linux/virt/kvm/kvm_main.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Kernel-based Virtual Machine driver for Linux
   4 *
   5 * This module enables machines with Intel VT-x extensions to run virtual
   6 * machines without emulation or binary translation.
   7 *
   8 * Copyright (C) 2006 Qumranet, Inc.
   9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10 *
  11 * Authors:
  12 *   Avi Kivity   <avi@qumranet.com>
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 */
  15
  16#include <kvm/iodev.h>
  17
  18#include <linux/kvm_host.h>
  19#include <linux/kvm.h>
  20#include <linux/module.h>
  21#include <linux/errno.h>
  22#include <linux/percpu.h>
  23#include <linux/mm.h>
  24#include <linux/miscdevice.h>
  25#include <linux/vmalloc.h>
  26#include <linux/reboot.h>
  27#include <linux/debugfs.h>
  28#include <linux/highmem.h>
  29#include <linux/file.h>
  30#include <linux/syscore_ops.h>
  31#include <linux/cpu.h>
  32#include <linux/sched/signal.h>
  33#include <linux/sched/mm.h>
  34#include <linux/sched/stat.h>
  35#include <linux/cpumask.h>
  36#include <linux/smp.h>
  37#include <linux/anon_inodes.h>
  38#include <linux/profile.h>
  39#include <linux/kvm_para.h>
  40#include <linux/pagemap.h>
  41#include <linux/mman.h>
  42#include <linux/swap.h>
  43#include <linux/bitops.h>
  44#include <linux/spinlock.h>
  45#include <linux/compat.h>
  46#include <linux/srcu.h>
  47#include <linux/hugetlb.h>
  48#include <linux/slab.h>
  49#include <linux/sort.h>
  50#include <linux/bsearch.h>
  51#include <linux/io.h>
  52#include <linux/lockdep.h>
  53
  54#include <asm/processor.h>
  55#include <asm/ioctl.h>
  56#include <linux/uaccess.h>
  57#include <asm/pgtable.h>
  58
  59#include "coalesced_mmio.h"
  60#include "async_pf.h"
  61#include "vfio.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/kvm.h>
  65
  66/* Worst case buffer size needed for holding an integer. */
  67#define ITOA_MAX_LEN 12
  68
  69MODULE_AUTHOR("Qumranet");
  70MODULE_LICENSE("GPL");
  71
  72/* Architectures should define their poll value according to the halt latency */
  73unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  74module_param(halt_poll_ns, uint, 0644);
  75EXPORT_SYMBOL_GPL(halt_poll_ns);
  76
  77/* Default doubles per-vcpu halt_poll_ns. */
  78unsigned int halt_poll_ns_grow = 2;
  79module_param(halt_poll_ns_grow, uint, 0644);
  80EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
  81
  82/* The start value to grow halt_poll_ns from */
  83unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
  84module_param(halt_poll_ns_grow_start, uint, 0644);
  85EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
  86
  87/* Default resets per-vcpu halt_poll_ns . */
  88unsigned int halt_poll_ns_shrink;
  89module_param(halt_poll_ns_shrink, uint, 0644);
  90EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
  91
  92/*
  93 * Ordering of locks:
  94 *
  95 *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  96 */
  97
  98DEFINE_MUTEX(kvm_lock);
  99static DEFINE_RAW_SPINLOCK(kvm_count_lock);
 100LIST_HEAD(vm_list);
 101
 102static cpumask_var_t cpus_hardware_enabled;
 103static int kvm_usage_count;
 104static atomic_t hardware_enable_failed;
 105
 106struct kmem_cache *kvm_vcpu_cache;
 107EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
 108
 109static __read_mostly struct preempt_ops kvm_preempt_ops;
 110
 111struct dentry *kvm_debugfs_dir;
 112EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
 113
 114static int kvm_debugfs_num_entries;
 115static const struct file_operations *stat_fops_per_vm[];
 116
 117static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
 118                           unsigned long arg);
 119#ifdef CONFIG_KVM_COMPAT
 120static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
 121                                  unsigned long arg);
 122#define KVM_COMPAT(c)   .compat_ioctl   = (c)
 123#else
 124static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
 125                                unsigned long arg) { return -EINVAL; }
 126#define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl
 127#endif
 128static int hardware_enable_all(void);
 129static void hardware_disable_all(void);
 130
 131static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
 132
 133static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
 134
 135__visible bool kvm_rebooting;
 136EXPORT_SYMBOL_GPL(kvm_rebooting);
 137
 138static bool largepages_enabled = true;
 139
 140#define KVM_EVENT_CREATE_VM 0
 141#define KVM_EVENT_DESTROY_VM 1
 142static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
 143static unsigned long long kvm_createvm_count;
 144static unsigned long long kvm_active_vms;
 145
 146__weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
 147                unsigned long start, unsigned long end, bool blockable)
 148{
 149        return 0;
 150}
 151
 152bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
 153{
 154        if (pfn_valid(pfn))
 155                return PageReserved(pfn_to_page(pfn));
 156
 157        return true;
 158}
 159
 160/*
 161 * Switches to specified vcpu, until a matching vcpu_put()
 162 */
 163void vcpu_load(struct kvm_vcpu *vcpu)
 164{
 165        int cpu = get_cpu();
 166        preempt_notifier_register(&vcpu->preempt_notifier);
 167        kvm_arch_vcpu_load(vcpu, cpu);
 168        put_cpu();
 169}
 170EXPORT_SYMBOL_GPL(vcpu_load);
 171
 172void vcpu_put(struct kvm_vcpu *vcpu)
 173{
 174        preempt_disable();
 175        kvm_arch_vcpu_put(vcpu);
 176        preempt_notifier_unregister(&vcpu->preempt_notifier);
 177        preempt_enable();
 178}
 179EXPORT_SYMBOL_GPL(vcpu_put);
 180
 181/* TODO: merge with kvm_arch_vcpu_should_kick */
 182static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
 183{
 184        int mode = kvm_vcpu_exiting_guest_mode(vcpu);
 185
 186        /*
 187         * We need to wait for the VCPU to reenable interrupts and get out of
 188         * READING_SHADOW_PAGE_TABLES mode.
 189         */
 190        if (req & KVM_REQUEST_WAIT)
 191                return mode != OUTSIDE_GUEST_MODE;
 192
 193        /*
 194         * Need to kick a running VCPU, but otherwise there is nothing to do.
 195         */
 196        return mode == IN_GUEST_MODE;
 197}
 198
 199static void ack_flush(void *_completed)
 200{
 201}
 202
 203static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
 204{
 205        if (unlikely(!cpus))
 206                cpus = cpu_online_mask;
 207
 208        if (cpumask_empty(cpus))
 209                return false;
 210
 211        smp_call_function_many(cpus, ack_flush, NULL, wait);
 212        return true;
 213}
 214
 215bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
 216                                 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
 217{
 218        int i, cpu, me;
 219        struct kvm_vcpu *vcpu;
 220        bool called;
 221
 222        me = get_cpu();
 223
 224        kvm_for_each_vcpu(i, vcpu, kvm) {
 225                if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
 226                        continue;
 227
 228                kvm_make_request(req, vcpu);
 229                cpu = vcpu->cpu;
 230
 231                if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
 232                        continue;
 233
 234                if (tmp != NULL && cpu != -1 && cpu != me &&
 235                    kvm_request_needs_ipi(vcpu, req))
 236                        __cpumask_set_cpu(cpu, tmp);
 237        }
 238
 239        called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
 240        put_cpu();
 241
 242        return called;
 243}
 244
 245bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
 246{
 247        cpumask_var_t cpus;
 248        bool called;
 249
 250        zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 251
 252        called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
 253
 254        free_cpumask_var(cpus);
 255        return called;
 256}
 257
 258#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
 259void kvm_flush_remote_tlbs(struct kvm *kvm)
 260{
 261        /*
 262         * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
 263         * kvm_make_all_cpus_request.
 264         */
 265        long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
 266
 267        /*
 268         * We want to publish modifications to the page tables before reading
 269         * mode. Pairs with a memory barrier in arch-specific code.
 270         * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
 271         * and smp_mb in walk_shadow_page_lockless_begin/end.
 272         * - powerpc: smp_mb in kvmppc_prepare_to_enter.
 273         *
 274         * There is already an smp_mb__after_atomic() before
 275         * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
 276         * barrier here.
 277         */
 278        if (!kvm_arch_flush_remote_tlb(kvm)
 279            || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 280                ++kvm->stat.remote_tlb_flush;
 281        cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 282}
 283EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
 284#endif
 285
 286void kvm_reload_remote_mmus(struct kvm *kvm)
 287{
 288        kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 289}
 290
 291int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 292{
 293        struct page *page;
 294        int r;
 295
 296        mutex_init(&vcpu->mutex);
 297        vcpu->cpu = -1;
 298        vcpu->kvm = kvm;
 299        vcpu->vcpu_id = id;
 300        vcpu->pid = NULL;
 301        init_swait_queue_head(&vcpu->wq);
 302        kvm_async_pf_vcpu_init(vcpu);
 303
 304        vcpu->pre_pcpu = -1;
 305        INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
 306
 307        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 308        if (!page) {
 309                r = -ENOMEM;
 310                goto fail;
 311        }
 312        vcpu->run = page_address(page);
 313
 314        kvm_vcpu_set_in_spin_loop(vcpu, false);
 315        kvm_vcpu_set_dy_eligible(vcpu, false);
 316        vcpu->preempted = false;
 317        vcpu->ready = false;
 318
 319        r = kvm_arch_vcpu_init(vcpu);
 320        if (r < 0)
 321                goto fail_free_run;
 322        return 0;
 323
 324fail_free_run:
 325        free_page((unsigned long)vcpu->run);
 326fail:
 327        return r;
 328}
 329EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 330
 331void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 332{
 333        /*
 334         * no need for rcu_read_lock as VCPU_RUN is the only place that
 335         * will change the vcpu->pid pointer and on uninit all file
 336         * descriptors are already gone.
 337         */
 338        put_pid(rcu_dereference_protected(vcpu->pid, 1));
 339        kvm_arch_vcpu_uninit(vcpu);
 340        free_page((unsigned long)vcpu->run);
 341}
 342EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 343
 344#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 345static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 346{
 347        return container_of(mn, struct kvm, mmu_notifier);
 348}
 349
 350static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 351                                        struct mm_struct *mm,
 352                                        unsigned long address,
 353                                        pte_t pte)
 354{
 355        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 356        int idx;
 357
 358        idx = srcu_read_lock(&kvm->srcu);
 359        spin_lock(&kvm->mmu_lock);
 360        kvm->mmu_notifier_seq++;
 361
 362        if (kvm_set_spte_hva(kvm, address, pte))
 363                kvm_flush_remote_tlbs(kvm);
 364
 365        spin_unlock(&kvm->mmu_lock);
 366        srcu_read_unlock(&kvm->srcu, idx);
 367}
 368
 369static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 370                                        const struct mmu_notifier_range *range)
 371{
 372        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 373        int need_tlb_flush = 0, idx;
 374        int ret;
 375
 376        idx = srcu_read_lock(&kvm->srcu);
 377        spin_lock(&kvm->mmu_lock);
 378        /*
 379         * The count increase must become visible at unlock time as no
 380         * spte can be established without taking the mmu_lock and
 381         * count is also read inside the mmu_lock critical section.
 382         */
 383        kvm->mmu_notifier_count++;
 384        need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
 385        need_tlb_flush |= kvm->tlbs_dirty;
 386        /* we've to flush the tlb before the pages can be freed */
 387        if (need_tlb_flush)
 388                kvm_flush_remote_tlbs(kvm);
 389
 390        spin_unlock(&kvm->mmu_lock);
 391
 392        ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
 393                                        range->end,
 394                                        mmu_notifier_range_blockable(range));
 395
 396        srcu_read_unlock(&kvm->srcu, idx);
 397
 398        return ret;
 399}
 400
 401static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 402                                        const struct mmu_notifier_range *range)
 403{
 404        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 405
 406        spin_lock(&kvm->mmu_lock);
 407        /*
 408         * This sequence increase will notify the kvm page fault that
 409         * the page that is going to be mapped in the spte could have
 410         * been freed.
 411         */
 412        kvm->mmu_notifier_seq++;
 413        smp_wmb();
 414        /*
 415         * The above sequence increase must be visible before the
 416         * below count decrease, which is ensured by the smp_wmb above
 417         * in conjunction with the smp_rmb in mmu_notifier_retry().
 418         */
 419        kvm->mmu_notifier_count--;
 420        spin_unlock(&kvm->mmu_lock);
 421
 422        BUG_ON(kvm->mmu_notifier_count < 0);
 423}
 424
 425static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 426                                              struct mm_struct *mm,
 427                                              unsigned long start,
 428                                              unsigned long end)
 429{
 430        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 431        int young, idx;
 432
 433        idx = srcu_read_lock(&kvm->srcu);
 434        spin_lock(&kvm->mmu_lock);
 435
 436        young = kvm_age_hva(kvm, start, end);
 437        if (young)
 438                kvm_flush_remote_tlbs(kvm);
 439
 440        spin_unlock(&kvm->mmu_lock);
 441        srcu_read_unlock(&kvm->srcu, idx);
 442
 443        return young;
 444}
 445
 446static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
 447                                        struct mm_struct *mm,
 448                                        unsigned long start,
 449                                        unsigned long end)
 450{
 451        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 452        int young, idx;
 453
 454        idx = srcu_read_lock(&kvm->srcu);
 455        spin_lock(&kvm->mmu_lock);
 456        /*
 457         * Even though we do not flush TLB, this will still adversely
 458         * affect performance on pre-Haswell Intel EPT, where there is
 459         * no EPT Access Bit to clear so that we have to tear down EPT
 460         * tables instead. If we find this unacceptable, we can always
 461         * add a parameter to kvm_age_hva so that it effectively doesn't
 462         * do anything on clear_young.
 463         *
 464         * Also note that currently we never issue secondary TLB flushes
 465         * from clear_young, leaving this job up to the regular system
 466         * cadence. If we find this inaccurate, we might come up with a
 467         * more sophisticated heuristic later.
 468         */
 469        young = kvm_age_hva(kvm, start, end);
 470        spin_unlock(&kvm->mmu_lock);
 471        srcu_read_unlock(&kvm->srcu, idx);
 472
 473        return young;
 474}
 475
 476static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 477                                       struct mm_struct *mm,
 478                                       unsigned long address)
 479{
 480        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 481        int young, idx;
 482
 483        idx = srcu_read_lock(&kvm->srcu);
 484        spin_lock(&kvm->mmu_lock);
 485        young = kvm_test_age_hva(kvm, address);
 486        spin_unlock(&kvm->mmu_lock);
 487        srcu_read_unlock(&kvm->srcu, idx);
 488
 489        return young;
 490}
 491
 492static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 493                                     struct mm_struct *mm)
 494{
 495        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 496        int idx;
 497
 498        idx = srcu_read_lock(&kvm->srcu);
 499        kvm_arch_flush_shadow_all(kvm);
 500        srcu_read_unlock(&kvm->srcu, idx);
 501}
 502
 503static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 504        .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
 505        .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
 506        .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
 507        .clear_young            = kvm_mmu_notifier_clear_young,
 508        .test_young             = kvm_mmu_notifier_test_young,
 509        .change_pte             = kvm_mmu_notifier_change_pte,
 510        .release                = kvm_mmu_notifier_release,
 511};
 512
 513static int kvm_init_mmu_notifier(struct kvm *kvm)
 514{
 515        kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 516        return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 517}
 518
 519#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 520
 521static int kvm_init_mmu_notifier(struct kvm *kvm)
 522{
 523        return 0;
 524}
 525
 526#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 527
 528static struct kvm_memslots *kvm_alloc_memslots(void)
 529{
 530        int i;
 531        struct kvm_memslots *slots;
 532
 533        slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
 534        if (!slots)
 535                return NULL;
 536
 537        for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 538                slots->id_to_index[i] = slots->memslots[i].id = i;
 539
 540        return slots;
 541}
 542
 543static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 544{
 545        if (!memslot->dirty_bitmap)
 546                return;
 547
 548        kvfree(memslot->dirty_bitmap);
 549        memslot->dirty_bitmap = NULL;
 550}
 551
 552/*
 553 * Free any memory in @free but not in @dont.
