linux/arch/hexagon/kernel/time.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Time related functions for Hexagon architecture
   4 *
   5 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
   6 */
   7
   8#include <linux/init.h>
   9#include <linux/clockchips.h>
  10#include <linux/clocksource.h>
  11#include <linux/interrupt.h>
  12#include <linux/err.h>
  13#include <linux/platform_device.h>
  14#include <linux/ioport.h>
  15#include <linux/of.h>
  16#include <linux/of_address.h>
  17#include <linux/of_irq.h>
  18#include <linux/module.h>
  19
  20#include <asm/timer-regs.h>
  21#include <asm/hexagon_vm.h>
  22
  23/*
  24 * For the clocksource we need:
  25 *      pcycle frequency (600MHz)
  26 * For the loops_per_jiffy we need:
  27 *      thread/cpu frequency (100MHz)
  28 * And for the timer, we need:
  29 *      sleep clock rate
  30 */
  31
  32cycles_t        pcycle_freq_mhz;
  33cycles_t        thread_freq_mhz;
  34cycles_t        sleep_clk_freq;
  35
  36static struct resource rtos_timer_resources[] = {
  37        {
  38                .start  = RTOS_TIMER_REGS_ADDR,
  39                .end    = RTOS_TIMER_REGS_ADDR+PAGE_SIZE-1,
  40                .flags  = IORESOURCE_MEM,
  41        },
  42};
  43
  44static struct platform_device rtos_timer_device = {
  45        .name           = "rtos_timer",
  46        .id             = -1,
  47        .num_resources  = ARRAY_SIZE(rtos_timer_resources),
  48        .resource       = rtos_timer_resources,
  49};
  50
  51/*  A lot of this stuff should move into a platform specific section.  */
  52struct adsp_hw_timer_struct {
  53        u32 match;   /*  Match value  */
  54        u32 count;
  55        u32 enable;  /*  [1] - CLR_ON_MATCH_EN, [0] - EN  */
  56        u32 clear;   /*  one-shot register that clears the count  */
  57};
  58
  59/*  Look for "TCX0" for related constants.  */
  60static __iomem struct adsp_hw_timer_struct *rtos_timer;
  61
  62static u64 timer_get_cycles(struct clocksource *cs)
  63{
  64        return (u64) __vmgettime();
  65}
  66
  67static struct clocksource hexagon_clocksource = {
  68        .name           = "pcycles",
  69        .rating         = 250,
  70        .read           = timer_get_cycles,
  71        .mask           = CLOCKSOURCE_MASK(64),
  72        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
  73};
  74
  75static int set_next_event(unsigned long delta, struct clock_event_device *evt)
  76{
  77        /*  Assuming the timer will be disabled when we enter here.  */
  78
  79        iowrite32(1, &rtos_timer->clear);
  80        iowrite32(0, &rtos_timer->clear);
  81
  82        iowrite32(delta, &rtos_timer->match);
  83        iowrite32(1 << TIMER_ENABLE, &rtos_timer->enable);
  84        return 0;
  85}
  86
  87#ifdef CONFIG_SMP
  88/*  Broadcast mechanism  */
  89static void broadcast(const struct cpumask *mask)
  90{
  91        send_ipi(mask, IPI_TIMER);
  92}
  93#endif
  94
  95/* XXX Implement set_state_shutdown() */
  96static struct clock_event_device hexagon_clockevent_dev = {
  97        .name           = "clockevent",
  98        .features       = CLOCK_EVT_FEAT_ONESHOT,
  99        .rating         = 400,
 100        .irq            = RTOS_TIMER_INT,
 101        .set_next_event = set_next_event,
 102#ifdef CONFIG_SMP
 103        .broadcast      = broadcast,
 104#endif
 105};
 106
 107#ifdef CONFIG_SMP
 108static DEFINE_PER_CPU(struct clock_event_device, clock_events);
 109
 110void setup_percpu_clockdev(void)
 111{
 112        int cpu = smp_processor_id();
 113        struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
 114        struct clock_event_device *dummy_clock_dev =
 115                &per_cpu(clock_events, cpu);
 116
 117        memcpy(dummy_clock_dev, ce_dev, sizeof(*dummy_clock_dev));
