
 583
 584        if (!vgic_initialized(vcpu->kvm))
 585                return -EAGAIN;
 586
 587        /* SGIs and LPIs cannot be wired up to any device */
 588        if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
 589                return -EINVAL;
 590
 591        irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
 592        raw_spin_lock_irqsave(&irq->irq_lock, flags);
 593        if (irq->owner && irq->owner != owner)
 594                ret = -EEXIST;
 595        else
 596                irq->owner = owner;
 597        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
 598
 599        return ret;
 600}
 601
 602/**
 603 * vgic_prune_ap_list - Remove non-relevant interrupts from the list
 604 *
 605 * @vcpu: The VCPU pointer
 606 *
 607 * Go over the list of "interesting" interrupts, and prune those that we
 608 * won't have to consider in the near future.
 609 */
 610static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
 611{
 612        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 613        struct vgic_irq *irq, *tmp;
 614
 615        DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
 616
 617retry:
 618        raw_spin_lock(&vgic_cpu->ap_list_lock);
 619
 620        list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
 621                struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
 622                bool target_vcpu_needs_kick = false;
 623
 624                raw_spin_lock(&irq->irq_lock);
 625
 626                BUG_ON(vcpu != irq->vcpu);
 627
 628                target_vcpu = vgic_target_oracle(irq);
 629
 630                if (!target_vcpu) {
 631                        /*
 632                         * We don't need to process this interrupt any
 633                         * further, move it off the list.
 634                         */
 635                        list_del(&irq->ap_list);
 636                        irq->vcpu = NULL;
 637                        raw_spin_unlock(&irq->irq_lock);
 638
 639                        /*
 640                         * This vgic_put_irq call matches the
 641                         * vgic_get_irq_kref in vgic_queue_irq_unlock,
 642                         * where we added the LPI to the ap_list. As
 643                         * we remove the irq from the list, we drop
 644                         * also drop the refcount.
 645                         */
 646                        vgic_put_irq(vcpu->kvm, irq);
 647                        continue;
 648                }
 649
 650                if (target_vcpu == vcpu) {
 651                        /* We're on the right CPU */
 652                        raw_spin_unlock(&irq->irq_lock);
 653                        continue;
 654                }
 655
 656                /* This interrupt looks like it has to be migrated. */
 657
 658                raw_spin_unlock(&irq->irq_lock);
 659                raw_spin_unlock(&vgic_cpu->ap_list_lock);
 660
 661                /*
 662                 * Ensure locking order by always locking the smallest
 663                 * ID first.
 664                 */
 665                if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
 666                        vcpuA = vcpu;
 667                        vcpuB = target_vcpu;
 668                } else {
 669                        vcpuA = target_vcpu;
 670                        vcpuB = vcpu;
 671                }
 672
 673                raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
 674                raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
 675                                      SINGLE_DEPTH_NESTING);
 676                raw_spin_lock(&irq->irq_lock);
 677
 678                /*
 679                 * If the affinity has been preserved, move the
 680                 * interrupt around. Otherwise, it means things have
 681                 * changed while the interrupt was unlocked, and we
 682                 * need to replay this.
 683                 *
 684                 * In all cases, we cannot trust the list not to have
 685                 * changed, so we restart from the beginning.