 554 */
 555static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
 556                              struct kvm_memory_slot *dont)
 557{
 558        if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 559                kvm_destroy_dirty_bitmap(free);
 560
 561        kvm_arch_free_memslot(kvm, free, dont);
 562
 563        free->npages = 0;
 564}
 565
 566static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
 567{
 568        struct kvm_memory_slot *memslot;
 569
 570        if (!slots)
 571                return;
 572
 573        kvm_for_each_memslot(memslot, slots)
 574                kvm_free_memslot(kvm, memslot, NULL);
 575
 576        kvfree(slots);
 577}
 578
 579static void kvm_destroy_vm_debugfs(struct kvm *kvm)
 580{
 581        int i;
 582
 583        if (!kvm->debugfs_dentry)
 584                return;
 585
 586        debugfs_remove_recursive(kvm->debugfs_dentry);
 587
 588        if (kvm->debugfs_stat_data) {
 589                for (i = 0; i < kvm_debugfs_num_entries; i++)
 590                        kfree(kvm->debugfs_stat_data[i]);
 591                kfree(kvm->debugfs_stat_data);
 592        }
 593}
 594
 595static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
 596{
 597        char dir_name[ITOA_MAX_LEN * 2];
 598        struct kvm_stat_data *stat_data;
 599        struct kvm_stats_debugfs_item *p;
 600
 601        if (!debugfs_initialized())
 602                return 0;
 603
 604        snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
 605        kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
 606
 607        kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
 608                                         sizeof(*kvm->debugfs_stat_data),
 609                                         GFP_KERNEL_ACCOUNT);
 610        if (!kvm->debugfs_stat_data)
 611                return -ENOMEM;
 612
 613        for (p = debugfs_entries; p->name; p++) {
 614                stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
 615                if (!stat_data)
 616                        return -ENOMEM;
 617
 618                stat_data->kvm = kvm;
 619                stat_data->offset = p->offset;
 620                kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
 621                debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
 622                                    stat_data, stat_fops_per_vm[p->kind]);
 623        }
 624        return 0;
 625}
 626
 627static struct kvm *kvm_create_vm(unsigned long type)
 628{
 629        int r, i;
 630        struct kvm *kvm = kvm_arch_alloc_vm();
 631
 632        if (!kvm)
 633                return ERR_PTR(-ENOMEM);
 634
 635        spin_lock_init(&kvm->mmu_lock);
 636        mmgrab(current->mm);
 637        kvm->mm = current->mm;
 638        kvm_eventfd_init(kvm);
 639        mutex_init(&kvm->lock);
 640        mutex_init(&kvm->irq_lock);
 641        mutex_init(&kvm->slots_lock);
 642        refcount_set(&kvm->users_count, 1);
 643        INIT_LIST_HEAD(&kvm->devices);
 644
 645        r = kvm_arch_init_vm(kvm, type);
 646        if (r)
 647                goto out_err_no_disable;
 648
 649        r = hardware_enable_all();
 650        if (r)
 651                goto out_err_no_disable;
 652
 653#ifdef CONFIG_HAVE_KVM_IRQFD
 654        INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 655#endif
 656
 657        BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
 658
 659        r = -ENOMEM;
 660        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 661                struct kvm_memslots *slots = kvm_alloc_memslots();
 662                if (!slots)
 663                        goto out_err_no_srcu;
 664                /* Generations must be different for each address space. */
 665                slots->generation = i;
 666                rcu_assign_pointer(kvm->memslots[i], slots);
 667        }
 668
 669        if (init_srcu_struct(&kvm->srcu))
 670                goto out_err_no_srcu;
 671        if (init_srcu_struct(&kvm->irq_srcu))
 672                goto out_err_no_irq_srcu;
 673        for (i = 0; i < KVM_NR_BUSES; i++) {
 674                rcu_assign_pointer(kvm->buses[i],
 675                        kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
 676                if (!kvm->buses[i])
 677                        goto out_err;
 678        }
 679
 680        r = kvm_init_mmu_notifier(kvm);
 681        if (r)
 682                goto out_err;
 683
 684        mutex_lock(&kvm_lock);
 685        list_add(&kvm->vm_list, &vm_list);
 686        mutex_unlock(&kvm_lock);
 687
 688        preempt_notifier_inc();
 689
 690        return kvm;
 691
 692out_err:
 693        cleanup_srcu_struct(&kvm->irq_srcu);
 694out_err_no_irq_srcu:
 695        cleanup_srcu_struct(&kvm->srcu);
 696out_err_no_srcu:
 697        hardware_disable_all();
 698out_err_no_disable:
 699        refcount_set(&kvm->users_count, 0);
 700        for (i = 0; i < KVM_NR_BUSES; i++)
 701                kfree(kvm_get_bus(kvm, i));
 702        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 703                kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 704        kvm_arch_free_vm(kvm);
 705        mmdrop(current->mm);
 706        return ERR_PTR(r);
 707}
 708
 709static void kvm_destroy_devices(struct kvm *kvm)
 710{
 711        struct kvm_device *dev, *tmp;
 712
 713        /*
 714         * We do not need to take the kvm->lock here, because nobody else
 715         * has a reference to the struct kvm at this point and therefore
 716         * cannot access the devices list anyhow.
 717         */
 718        list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
 719                list_del(&dev->vm_node);
 720                dev->ops->destroy(dev);
 721        }
 722}
 723
 724static void kvm_destroy_vm(struct kvm *kvm)
 725{
 726        int i;
 727        struct mm_struct *mm = kvm->mm;
 728
 729        kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
 730        kvm_destroy_vm_debugfs(kvm);
 731        kvm_arch_sync_events(kvm);
 732        mutex_lock(&kvm_lock);
 733        list_del(&kvm->vm_list);
 734        mutex_unlock(&kvm_lock);
 735        kvm_free_irq_routing(kvm);
 736        for (i = 0; i < KVM_NR_BUSES; i++) {
 737                struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
 738
 739                if (bus)
 740                        kvm_io_bus_destroy(bus);
 741                kvm->buses[i] = NULL;
 742        }
 743        kvm_coalesced_mmio_free(kvm);
 744#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 745        mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 746#else
 747        kvm_arch_flush_shadow_all(kvm);
 748#endif
 749        kvm_arch_destroy_vm(kvm);
 750        kvm_destroy_devices(kvm);
 751        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 752                kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 753        cleanup_srcu_struct(&kvm->irq_srcu);
 754        cleanup_srcu_struct(&kvm->srcu);
 755        kvm_arch_free_vm(kvm);
 756        preempt_notifier_dec();
 757        hardware_disable_all();
 758        mmdrop(mm);
 759}
 760
 761void kvm_get_kvm(struct kvm *kvm)
 762{
 763        refcount_inc(&kvm->users_count);
 764}
 765EXPORT_SYMBOL_GPL(kvm_get_kvm);
 766
 767void kvm_put_kvm(struct kvm *kvm)
 768{
 769        if (refcount_dec_and_test(&kvm->users_count))
 770                kvm_destroy_vm(kvm);
 771}
 772EXPORT_SYMBOL_GPL(kvm_put_kvm);
 773
 774
 775static int kvm_vm_release(struct inode *inode, struct file *filp)
 776{
 777        struct kvm *kvm = filp->private_data;
 778
 779        kvm_irqfd_release(kvm);
 780
 781        kvm_put_kvm(kvm);
 782        return 0;
 783}
 784
 785/*
 786 * Allocation size is twice as large as the actual dirty bitmap size.
 787 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
 788 */
 789static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 790{
 791        unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 792
 793        memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
 794        if (!memslot->dirty_bitmap)
 795                return -ENOMEM;
 796
 797        return 0;
 798}
 799
 800/*
 801 * Insert memslot and re-sort memslots based on their GFN,
 802 * so binary search could be used to lookup GFN.
 803 * Sorting algorithm takes advantage of having initially
 804 * sorted array and known changed memslot position.
 805 */
 806static void update_memslots(struct kvm_memslots *slots,
 807                            struct kvm_memory_slot *new,
 808                            enum kvm_mr_change change)
 809{
 810        int id = new->id;
 811        int i = slots->id_to_index[id];
 812        struct kvm_memory_slot *mslots = slots->memslots;
 813
 814        WARN_ON(mslots[i].id != id);
 815        switch (change) {
 816        case KVM_MR_CREATE:
 817                slots->used_slots++;
 818                WARN_ON(mslots[i].npages || !new->npages);
 819                break;
 820        case KVM_MR_DELETE:
 821                slots->used_slots--;
 822                WARN_ON(new->npages || !mslots[i].npages);
 823                break;
 824        default:
 825                break;
 826        }
 827
 828        while (i < KVM_MEM_SLOTS_NUM - 1 &&
 829               new->base_gfn <= mslots[i + 1].base_gfn) {
 830                if (!mslots[i + 1].npages)
 831                        break;
 832                mslots[i] = mslots[i + 1];
 833                slots->id_to_index[mslots[i].id] = i;
 834                i++;
 835        }
 836
 837        /*
 838         * The ">=" is needed when creating a slot with base_gfn == 0,
 839         * so that it moves before all those with base_gfn == npages == 0.
 840         *
 841         * On the other hand, if new->npages is zero, the above loop has
 842         * already left i pointing to the beginning of the empty part of
 843         * mslots, and the ">=" would move the hole backwards in this
 844         * case---which is wrong.  So skip the loop when deleting a slot.
 845         */
 846        if (new->npages) {
 847                while (i > 0 &&
 848                       new->base_gfn >= mslots[i - 1].base_gfn) {
 849                        mslots[i] = mslots[i - 1];
 850                        slots->id_to_index[mslots[i].id] = i;
 851                        i--;
 852                }
 853        } else
 854                WARN_ON_ONCE(i != slots->used_slots);
 855
 856        mslots[i] = *new;
 857        slots->id_to_index[mslots[i].id] = i;
 858}
 859
 860static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
 861{
 862        u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
 863
 864#ifdef __KVM_HAVE_READONLY_MEM
 865        valid_flags |= KVM_MEM_READONLY;
 866#endif
 867
 868        if (mem->flags & ~valid_flags)
 869                return -EINVAL;
 870
 871        return 0;
 872}
 873
 874static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
 875                int as_id, struct kvm_memslots *slots)
 876{
 877        struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
 878        u64 gen = old_memslots->generation;
 879
 880        WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
 881        slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
 882
 883        rcu_assign_pointer(kvm->memslots[as_id], slots);
 884        synchronize_srcu_expedited(&kvm->srcu);
 885
 886        /*
 887         * Increment the new memslot generation a second time, dropping the
 888         * update in-progress flag and incrementing then generation based on
 889         * the number of address spaces.  This provides a unique and easily
 890         * identifiable generation number while the memslots are in flux.
 891         */
 892        gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
 893
 894        /*
 895         * Generations must be unique even across address spaces.  We do not need
 896         * a global counter for that, instead the generation space is evenly split
 897         * across address spaces.  For example, with two address spaces, address
 898         * space 0 will use generations 0, 2, 4, ... while address space 1 will
 899         * use generations 1, 3, 5, ...
 900         */
 901        gen += KVM_ADDRESS_SPACE_NUM;
 902
 903        kvm_arch_memslots_updated(kvm, gen);
 904
 905        slots->generation = gen;
 906
 907        return old_memslots;
 908}
 909
 910/*
 911 * Allocate some memory and give it an address in the guest physical address
 912 * space.
 913 *
 914 * Discontiguous memory is allowed, mostly for framebuffers.
 915 *
 916 * Must be called holding kvm->slots_lock for write.
 917 */
 918int __kvm_set_memory_region(struct kvm *kvm,
 919                            const struct kvm_userspace_memory_region *mem)
 920{
 921        int r;
 922        gfn_t base_gfn;
 923        unsigned long npages;
 924        struct kvm_memory_slot *slot;
 925        struct kvm_memory_slot old, new;
 926        struct kvm_memslots *slots = NULL, *old_memslots;
 927        int as_id, id;
 928        enum kvm_mr_change change;
 929
 930        r = check_memory_region_flags(mem);
 931        if (r)
 932                goto out;
 933
 934        r = -EINVAL;
 935        as_id = mem->slot >> 16;
 936        id = (u16)mem->slot;
 937
 938        /* General sanity checks */
 939        if (mem->memory_size & (PAGE_SIZE - 1))
 940                goto out;
 941        if (mem->guest_phys_addr & (PAGE_SIZE - 1))
 942                goto out;
 943        /* We can read the guest memory with __xxx_user() later on. */
 944        if ((id < KVM_USER_MEM_SLOTS) &&
 945            ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
 946             !access_ok((void __user *)(unsigned long)mem->userspace_addr,
 947                        mem->memory_size)))
 948                goto out;
 949        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
 950                goto out;
 951        if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
 952                goto out;
 953
 954        slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
 955        base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
 956        npages = mem->memory_size >> PAGE_SHIFT;
 957
 958        if (npages > KVM_MEM_MAX_NR_PAGES)
 959                goto out;
 960
 961        new = old = *slot;
 962
 963        new.id = id;
 964        new.base_gfn = base_gfn;
 965        new.npages = npages;
 966        new.flags = mem->flags;
 967
 968        if (npages) {
 969                if (!old.npages)
 970                        change = KVM_MR_CREATE;
 971                else { /* Modify an existing slot. */
 972                        if ((mem->userspace_addr != old.userspace_addr) ||
 973                            (npages != old.npages) ||
 974                            ((new.flags ^ old.flags) & KVM_MEM_READONLY))
 975                                goto out;
 976
 977                        if (base_gfn != old.base_gfn)
 978                                change = KVM_MR_MOVE;
 979                        else if (new.flags != old.flags)
 980                                change = KVM_MR_FLAGS_ONLY;
 981                        else { /* Nothing to change. */
 982                                r = 0;
 983                                goto out;
 984                        }
 985                }
 986        } else {
 987                if (!old.npages)
 988                        goto out;
 989
 990                change = KVM_MR_DELETE;
 991                new.base_gfn = 0;
 992                new.flags = 0;
 993        }
 994
 995        if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
 996                /* Check for overlaps */
 997                r = -EEXIST;
 998                kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
 999                        if (slot->id == id)
1000                                continue;
1001                        if (!((base_gfn + npages <= slot->base_gfn) ||
1002                              (base_gfn >= slot->base_gfn + slot->npages)))
1003                                goto out;
1004                }
1005        }
1006
1007        /* Free page dirty bitmap if unneeded */
1008        if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1009                new.dirty_bitmap = NULL;
1010
1011        r = -ENOMEM;
1012        if (change == KVM_MR_CREATE) {
1013                new.userspace_addr = mem->userspace_addr;
1014
1015                if (kvm_arch_create_memslot(kvm, &new, npages))
1016                        goto out_free;
1017        }
1018
1019        /* Allocate page dirty bitmap if needed */
1020        if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1021                if (kvm_create_dirty_bitmap(&new) < 0)
1022                        goto out_free;
1023        }
1024
1025        slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1026        if (!slots)
1027                goto out_free;
1028        memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1029
1030        if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1031                slot = id_to_memslot(slots, id);
1032                slot->flags |= KVM_MEMSLOT_INVALID;
1033
1034                old_memslots = install_new_memslots(kvm, as_id, slots);
1035
1036                /* From this point no new shadow pages pointing to a deleted,
1037                 * or moved, memslot will be created.
