linux/arch/arc/mm/tlb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * TLB Management (flush/create/diagnostics) for ARC700
   4 *
   5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
   6 *
   7 * vineetg: Aug 2011
   8 *  -Reintroduce duplicate PD fixup - some customer chips still have the issue
   9 *
  10 * vineetg: May 2011
  11 *  -No need to flush_cache_page( ) for each call to update_mmu_cache()
  12 *   some of the LMBench tests improved amazingly
  13 *      = page-fault thrice as fast (75 usec to 28 usec)
  14 *      = mmap twice as fast (9.6 msec to 4.6 msec),
  15 *      = fork (5.3 msec to 3.7 msec)
  16 *
  17 * vineetg: April 2011 :
  18 *  -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
  19 *      helps avoid a shift when preparing PD0 from PTE
  20 *
  21 * vineetg: April 2011 : Preparing for MMU V3
  22 *  -MMU v2/v3 BCRs decoded differently
  23 *  -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
  24 *  -tlb_entry_erase( ) can be void
  25 *  -local_flush_tlb_range( ):
  26 *      = need not "ceil" @end
  27 *      = walks MMU only if range spans < 32 entries, as opposed to 256
  28 *
  29 * Vineetg: Sept 10th 2008
  30 *  -Changes related to MMU v2 (Rel 4.8)
  31 *
  32 * Vineetg: Aug 29th 2008
  33 *  -In TLB Flush operations (Metal Fix MMU) there is a explict command to
  34 *    flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
  35 *    it fails. Thus need to load it with ANY valid value before invoking
  36 *    TLBIVUTLB cmd
  37 *
  38 * Vineetg: Aug 21th 2008:
  39 *  -Reduced the duration of IRQ lockouts in TLB Flush routines
  40 *  -Multiple copies of TLB erase code seperated into a "single" function
  41 *  -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
  42 *       in interrupt-safe region.
  43 *
  44 * Vineetg: April 23rd Bug #93131
  45 *    Problem: tlb_flush_kernel_range() doesn't do anything if the range to
  46 *              flush is more than the size of TLB itself.
  47 *
  48 * Rahul Trivedi : Codito Technologies 2004
  49 */
  50
  51#include <linux/module.h>
  52#include <linux/bug.h>
  53#include <linux/mm_types.h>
  54
  55#include <asm/arcregs.h>
  56#include <asm/setup.h>
  57#include <asm/mmu_context.h>
  58#include <asm/mmu.h>
  59
  60/*                      Need for ARC MMU v2
  61 *
  62 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
  63 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
  64 * map into same set, there would be contention for the 2 ways causing severe
  65 * Thrashing.
  66 *
  67 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
  68 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
  69 * Given this, the thrasing problem should never happen because once the 3
  70 * J-TLB entries are created (even though 3rd will knock out one of the prev
  71 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
  72 *
  73 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
  74 * This is a simple design for keeping them in sync. So what do we do?
  75 * The solution which James came up was pretty neat. It utilised the assoc
  76 * of uTLBs by not invalidating always but only when absolutely necessary.
  77 *
  78 * - Existing TLB commands work as before
  79 * - New command (TLBWriteNI) for TLB write without clearing uTLBs
  80 * - New command (TLBIVUTLB) to invalidate uTLBs.
  81 *
  82 * The uTLBs need only be invalidated when pages are being removed from the
  83 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
  84 * as a result of a miss, the removed entry is still allowed to exist in the
  85 * uTLBs as it is still valid and present in the OS page table. This allows the
  86 * full associativity of the uTLBs to hide the limited associativity of the main
  87 * TLB.
  88 *
  89 * During a miss handler, the new "TLBWriteNI" command is used to load
  90 * entries without clearing the uTLBs.
  91 *
  92 * When the OS page table is updated, TLB entries that may be associated with a
  93 * removed page are removed (flushed) from the TLB using TLBWrite. In this
  94 * circumstance, the uTLBs must also be cleared. This is done by using the
  95 * existing TLBWrite command. An explicit IVUTLB is also required for those
  96 * corner cases when TLBWrite was not executed at all because the corresp
  97 * J-TLB entry got evicted/replaced.