 686                 */
 687                if (target_vcpu == vgic_target_oracle(irq)) {
 688                        struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
 689
 690                        list_del(&irq->ap_list);
 691                        irq->vcpu = target_vcpu;
 692                        list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
 693                        target_vcpu_needs_kick = true;
 694                }
 695
 696                raw_spin_unlock(&irq->irq_lock);
 697                raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
 698                raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
 699
 700                if (target_vcpu_needs_kick) {
 701                        kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
 702                        kvm_vcpu_kick(target_vcpu);
 703                }
 704
 705                goto retry;
 706        }
 707
 708        raw_spin_unlock(&vgic_cpu->ap_list_lock);
 709}
 710
 711static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
 712{
 713        if (kvm_vgic_global_state.type == VGIC_V2)
 714                vgic_v2_fold_lr_state(vcpu);
 715        else
 716                vgic_v3_fold_lr_state(vcpu);
 717}
 718
 719/* Requires the irq_lock to be held. */
 720static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
 721                                    struct vgic_irq *irq, int lr)
 722{
 723        lockdep_assert_held(&irq->irq_lock);
 724
 725        if (kvm_vgic_global_state.type == VGIC_V2)
 726                vgic_v2_populate_lr(vcpu, irq, lr);
 727        else
 728                vgic_v3_populate_lr(vcpu, irq, lr);
 729}
 730
 731static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
 732{
 733        if (kvm_vgic_global_state.type == VGIC_V2)
 734                vgic_v2_clear_lr(vcpu, lr);
 735        else
 736                vgic_v3_clear_lr(vcpu, lr);
 737}
 738
 739static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
 740{
 741        if (kvm_vgic_global_state.type == VGIC_V2)
 742                vgic_v2_set_underflow(vcpu);
 743        else
 744                vgic_v3_set_underflow(vcpu);
 745}
 746
 747/* Requires the ap_list_lock to be held. */
 748static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
 749                                 bool *multi_sgi)
 750{
 751        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 752        struct vgic_irq *irq;
 753        int count = 0;
 754
 755        *multi_sgi = false;
 756
 757        lockdep_assert_held(&vgic_cpu->ap_list_lock);
 758
 759        list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
 760                int w;
 761
 762                raw_spin_lock(&irq->irq_lock);
 763                /* GICv2 SGIs can count for more than one... */
 764                w = vgic_irq_get_lr_count(irq);
 765                raw_spin_unlock(&irq->irq_lock);
 766
 767                count += w;
 768                *multi_sgi |= (w > 1);
 769        }
 770        return count;
 771}
 772
 773/* Requires the VCPU's ap_list_lock to be held. */
 774static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
 775{
 776        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 777        struct vgic_irq *irq;
 778        int count;
 779        bool multi_sgi;
 780        u8 prio = 0xff;
 781
 782        lockdep_assert_held(&vgic_cpu->ap_list_lock);
 783
 784        count = compute_ap_list_depth(vcpu, &multi_sgi);
 785        if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
 786                vgic_sort_ap_list(vcpu);
 787
 788        count = 0;
 789
 790        list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
 791                raw_spin_lock(&irq->irq_lock);
 792
 793                /*
 794                 * If we have multi-SGIs in the pipeline, we need to
 795                 * guarantee that they are all seen before any IRQ of
 796                 * lower priority. In that case, we need to filter out
 797                 * these interrupts by exiting early. This is easy as
 798                 * the AP list has been sorted already.
 799                 */
 800                if (multi_sgi && irq->priority > prio) {
 801                        _raw_spin_unlock(&irq->irq_lock);
 802                        break;
 803                }
 804
 805                if (likely(vgic_target_oracle(irq) == vcpu)) {
 806                        vgic_populate_lr(vcpu, irq, count++);
 807
 808                        if (irq->source)
 809                                prio = irq->priority;
 810                }
 811
 812                raw_spin_unlock(&irq->irq_lock);
 813
 814                if (count == kvm_vgic_global_state.nr_lr) {
 815                        if (!list_is_last(&irq->ap_list,
 816                                          &vgic_cpu->ap_list_head))
 817                                vgic_set_underflow(vcpu);
 818                        break;
 819                }
 820        }
 821
 822        vcpu->arch.vgic_cpu.used_lrs = count;
 823
 824        /* Nuke remaining LRs */
 825        for ( ; count < kvm_vgic_global_state.nr_lr; count++)
 826                vgic_clear_lr(vcpu, count);
 827}
 828
 829static inline bool can_access_vgic_from_kernel(void)
 830{
 831        /*
 832         * GICv2 can always be accessed from the kernel because it is
 833         * memory-mapped, and VHE systems can access GICv3 EL2 system
 834         * registers.