1038                 *
1039                 * validation of sp->gfn happens in:
1040                 *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1041                 *      - kvm_is_visible_gfn (mmu_check_roots)
1042                 */
1043                kvm_arch_flush_shadow_memslot(kvm, slot);
1044
1045                /*
1046                 * We can re-use the old_memslots from above, the only difference
1047                 * from the currently installed memslots is the invalid flag.  This
1048                 * will get overwritten by update_memslots anyway.
1049                 */
1050                slots = old_memslots;
1051        }
1052
1053        r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1054        if (r)
1055                goto out_slots;
1056
1057        /* actual memory is freed via old in kvm_free_memslot below */
1058        if (change == KVM_MR_DELETE) {
1059                new.dirty_bitmap = NULL;
1060                memset(&new.arch, 0, sizeof(new.arch));
1061        }
1062
1063        update_memslots(slots, &new, change);
1064        old_memslots = install_new_memslots(kvm, as_id, slots);
1065
1066        kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1067
1068        kvm_free_memslot(kvm, &old, &new);
1069        kvfree(old_memslots);
1070        return 0;
1071
1072out_slots:
1073        kvfree(slots);
1074out_free:
1075        kvm_free_memslot(kvm, &new, &old);
1076out:
1077        return r;
1078}
1079EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1080
1081int kvm_set_memory_region(struct kvm *kvm,
1082                          const struct kvm_userspace_memory_region *mem)
1083{
1084        int r;
1085
1086        mutex_lock(&kvm->slots_lock);
1087        r = __kvm_set_memory_region(kvm, mem);
1088        mutex_unlock(&kvm->slots_lock);
1089        return r;
1090}
1091EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1092
1093static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1094                                          struct kvm_userspace_memory_region *mem)
1095{
1096        if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1097                return -EINVAL;
1098
1099        return kvm_set_memory_region(kvm, mem);
1100}
1101
1102int kvm_get_dirty_log(struct kvm *kvm,
1103                        struct kvm_dirty_log *log, int *is_dirty)
1104{
1105        struct kvm_memslots *slots;
1106        struct kvm_memory_slot *memslot;
1107        int i, as_id, id;
1108        unsigned long n;
1109        unsigned long any = 0;
1110
1111        as_id = log->slot >> 16;
1112        id = (u16)log->slot;
1113        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1114                return -EINVAL;
1115
1116        slots = __kvm_memslots(kvm, as_id);
1117        memslot = id_to_memslot(slots, id);
1118        if (!memslot->dirty_bitmap)
1119                return -ENOENT;
1120
1121        n = kvm_dirty_bitmap_bytes(memslot);
1122
1123        for (i = 0; !any && i < n/sizeof(long); ++i)
1124                any = memslot->dirty_bitmap[i];
1125
1126        if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1127                return -EFAULT;
1128
1129        if (any)
1130                *is_dirty = 1;
1131        return 0;
1132}
1133EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1134
1135#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1136/**
1137 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1138 *      and reenable dirty page tracking for the corresponding pages.
1139 * @kvm:        pointer to kvm instance
1140 * @log:        slot id and address to which we copy the log
1141 * @flush:      true if TLB flush is needed by caller
1142 *
1143 * We need to keep it in mind that VCPU threads can write to the bitmap
1144 * concurrently. So, to avoid losing track of dirty pages we keep the
1145 * following order:
1146 *
1147 *    1. Take a snapshot of the bit and clear it if needed.
1148 *    2. Write protect the corresponding page.
1149 *    3. Copy the snapshot to the userspace.
1150 *    4. Upon return caller flushes TLB's if needed.
1151 *
1152 * Between 2 and 4, the guest may write to the page using the remaining TLB
1153 * entry.  This is not a problem because the page is reported dirty using
1154 * the snapshot taken before and step 4 ensures that writes done after
1155 * exiting to userspace will be logged for the next call.
1156 *
1157 */
1158int kvm_get_dirty_log_protect(struct kvm *kvm,
1159                        struct kvm_dirty_log *log, bool *flush)
1160{
1161        struct kvm_memslots *slots;
1162        struct kvm_memory_slot *memslot;
1163        int i, as_id, id;
1164        unsigned long n;
1165        unsigned long *dirty_bitmap;
1166        unsigned long *dirty_bitmap_buffer;
1167
1168        as_id = log->slot >> 16;
1169        id = (u16)log->slot;
1170        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1171                return -EINVAL;
1172
1173        slots = __kvm_memslots(kvm, as_id);
1174        memslot = id_to_memslot(slots, id);
1175
1176        dirty_bitmap = memslot->dirty_bitmap;
1177        if (!dirty_bitmap)
1178                return -ENOENT;
1179
1180        n = kvm_dirty_bitmap_bytes(memslot);
1181        *flush = false;
1182        if (kvm->manual_dirty_log_protect) {
1183                /*
1184                 * Unlike kvm_get_dirty_log, we always return false in *flush,
1185                 * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1186                 * is some code duplication between this function and
1187                 * kvm_get_dirty_log, but hopefully all architecture
1188                 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1189                 * can be eliminated.
1190                 */
1191                dirty_bitmap_buffer = dirty_bitmap;
1192        } else {
1193                dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1194                memset(dirty_bitmap_buffer, 0, n);
1195
1196                spin_lock(&kvm->mmu_lock);
1197                for (i = 0; i < n / sizeof(long); i++) {
1198                        unsigned long mask;
1199                        gfn_t offset;
1200
1201                        if (!dirty_bitmap[i])
1202                                continue;
1203
1204                        *flush = true;
1205                        mask = xchg(&dirty_bitmap[i], 0);
1206                        dirty_bitmap_buffer[i] = mask;
1207
1208                        offset = i * BITS_PER_LONG;
1209                        kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1210                                                                offset, mask);
1211                }
1212                spin_unlock(&kvm->mmu_lock);
1213        }
1214
1215        if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1216                return -EFAULT;
1217        return 0;
1218}
1219EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1220
1221/**
1222 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1223 *      and reenable dirty page tracking for the corresponding pages.
1224 * @kvm:        pointer to kvm instance
1225 * @log:        slot id and address from which to fetch the bitmap of dirty pages
1226 * @flush:      true if TLB flush is needed by caller
1227 */
1228int kvm_clear_dirty_log_protect(struct kvm *kvm,
1229                                struct kvm_clear_dirty_log *log, bool *flush)
1230{
1231        struct kvm_memslots *slots;
1232        struct kvm_memory_slot *memslot;
1233        int as_id, id;
1234        gfn_t offset;
1235        unsigned long i, n;
1236        unsigned long *dirty_bitmap;
1237        unsigned long *dirty_bitmap_buffer;
1238
1239        as_id = log->slot >> 16;
1240        id = (u16)log->slot;
1241        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1242                return -EINVAL;
1243
1244        if (log->first_page & 63)
1245                return -EINVAL;
1246
1247        slots = __kvm_memslots(kvm, as_id);
1248        memslot = id_to_memslot(slots, id);
1249
1250        dirty_bitmap = memslot->dirty_bitmap;
1251        if (!dirty_bitmap)
1252                return -ENOENT;
1253
1254        n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1255
1256        if (log->first_page > memslot->npages ||
1257            log->num_pages > memslot->npages - log->first_page ||
1258            (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1259            return -EINVAL;
1260
1261        *flush = false;
1262        dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1263        if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1264                return -EFAULT;
1265
1266        spin_lock(&kvm->mmu_lock);
1267        for (offset = log->first_page, i = offset / BITS_PER_LONG,
1268                 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1269             i++, offset += BITS_PER_LONG) {
1270                unsigned long mask = *dirty_bitmap_buffer++;
1271                atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1272                if (!mask)
1273                        continue;
1274
1275                mask &= atomic_long_fetch_andnot(mask, p);
1276
1277                /*
1278                 * mask contains the bits that really have been cleared.  This
1279                 * never includes any bits beyond the length of the memslot (if
1280                 * the length is not aligned to 64 pages), therefore it is not
1281                 * a problem if userspace sets them in log->dirty_bitmap.
1282                */
1283                if (mask) {
1284                        *flush = true;
1285                        kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1286                                                                offset, mask);
1287                }
1288        }
1289        spin_unlock(&kvm->mmu_lock);
1290
1291        return 0;
1292}
1293EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1294#endif
1295
1296bool kvm_largepages_enabled(void)
1297{
1298        return largepages_enabled;
1299}
1300
1301void kvm_disable_largepages(void)
1302{
1303        largepages_enabled = false;
1304}
1305EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1306
1307struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1308{
1309        return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1310}
1311EXPORT_SYMBOL_GPL(gfn_to_memslot);
1312
1313struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1314{
1315        return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1316}
1317
1318bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1319{
1320        struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1321
1322        if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1323              memslot->flags & KVM_MEMSLOT_INVALID)
1324                return false;
1325
1326        return true;
1327}
1328EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1329
1330unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1331{
1332        struct vm_area_struct *vma;
1333        unsigned long addr, size;
1334
1335        size = PAGE_SIZE;
1336
1337        addr = gfn_to_hva(kvm, gfn);
1338        if (kvm_is_error_hva(addr))
1339                return PAGE_SIZE;
1340
1341        down_read(&current->mm->mmap_sem);
1342        vma = find_vma(current->mm, addr);
1343        if (!vma)
1344                goto out;
1345
1346        size = vma_kernel_pagesize(vma);
1347
1348out:
1349        up_read(&current->mm->mmap_sem);
1350
1351        return size;
1352}
1353
1354static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1355{
1356        return slot->flags & KVM_MEM_READONLY;
1357}
1358
1359static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1360                                       gfn_t *nr_pages, bool write)
1361{
1362        if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1363                return KVM_HVA_ERR_BAD;
1364
1365        if (memslot_is_readonly(slot) && write)
1366                return KVM_HVA_ERR_RO_BAD;
1367
1368        if (nr_pages)
1369                *nr_pages = slot->npages - (gfn - slot->base_gfn);
1370
1371        return __gfn_to_hva_memslot(slot, gfn);
1372}
1373
1374static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1375                                     gfn_t *nr_pages)
1376{
1377        return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1378}
1379
1380unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1381                                        gfn_t gfn)
1382{
1383        return gfn_to_hva_many(slot, gfn, NULL);
1384}
1385EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1386
1387unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1388{
1389        return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1390}
1391EXPORT_SYMBOL_GPL(gfn_to_hva);
1392
1393unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1394{
1395        return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1396}
1397EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1398
1399/*
1400 * Return the hva of a @gfn and the R/W attribute if possible.
1401 *
1402 * @slot: the kvm_memory_slot which contains @gfn
1403 * @gfn: the gfn to be translated
1404 * @writable: used to return the read/write attribute of the @slot if the hva
1405 * is valid and @writable is not NULL
1406 */
1407unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1408                                      gfn_t gfn, bool *writable)
1409{
1410        unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1411
1412        if (!kvm_is_error_hva(hva) && writable)
1413                *writable = !memslot_is_readonly(slot);
1414
1415        return hva;
1416}
1417
1418unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1419{
1420        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1421
1422        return gfn_to_hva_memslot_prot(slot, gfn, writable);
1423}
1424
1425unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1426{
1427        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1428
1429        return gfn_to_hva_memslot_prot(slot, gfn, writable);
1430}
1431
1432static inline int check_user_page_hwpoison(unsigned long addr)
1433{
1434        int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1435
1436        rc = get_user_pages(addr, 1, flags, NULL, NULL);
1437        return rc == -EHWPOISON;
1438}
1439
1440/*
1441 * The fast path to get the writable pfn which will be stored in @pfn,
1442 * true indicates success, otherwise false is returned.  It's also the
1443 * only part that runs if we can are in atomic context.
1444 */
1445static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1446                            bool *writable, kvm_pfn_t *pfn)
1447{
1448        struct page *page[1];
1449        int npages;
1450
1451        /*
1452         * Fast pin a writable pfn only if it is a write fault request
1453         * or the caller allows to map a writable pfn for a read fault
1454         * request.
1455         */
1456        if (!(write_fault || writable))
1457                return false;
1458
1459        npages = __get_user_pages_fast(addr, 1, 1, page);
1460        if (npages == 1) {
1461                *pfn = page_to_pfn(page[0]);
1462
1463                if (writable)
1464                        *writable = true;
1465                return true;
1466        }
1467
1468        return false;
1469}
1470
1471/*
1472 * The slow path to get the pfn of the specified host virtual address,
1473 * 1 indicates success, -errno is returned if error is detected.
1474 */
1475static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1476                           bool *writable, kvm_pfn_t *pfn)
1477{
1478        unsigned int flags = FOLL_HWPOISON;
1479        struct page *page;
1480        int npages = 0;
1481
1482        might_sleep();
1483
1484        if (writable)
1485                *writable = write_fault;
1486
1487        if (write_fault)
1488                flags |= FOLL_WRITE;
1489        if (async)
1490                flags |= FOLL_NOWAIT;
1491
1492        npages = get_user_pages_unlocked(addr, 1, &page, flags);
1493        if (npages != 1)
1494                return npages;
1495
1496        /* map read fault as writable if possible */
1497        if (unlikely(!write_fault) && writable) {
1498                struct page *wpage;
1499
1500                if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1501                        *writable = true;
1502                        put_page(page);
1503                        page = wpage;
1504                }
1505        }
1506        *pfn = page_to_pfn(page);
1507        return npages;
1508}
1509
1510static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1511{
1512        if (unlikely(!(vma->vm_flags & VM_READ)))
1513                return false;
1514
1515        if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1516                return false;
1517
1518        return true;
1519}
1520
1521static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1522                               unsigned long addr, bool *async,
1523                               bool write_fault, bool *writable,
1524                               kvm_pfn_t *p_pfn)
1525{
1526        unsigned long pfn;
1527        int r;
1528
1529        r = follow_pfn(vma, addr, &pfn);
1530        if (r) {
1531                /*
1532                 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1533                 * not call the fault handler, so do it here.
1534                 */
1535                bool unlocked = false;
1536                r = fixup_user_fault(current, current->mm, addr,
1537                                     (write_fault ? FAULT_FLAG_WRITE : 0),
1538                                     &unlocked);
1539                if (unlocked)
1540                        return -EAGAIN;
1541                if (r)
1542                        return r;
1543
1544                r = follow_pfn(vma, addr, &pfn);
1545                if (r)
1546                        return r;
1547
1548        }
1549
1550        if (writable)
1551                *writable = true;
1552
1553        /*
1554         * Get a reference here because callers of *hva_to_pfn* and
1555         * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1556         * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1557         * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1558         * simply do nothing for reserved pfns.
1559         *
1560         * Whoever called remap_pfn_range is also going to call e.g.
1561         * unmap_mapping_range before the underlying pages are freed,
1562         * causing a call to our MMU notifier.
1563         */ 
1564        kvm_get_pfn(pfn);
1565
1566        *p_pfn = pfn;
1567        return 0;
1568}
1569
1570/*
1571 * Pin guest page in memory and return its pfn.