  98 */
  99
 100
 101/* A copy of the ASID from the PID reg is kept in asid_cache */
 102DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
 103
 104static int __read_mostly pae_exists;
 105
 106/*
 107 * Utility Routine to erase a J-TLB entry
 108 * Caller needs to setup Index Reg (manually or via getIndex)
 109 */
 110static inline void __tlb_entry_erase(void)
 111{
 112        write_aux_reg(ARC_REG_TLBPD1, 0);
 113
 114        if (is_pae40_enabled())
 115                write_aux_reg(ARC_REG_TLBPD1HI, 0);
 116
 117        write_aux_reg(ARC_REG_TLBPD0, 0);
 118        write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 119}
 120
 121#if (CONFIG_ARC_MMU_VER < 4)
 122
 123static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
 124{
 125        unsigned int idx;
 126
 127        write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
 128
 129        write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
 130        idx = read_aux_reg(ARC_REG_TLBINDEX);
 131
 132        return idx;
 133}
 134
 135static void tlb_entry_erase(unsigned int vaddr_n_asid)
 136{
 137        unsigned int idx;
 138
 139        /* Locate the TLB entry for this vaddr + ASID */
 140        idx = tlb_entry_lkup(vaddr_n_asid);
 141
 142        /* No error means entry found, zero it out */
 143        if (likely(!(idx & TLB_LKUP_ERR))) {
 144                __tlb_entry_erase();
 145        } else {
 146                /* Duplicate entry error */
 147                WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
 148                                           vaddr_n_asid);
 149        }
 150}
 151
 152/****************************************************************************
 153 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
 154 *
 155 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
 156 *
 157 * utlb_invalidate ( )
 158 *  -For v2 MMU calls Flush uTLB Cmd
 159 *  -For v1 MMU does nothing (except for Metal Fix v1 MMU)
 160 *      This is because in v1 TLBWrite itself invalidate uTLBs
 161 ***************************************************************************/
 162
 163static void utlb_invalidate(void)
 164{
 165#if (CONFIG_ARC_MMU_VER >= 2)
 166
 167#if (CONFIG_ARC_MMU_VER == 2)
 168        /* MMU v2 introduced the uTLB Flush command.
 169         * There was however an obscure hardware bug, where uTLB flush would
 170         * fail when a prior probe for J-TLB (both totally unrelated) would
 171         * return lkup err - because the entry didn't exist in MMU.
 172         * The Workround was to set Index reg with some valid value, prior to
 173         * flush. This was fixed in MMU v3 hence not needed any more
 174         */
 175        unsigned int idx;
 176
 177        /* make sure INDEX Reg is valid */
 178        idx = read_aux_reg(ARC_REG_TLBINDEX);
 179
 180        /* If not write some dummy val */
 181        if (unlikely(idx & TLB_LKUP_ERR))
 182                write_aux_reg(ARC_REG_TLBINDEX, 0xa);
 183#endif
 184
 185        write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
 186#endif
 187
 188}
 189
 190static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
 191{
 192        unsigned int idx;
 193
 194        /*
 195         * First verify if entry for this vaddr+ASID already exists
 196         * This also sets up PD0 (vaddr, ASID..) for final commit
 197         */
 198        idx = tlb_entry_lkup(pd0);
 199
 200        /*
 201         * If Not already present get a free slot from MMU.
 202         * Otherwise, Probe would have located the entry and set INDEX Reg
 203         * with existing location. This will cause Write CMD to over-write
 204         * existing entry with new PD0 and PD1
 205         */
 206        if (likely(idx & TLB_LKUP_ERR))
 207                write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
 208
 209        /* setup the other half of TLB entry (pfn, rwx..) */
 210        write_aux_reg(ARC_REG_TLBPD1, pd1);
 211
 212        /*
 213         * Commit the Entry to MMU
 214         * It doesn't sound safe to use the TLBWriteNI cmd here
 215         * which doesn't flush uTLBs. I'd rather be safe than sorry.