 835         */
 836        return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
 837}
 838
 839static inline void vgic_save_state(struct kvm_vcpu *vcpu)
 840{
 841        if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
 842                vgic_v2_save_state(vcpu);
 843        else
 844                __vgic_v3_save_state(vcpu);
 845}
 846
 847/* Sync back the hardware VGIC state into our emulation after a guest's run. */
 848void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
 849{
 850        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 851
 852        WARN_ON(vgic_v4_sync_hwstate(vcpu));
 853
 854        /* An empty ap_list_head implies used_lrs == 0 */
 855        if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
 856                return;
 857
 858        if (can_access_vgic_from_kernel())
 859                vgic_save_state(vcpu);
 860
 861        if (vgic_cpu->used_lrs)
 862                vgic_fold_lr_state(vcpu);
 863        vgic_prune_ap_list(vcpu);
 864}
 865
 866static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
 867{
 868        if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
 869                vgic_v2_restore_state(vcpu);
 870        else
 871                __vgic_v3_restore_state(vcpu);
 872}
 873
 874/* Flush our emulation state into the GIC hardware before entering the guest. */
 875void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
 876{
 877        WARN_ON(vgic_v4_flush_hwstate(vcpu));
 878
 879        /*
 880         * If there are no virtual interrupts active or pending for this
 881         * VCPU, then there is no work to do and we can bail out without
 882         * taking any lock.  There is a potential race with someone injecting
 883         * interrupts to the VCPU, but it is a benign race as the VCPU will
 884         * either observe the new interrupt before or after doing this check,
 885         * and introducing additional synchronization mechanism doesn't change
 886         * this.
 887         *
 888         * Note that we still need to go through the whole thing if anything
 889         * can be directly injected (GICv4).
 890         */
 891        if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
 892            !vgic_supports_direct_msis(vcpu->kvm))
 893                return;
 894
 895        DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
 896
 897        if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
 898                raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
 899                vgic_flush_lr_state(vcpu);
 900                raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
 901        }
 902
 903        if (can_access_vgic_from_kernel())
 904                vgic_restore_state(vcpu);
 905}
 906
 907void kvm_vgic_load(struct kvm_vcpu *vcpu)
 908{
 909        if (unlikely(!vgic_initialized(vcpu->kvm)))
 910                return;
 911
 912        if (kvm_vgic_global_state.type == VGIC_V2)
 913                vgic_v2_load(vcpu);
 914        else
 915                vgic_v3_load(vcpu);
 916}
 917
 918void kvm_vgic_put(struct kvm_vcpu *vcpu)
 919{
 920        if (unlikely(!vgic_initialized(vcpu->kvm)))
 921                return;
 922
 923        if (kvm_vgic_global_state.type == VGIC_V2)
 924                vgic_v2_put(vcpu);
 925        else
 926                vgic_v3_put(vcpu);
 927}
 928
 929void kvm_vgic_vmcr_sync(struct kvm_vcpu *vcpu)
 930{
 931        if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
 932                return;
 933
 934        if (kvm_vgic_global_state.type == VGIC_V2)
 935                vgic_v2_vmcr_sync(vcpu);
 936        else
 937                vgic_v3_vmcr_sync(vcpu);
 938}
 939
 940int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
 941{
 942        struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
 943        struct vgic_irq *irq;
 944        bool pending = false;
 945        unsigned long flags;
 946        struct vgic_vmcr vmcr;
 947
 948        if (!vcpu->kvm->arch.vgic.enabled)
 949                return false;
 950
 951        if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
 952                return true;
 953
 954        vgic_get_vmcr(vcpu, &vmcr);
 955
 956        raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
 957
 958        list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
 959                raw_spin_lock(&irq->irq_lock);
 960                pending = irq_is_pending(irq) && irq->enabled &&
 961                          !irq->active &&
 962                          irq->priority < vmcr.pmr;
 963                raw_spin_unlock(&irq->irq_lock);
 964
 965                if (pending)
 966                        break;
 967        }
 968
 969        raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
 970
 971        return pending;
 972}
 973
 974void vgic_kick_vcpus(struct kvm *kvm)
 975{
 976        struct kvm_vcpu *vcpu;
 977        int c;
 978
 979        /*
 980         * We've injected an interrupt, time to find out who deserves
 981         * a good kick...
 982         */
 983        kvm_for_each_vcpu(c, vcpu, kvm) {
 984                if (kvm_vgic_vcpu_pending_irq(vcpu)) {
 985                        kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
 986                        kvm_vcpu_kick(vcpu);
 987                }
 988        }
 989}
 990
 991bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
 992{
 993        struct vgic_irq *irq;
 994        bool map_is_active;
 995        unsigned long flags;
 996
 997        if (!vgic_initialized(vcpu->kvm))
 998                return false;
 999
1000        irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
1001        raw_spin_lock_irqsave(&irq->irq_lock, flags);
1002        map_is_active = irq->hw && irq->active;
1003        raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1004        vgic_put_irq(vcpu->kvm, irq);
1005
1006        return map_is_active;
1007}
1008