1572 * @addr: host virtual address which maps memory to the guest
1573 * @atomic: whether this function can sleep
1574 * @async: whether this function need to wait IO complete if the
1575 *         host page is not in the memory
1576 * @write_fault: whether we should get a writable host page
1577 * @writable: whether it allows to map a writable host page for !@write_fault
1578 *
1579 * The function will map a writable host page for these two cases:
1580 * 1): @write_fault = true
1581 * 2): @write_fault = false && @writable, @writable will tell the caller
1582 *     whether the mapping is writable.
1583 */
1584static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1585                        bool write_fault, bool *writable)
1586{
1587        struct vm_area_struct *vma;
1588        kvm_pfn_t pfn = 0;
1589        int npages, r;
1590
1591        /* we can do it either atomically or asynchronously, not both */
1592        BUG_ON(atomic && async);
1593
1594        if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1595                return pfn;
1596
1597        if (atomic)
1598                return KVM_PFN_ERR_FAULT;
1599
1600        npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1601        if (npages == 1)
1602                return pfn;
1603
1604        down_read(&current->mm->mmap_sem);
1605        if (npages == -EHWPOISON ||
1606              (!async && check_user_page_hwpoison(addr))) {
1607                pfn = KVM_PFN_ERR_HWPOISON;
1608                goto exit;
1609        }
1610
1611retry:
1612        vma = find_vma_intersection(current->mm, addr, addr + 1);
1613
1614        if (vma == NULL)
1615                pfn = KVM_PFN_ERR_FAULT;
1616        else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1617                r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1618                if (r == -EAGAIN)
1619                        goto retry;
1620                if (r < 0)
1621                        pfn = KVM_PFN_ERR_FAULT;
1622        } else {
1623                if (async && vma_is_valid(vma, write_fault))
1624                        *async = true;
1625                pfn = KVM_PFN_ERR_FAULT;
1626        }
1627exit:
1628        up_read(&current->mm->mmap_sem);
1629        return pfn;
1630}
1631
1632kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1633                               bool atomic, bool *async, bool write_fault,
1634                               bool *writable)
1635{
1636        unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1637
1638        if (addr == KVM_HVA_ERR_RO_BAD) {
1639                if (writable)
1640                        *writable = false;
1641                return KVM_PFN_ERR_RO_FAULT;
1642        }
1643
1644        if (kvm_is_error_hva(addr)) {
1645                if (writable)
1646                        *writable = false;
1647                return KVM_PFN_NOSLOT;
1648        }
1649
1650        /* Do not map writable pfn in the readonly memslot. */
1651        if (writable && memslot_is_readonly(slot)) {
1652                *writable = false;
1653                writable = NULL;
1654        }
1655
1656        return hva_to_pfn(addr, atomic, async, write_fault,
1657                          writable);
1658}
1659EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1660
1661kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1662                      bool *writable)
1663{
1664        return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1665                                    write_fault, writable);
1666}
1667EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1668
1669kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1670{
1671        return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1672}
1673EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1674
1675kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1676{
1677        return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1678}
1679EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1680
1681kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1682{
1683        return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1684}
1685EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1686
1687kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1688{
1689        return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1690}
1691EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1692
1693kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1694{
1695        return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1696}
1697EXPORT_SYMBOL_GPL(gfn_to_pfn);
1698
1699kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1700{
1701        return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1702}
1703EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1704
1705int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1706                            struct page **pages, int nr_pages)
1707{
1708        unsigned long addr;
1709        gfn_t entry = 0;
1710
1711        addr = gfn_to_hva_many(slot, gfn, &entry);
1712        if (kvm_is_error_hva(addr))
1713                return -1;
1714
1715        if (entry < nr_pages)
1716                return 0;
1717
1718        return __get_user_pages_fast(addr, nr_pages, 1, pages);
1719}
1720EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1721
1722static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1723{
1724        if (is_error_noslot_pfn(pfn))
1725                return KVM_ERR_PTR_BAD_PAGE;
1726
1727        if (kvm_is_reserved_pfn(pfn)) {
1728                WARN_ON(1);
1729                return KVM_ERR_PTR_BAD_PAGE;
1730        }
1731
1732        return pfn_to_page(pfn);
1733}
1734
1735struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1736{
1737        kvm_pfn_t pfn;
1738
1739        pfn = gfn_to_pfn(kvm, gfn);
1740
1741        return kvm_pfn_to_page(pfn);
1742}
1743EXPORT_SYMBOL_GPL(gfn_to_page);
1744
1745static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1746                         struct kvm_host_map *map)
1747{
1748        kvm_pfn_t pfn;
1749        void *hva = NULL;
1750        struct page *page = KVM_UNMAPPED_PAGE;
1751
1752        if (!map)
1753                return -EINVAL;
1754
1755        pfn = gfn_to_pfn_memslot(slot, gfn);
1756        if (is_error_noslot_pfn(pfn))
1757                return -EINVAL;
1758
1759        if (pfn_valid(pfn)) {
1760                page = pfn_to_page(pfn);
1761                hva = kmap(page);
1762#ifdef CONFIG_HAS_IOMEM
1763        } else {
1764                hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1765#endif
1766        }
1767
1768        if (!hva)
1769                return -EFAULT;
1770
1771        map->page = page;
1772        map->hva = hva;
1773        map->pfn = pfn;
1774        map->gfn = gfn;
1775
1776        return 0;
1777}
1778
1779int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1780{
1781        return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1782}
1783EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1784
1785void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1786                    bool dirty)
1787{
1788        if (!map)
1789                return;
1790
1791        if (!map->hva)
1792                return;
1793
1794        if (map->page != KVM_UNMAPPED_PAGE)
1795                kunmap(map->page);
1796#ifdef CONFIG_HAS_IOMEM
1797        else
1798                memunmap(map->hva);
1799#endif
1800
1801        if (dirty) {
1802                kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1803                kvm_release_pfn_dirty(map->pfn);
1804        } else {
1805                kvm_release_pfn_clean(map->pfn);
1806        }
1807
1808        map->hva = NULL;
1809        map->page = NULL;
1810}
1811EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1812
1813struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1814{
1815        kvm_pfn_t pfn;
1816
1817        pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1818
1819        return kvm_pfn_to_page(pfn);
1820}
1821EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1822
1823void kvm_release_page_clean(struct page *page)
1824{
1825        WARN_ON(is_error_page(page));
1826
1827        kvm_release_pfn_clean(page_to_pfn(page));
1828}
1829EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1830
1831void kvm_release_pfn_clean(kvm_pfn_t pfn)
1832{
1833        if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1834                put_page(pfn_to_page(pfn));
1835}
1836EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1837
1838void kvm_release_page_dirty(struct page *page)
1839{
1840        WARN_ON(is_error_page(page));
1841
1842        kvm_release_pfn_dirty(page_to_pfn(page));
1843}
1844EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1845
1846void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1847{
1848        kvm_set_pfn_dirty(pfn);
1849        kvm_release_pfn_clean(pfn);
1850}
1851EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1852
1853void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1854{
1855        if (!kvm_is_reserved_pfn(pfn)) {
1856                struct page *page = pfn_to_page(pfn);
1857
1858                SetPageDirty(page);
1859        }
1860}
1861EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1862
1863void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1864{
1865        if (!kvm_is_reserved_pfn(pfn))
1866                mark_page_accessed(pfn_to_page(pfn));
1867}
1868EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1869
1870void kvm_get_pfn(kvm_pfn_t pfn)
1871{
1872        if (!kvm_is_reserved_pfn(pfn))
1873                get_page(pfn_to_page(pfn));
1874}
1875EXPORT_SYMBOL_GPL(kvm_get_pfn);
1876
1877static int next_segment(unsigned long len, int offset)
1878{
1879        if (len > PAGE_SIZE - offset)
1880                return PAGE_SIZE - offset;
1881        else
1882                return len;
1883}
1884
1885static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1886                                 void *data, int offset, int len)
1887{
1888        int r;
1889        unsigned long addr;
1890
1891        addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1892        if (kvm_is_error_hva(addr))
1893                return -EFAULT;
1894        r = __copy_from_user(data, (void __user *)addr + offset, len);
1895        if (r)
1896                return -EFAULT;
1897        return 0;
1898}
1899
1900int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1901                        int len)
1902{
1903        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1904
1905        return __kvm_read_guest_page(slot, gfn, data, offset, len);
1906}
1907EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1908
1909int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1910                             int offset, int len)
1911{
1912        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1913
1914        return __kvm_read_guest_page(slot, gfn, data, offset, len);
1915}
1916EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1917
1918int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1919{
1920        gfn_t gfn = gpa >> PAGE_SHIFT;
1921        int seg;
1922        int offset = offset_in_page(gpa);
1923        int ret;
1924
1925        while ((seg = next_segment(len, offset)) != 0) {
1926                ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1927                if (ret < 0)
1928                        return ret;
1929                offset = 0;
1930                len -= seg;
1931                data += seg;
1932                ++gfn;
1933        }
1934        return 0;
1935}
1936EXPORT_SYMBOL_GPL(kvm_read_guest);
1937
1938int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1939{
1940        gfn_t gfn = gpa >> PAGE_SHIFT;
1941        int seg;
1942        int offset = offset_in_page(gpa);
1943        int ret;
1944
1945        while ((seg = next_segment(len, offset)) != 0) {
1946                ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1947                if (ret < 0)
1948                        return ret;
1949                offset = 0;
1950                len -= seg;
1951                data += seg;
1952                ++gfn;
1953        }
1954        return 0;
1955}
1956EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1957
1958static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1959                                   void *data, int offset, unsigned long len)
1960{
1961        int r;
1962        unsigned long addr;
1963
1964        addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1965        if (kvm_is_error_hva(addr))
1966                return -EFAULT;
1967        pagefault_disable();
1968        r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1969        pagefault_enable();
1970        if (r)
1971                return -EFAULT;
1972        return 0;
1973}
1974
1975int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1976                          unsigned long len)
1977{
1978        gfn_t gfn = gpa >> PAGE_SHIFT;
1979        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1980        int offset = offset_in_page(gpa);
1981
1982        return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1983}
1984EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1985
1986int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1987                               void *data, unsigned long len)
1988{
1989        gfn_t gfn = gpa >> PAGE_SHIFT;
1990        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1991        int offset = offset_in_page(gpa);
1992
1993        return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1994}
1995EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1996
1997static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1998                                  const void *data, int offset, int len)
1999{
2000        int r;
2001        unsigned long addr;
2002
2003        addr = gfn_to_hva_memslot(memslot, gfn);
2004        if (kvm_is_error_hva(addr))
2005                return -EFAULT;
2006        r = __copy_to_user((void __user *)addr + offset, data, len);
2007        if (r)
2008                return -EFAULT;
2009        mark_page_dirty_in_slot(memslot, gfn);
2010        return 0;
2011}
2012
2013int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2014                         const void *data, int offset, int len)
2015{
2016        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2017
2018        return __kvm_write_guest_page(slot, gfn, data, offset, len);
2019}
2020EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2021
2022int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2023                              const void *data, int offset, int len)
2024{
2025        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2026
2027        return __kvm_write_guest_page(slot, gfn, data, offset, len);
2028}
2029EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2030
2031int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2032                    unsigned long len)
2033{
2034        gfn_t gfn = gpa >> PAGE_SHIFT;
2035        int seg;
2036        int offset = offset_in_page(gpa);
2037        int ret;
2038
2039        while ((seg = next_segment(len, offset)) != 0) {
2040                ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2041                if (ret < 0)
2042                        return ret;
2043                offset = 0;
2044                len -= seg;
2045                data += seg;
2046                ++gfn;
2047        }
2048        return 0;
2049}
2050EXPORT_SYMBOL_GPL(kvm_write_guest);
2051
2052int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2053                         unsigned long len)
2054{
2055        gfn_t gfn = gpa >> PAGE_SHIFT;
2056        int seg;
2057        int offset = offset_in_page(gpa);
2058        int ret;
2059
2060        while ((seg = next_segment(len, offset)) != 0) {
2061                ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2062                if (ret < 0)
2063                        return ret;
2064                offset = 0;
2065                len -= seg;
2066                data += seg;
2067                ++gfn;
2068        }
2069        return 0;
2070}
2071EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2072
2073static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2074                                       struct gfn_to_hva_cache *ghc,
2075                                       gpa_t gpa, unsigned long len)
2076{
2077        int offset = offset_in_page(gpa);
2078        gfn_t start_gfn = gpa >> PAGE_SHIFT;
2079        gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2080        gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2081        gfn_t nr_pages_avail;
2082        int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2083
2084        ghc->gpa = gpa;
2085        ghc->generation = slots->generation;
2086        ghc->len = len;
2087        ghc->hva = KVM_HVA_ERR_BAD;
2088
2089        /*
2090         * If the requested region crosses two memslots, we still
2091         * verify that the entire region is valid here.
2092         */
2093        while (!r && start_gfn <= end_gfn) {
2094                ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2095                ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2096                                           &nr_pages_avail);
2097                if (kvm_is_error_hva(ghc->hva))
2098                        r = -EFAULT;
2099                start_gfn += nr_pages_avail;
2100        }
2101
2102        /* Use the slow path for cross page reads and writes. */
2103        if (!r && nr_pages_needed == 1)
2104                ghc->hva += offset;
2105        else
2106                ghc->memslot = NULL;
2107
2108        return r;
2109}
2110
2111int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2112                              gpa_t gpa, unsigned long len)
2113{
2114        struct kvm_memslots *slots = kvm_memslots(kvm);
2115        return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2116}
2117EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2118
2119int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2120                                  void *data, unsigned int offset,
2121                                  unsigned long len)
2122{
2123        struct kvm_memslots *slots = kvm_memslots(kvm);
2124        int r;
2125        gpa_t gpa = ghc->gpa + offset;
2126
2127        BUG_ON(len + offset > ghc->len);
2128
2129        if (slots->generation != ghc->generation)
2130                __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2131
2132        if (unlikely(!ghc->memslot))
2133                return kvm_write_guest(kvm, gpa, data, len);
2134
2135        if (kvm_is_error_hva(ghc->hva))
2136                return -EFAULT;
2137
2138        r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2139        if (r)
2140                return -EFAULT;
2141        mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2142
2143        return 0;
2144}
2145EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2146
2147int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2148                           void *data, unsigned long len)
2149{
2150        return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2151}
2152EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2153
2154int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2155                           void *data, unsigned long len)
2156{
2157        struct kvm_memslots *slots = kvm_memslots(kvm);
2158        int r;
2159
2160        BUG_ON(len > ghc->len);
2161
2162        if (slots->generation != ghc->generation)
2163                __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2164
2165        if (unlikely(!ghc->memslot))
2166                return kvm_read_guest(kvm, ghc->gpa, data, len);
2167
2168        if (kvm_is_error_hva(ghc->hva))
2169                return -EFAULT;
2170
2171        r = __copy_from_user(data, (void __user *)ghc->hva, len);
2172        if (r)
2173                return -EFAULT;
2174
2175        return 0;
2176}
2177EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2178
2179int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2180{
2181        const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2182
2183        return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2184}
2185EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2186
2187int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2188{
2189        gfn_t gfn = gpa >> PAGE_SHIFT;
2190        int seg;
2191        int offset = offset_in_page(gpa);
2192        int ret;
2193
2194        while ((seg = next_segment(len, offset)) != 0) {
2195                ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2196                if (ret < 0)
2197                        return ret;
2198                offset = 0;
2199                len -= seg;
2200                ++gfn;
2201        }
2202        return 0;
2203}
2204EXPORT_SYMBOL_GPL(kvm_clear_guest);
2205
2206static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2207                                    gfn_t gfn)
2208{
2209        if (memslot && memslot->dirty_bitmap) {
2210                unsigned long rel_gfn = gfn - memslot->base_gfn;
2211
2212                set_bit_le(rel_gfn, memslot->dirty_bitmap);
2213        }
2214}
2215
2216void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2217{
2218        struct kvm_memory_slot *memslot;
2219
2220        memslot = gfn_to_memslot(kvm, gfn);
2221        mark_page_dirty_in_slot(memslot, gfn);
2222}
2223EXPORT_SYMBOL_GPL(mark_page_dirty);
2224
2225void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2226{
2227        struct kvm_memory_slot *memslot;
2228
2229        memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2230        mark_page_dirty_in_slot(memslot, gfn);
2231}
2232EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2233
2234void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2235{
2236        if (!vcpu->sigset_active)
2237                return;
2238
2239        /*
2240         * This does a lockless modification of ->real_blocked, which is fine
2241         * because, only current can change ->real_blocked and all readers of
2242         * ->real_blocked don't care as long ->real_blocked is always a subset
2243         * of ->blocked.