 216         */
 217        write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 218}
 219
 220#else   /* CONFIG_ARC_MMU_VER >= 4) */
 221
 222static void utlb_invalidate(void)
 223{
 224        /* No need since uTLB is always in sync with JTLB */
 225}
 226
 227static void tlb_entry_erase(unsigned int vaddr_n_asid)
 228{
 229        write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
 230        write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
 231}
 232
 233static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
 234{
 235        write_aux_reg(ARC_REG_TLBPD0, pd0);
 236        write_aux_reg(ARC_REG_TLBPD1, pd1);
 237
 238        if (is_pae40_enabled())
 239                write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
 240
 241        write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
 242}
 243
 244#endif
 245
 246/*
 247 * Un-conditionally (without lookup) erase the entire MMU contents
 248 */
 249
 250noinline void local_flush_tlb_all(void)
 251{
 252        struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 253        unsigned long flags;
 254        unsigned int entry;
 255        int num_tlb = mmu->sets * mmu->ways;
 256
 257        local_irq_save(flags);
 258
 259        /* Load PD0 and PD1 with template for a Blank Entry */
 260        write_aux_reg(ARC_REG_TLBPD1, 0);
 261
 262        if (is_pae40_enabled())
 263                write_aux_reg(ARC_REG_TLBPD1HI, 0);
 264
 265        write_aux_reg(ARC_REG_TLBPD0, 0);
 266
 267        for (entry = 0; entry < num_tlb; entry++) {
 268                /* write this entry to the TLB */
 269                write_aux_reg(ARC_REG_TLBINDEX, entry);
 270                write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 271        }
 272
 273        if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 274                const int stlb_idx = 0x800;
 275
 276                /* Blank sTLB entry */
 277                write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
 278
 279                for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
 280                        write_aux_reg(ARC_REG_TLBINDEX, entry);
 281                        write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 282                }
 283        }
 284
 285        utlb_invalidate();
 286
 287        local_irq_restore(flags);
 288}
 289
 290/*
 291 * Flush the entrie MM for userland. The fastest way is to move to Next ASID
 292 */
 293noinline void local_flush_tlb_mm(struct mm_struct *mm)
 294{
 295        /*
 296         * Small optimisation courtesy IA64
 297         * flush_mm called during fork,exit,munmap etc, multiple times as well.
 298         * Only for fork( ) do we need to move parent to a new MMU ctxt,
 299         * all other cases are NOPs, hence this check.
 300         */
 301        if (atomic_read(&mm->mm_users) == 0)
 302                return;
 303
 304        /*
 305         * - Move to a new ASID, but only if the mm is still wired in
 306         *   (Android Binder ended up calling this for vma->mm != tsk->mm,
 307         *    causing h/w - s/w ASID to get out of sync)
 308         * - Also get_new_mmu_context() new implementation allocates a new
 309         *   ASID only if it is not allocated already - so unallocate first
 310         */
 311        destroy_context(mm);
 312        if (current->mm == mm)
 313                get_new_mmu_context(mm);
 314}
 315
 316/*
 317 * Flush a Range of TLB entries for userland.
 318 * @start is inclusive, while @end is exclusive
 319 * Difference between this and Kernel Range Flush is
 320 *  -Here the fastest way (if range is too large) is to move to next ASID
 321 *      without doing any explicit Shootdown
 322 *  -In case of kernel Flush, entry has to be shot down explictly
 323 */
 324void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 325                           unsigned long end)
 326{
 327        const unsigned int cpu = smp_processor_id();
 328        unsigned long flags;
 329
 330        /* If range @start to @end is more than 32 TLB entries deep,
 331         * its better to move to a new ASID rather than searching for
 332         * individual entries and then shooting them down
 333         *
 334         * The calc above is rough, doesn't account for unaligned parts,
 335         * since this is heuristics based anyways
 336         */
 337        if (unlikely((end - start) >= PAGE_SIZE * 32)) {
 338                local_flush_tlb_mm(vma->vm_mm);
 339                return;
 340        }
 341
 342        /*
 343         * @start moved to page start: this alone suffices for checking
 344         * loop end condition below, w/o need for aligning @end to end
 345         * e.g. 2000 to 4001 will anyhow loop twice
 346         */
 347        start &= PAGE_MASK;
 348
 349        local_irq_save(flags);
 350
 351        if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
 352                while (start < end) {
 353                        tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
 354                        start += PAGE_SIZE;
 355                }
 356        }
 357
 358        utlb_invalidate();
 359
 360        local_irq_restore(flags);
 361}
 362
 363/* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
 364 *  @start, @end interpreted as kvaddr
 365 * Interestingly, shared TLB entries can also be flushed using just
 366 * @start,@end alone (interpreted as user vaddr), although technically SASID
 367 * is also needed. However our smart TLbProbe lookup takes care of that.