 118        INIT_LIST_HEAD(&dummy_clock_dev->list);
 119
 120        dummy_clock_dev->features = CLOCK_EVT_FEAT_DUMMY;
 121        dummy_clock_dev->cpumask = cpumask_of(cpu);
 122
 123        clockevents_register_device(dummy_clock_dev);
 124}
 125
 126/*  Called from smp.c for each CPU's timer ipi call  */
 127void ipi_timer(void)
 128{
 129        int cpu = smp_processor_id();
 130        struct clock_event_device *ce_dev = &per_cpu(clock_events, cpu);
 131
 132        ce_dev->event_handler(ce_dev);
 133}
 134#endif /* CONFIG_SMP */
 135
 136static irqreturn_t timer_interrupt(int irq, void *devid)
 137{
 138        struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
 139
 140        iowrite32(0, &rtos_timer->enable);
 141        ce_dev->event_handler(ce_dev);
 142
 143        return IRQ_HANDLED;
 144}
 145
 146/*  This should also be pulled from devtree  */
 147static struct irqaction rtos_timer_intdesc = {
 148        .handler = timer_interrupt,
 149        .flags = IRQF_TIMER | IRQF_TRIGGER_RISING,
 150        .name = "rtos_timer"
 151};
 152
 153/*
 154 * time_init_deferred - called by start_kernel to set up timer/clock source
 155 *
 156 * Install the IRQ handler for the clock, setup timers.
 157 * This is done late, as that way, we can use ioremap().
 158 *
 159 * This runs just before the delay loop is calibrated, and
 160 * is used for delay calibration.
 161 */
 162void __init time_init_deferred(void)
 163{
 164        struct resource *resource = NULL;
 165        struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
 166
 167        ce_dev->cpumask = cpu_all_mask;
 168
 169        if (!resource)
 170                resource = rtos_timer_device.resource;
 171
 172        /*  ioremap here means this has to run later, after paging init  */
 173        rtos_timer = ioremap(resource->start, resource_size(resource));
 174
 175        if (!rtos_timer) {
 176                release_mem_region(resource->start, resource_size(resource));
 177        }
 178        clocksource_register_khz(&hexagon_clocksource, pcycle_freq_mhz * 1000);
 179
 180        /*  Note: the sim generic RTOS clock is apparently really 18750Hz  */
 181
 182        /*
 183         * Last arg is some guaranteed seconds for which the conversion will
 184         * work without overflow.
 185         */
 186        clockevents_calc_mult_shift(ce_dev, sleep_clk_freq, 4);
 187
 188        ce_dev->max_delta_ns = clockevent_delta2ns(0x7fffffff, ce_dev);
 189        ce_dev->max_delta_ticks = 0x7fffffff;
 190        ce_dev->min_delta_ns = clockevent_delta2ns(0xf, ce_dev);
 191        ce_dev->min_delta_ticks = 0xf;
 192
 193#ifdef CONFIG_SMP
 194        setup_percpu_clockdev();
 195#endif
 196
 197        clockevents_register_device(ce_dev);
 198        setup_irq(ce_dev->irq, &rtos_timer_intdesc);
 199}
 200
 201void __init time_init(void)
 202{
 203        late_time_init = time_init_deferred;
 204}
 205
 206void __delay(unsigned long cycles)
 207{
 208        unsigned long long start = __vmgettime();
 209
 210        while ((__vmgettime() - start) < cycles)
 211                cpu_relax();
 212}
 213EXPORT_SYMBOL(__delay);
 214
 215/*
 216 * This could become parametric or perhaps even computed at run-time,
 217 * but for now we take the observed simulator jitter.
 218 */
 219static long long fudgefactor = 350;  /* Maybe lower if kernel optimized. */
 220
 221void __udelay(unsigned long usecs)
 222{
 223        unsigned long long start = __vmgettime();
 224        unsigned long long finish = (pcycle_freq_mhz * usecs) - fudgefactor;
 225
 226        while ((__vmgettime() - start) < finish)
 227                cpu_relax(); /*  not sure how this improves readability  */
 228}
 229EXPORT_SYMBOL(__udelay);
 230