2244         */
2245        sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2246}
2247
2248void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2249{
2250        if (!vcpu->sigset_active)
2251                return;
2252
2253        sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2254        sigemptyset(&current->real_blocked);
2255}
2256
2257static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2258{
2259        unsigned int old, val, grow, grow_start;
2260
2261        old = val = vcpu->halt_poll_ns;
2262        grow_start = READ_ONCE(halt_poll_ns_grow_start);
2263        grow = READ_ONCE(halt_poll_ns_grow);
2264        if (!grow)
2265                goto out;
2266
2267        val *= grow;
2268        if (val < grow_start)
2269                val = grow_start;
2270
2271        if (val > halt_poll_ns)
2272                val = halt_poll_ns;
2273
2274        vcpu->halt_poll_ns = val;
2275out:
2276        trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2277}
2278
2279static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2280{
2281        unsigned int old, val, shrink;
2282
2283        old = val = vcpu->halt_poll_ns;
2284        shrink = READ_ONCE(halt_poll_ns_shrink);
2285        if (shrink == 0)
2286                val = 0;
2287        else
2288                val /= shrink;
2289
2290        vcpu->halt_poll_ns = val;
2291        trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2292}
2293
2294static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2295{
2296        int ret = -EINTR;
2297        int idx = srcu_read_lock(&vcpu->kvm->srcu);
2298
2299        if (kvm_arch_vcpu_runnable(vcpu)) {
2300                kvm_make_request(KVM_REQ_UNHALT, vcpu);
2301                goto out;
2302        }
2303        if (kvm_cpu_has_pending_timer(vcpu))
2304                goto out;
2305        if (signal_pending(current))
2306                goto out;
2307
2308        ret = 0;
2309out:
2310        srcu_read_unlock(&vcpu->kvm->srcu, idx);
2311        return ret;
2312}
2313
2314/*
2315 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2316 */
2317void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2318{
2319        ktime_t start, cur;
2320        DECLARE_SWAITQUEUE(wait);
2321        bool waited = false;
2322        u64 block_ns;
2323
2324        start = cur = ktime_get();
2325        if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2326                ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2327
2328                ++vcpu->stat.halt_attempted_poll;
2329                do {
2330                        /*
2331                         * This sets KVM_REQ_UNHALT if an interrupt
2332                         * arrives.
2333                         */
2334                        if (kvm_vcpu_check_block(vcpu) < 0) {
2335                                ++vcpu->stat.halt_successful_poll;
2336                                if (!vcpu_valid_wakeup(vcpu))
2337                                        ++vcpu->stat.halt_poll_invalid;
2338                                goto out;
2339                        }
2340                        cur = ktime_get();
2341                } while (single_task_running() && ktime_before(cur, stop));
2342        }
2343
2344        kvm_arch_vcpu_blocking(vcpu);
2345
2346        for (;;) {
2347                prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2348
2349                if (kvm_vcpu_check_block(vcpu) < 0)
2350                        break;
2351
2352                waited = true;
2353                schedule();
2354        }
2355
2356        finish_swait(&vcpu->wq, &wait);
2357        cur = ktime_get();
2358
2359        kvm_arch_vcpu_unblocking(vcpu);
2360out:
2361        block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2362
2363        if (!vcpu_valid_wakeup(vcpu))
2364                shrink_halt_poll_ns(vcpu);
2365        else if (halt_poll_ns) {
2366                if (block_ns <= vcpu->halt_poll_ns)
2367                        ;
2368                /* we had a long block, shrink polling */
2369                else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2370                        shrink_halt_poll_ns(vcpu);
2371                /* we had a short halt and our poll time is too small */
2372                else if (vcpu->halt_poll_ns < halt_poll_ns &&
2373                        block_ns < halt_poll_ns)
2374                        grow_halt_poll_ns(vcpu);
2375        } else
2376                vcpu->halt_poll_ns = 0;
2377
2378        trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2379        kvm_arch_vcpu_block_finish(vcpu);
2380}
2381EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2382
2383bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2384{
2385        struct swait_queue_head *wqp;
2386
2387        wqp = kvm_arch_vcpu_wq(vcpu);
2388        if (swq_has_sleeper(wqp)) {
2389                swake_up_one(wqp);
2390                WRITE_ONCE(vcpu->ready, true);
2391                ++vcpu->stat.halt_wakeup;
2392                return true;
2393        }
2394
2395        return false;
2396}
2397EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2398
2399#ifndef CONFIG_S390
2400/*
2401 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2402 */
2403void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2404{
2405        int me;
2406        int cpu = vcpu->cpu;
2407
2408        if (kvm_vcpu_wake_up(vcpu))
2409                return;
2410
2411        me = get_cpu();
2412        if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2413                if (kvm_arch_vcpu_should_kick(vcpu))
2414                        smp_send_reschedule(cpu);
2415        put_cpu();
2416}
2417EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2418#endif /* !CONFIG_S390 */
2419
2420int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2421{
2422        struct pid *pid;
2423        struct task_struct *task = NULL;
2424        int ret = 0;
2425
2426        rcu_read_lock();
2427        pid = rcu_dereference(target->pid);
2428        if (pid)
2429                task = get_pid_task(pid, PIDTYPE_PID);
2430        rcu_read_unlock();
2431        if (!task)
2432                return ret;
2433        ret = yield_to(task, 1);
2434        put_task_struct(task);
2435
2436        return ret;
2437}
2438EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2439
2440/*
2441 * Helper that checks whether a VCPU is eligible for directed yield.
2442 * Most eligible candidate to yield is decided by following heuristics:
2443 *
2444 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2445 *  (preempted lock holder), indicated by @in_spin_loop.
2446 *  Set at the beiginning and cleared at the end of interception/PLE handler.
2447 *
2448 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2449 *  chance last time (mostly it has become eligible now since we have probably
2450 *  yielded to lockholder in last iteration. This is done by toggling
2451 *  @dy_eligible each time a VCPU checked for eligibility.)
2452 *
2453 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2454 *  to preempted lock-holder could result in wrong VCPU selection and CPU
2455 *  burning. Giving priority for a potential lock-holder increases lock
2456 *  progress.
2457 *
2458 *  Since algorithm is based on heuristics, accessing another VCPU data without
2459 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2460 *  and continue with next VCPU and so on.
2461 */
2462static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2463{
2464#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2465        bool eligible;
2466
2467        eligible = !vcpu->spin_loop.in_spin_loop ||
2468                    vcpu->spin_loop.dy_eligible;
2469
2470        if (vcpu->spin_loop.in_spin_loop)
2471                kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2472
2473        return eligible;
2474#else
2475        return true;
2476#endif
2477}
2478
2479/*
2480 * Unlike kvm_arch_vcpu_runnable, this function is called outside
2481 * a vcpu_load/vcpu_put pair.  However, for most architectures
2482 * kvm_arch_vcpu_runnable does not require vcpu_load.
2483 */
2484bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2485{
2486        return kvm_arch_vcpu_runnable(vcpu);
2487}
2488
2489static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2490{
2491        if (kvm_arch_dy_runnable(vcpu))
2492                return true;
2493
2494#ifdef CONFIG_KVM_ASYNC_PF
2495        if (!list_empty_careful(&vcpu->async_pf.done))
2496                return true;
2497#endif
2498
2499        return false;
2500}
2501
2502void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2503{
2504        struct kvm *kvm = me->kvm;
2505        struct kvm_vcpu *vcpu;
2506        int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2507        int yielded = 0;
2508        int try = 3;
2509        int pass;
2510        int i;
2511
2512        kvm_vcpu_set_in_spin_loop(me, true);
2513        /*
2514         * We boost the priority of a VCPU that is runnable but not
2515         * currently running, because it got preempted by something
2516         * else and called schedule in __vcpu_run.  Hopefully that
2517         * VCPU is holding the lock that we need and will release it.
2518         * We approximate round-robin by starting at the last boosted VCPU.
2519         */
2520        for (pass = 0; pass < 2 && !yielded && try; pass++) {
2521                kvm_for_each_vcpu(i, vcpu, kvm) {
2522                        if (!pass && i <= last_boosted_vcpu) {
2523                                i = last_boosted_vcpu;
2524                                continue;
2525                        } else if (pass && i > last_boosted_vcpu)
2526                                break;
2527                        if (!READ_ONCE(vcpu->ready))
2528                                continue;
2529                        if (vcpu == me)
2530                                continue;
2531                        if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2532                                continue;
2533                        if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2534                                !kvm_arch_vcpu_in_kernel(vcpu))
2535                                continue;
2536                        if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2537                                continue;
2538
2539                        yielded = kvm_vcpu_yield_to(vcpu);
2540                        if (yielded > 0) {
2541                                kvm->last_boosted_vcpu = i;
2542                                break;
2543                        } else if (yielded < 0) {
2544                                try--;
2545                                if (!try)
2546                                        break;
2547                        }
2548                }
2549        }
2550        kvm_vcpu_set_in_spin_loop(me, false);
2551
2552        /* Ensure vcpu is not eligible during next spinloop */
2553        kvm_vcpu_set_dy_eligible(me, false);
2554}
2555EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2556
2557static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2558{
2559        struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2560        struct page *page;
2561
2562        if (vmf->pgoff == 0)
2563                page = virt_to_page(vcpu->run);
2564#ifdef CONFIG_X86
2565        else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2566                page = virt_to_page(vcpu->arch.pio_data);
2567#endif
2568#ifdef CONFIG_KVM_MMIO
2569        else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2570                page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2571#endif
2572        else
2573                return kvm_arch_vcpu_fault(vcpu, vmf);
2574        get_page(page);
2575        vmf->page = page;
2576        return 0;
2577}
2578
2579static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2580        .fault = kvm_vcpu_fault,
2581};
2582
2583static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2584{
2585        vma->vm_ops = &kvm_vcpu_vm_ops;
2586        return 0;
2587}
2588
2589static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2590{
2591        struct kvm_vcpu *vcpu = filp->private_data;
2592
2593        debugfs_remove_recursive(vcpu->debugfs_dentry);
2594        kvm_put_kvm(vcpu->kvm);
2595        return 0;
2596}
2597
2598static struct file_operations kvm_vcpu_fops = {
2599        .release        = kvm_vcpu_release,
2600        .unlocked_ioctl = kvm_vcpu_ioctl,
2601        .mmap           = kvm_vcpu_mmap,
2602        .llseek         = noop_llseek,
2603        KVM_COMPAT(kvm_vcpu_compat_ioctl),
2604};
2605
2606/*
2607 * Allocates an inode for the vcpu.
2608 */
2609static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2610{
2611        char name[8 + 1 + ITOA_MAX_LEN + 1];
2612
2613        snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2614        return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2615}
2616
2617static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2618{
2619#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2620        char dir_name[ITOA_MAX_LEN * 2];
2621
2622        if (!debugfs_initialized())
2623                return;
2624
2625        snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2626        vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2627                                                  vcpu->kvm->debugfs_dentry);
2628
2629        kvm_arch_create_vcpu_debugfs(vcpu);
2630#endif
2631}
2632
2633/*
2634 * Creates some virtual cpus.  Good luck creating more than one.
2635 */
2636static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2637{
2638        int r;
2639        struct kvm_vcpu *vcpu;
2640
2641        if (id >= KVM_MAX_VCPU_ID)
2642                return -EINVAL;
2643
2644        mutex_lock(&kvm->lock);
2645        if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2646                mutex_unlock(&kvm->lock);
2647                return -EINVAL;
2648        }
2649
2650        kvm->created_vcpus++;
2651        mutex_unlock(&kvm->lock);
2652
2653        vcpu = kvm_arch_vcpu_create(kvm, id);
2654        if (IS_ERR(vcpu)) {
2655                r = PTR_ERR(vcpu);
2656                goto vcpu_decrement;
2657        }
2658
2659        preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2660
2661        r = kvm_arch_vcpu_setup(vcpu);
2662        if (r)
2663                goto vcpu_destroy;
2664
2665        kvm_create_vcpu_debugfs(vcpu);
2666
2667        mutex_lock(&kvm->lock);
2668        if (kvm_get_vcpu_by_id(kvm, id)) {
2669                r = -EEXIST;
2670                goto unlock_vcpu_destroy;
2671        }
2672
2673        BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2674
2675        /* Now it's all set up, let userspace reach it */
2676        kvm_get_kvm(kvm);
2677        r = create_vcpu_fd(vcpu);
2678        if (r < 0) {
2679                kvm_put_kvm(kvm);
2680                goto unlock_vcpu_destroy;
2681        }
2682
2683        kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2684
2685        /*
2686         * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2687         * before kvm->online_vcpu's incremented value.
2688         */
2689        smp_wmb();
2690        atomic_inc(&kvm->online_vcpus);
2691
2692        mutex_unlock(&kvm->lock);
2693        kvm_arch_vcpu_postcreate(vcpu);
2694        return r;
2695
2696unlock_vcpu_destroy:
2697        mutex_unlock(&kvm->lock);
2698        debugfs_remove_recursive(vcpu->debugfs_dentry);
2699vcpu_destroy:
2700        kvm_arch_vcpu_destroy(vcpu);
2701vcpu_decrement:
2702        mutex_lock(&kvm->lock);
2703        kvm->created_vcpus--;
2704        mutex_unlock(&kvm->lock);
2705        return r;
2706}
2707
2708static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2709{
2710        if (sigset) {
2711                sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2712                vcpu->sigset_active = 1;
2713                vcpu->sigset = *sigset;
2714        } else
2715                vcpu->sigset_active = 0;
2716        return 0;
2717}
2718
2719static long kvm_vcpu_ioctl(struct file *filp,
2720                           unsigned int ioctl, unsigned long arg)
2721{
2722        struct kvm_vcpu *vcpu = filp->private_data;
2723        void __user *argp = (void __user *)arg;
2724        int r;
2725        struct kvm_fpu *fpu = NULL;
2726        struct kvm_sregs *kvm_sregs = NULL;
2727
2728        if (vcpu->kvm->mm != current->mm)
2729                return -EIO;
2730
2731        if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2732                return -EINVAL;
2733
2734        /*
2735         * Some architectures have vcpu ioctls that are asynchronous to vcpu
2736         * execution; mutex_lock() would break them.