 368 */
 369void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
 370{
 371        unsigned long flags;
 372
 373        /* exactly same as above, except for TLB entry not taking ASID */
 374
 375        if (unlikely((end - start) >= PAGE_SIZE * 32)) {
 376                local_flush_tlb_all();
 377                return;
 378        }
 379
 380        start &= PAGE_MASK;
 381
 382        local_irq_save(flags);
 383        while (start < end) {
 384                tlb_entry_erase(start);
 385                start += PAGE_SIZE;
 386        }
 387
 388        utlb_invalidate();
 389
 390        local_irq_restore(flags);
 391}
 392
 393/*
 394 * Delete TLB entry in MMU for a given page (??? address)
 395 * NOTE One TLB entry contains translation for single PAGE
 396 */
 397
 398void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 399{
 400        const unsigned int cpu = smp_processor_id();
 401        unsigned long flags;
 402
 403        /* Note that it is critical that interrupts are DISABLED between
 404         * checking the ASID and using it flush the TLB entry
 405         */
 406        local_irq_save(flags);
 407
 408        if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
 409                tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
 410                utlb_invalidate();
 411        }
 412
 413        local_irq_restore(flags);
 414}
 415
 416#ifdef CONFIG_SMP
 417
 418struct tlb_args {
 419        struct vm_area_struct *ta_vma;
 420        unsigned long ta_start;
 421        unsigned long ta_end;
 422};
 423
 424static inline void ipi_flush_tlb_page(void *arg)
 425{
 426        struct tlb_args *ta = arg;
 427
 428        local_flush_tlb_page(ta->ta_vma, ta->ta_start);
 429}
 430
 431static inline void ipi_flush_tlb_range(void *arg)
 432{
 433        struct tlb_args *ta = arg;
 434
 435        local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
 436}
 437
 438#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 439static inline void ipi_flush_pmd_tlb_range(void *arg)
 440{
 441        struct tlb_args *ta = arg;
 442
 443        local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
 444}
 445#endif
 446
 447static inline void ipi_flush_tlb_kernel_range(void *arg)
 448{
 449        struct tlb_args *ta = (struct tlb_args *)arg;
 450
 451        local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
 452}
 453
 454void flush_tlb_all(void)
 455{
 456        on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
 457}
 458
 459void flush_tlb_mm(struct mm_struct *mm)
 460{
 461        on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
 462                         mm, 1);
 463}
 464
 465void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
 466{
 467        struct tlb_args ta = {
 468                .ta_vma = vma,
 469                .ta_start = uaddr
 470        };
 471
 472        on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
 473}
 474
 475void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 476                     unsigned long end)
 477{
 478        struct tlb_args ta = {
 479                .ta_vma = vma,
 480                .ta_start = start,
 481                .ta_end = end
 482        };
 483
 484        on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
 485}
 486
 487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 488void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
 489                         unsigned long end)
 490{
 491        struct tlb_args ta = {
 492                .ta_vma = vma,
 493                .ta_start = start,
 494                .ta_end = end
 495        };
 496
 497        on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
 498}
 499#endif
 500
 501void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 502{
 503        struct tlb_args ta = {
 504                .ta_start = start,
 505                .ta_end = end
 506        };
 507
 508        on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
 509}
 510#endif
 511
 512/*
 513 * Routine to create a TLB entry
 514 */
 515void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
 516{
 517        unsigned long flags;
 518        unsigned int asid_or_sasid, rwx;
 519        unsigned long pd0;
 520        pte_t pd1;
 521
 522        /*
 523         * create_tlb() assumes that current->mm == vma->mm, since
 524         * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
 525         * -completes the lazy write to SASID reg (again valid for curr tsk)
 526         *
 527         * Removing the assumption involves
 528         * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
 529         * -Fix the TLB paranoid debug code to not trigger false negatives.
 530         * -More importantly it makes this handler inconsistent with fast-path
 531         *  TLB Refill handler which always deals with "current"
 532         *
 533         * Lets see the use cases when current->mm != vma->mm and we land here
 534         *  1. execve->copy_strings()->__get_user_pages->handle_mm_fault
 535         *     Here VM wants to pre-install a TLB entry for user stack while
 536         *     current->mm still points to pre-execve mm (hence the condition).
 537         *     However the stack vaddr is soon relocated (randomization) and
 538         *     move_page_tables() tries to undo that TLB entry.
 539         *     Thus not creating TLB entry is not any worse.
 540         *
 541         *  2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
 542         *     breakpoint in debugged task. Not creating a TLB now is not
 543         *     performance critical.
 544         *
 545         * Both the cases above are not good enough for code churn.
 546         */
 547        if (current->active_mm != vma->vm_mm)
 548                return;
 549
 550        local_irq_save(flags);
 551
 552        tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr);
 553
 554        vaddr &= PAGE_MASK;
 555
 556        /* update this PTE credentials */
 557        pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
 558
 559        /* Create HW TLB(PD0,PD1) from PTE  */
 560
 561        /* ASID for this task */
 562        asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
 563
 564        pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
 565
 566        /*
 567         * ARC MMU provides fully orthogonal access bits for K/U mode,
 568         * however Linux only saves 1 set to save PTE real-estate
 569         * Here we convert 3 PTE bits into 6 MMU bits:
 570         * -Kernel only entries have Kr Kw Kx 0 0 0
 571         * -User entries have mirrored K and U bits
 572         */
 573        rwx = pte_val(*ptep) & PTE_BITS_RWX;
 574
 575        if (pte_val(*ptep) & _PAGE_GLOBAL)
 576                rwx <<= 3;              /* r w x => Kr Kw Kx 0 0 0 */
 577        else
 578                rwx |= (rwx << 3);      /* r w x => Kr Kw Kx Ur Uw Ux */
 579
 580        pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
 581
 582        tlb_entry_insert(pd0, pd1);
 583
 584        local_irq_restore(flags);
 585}
 586
 587/*
 588 * Called at the end of pagefault, for a userspace mapped page
 589 *  -pre-install the corresponding TLB entry into MMU
 590 *  -Finalize the delayed D-cache flush of kernel mapping of page due to
 591 *      flush_dcache_page(), copy_user_page()
 592 *
 593 * Note that flush (when done) involves both WBACK - so physical page is
 594 * in sync as well as INV - so any non-congruent aliases don't remain
 595 */
 596void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
 597                      pte_t *ptep)
 598{
 599        unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
 600        phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK;
 601        struct page *page = pfn_to_page(pte_pfn(*ptep));
 602
 603        create_tlb(vma, vaddr, ptep);
 604
 605        if (page == ZERO_PAGE(0)) {
 606                return;
 607        }
 608
 609        /*
 610         * Exec page : Independent of aliasing/page-color considerations,
 611         *             since icache doesn't snoop dcache on ARC, any dirty
 612         *             K-mapping of a code page needs to be wback+inv so that
 613         *             icache fetch by userspace sees code correctly.
 614         * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
 615         *             so userspace sees the right data.
 616         *  (Avoids the flush for Non-exec + congruent mapping case)
 617         */
 618        if ((vma->vm_flags & VM_EXEC) ||
 619             addr_not_cache_congruent(paddr, vaddr)) {
 620
 621                int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
 622                if (dirty) {
 623                        /* wback + inv dcache lines (K-mapping) */
 624                        __flush_dcache_page(paddr, paddr);
 625
 626                        /* invalidate any existing icache lines (U-mapping) */
 627                        if (vma->vm_flags & VM_EXEC)
 628                                __inv_icache_page(paddr, vaddr);
 629                }
 630        }
 631}
 632
 633#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 634
 635/*
 636 * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
 637 * support.
 638 *
 639 * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
 640 * new bit "SZ" in TLB page descriptor to distinguish between them.