2737         */
2738        r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2739        if (r != -ENOIOCTLCMD)
2740                return r;
2741
2742        if (mutex_lock_killable(&vcpu->mutex))
2743                return -EINTR;
2744        switch (ioctl) {
2745        case KVM_RUN: {
2746                struct pid *oldpid;
2747                r = -EINVAL;
2748                if (arg)
2749                        goto out;
2750                oldpid = rcu_access_pointer(vcpu->pid);
2751                if (unlikely(oldpid != task_pid(current))) {
2752                        /* The thread running this VCPU changed. */
2753                        struct pid *newpid;
2754
2755                        r = kvm_arch_vcpu_run_pid_change(vcpu);
2756                        if (r)
2757                                break;
2758
2759                        newpid = get_task_pid(current, PIDTYPE_PID);
2760                        rcu_assign_pointer(vcpu->pid, newpid);
2761                        if (oldpid)
2762                                synchronize_rcu();
2763                        put_pid(oldpid);
2764                }
2765                r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2766                trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2767                break;
2768        }
2769        case KVM_GET_REGS: {
2770                struct kvm_regs *kvm_regs;
2771
2772                r = -ENOMEM;
2773                kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2774                if (!kvm_regs)
2775                        goto out;
2776                r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2777                if (r)
2778                        goto out_free1;
2779                r = -EFAULT;
2780                if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2781                        goto out_free1;
2782                r = 0;
2783out_free1:
2784                kfree(kvm_regs);
2785                break;
2786        }
2787        case KVM_SET_REGS: {
2788                struct kvm_regs *kvm_regs;
2789
2790                r = -ENOMEM;
2791                kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2792                if (IS_ERR(kvm_regs)) {
2793                        r = PTR_ERR(kvm_regs);
2794                        goto out;
2795                }
2796                r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2797                kfree(kvm_regs);
2798                break;
2799        }
2800        case KVM_GET_SREGS: {
2801                kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2802                                    GFP_KERNEL_ACCOUNT);
2803                r = -ENOMEM;
2804                if (!kvm_sregs)
2805                        goto out;
2806                r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2807                if (r)
2808                        goto out;
2809                r = -EFAULT;
2810                if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2811                        goto out;
2812                r = 0;
2813                break;
2814        }
2815        case KVM_SET_SREGS: {
2816                kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2817                if (IS_ERR(kvm_sregs)) {
2818                        r = PTR_ERR(kvm_sregs);
2819                        kvm_sregs = NULL;
2820                        goto out;
2821                }
2822                r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2823                break;
2824        }
2825        case KVM_GET_MP_STATE: {
2826                struct kvm_mp_state mp_state;
2827
2828                r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2829                if (r)
2830                        goto out;
2831                r = -EFAULT;
2832                if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2833                        goto out;
2834                r = 0;
2835                break;
2836        }
2837        case KVM_SET_MP_STATE: {
2838                struct kvm_mp_state mp_state;
2839
2840                r = -EFAULT;
2841                if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2842                        goto out;
2843                r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2844                break;
2845        }
2846        case KVM_TRANSLATE: {
2847                struct kvm_translation tr;
2848
2849                r = -EFAULT;
2850                if (copy_from_user(&tr, argp, sizeof(tr)))
2851                        goto out;
2852                r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2853                if (r)
2854                        goto out;
2855                r = -EFAULT;
2856                if (copy_to_user(argp, &tr, sizeof(tr)))
2857                        goto out;
2858                r = 0;
2859                break;
2860        }
2861        case KVM_SET_GUEST_DEBUG: {
2862                struct kvm_guest_debug dbg;
2863
2864                r = -EFAULT;
2865                if (copy_from_user(&dbg, argp, sizeof(dbg)))
2866                        goto out;
2867                r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2868                break;
2869        }
2870        case KVM_SET_SIGNAL_MASK: {
2871                struct kvm_signal_mask __user *sigmask_arg = argp;
2872                struct kvm_signal_mask kvm_sigmask;
2873                sigset_t sigset, *p;
2874
2875                p = NULL;
2876                if (argp) {
2877                        r = -EFAULT;
2878                        if (copy_from_user(&kvm_sigmask, argp,
2879                                           sizeof(kvm_sigmask)))
2880                                goto out;
2881                        r = -EINVAL;
2882                        if (kvm_sigmask.len != sizeof(sigset))
2883                                goto out;
2884                        r = -EFAULT;
2885                        if (copy_from_user(&sigset, sigmask_arg->sigset,
2886                                           sizeof(sigset)))
2887                                goto out;
2888                        p = &sigset;
2889                }
2890                r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2891                break;
2892        }
2893        case KVM_GET_FPU: {
2894                fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2895                r = -ENOMEM;
2896                if (!fpu)
2897                        goto out;
2898                r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2899                if (r)
2900                        goto out;
2901                r = -EFAULT;
2902                if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2903                        goto out;
2904                r = 0;
2905                break;
2906        }
2907        case KVM_SET_FPU: {
2908                fpu = memdup_user(argp, sizeof(*fpu));
2909                if (IS_ERR(fpu)) {
2910                        r = PTR_ERR(fpu);
2911                        fpu = NULL;
2912                        goto out;
2913                }
2914                r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2915                break;
2916        }
2917        default:
2918                r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2919        }
2920out:
2921        mutex_unlock(&vcpu->mutex);
2922        kfree(fpu);
2923        kfree(kvm_sregs);
2924        return r;
2925}
2926
2927#ifdef CONFIG_KVM_COMPAT
2928static long kvm_vcpu_compat_ioctl(struct file *filp,
2929                                  unsigned int ioctl, unsigned long arg)
2930{
2931        struct kvm_vcpu *vcpu = filp->private_data;
2932        void __user *argp = compat_ptr(arg);
2933        int r;
2934
2935        if (vcpu->kvm->mm != current->mm)
2936                return -EIO;
2937
2938        switch (ioctl) {
2939        case KVM_SET_SIGNAL_MASK: {
2940                struct kvm_signal_mask __user *sigmask_arg = argp;
2941                struct kvm_signal_mask kvm_sigmask;
2942                sigset_t sigset;
2943
2944                if (argp) {
2945                        r = -EFAULT;
2946                        if (copy_from_user(&kvm_sigmask, argp,
2947                                           sizeof(kvm_sigmask)))
2948                                goto out;
2949                        r = -EINVAL;
2950                        if (kvm_sigmask.len != sizeof(compat_sigset_t))
2951                                goto out;
2952                        r = -EFAULT;
2953                        if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2954                                goto out;
2955                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2956                } else
2957                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2958                break;
2959        }
2960        default:
2961                r = kvm_vcpu_ioctl(filp, ioctl, arg);
2962        }
2963
2964out:
2965        return r;
2966}
2967#endif
2968
2969static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
2970{
2971        struct kvm_device *dev = filp->private_data;
2972
2973        if (dev->ops->mmap)
2974                return dev->ops->mmap(dev, vma);
2975
2976        return -ENODEV;
2977}
2978
2979static int kvm_device_ioctl_attr(struct kvm_device *dev,
2980                                 int (*accessor)(struct kvm_device *dev,
2981                                                 struct kvm_device_attr *attr),
2982                                 unsigned long arg)
2983{
2984        struct kvm_device_attr attr;
2985
2986        if (!accessor)
2987                return -EPERM;
2988
2989        if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2990                return -EFAULT;
2991
2992        return accessor(dev, &attr);
2993}
2994
2995static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2996                             unsigned long arg)
2997{
2998        struct kvm_device *dev = filp->private_data;
2999
3000        if (dev->kvm->mm != current->mm)
3001                return -EIO;
3002
3003        switch (ioctl) {
3004        case KVM_SET_DEVICE_ATTR:
3005                return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3006        case KVM_GET_DEVICE_ATTR:
3007                return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3008        case KVM_HAS_DEVICE_ATTR:
3009                return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3010        default:
3011                if (dev->ops->ioctl)
3012                        return dev->ops->ioctl(dev, ioctl, arg);
3013
3014                return -ENOTTY;
3015        }
3016}
3017
3018static int kvm_device_release(struct inode *inode, struct file *filp)
3019{
3020        struct kvm_device *dev = filp->private_data;
3021        struct kvm *kvm = dev->kvm;
3022
3023        if (dev->ops->release) {
3024                mutex_lock(&kvm->lock);
3025                list_del(&dev->vm_node);
3026                dev->ops->release(dev);
3027                mutex_unlock(&kvm->lock);
3028        }
3029
3030        kvm_put_kvm(kvm);
3031        return 0;
3032}
3033
3034static const struct file_operations kvm_device_fops = {
3035        .unlocked_ioctl = kvm_device_ioctl,
3036        .release = kvm_device_release,
3037        KVM_COMPAT(kvm_device_ioctl),
3038        .mmap = kvm_device_mmap,
3039};
3040
3041struct kvm_device *kvm_device_from_filp(struct file *filp)
3042{
3043        if (filp->f_op != &kvm_device_fops)
3044                return NULL;
3045
3046        return filp->private_data;
3047}
3048
3049static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3050#ifdef CONFIG_KVM_MPIC
3051        [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3052        [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3053#endif
3054};
3055
3056int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
3057{
3058        if (type >= ARRAY_SIZE(kvm_device_ops_table))
3059                return -ENOSPC;
3060
3061        if (kvm_device_ops_table[type] != NULL)
3062                return -EEXIST;
3063
3064        kvm_device_ops_table[type] = ops;
3065        return 0;
3066}
3067
3068void kvm_unregister_device_ops(u32 type)
3069{
3070        if (kvm_device_ops_table[type] != NULL)
3071                kvm_device_ops_table[type] = NULL;
3072}
3073
3074static int kvm_ioctl_create_device(struct kvm *kvm,
3075                                   struct kvm_create_device *cd)
3076{
3077        struct kvm_device_ops *ops = NULL;
3078        struct kvm_device *dev;
3079        bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3080        int type;
3081        int ret;
3082
3083        if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3084                return -ENODEV;
3085
3086        type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3087        ops = kvm_device_ops_table[type];
3088        if (ops == NULL)
3089                return -ENODEV;
3090
3091        if (test)
3092                return 0;
3093
3094        dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3095        if (!dev)
3096                return -ENOMEM;
3097
3098        dev->ops = ops;
3099        dev->kvm = kvm;
3100
3101        mutex_lock(&kvm->lock);
3102        ret = ops->create(dev, type);
3103        if (ret < 0) {
3104                mutex_unlock(&kvm->lock);
3105                kfree(dev);
3106                return ret;
3107        }
3108        list_add(&dev->vm_node, &kvm->devices);
3109        mutex_unlock(&kvm->lock);
3110
3111        if (ops->init)
3112                ops->init(dev);
3113
3114        kvm_get_kvm(kvm);
3115        ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3116        if (ret < 0) {
3117                kvm_put_kvm(kvm);
3118                mutex_lock(&kvm->lock);
3119                list_del(&dev->vm_node);
3120                mutex_unlock(&kvm->lock);
3121                ops->destroy(dev);
3122                return ret;
3123        }
3124
3125        cd->fd = ret;
3126        return 0;
3127}
3128
3129static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3130{
3131        switch (arg) {
3132        case KVM_CAP_USER_MEMORY:
3133        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3134        case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3135        case KVM_CAP_INTERNAL_ERROR_DATA:
3136#ifdef CONFIG_HAVE_KVM_MSI
3137        case KVM_CAP_SIGNAL_MSI:
3138#endif
3139#ifdef CONFIG_HAVE_KVM_IRQFD
3140        case KVM_CAP_IRQFD:
3141        case KVM_CAP_IRQFD_RESAMPLE:
3142#endif
3143        case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3144        case KVM_CAP_CHECK_EXTENSION_VM:
3145        case KVM_CAP_ENABLE_CAP_VM:
3146#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3147        case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3148#endif
3149                return 1;
3150#ifdef CONFIG_KVM_MMIO
3151        case KVM_CAP_COALESCED_MMIO:
3152                return KVM_COALESCED_MMIO_PAGE_OFFSET;
3153        case KVM_CAP_COALESCED_PIO:
3154                return 1;
3155#endif
3156#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3157        case KVM_CAP_IRQ_ROUTING:
3158                return KVM_MAX_IRQ_ROUTES;
3159#endif
3160#if KVM_ADDRESS_SPACE_NUM > 1
3161        case KVM_CAP_MULTI_ADDRESS_SPACE:
3162                return KVM_ADDRESS_SPACE_NUM;
3163#endif
3164        case KVM_CAP_NR_MEMSLOTS:
3165                return KVM_USER_MEM_SLOTS;
3166        default:
3167                break;
3168        }
3169        return kvm_vm_ioctl_check_extension(kvm, arg);
3170}
3171
3172int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3173                                                  struct kvm_enable_cap *cap)
3174{
3175        return -EINVAL;
3176}
3177
3178static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3179                                           struct kvm_enable_cap *cap)
3180{
3181        switch (cap->cap) {
3182#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3183        case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3184                if (cap->flags || (cap->args[0] & ~1))
3185                        return -EINVAL;
3186                kvm->manual_dirty_log_protect = cap->args[0];
3187                return 0;
3188#endif
3189        default:
3190                return kvm_vm_ioctl_enable_cap(kvm, cap);
3191        }
3192}
3193
3194static long kvm_vm_ioctl(struct file *filp,
3195                           unsigned int ioctl, unsigned long arg)
3196{
3197        struct kvm *kvm = filp->private_data;
3198        void __user *argp = (void __user *)arg;
3199        int r;
3200
3201        if (kvm->mm != current->mm)
3202                return -EIO;
3203        switch (ioctl) {
3204        case KVM_CREATE_VCPU:
3205                r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3206                break;
3207        case KVM_ENABLE_CAP: {
3208                struct kvm_enable_cap cap;
3209
3210                r = -EFAULT;
3211                if (copy_from_user(&cap, argp, sizeof(cap)))
3212                        goto out;
3213                r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3214                break;
3215        }
3216        case KVM_SET_USER_MEMORY_REGION: {
3217                struct kvm_userspace_memory_region kvm_userspace_mem;
3218
3219                r = -EFAULT;
3220                if (copy_from_user(&kvm_userspace_mem, argp,
3221                                                sizeof(kvm_userspace_mem)))
3222                        goto out;
3223
3224                r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3225                break;
3226        }
3227        case KVM_GET_DIRTY_LOG: {
3228                struct kvm_dirty_log log;
3229
3230                r = -EFAULT;
3231                if (copy_from_user(&log, argp, sizeof(log)))
3232                        goto out;
3233                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3234                break;
3235        }
3236#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3237        case KVM_CLEAR_DIRTY_LOG: {
3238                struct kvm_clear_dirty_log log;
3239
3240                r = -EFAULT;
3241                if (copy_from_user(&log, argp, sizeof(log)))
3242                        goto out;
3243                r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3244                break;
3245        }
3246#endif
3247#ifdef CONFIG_KVM_MMIO
3248        case KVM_REGISTER_COALESCED_MMIO: {
3249                struct kvm_coalesced_mmio_zone zone;
3250
3251                r = -EFAULT;
3252                if (copy_from_user(&zone, argp, sizeof(zone)))
3253                        goto out;
3254                r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3255                break;
3256        }
3257        case KVM_UNREGISTER_COALESCED_MMIO: {
3258                struct kvm_coalesced_mmio_zone zone;
3259
3260                r = -EFAULT;
3261                if (copy_from_user(&zone, argp, sizeof(zone)))
3262                        goto out;
3263                r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3264                break;
3265        }
3266#endif
3267        case KVM_IRQFD: {
3268                struct kvm_irqfd data;
3269
3270                r = -EFAULT;
3271                if (copy_from_user(&data, argp, sizeof(data)))
3272                        goto out;
3273                r = kvm_irqfd(kvm, &data);
3274                break;
3275        }
3276        case KVM_IOEVENTFD: {
3277                struct kvm_ioeventfd data;
3278
3279                r = -EFAULT;
3280                if (copy_from_user(&data, argp, sizeof(data)))
3281                        goto out;
3282                r = kvm_ioeventfd(kvm, &data);
3283                break;
3284        }
3285#ifdef CONFIG_HAVE_KVM_MSI
3286        case KVM_SIGNAL_MSI: {
3287                struct kvm_msi msi;
3288
3289                r = -EFAULT;
3290                if (copy_from_user(&msi, argp, sizeof(msi)))
3291                        goto out;
3292                r = kvm_send_userspace_msi(kvm, &msi);
3293                break;
3294        }
3295#endif
3296#ifdef __KVM_HAVE_IRQ_LINE
3297        case KVM_IRQ_LINE_STATUS:
3298        case KVM_IRQ_LINE: {
3299                struct kvm_irq_level irq_event;
3300
3301                r = -EFAULT;
3302                if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3303                        goto out;
3304
3305                r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3306                                        ioctl == KVM_IRQ_LINE_STATUS);
3307                if (r)
3308                        goto out;
3309
3310                r = -EFAULT;
3311                if (ioctl == KVM_IRQ_LINE_STATUS) {
3312                        if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3313                                goto out;
3314                }
3315
3316                r = 0;
3317                break;
3318        }
3319#endif
3320#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3321        case KVM_SET_GSI_ROUTING: {
3322                struct kvm_irq_routing routing;
3323                struct kvm_irq_routing __user *urouting;
3324                struct kvm_irq_routing_entry *entries = NULL;
3325
3326                r = -EFAULT;
3327                if (copy_from_user(&routing, argp, sizeof(routing)))
3328                        goto out;
3329                r = -EINVAL;
3330                if (!kvm_arch_can_set_irq_routing(kvm))
3331                        goto out;
3332                if (routing.nr > KVM_MAX_IRQ_ROUTES)
3333                        goto out;
3334                if (routing.flags)
3335                        goto out;
3336                if (routing.nr) {
3337                        r = -ENOMEM;
3338                        entries = vmalloc(array_size(sizeof(*entries),
3339                                                     routing.nr));
3340                        if (!entries)
3341                                goto out;
3342                        r = -EFAULT;
3343                        urouting = argp;
3344                        if (copy_from_user(entries, urouting->entries,
3345                                           routing.nr * sizeof(*entries)))
3346                                goto out_free_irq_routing;
3347                }
3348                r = kvm_set_irq_routing(kvm, entries, routing.nr,
3349                                        routing.flags);
3350out_free_irq_routing:
3351                vfree(entries);
3352                break;
3353        }
3354#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3355        case KVM_CREATE_DEVICE: {
3356                struct kvm_create_device cd;
3357
3358                r = -EFAULT;
3359                if (copy_from_user(&cd, argp, sizeof(cd)))
3360                        goto out;
3361
3362                r = kvm_ioctl_create_device(kvm, &cd);
3363                if (r)
3364                        goto out;
3365
3366                r = -EFAULT;
3367                if (copy_to_user(argp, &cd, sizeof(cd)))
3368                        goto out;
3369
3370                r = 0;
3371                break;
3372        }
3373        case KVM_CHECK_EXTENSION:
3374                r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3375                break;
3376        default:
3377                r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3378        }
3379out:
3380        return r;
3381}
3382
3383#ifdef CONFIG_KVM_COMPAT
3384struct compat_kvm_dirty_log {
3385        __u32 slot;
3386        __u32 padding1;
3387        union {
3388                compat_uptr_t dirty_bitmap; /* one bit per page */
3389                __u64 padding2;
3390        };
3391};
3392
3393static long kvm_vm_compat_ioctl(struct file *filp,
3394                           unsigned int ioctl, unsigned long arg)
3395{
3396        struct kvm *kvm = filp->private_data;
3397        int r;
3398
3399        if (kvm->mm != current->mm)
3400                return -EIO;
3401        switch (ioctl) {
3402        case KVM_GET_DIRTY_LOG: {
3403                struct compat_kvm_dirty_log compat_log;
3404                struct kvm_dirty_log log;
3405
3406                if (copy_from_user(&compat_log, (void __user *)arg,
3407                                   sizeof(compat_log)))
3408                        return -EFAULT;
3409                log.slot         = compat_log.slot;
3410                log.padding1     = compat_log.padding1;
3411                log.padding2     = compat_log.padding2;
3412                log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3413
3414                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3415                break;
3416        }
3417        default:
3418                r = kvm_vm_ioctl(filp, ioctl, arg);
3419        }
3420        return r;
3421}
3422#endif
3423
3424static struct file_operations kvm_vm_fops = {
3425        .release        = kvm_vm_release,
3426        .unlocked_ioctl = kvm_vm_ioctl,
3427        .llseek         = noop_llseek,
3428        KVM_COMPAT(kvm_vm_compat_ioctl),
3429};
3430
3431static int kvm_dev_ioctl_create_vm(unsigned long type)
3432{
3433        int r;
3434        struct kvm *kvm;
3435        struct file *file;
3436
3437        kvm = kvm_create_vm(type);
3438        if (IS_ERR(kvm))
3439                return PTR_ERR(kvm);
3440#ifdef CONFIG_KVM_MMIO
3441        r = kvm_coalesced_mmio_init(kvm);
3442        if (r < 0)
3443                goto put_kvm;
3444#endif
3445        r = get_unused_fd_flags(O_CLOEXEC);
3446        if (r < 0)
3447                goto put_kvm;
3448
3449        file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3450        if (IS_ERR(file)) {
3451                put_unused_fd(r);
3452                r = PTR_ERR(file);
3453                goto put_kvm;
3454        }
3455
3456        /*
3457         * Don't call kvm_put_kvm anymore at this point; file->f_op is
3458         * already set, with ->release() being kvm_vm_release().  In error
3459         * cases it will be called by the final fput(file) and will take
3460         * care of doing kvm_put_kvm(kvm).
3461         */
3462        if (kvm_create_vm_debugfs(kvm, r) < 0) {
3463                put_unused_fd(r);
3464                fput(file);
3465                return -ENOMEM;
3466        }
3467        kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3468
3469        fd_install(r, file);
3470        return r;
3471
3472put_kvm:
3473        kvm_put_kvm(kvm);
3474        return r;
3475}
3476
3477static long kvm_dev_ioctl(struct file *filp,
3478                          unsigned int ioctl, unsigned long arg)
3479{
3480        long r = -EINVAL;
3481
3482        switch (ioctl) {
3483        case KVM_GET_API_VERSION:
3484                if (arg)
3485                        goto out;
3486                r = KVM_API_VERSION;
3487                break;
3488        case KVM_CREATE_VM:
3489                r = kvm_dev_ioctl_create_vm(arg);
3490                break;
3491        case KVM_CHECK_EXTENSION:
3492                r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3493                break;
3494        case KVM_GET_VCPU_MMAP_SIZE:
3495                if (arg)
3496                        goto out;
3497                r = PAGE_SIZE;     /* struct kvm_run */
3498#ifdef CONFIG_X86
3499                r += PAGE_SIZE;    /* pio data page */
3500#endif
3501#ifdef CONFIG_KVM_MMIO
3502                r += PAGE_SIZE;    /* coalesced mmio ring page */
3503#endif
3504                break;
3505        case KVM_TRACE_ENABLE:
3506        case KVM_TRACE_PAUSE:
3507        case KVM_TRACE_DISABLE:
3508                r = -EOPNOTSUPP;
3509                break;
3510        default:
3511                return kvm_arch_dev_ioctl(filp, ioctl, arg);
3512        }
3513out:
3514        return r;
3515}
3516
3517static struct file_operations kvm_chardev_ops = {
3518        .unlocked_ioctl = kvm_dev_ioctl,
3519        .llseek         = noop_llseek,
3520        KVM_COMPAT(kvm_dev_ioctl),
3521};
3522
3523static struct miscdevice kvm_dev = {
3524        KVM_MINOR,
3525        "kvm",
3526        &kvm_chardev_ops,
3527};
3528
3529static void hardware_enable_nolock(void *junk)
3530{
3531        int cpu = raw_smp_processor_id();
3532        int r;
3533
3534        if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3535                return;
3536
3537        cpumask_set_cpu(cpu, cpus_hardware_enabled);
3538
3539        r = kvm_arch_hardware_enable();
3540
3541        if (r) {
3542                cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3543                atomic_inc(&hardware_enable_failed);
3544                pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3545        }
3546}
3547
3548static int kvm_starting_cpu(unsigned int cpu)
3549{
3550        raw_spin_lock(&kvm_count_lock);
3551        if (kvm_usage_count)
3552                hardware_enable_nolock(NULL);
3553        raw_spin_unlock(&kvm_count_lock);
3554        return 0;
3555}
3556
3557static void hardware_disable_nolock(void *junk)
3558{
3559        int cpu = raw_smp_processor_id();
3560
3561        if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3562                return;
3563        cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3564        kvm_arch_hardware_disable();
3565}
3566
3567static int kvm_dying_cpu(unsigned int cpu)
3568{
3569        raw_spin_lock(&kvm_count_lock);
3570        if (kvm_usage_count)
3571                hardware_disable_nolock(NULL);
3572        raw_spin_unlock(&kvm_count_lock);
3573        return 0;
3574}
3575
3576static void hardware_disable_all_nolock(void)
3577{
3578        BUG_ON(!kvm_usage_count);
3579
3580        kvm_usage_count--;
3581        if (!kvm_usage_count)
3582                on_each_cpu(hardware_disable_nolock, NULL, 1);
3583}
3584
3585static void hardware_disable_all(void)
3586{
3587        raw_spin_lock(&kvm_count_lock);
3588        hardware_disable_all_nolock();
3589        raw_spin_unlock(&kvm_count_lock);
3590}
3591
3592static int hardware_enable_all(void)
3593{
3594        int r = 0;
3595
3596        raw_spin_lock(&kvm_count_lock);
3597
3598        kvm_usage_count++;
3599        if (kvm_usage_count == 1) {
3600                atomic_set(&hardware_enable_failed, 0);
3601                on_each_cpu(hardware_enable_nolock, NULL, 1);
3602
3603                if (atomic_read(&hardware_enable_failed)) {
3604                        hardware_disable_all_nolock();
3605                        r = -EBUSY;
3606                }
3607        }
3608
3609        raw_spin_unlock(&kvm_count_lock);
3610
3611        return r;
3612}
3613
3614static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3615                      void *v)
3616{
3617        /*
3618         * Some (well, at least mine) BIOSes hang on reboot if
3619         * in vmx root mode.
3620         *
3621         * And Intel TXT required VMX off for all cpu when system shutdown.
3622         */
3623        pr_info("kvm: exiting hardware virtualization\n");
3624        kvm_rebooting = true;
3625        on_each_cpu(hardware_disable_nolock, NULL, 1);
3626        return NOTIFY_OK;
3627}
3628
3629static struct notifier_block kvm_reboot_notifier = {
3630        .notifier_call = kvm_reboot,
3631        .priority = 0,
3632};
3633
3634static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3635{
3636        int i;
3637
3638        for (i = 0; i < bus->dev_count; i++) {
3639                struct kvm_io_device *pos = bus->range[i].dev;
3640
3641                kvm_iodevice_destructor(pos);
3642        }
3643        kfree(bus);
3644}
3645
3646static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3647                                 const struct kvm_io_range *r2)
3648{
3649        gpa_t addr1 = r1->addr;
3650        gpa_t addr2 = r2->addr;
3651
3652        if (addr1 < addr2)
3653                return -1;
3654
3655        /* If r2->len == 0, match the exact address.  If r2->len != 0,
3656         * accept any overlapping write.  Any order is acceptable for
3657         * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3658         * we process all of them.
3659         */
3660        if (r2->len) {
3661                addr1 += r1->len;
3662                addr2 += r2->len;
3663        }
3664
3665        if (addr1 > addr2)
3666                return 1;
3667
3668        return 0;
3669}
3670
3671static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3672{
3673        return kvm_io_bus_cmp(p1, p2);
3674}
3675
3676static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3677                             gpa_t addr, int len)
3678{
3679        struct kvm_io_range *range, key;
3680        int off;
3681
3682        key = (struct kvm_io_range) {
3683                .addr = addr,
3684                .len = len,
3685        };
3686
3687        range = bsearch(&key, bus->range, bus->dev_count,
3688                        sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3689        if (range == NULL)
3690                return -ENOENT;
3691
3692        off = range - bus->range;
3693
3694        while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3695                off--;
3696
3697        return off;
3698}
3699
3700static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3701                              struct kvm_io_range *range, const void *val)
3702{
3703        int idx;
3704
3705        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3706        if (idx < 0)
3707                return -EOPNOTSUPP;
3708
3709        while (idx < bus->dev_count &&
3710                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3711                if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3712                                        range->len, val))
3713                        return idx;
3714                idx++;
3715        }
3716
3717        return -EOPNOTSUPP;
3718}
3719
3720/* kvm_io_bus_write - called under kvm->slots_lock */
3721int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3722                     int len, const void *val)
3723{
3724        struct kvm_io_bus *bus;
3725        struct kvm_io_range range;
3726        int r;
3727
3728        range = (struct kvm_io_range) {
3729                .addr = addr,
3730                .len = len,
3731        };
3732
3733        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3734        if (!bus)
3735                return -ENOMEM;
3736        r = __kvm_io_bus_write(vcpu, bus, &range, val);
3737        return r < 0 ? r : 0;
3738}
3739EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3740
3741/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3742int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3743                            gpa_t addr, int len, const void *val, long cookie)
3744{
3745        struct kvm_io_bus *bus;
3746        struct kvm_io_range range;
3747
3748        range = (struct kvm_io_range) {
3749                .addr = addr,
3750                .len = len,
3751        };
3752
3753        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3754        if (!bus)
3755                return -ENOMEM;
3756
3757        /* First try the device referenced by cookie. */
3758        if ((cookie >= 0) && (cookie < bus->dev_count) &&
3759            (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3760                if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3761                                        val))
3762                        return cookie;
3763
3764        /*
3765         * cookie contained garbage; fall back to search and return the
3766         * correct cookie value.