 641 * Super Page size is configurable in hardware (4K to 16M), but fixed once
 642 * RTL builds.
 643 *
 644 * The exact THP size a Linx configuration will support is a function of:
 645 *  - MMU page size (typical 8K, RTL fixed)
 646 *  - software page walker address split between PGD:PTE:PFN (typical
 647 *    11:8:13, but can be changed with 1 line)
 648 * So for above default, THP size supported is 8K * (2^8) = 2M
 649 *
 650 * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
 651 * reduces to 1 level (as PTE is folded into PGD and canonically referred
 652 * to as PMD).
 653 * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
 654 */
 655
 656void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
 657                                 pmd_t *pmd)
 658{
 659        pte_t pte = __pte(pmd_val(*pmd));
 660        update_mmu_cache(vma, addr, &pte);
 661}
 662
 663void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 664                                pgtable_t pgtable)
 665{
 666        struct list_head *lh = (struct list_head *) pgtable;
 667
 668        assert_spin_locked(&mm->page_table_lock);
 669
 670        /* FIFO */
 671        if (!pmd_huge_pte(mm, pmdp))
 672                INIT_LIST_HEAD(lh);
 673        else
 674                list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
 675        pmd_huge_pte(mm, pmdp) = pgtable;
 676}
 677
 678pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
 679{
 680        struct list_head *lh;
 681        pgtable_t pgtable;
 682
 683        assert_spin_locked(&mm->page_table_lock);
 684
 685        pgtable = pmd_huge_pte(mm, pmdp);
 686        lh = (struct list_head *) pgtable;
 687        if (list_empty(lh))
 688                pmd_huge_pte(mm, pmdp) = NULL;
 689        else {
 690                pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
 691                list_del(lh);
 692        }
 693
 694        pte_val(pgtable[0]) = 0;
 695        pte_val(pgtable[1]) = 0;
 696
 697        return pgtable;
 698}
 699
 700void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
 701                               unsigned long end)
 702{
 703        unsigned int cpu;
 704        unsigned long flags;
 705
 706        local_irq_save(flags);
 707
 708        cpu = smp_processor_id();
 709
 710        if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
 711                unsigned int asid = hw_pid(vma->vm_mm, cpu);
 712
 713                /* No need to loop here: this will always be for 1 Huge Page */
 714                tlb_entry_erase(start | _PAGE_HW_SZ | asid);
 715        }
 716
 717        local_irq_restore(flags);
 718}
 719
 720#endif
 721
 722/* Read the Cache Build Confuration Registers, Decode them and save into
 723 * the cpuinfo structure for later use.
 724 * No Validation is done here, simply read/convert the BCRs
 725 */
 726void read_decode_mmu_bcr(void)
 727{
 728        struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 729        unsigned int tmp;
 730        struct bcr_mmu_1_2 {
 731#ifdef CONFIG_CPU_BIG_ENDIAN
 732                unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
 733#else
 734                unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
 735#endif
 736        } *mmu2;
 737
 738        struct bcr_mmu_3 {
 739#ifdef CONFIG_CPU_BIG_ENDIAN
 740        unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4,
 741                     u_itlb:4, u_dtlb:4;
 742#else
 743        unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4,
 744                     ways:4, ver:8;
 745#endif
 746        } *mmu3;
 747
 748        struct bcr_mmu_4 {
 749#ifdef CONFIG_CPU_BIG_ENDIAN
 750        unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
 751                     n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
 752#else
 753        /*           DTLB      ITLB      JES        JE         JA      */
 754        unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
 755                     pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
 756#endif
 757        } *mmu4;
 758
 759        tmp = read_aux_reg(ARC_REG_MMU_BCR);
 760        mmu->ver = (tmp >> 24);
 761
 762        if (is_isa_arcompact()) {
 763                if (mmu->ver <= 2) {
 764                        mmu2 = (struct bcr_mmu_1_2 *)&tmp;
 765                        mmu->pg_sz_k = TO_KB(0x2000);
 766                        mmu->sets = 1 << mmu2->sets;
 767                        mmu->ways = 1 << mmu2->ways;
 768                        mmu->u_dtlb = mmu2->u_dtlb;
 769                        mmu->u_itlb = mmu2->u_itlb;
 770                } else {
 771                        mmu3 = (struct bcr_mmu_3 *)&tmp;
 772                        mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
 773                        mmu->sets = 1 << mmu3->sets;
 774                        mmu->ways = 1 << mmu3->ways;
 775                        mmu->u_dtlb = mmu3->u_dtlb;
 776                        mmu->u_itlb = mmu3->u_itlb;
 777                        mmu->sasid = mmu3->sasid;
 778                }
 779        } else {
 780                mmu4 = (struct bcr_mmu_4 *)&tmp;
 781                mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
 782                mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
 783                mmu->sets = 64 << mmu4->n_entry;
 784                mmu->ways = mmu4->n_ways * 2;
 785                mmu->u_dtlb = mmu4->u_dtlb * 4;
 786                mmu->u_itlb = mmu4->u_itlb * 4;
 787                mmu->sasid = mmu4->sasid;
 788                pae_exists = mmu->pae = mmu4->pae;
 789        }
 790}
 791
 792char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
 793{
 794        int n = 0;
 795        struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
 796        char super_pg[64] = "";
 797
 798        if (p_mmu->s_pg_sz_m)
 799                scnprintf(super_pg, 64, "%dM Super Page %s",
 800                          p_mmu->s_pg_sz_m,
 801                          IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE));
 802
 803        n += scnprintf(buf + n, len - n,
 804                      "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n",
 805                       p_mmu->ver, p_mmu->pg_sz_k, super_pg,
 806                       p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways,
 807                       p_mmu->u_dtlb, p_mmu->u_itlb,
 808                       IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40));
 809
 810        return buf;
 811}
 812
 813int pae40_exist_but_not_enab(void)
 814{
 815        return pae_exists && !is_pae40_enabled();
 816}
 817
 818void arc_mmu_init(void)
 819{
 820        struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 821        char str[256];
 822        int compat = 0;
 823
 824        pr_info("%s", arc_mmu_mumbojumbo(0, str, sizeof(str)));
 825
 826        /*
 827         * Can't be done in processor.h due to header include depenedencies
 828         */
 829        BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE));
 830
 831        /*
 832         * stack top size sanity check,
 833         * Can't be done in processor.h due to header include depenedencies
 834         */
 835        BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE));
 836
 837        /*
 838         * Ensure that MMU features assumed by kernel exist in hardware.
 839         * For older ARC700 cpus, it has to be exact match, since the MMU
 840         * revisions were not backwards compatible (MMUv3 TLB layout changed
 841         * so even if kernel for v2 didn't use any new cmds of v3, it would
 842         * still not work.
 843         * For HS cpus, MMUv4 was baseline and v5 is backwards compatible
 844         * (will run older software).
 845         */
 846        if (is_isa_arcompact() && mmu->ver == CONFIG_ARC_MMU_VER)
 847                compat = 1;
 848        else if (is_isa_arcv2() && mmu->ver >= CONFIG_ARC_MMU_VER)
 849                compat = 1;
 850
 851        if (!compat) {
 852                panic("MMU ver %d doesn't match kernel built for %d...\n",
 853                      mmu->ver, CONFIG_ARC_MMU_VER);
 854        }
 855
 856        if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
 857                panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
 858
 859        if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 860            mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
 861                panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
 862                      (unsigned long)TO_MB(HPAGE_PMD_SIZE));
 863
 864        if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
 865                panic("Hardware doesn't support PAE40\n");
 866
 867        /* Enable the MMU */
 868        write_aux_reg(ARC_REG_PID, MMU_ENABLE);
 869
 870        /* In smp we use this reg for interrupt 1 scratch */
 871#ifndef CONFIG_SMP
 872        /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
 873        write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
 874#endif
 875
 876        if (pae40_exist_but_not_enab())
 877                write_aux_reg(ARC_REG_TLBPD1HI, 0);
 878}
 879
 880/*
 881 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
 882 * The mapping is Column-first.