3767         */
3768        return __kvm_io_bus_write(vcpu, bus, &range, val);
3769}
3770
3771static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3772                             struct kvm_io_range *range, void *val)
3773{
3774        int idx;
3775
3776        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3777        if (idx < 0)
3778                return -EOPNOTSUPP;
3779
3780        while (idx < bus->dev_count &&
3781                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3782                if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3783                                       range->len, val))
3784                        return idx;
3785                idx++;
3786        }
3787
3788        return -EOPNOTSUPP;
3789}
3790
3791/* kvm_io_bus_read - called under kvm->slots_lock */
3792int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3793                    int len, void *val)
3794{
3795        struct kvm_io_bus *bus;
3796        struct kvm_io_range range;
3797        int r;
3798
3799        range = (struct kvm_io_range) {
3800                .addr = addr,
3801                .len = len,
3802        };
3803
3804        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3805        if (!bus)
3806                return -ENOMEM;
3807        r = __kvm_io_bus_read(vcpu, bus, &range, val);
3808        return r < 0 ? r : 0;
3809}
3810
3811/* Caller must hold slots_lock. */
3812int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3813                            int len, struct kvm_io_device *dev)
3814{
3815        int i;
3816        struct kvm_io_bus *new_bus, *bus;
3817        struct kvm_io_range range;
3818
3819        bus = kvm_get_bus(kvm, bus_idx);
3820        if (!bus)
3821                return -ENOMEM;
3822
3823        /* exclude ioeventfd which is limited by maximum fd */
3824        if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3825                return -ENOSPC;
3826
3827        new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3828                          GFP_KERNEL_ACCOUNT);
3829        if (!new_bus)
3830                return -ENOMEM;
3831
3832        range = (struct kvm_io_range) {
3833                .addr = addr,
3834                .len = len,
3835                .dev = dev,
3836        };
3837
3838        for (i = 0; i < bus->dev_count; i++)
3839                if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3840                        break;
3841
3842        memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3843        new_bus->dev_count++;
3844        new_bus->range[i] = range;
3845        memcpy(new_bus->range + i + 1, bus->range + i,
3846                (bus->dev_count - i) * sizeof(struct kvm_io_range));
3847        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3848        synchronize_srcu_expedited(&kvm->srcu);
3849        kfree(bus);
3850
3851        return 0;
3852}
3853
3854/* Caller must hold slots_lock. */
3855void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3856                               struct kvm_io_device *dev)
3857{
3858        int i;
3859        struct kvm_io_bus *new_bus, *bus;
3860
3861        bus = kvm_get_bus(kvm, bus_idx);
3862        if (!bus)
3863                return;
3864
3865        for (i = 0; i < bus->dev_count; i++)
3866                if (bus->range[i].dev == dev) {
3867                        break;
3868                }
3869
3870        if (i == bus->dev_count)
3871                return;
3872
3873        new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3874                          GFP_KERNEL_ACCOUNT);
3875        if (!new_bus)  {
3876                pr_err("kvm: failed to shrink bus, removing it completely\n");
3877                goto broken;
3878        }
3879
3880        memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3881        new_bus->dev_count--;
3882        memcpy(new_bus->range + i, bus->range + i + 1,
3883               (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3884
3885broken:
3886        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3887        synchronize_srcu_expedited(&kvm->srcu);
3888        kfree(bus);
3889        return;
3890}
3891
3892struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3893                                         gpa_t addr)
3894{
3895        struct kvm_io_bus *bus;
3896        int dev_idx, srcu_idx;
3897        struct kvm_io_device *iodev = NULL;
3898
3899        srcu_idx = srcu_read_lock(&kvm->srcu);
3900
3901        bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3902        if (!bus)
3903                goto out_unlock;
3904
3905        dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3906        if (dev_idx < 0)
3907                goto out_unlock;
3908
3909        iodev = bus->range[dev_idx].dev;
3910
3911out_unlock:
3912        srcu_read_unlock(&kvm->srcu, srcu_idx);
3913
3914        return iodev;
3915}
3916EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3917
3918static int kvm_debugfs_open(struct inode *inode, struct file *file,
3919                           int (*get)(void *, u64 *), int (*set)(void *, u64),
3920                           const char *fmt)
3921{
3922        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3923                                          inode->i_private;
3924
3925        /* The debugfs files are a reference to the kvm struct which
3926         * is still valid when kvm_destroy_vm is called.
3927         * To avoid the race between open and the removal of the debugfs
3928         * directory we test against the users count.
3929         */
3930        if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3931                return -ENOENT;
3932
3933        if (simple_attr_open(inode, file, get, set, fmt)) {
3934                kvm_put_kvm(stat_data->kvm);
3935                return -ENOMEM;
3936        }
3937
3938        return 0;
3939}
3940
3941static int kvm_debugfs_release(struct inode *inode, struct file *file)
3942{
3943        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3944                                          inode->i_private;
3945
3946        simple_attr_release(inode, file);
3947        kvm_put_kvm(stat_data->kvm);
3948
3949        return 0;
3950}
3951
3952static int vm_stat_get_per_vm(void *data, u64 *val)
3953{
3954        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3955
3956        *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3957
3958        return 0;
3959}
3960
3961static int vm_stat_clear_per_vm(void *data, u64 val)
3962{
3963        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3964
3965        if (val)
3966                return -EINVAL;
3967
3968        *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3969
3970        return 0;
3971}
3972
3973static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3974{
3975        __simple_attr_check_format("%llu\n", 0ull);
3976        return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3977                                vm_stat_clear_per_vm, "%llu\n");
3978}
3979
3980static const struct file_operations vm_stat_get_per_vm_fops = {
3981        .owner   = THIS_MODULE,
3982        .open    = vm_stat_get_per_vm_open,
3983        .release = kvm_debugfs_release,
3984        .read    = simple_attr_read,
3985        .write   = simple_attr_write,
3986        .llseek  = no_llseek,
3987};
3988
3989static int vcpu_stat_get_per_vm(void *data, u64 *val)
3990{
3991        int i;
3992        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3993        struct kvm_vcpu *vcpu;
3994
3995        *val = 0;
3996
3997        kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3998                *val += *(u64 *)((void *)vcpu + stat_data->offset);
3999
4000        return 0;
4001}
4002
4003static int vcpu_stat_clear_per_vm(void *data, u64 val)
4004{
4005        int i;
4006        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4007        struct kvm_vcpu *vcpu;
4008
4009        if (val)
4010                return -EINVAL;
4011
4012        kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4013                *(u64 *)((void *)vcpu + stat_data->offset) = 0;
4014
4015        return 0;
4016}
4017
4018static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4019{
4020        __simple_attr_check_format("%llu\n", 0ull);
4021        return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4022                                 vcpu_stat_clear_per_vm, "%llu\n");
4023}
4024
4025static const struct file_operations vcpu_stat_get_per_vm_fops = {
4026        .owner   = THIS_MODULE,
4027        .open    = vcpu_stat_get_per_vm_open,
4028        .release = kvm_debugfs_release,
4029        .read    = simple_attr_read,
4030        .write   = simple_attr_write,
4031        .llseek  = no_llseek,
4032};
4033
4034static const struct file_operations *stat_fops_per_vm[] = {
4035        [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4036        [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4037};
4038
4039static int vm_stat_get(void *_offset, u64 *val)
4040{
4041        unsigned offset = (long)_offset;
4042        struct kvm *kvm;
4043        struct kvm_stat_data stat_tmp = {.offset = offset};
4044        u64 tmp_val;
4045
4046        *val = 0;
4047        mutex_lock(&kvm_lock);
4048        list_for_each_entry(kvm, &vm_list, vm_list) {
4049                stat_tmp.kvm = kvm;
4050                vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4051                *val += tmp_val;
4052        }
4053        mutex_unlock(&kvm_lock);
4054        return 0;
4055}
4056
4057static int vm_stat_clear(void *_offset, u64 val)
4058{
4059        unsigned offset = (long)_offset;
4060        struct kvm *kvm;
4061        struct kvm_stat_data stat_tmp = {.offset = offset};
4062
4063        if (val)
4064                return -EINVAL;
4065
4066        mutex_lock(&kvm_lock);
4067        list_for_each_entry(kvm, &vm_list, vm_list) {
4068                stat_tmp.kvm = kvm;
4069                vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4070        }
4071        mutex_unlock(&kvm_lock);
4072
4073        return 0;
4074}
4075
4076DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4077
4078static int vcpu_stat_get(void *_offset, u64 *val)
4079{
4080        unsigned offset = (long)_offset;
4081        struct kvm *kvm;
4082        struct kvm_stat_data stat_tmp = {.offset = offset};
4083        u64 tmp_val;
4084
4085        *val = 0;
4086        mutex_lock(&kvm_lock);
4087        list_for_each_entry(kvm, &vm_list, vm_list) {
4088                stat_tmp.kvm = kvm;
4089                vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4090                *val += tmp_val;
4091        }
4092        mutex_unlock(&kvm_lock);
4093        return 0;
4094}
4095
4096static int vcpu_stat_clear(void *_offset, u64 val)
4097{
4098        unsigned offset = (long)_offset;
4099        struct kvm *kvm;
4100        struct kvm_stat_data stat_tmp = {.offset = offset};
4101
4102        if (val)
4103                return -EINVAL;
4104
4105        mutex_lock(&kvm_lock);
4106        list_for_each_entry(kvm, &vm_list, vm_list) {
4107                stat_tmp.kvm = kvm;
4108                vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4109        }
4110        mutex_unlock(&kvm_lock);
4111
4112        return 0;
4113}
4114
4115DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4116                        "%llu\n");
4117
4118static const struct file_operations *stat_fops[] = {
4119        [KVM_STAT_VCPU] = &vcpu_stat_fops,
4120        [KVM_STAT_VM]   = &vm_stat_fops,
4121};
4122
4123static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4124{
4125        struct kobj_uevent_env *env;
4126        unsigned long long created, active;
4127
4128        if (!kvm_dev.this_device || !kvm)
4129                return;
4130
4131        mutex_lock(&kvm_lock);
4132        if (type == KVM_EVENT_CREATE_VM) {
4133                kvm_createvm_count++;
4134                kvm_active_vms++;
4135        } else if (type == KVM_EVENT_DESTROY_VM) {
4136                kvm_active_vms--;
4137        }
4138        created = kvm_createvm_count;
4139        active = kvm_active_vms;
4140        mutex_unlock(&kvm_lock);
4141
4142        env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4143        if (!env)
4144                return;
4145
4146        add_uevent_var(env, "CREATED=%llu", created);
4147        add_uevent_var(env, "COUNT=%llu", active);
4148
4149        if (type == KVM_EVENT_CREATE_VM) {
4150                add_uevent_var(env, "EVENT=create");
4151                kvm->userspace_pid = task_pid_nr(current);
4152        } else if (type == KVM_EVENT_DESTROY_VM) {
4153                add_uevent_var(env, "EVENT=destroy");
4154        }
4155        add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4156
4157        if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4158                char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4159
4160                if (p) {
4161                        tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4162                        if (!IS_ERR(tmp))
4163                                add_uevent_var(env, "STATS_PATH=%s", tmp);
4164                        kfree(p);
4165                }
4166        }
4167        /* no need for checks, since we are adding at most only 5 keys */
4168        env->envp[env->envp_idx++] = NULL;
4169        kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4170        kfree(env);
4171}
4172
4173static void kvm_init_debug(void)
4174{
4175        struct kvm_stats_debugfs_item *p;
4176
4177        kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4178
4179        kvm_debugfs_num_entries = 0;
4180        for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4181                debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
4182                                    (void *)(long)p->offset,
4183                                    stat_fops[p->kind]);
4184        }
4185}
4186
4187static int kvm_suspend(void)
4188{
4189        if (kvm_usage_count)
4190                hardware_disable_nolock(NULL);
4191        return 0;
4192}
4193
4194static void kvm_resume(void)
4195{
4196        if (kvm_usage_count) {
4197#ifdef CONFIG_LOCKDEP
4198                WARN_ON(lockdep_is_held(&kvm_count_lock));
4199#endif
4200                hardware_enable_nolock(NULL);
4201        }
4202}
4203
4204static struct syscore_ops kvm_syscore_ops = {
4205        .suspend = kvm_suspend,
4206        .resume = kvm_resume,
4207};
4208
4209static inline
4210struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4211{
4212        return container_of(pn, struct kvm_vcpu, preempt_notifier);
4213}
4214
4215static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4216{
4217        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4218
4219        WRITE_ONCE(vcpu->preempted, false);
4220        WRITE_ONCE(vcpu->ready, false);
4221
4222        kvm_arch_sched_in(vcpu, cpu);
4223
4224        kvm_arch_vcpu_load(vcpu, cpu);
4225}
4226
4227static void kvm_sched_out(struct preempt_notifier *pn,
4228                          struct task_struct *next)
4229{
4230        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4231
4232        if (current->state == TASK_RUNNING) {
4233                WRITE_ONCE(vcpu->preempted, true);
4234                WRITE_ONCE(vcpu->ready, true);
4235        }
4236        kvm_arch_vcpu_put(vcpu);
4237}
4238
4239static void check_processor_compat(void *rtn)
4240{
4241        *(int *)rtn = kvm_arch_check_processor_compat();
4242}
4243
4244int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4245                  struct module *module)
4246{
4247        int r;
4248        int cpu;
4249
4250        r = kvm_arch_init(opaque);
4251        if (r)
4252                goto out_fail;
4253
4254        /*
4255         * kvm_arch_init makes sure there's at most one caller
4256         * for architectures that support multiple implementations,
4257         * like intel and amd on x86.
4258         * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4259         * conflicts in case kvm is already setup for another implementation.
4260         */
4261        r = kvm_irqfd_init();
4262        if (r)
4263                goto out_irqfd;
4264
4265        if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4266                r = -ENOMEM;
4267                goto out_free_0;
4268        }
4269
4270        r = kvm_arch_hardware_setup();
4271        if (r < 0)
4272                goto out_free_0a;
4273
4274        for_each_online_cpu(cpu) {
4275                smp_call_function_single(cpu, check_processor_compat, &r, 1);
4276                if (r < 0)
4277                        goto out_free_1;
4278        }
4279
4280        r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4281                                      kvm_starting_cpu, kvm_dying_cpu);
4282        if (r)
4283                goto out_free_2;
4284        register_reboot_notifier(&kvm_reboot_notifier);
4285
4286        /* A kmem cache lets us meet the alignment requirements of fx_save. */
4287        if (!vcpu_align)
4288                vcpu_align = __alignof__(struct kvm_vcpu);
4289        kvm_vcpu_cache =
4290                kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4291                                           SLAB_ACCOUNT,
4292                                           offsetof(struct kvm_vcpu, arch),
4293                                           sizeof_field(struct kvm_vcpu, arch),
4294                                           NULL);
4295        if (!kvm_vcpu_cache) {
4296                r = -ENOMEM;
4297                goto out_free_3;
4298        }
4299
4300        r = kvm_async_pf_init();
4301        if (r)
4302                goto out_free;
4303
4304        kvm_chardev_ops.owner = module;
4305        kvm_vm_fops.owner = module;
4306        kvm_vcpu_fops.owner = module;
4307
4308        r = misc_register(&kvm_dev);
4309        if (r) {
4310                pr_err("kvm: misc device register failed\n");
4311                goto out_unreg;
4312        }
4313
4314        register_syscore_ops(&kvm_syscore_ops);
4315
4316        kvm_preempt_ops.sched_in = kvm_sched_in;
4317        kvm_preempt_ops.sched_out = kvm_sched_out;
4318
4319        kvm_init_debug();
4320
4321        r = kvm_vfio_ops_init();
4322        WARN_ON(r);
4323
4324        return 0;
4325
4326out_unreg:
4327        kvm_async_pf_deinit();
4328out_free:
4329        kmem_cache_destroy(kvm_vcpu_cache);
4330out_free_3:
4331        unregister_reboot_notifier(&kvm_reboot_notifier);
4332        cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4333out_free_2:
4334out_free_1:
4335        kvm_arch_hardware_unsetup();
4336out_free_0a:
4337        free_cpumask_var(cpus_hardware_enabled);
4338out_free_0:
4339        kvm_irqfd_exit();
4340out_irqfd:
4341        kvm_arch_exit();
4342out_fail:
4343        return r;
4344}
4345EXPORT_SYMBOL_GPL(kvm_init);
4346
4347void kvm_exit(void)
4348{
4349        debugfs_remove_recursive(kvm_debugfs_dir);
4350        misc_deregister(&kvm_dev);
4351        kmem_cache_destroy(kvm_vcpu_cache);
4352        kvm_async_pf_deinit();
4353        unregister_syscore_ops(&kvm_syscore_ops);
4354        unregister_reboot_notifier(&kvm_reboot_notifier);
4355        cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4356        on_each_cpu(hardware_disable_nolock, NULL, 1);
4357        kvm_arch_hardware_unsetup();
4358        kvm_arch_exit();
4359        kvm_irqfd_exit();
4360        free_cpumask_var(cpus_hardware_enabled);
4361        kvm_vfio_ops_exit();
4362}
4363EXPORT_SYMBOL_GPL(kvm_exit);
4364