 883 *              ---------------------   -----------
 884 *              |way0|way1|way2|way3|   |way0|way1|
 885 *              ---------------------   -----------
 886 * [set0]       |  0 |  1 |  2 |  3 |   |  0 |  1 |
 887 * [set1]       |  4 |  5 |  6 |  7 |   |  2 |  3 |
 888 *              ~                   ~   ~         ~
 889 * [set127]     | 508| 509| 510| 511|   | 254| 255|
 890 *              ---------------------   -----------
 891 * For normal operations we don't(must not) care how above works since
 892 * MMU cmd getIndex(vaddr) abstracts that out.
 893 * However for walking WAYS of a SET, we need to know this
 894 */
 895#define SET_WAY_TO_IDX(mmu, set, way)  ((set) * mmu->ways + (way))
 896
 897/* Handling of Duplicate PD (TLB entry) in MMU.
 898 * -Could be due to buggy customer tapeouts or obscure kernel bugs
 899 * -MMU complaints not at the time of duplicate PD installation, but at the
 900 *      time of lookup matching multiple ways.
 901 * -Ideally these should never happen - but if they do - workaround by deleting
 902 *      the duplicate one.
 903 * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
 904 */
 905volatile int dup_pd_silent; /* Be slient abt it or complain (default) */
 906
 907void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
 908                          struct pt_regs *regs)
 909{
 910        struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 911        unsigned long flags;
 912        int set, n_ways = mmu->ways;
 913
 914        n_ways = min(n_ways, 4);
 915        BUG_ON(mmu->ways > 4);
 916
 917        local_irq_save(flags);
 918
 919        /* loop thru all sets of TLB */
 920        for (set = 0; set < mmu->sets; set++) {
 921
 922                int is_valid, way;
 923                unsigned int pd0[4];
 924
 925                /* read out all the ways of current set */
 926                for (way = 0, is_valid = 0; way < n_ways; way++) {
 927                        write_aux_reg(ARC_REG_TLBINDEX,
 928                                          SET_WAY_TO_IDX(mmu, set, way));
 929                        write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
 930                        pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
 931                        is_valid |= pd0[way] & _PAGE_PRESENT;
 932                        pd0[way] &= PAGE_MASK;
 933                }
 934
 935                /* If all the WAYS in SET are empty, skip to next SET */
 936                if (!is_valid)
 937                        continue;
 938
 939                /* Scan the set for duplicate ways: needs a nested loop */
 940                for (way = 0; way < n_ways - 1; way++) {
 941
 942                        int n;
 943
 944                        if (!pd0[way])
 945                                continue;
 946
 947                        for (n = way + 1; n < n_ways; n++) {
 948                                if (pd0[way] != pd0[n])
 949                                        continue;
 950
 951                                if (!dup_pd_silent)
 952                                        pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
 953                                                pd0[way], set, way, n);
 954
 955                                /*
 956                                 * clear entry @way and not @n.
 957                                 * This is critical to our optimised loop
 958                                 */
 959                                pd0[way] = 0;
 960                                write_aux_reg(ARC_REG_TLBINDEX,
 961                                                SET_WAY_TO_IDX(mmu, set, way));
 962                                __tlb_entry_erase();
 963                        }
 964                }
 965        }
 966
 967        local_irq_restore(flags);
 968}
 969
 970/***********************************************************************
 971 * Diagnostic Routines
 972 *  -Called from Low Level TLB Hanlders if things don;t look good
 973 **********************************************************************/
 974
 975#ifdef CONFIG_ARC_DBG_TLB_PARANOIA
 976
 977/*
 978 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
 979 * don't match
 980 */
 981void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
 982{
 983        pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
 984               is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
 985
 986        __asm__ __volatile__("flag 1");
 987}
 988
 989void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
 990{
 991        unsigned int mmu_asid;
 992
 993        mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
 994
 995        /*
 996         * At the time of a TLB miss/installation
 997         *   - HW version needs to match SW version
 998         *   - SW needs to have a valid ASID
 999         */
1000        if (addr < 0x70000000 &&
1001            ((mm_asid == MM_CTXT_NO_ASID) ||
1002              (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
1003                print_asid_mismatch(mm_asid, mmu_asid, 0);
1004}
1005#endif
1006