linux/arch/ia64/kernel/time.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/arch/ia64/kernel/time.c
   4 *
   5 * Copyright (C) 1998-2003 Hewlett-Packard Co
   6 *      Stephane Eranian <eranian@hpl.hp.com>
   7 *      David Mosberger <davidm@hpl.hp.com>
   8 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
   9 * Copyright (C) 1999-2000 VA Linux Systems
  10 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
  11 */
  12
  13#include <linux/cpu.h>
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/module.h>
  17#include <linux/profile.h>
  18#include <linux/sched.h>
  19#include <linux/time.h>
  20#include <linux/nmi.h>
  21#include <linux/interrupt.h>
  22#include <linux/efi.h>
  23#include <linux/timex.h>
  24#include <linux/timekeeper_internal.h>
  25#include <linux/platform_device.h>
  26#include <linux/sched/cputime.h>
  27
  28#include <asm/delay.h>
  29#include <asm/hw_irq.h>
  30#include <asm/ptrace.h>
  31#include <asm/sal.h>
  32#include <asm/sections.h>
  33
  34#include "fsyscall_gtod_data.h"
  35
  36static u64 itc_get_cycles(struct clocksource *cs);
  37
  38struct fsyscall_gtod_data_t fsyscall_gtod_data;
  39
  40struct itc_jitter_data_t itc_jitter_data;
  41
  42volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
  43
  44#ifdef CONFIG_IA64_DEBUG_IRQ
  45
  46unsigned long last_cli_ip;
  47EXPORT_SYMBOL(last_cli_ip);
  48
  49#endif
  50
  51static struct clocksource clocksource_itc = {
  52        .name           = "itc",
  53        .rating         = 350,
  54        .read           = itc_get_cycles,
  55        .mask           = CLOCKSOURCE_MASK(64),
  56        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
  57};
  58static struct clocksource *itc_clocksource;
  59
  60#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
  61
  62#include <linux/kernel_stat.h>
  63
  64extern u64 cycle_to_nsec(u64 cyc);
  65
  66void vtime_flush(struct task_struct *tsk)
  67{
  68        struct thread_info *ti = task_thread_info(tsk);
  69        u64 delta;
  70
  71        if (ti->utime)
  72                account_user_time(tsk, cycle_to_nsec(ti->utime));
  73
  74        if (ti->gtime)
  75                account_guest_time(tsk, cycle_to_nsec(ti->gtime));
  76
  77        if (ti->idle_time)
  78                account_idle_time(cycle_to_nsec(ti->idle_time));
  79
  80        if (ti->stime) {
  81                delta = cycle_to_nsec(ti->stime);
  82                account_system_index_time(tsk, delta, CPUTIME_SYSTEM);
  83        }
  84
  85        if (ti->hardirq_time) {
  86                delta = cycle_to_nsec(ti->hardirq_time);
  87                account_system_index_time(tsk, delta, CPUTIME_IRQ);
  88        }
  89
  90        if (ti->softirq_time) {
  91                delta = cycle_to_nsec(ti->softirq_time);
  92                account_system_index_time(tsk, delta, CPUTIME_SOFTIRQ);
  93        }
  94
  95        ti->utime = 0;
  96        ti->gtime = 0;
  97        ti->idle_time = 0;
  98        ti->stime = 0;
  99        ti->hardirq_time = 0;
 100        ti->softirq_time = 0;
 101}
 102
 103/*
 104 * Called from the context switch with interrupts disabled, to charge all
 105 * accumulated times to the current process, and to prepare accounting on
 106 * the next process.
 107 */
 108void arch_vtime_task_switch(struct task_struct *prev)
 109{
 110        struct thread_info *pi = task_thread_info(prev);
 111        struct thread_info *ni = task_thread_info(current);
 112
 113        ni->ac_stamp = pi->ac_stamp;
 114        ni->ac_stime = ni->ac_utime = 0;
 115}
 116
 117/*
 118 * Account time for a transition between system, hard irq or soft irq state.
 119 * Note that this function is called with interrupts enabled.
 120 */
 121static __u64 vtime_delta(struct task_struct *tsk)
 122{
 123        struct thread_info *ti = task_thread_info(tsk);
 124        __u64 now, delta_stime;
 125
 126        WARN_ON_ONCE(!irqs_disabled());
 127
 128        now = ia64_get_itc();
 129        delta_stime = now - ti->ac_stamp;
 130        ti->ac_stamp = now;
 131
 132        return delta_stime;
 133}
 134
 135void vtime_account_system(struct task_struct *tsk)
 136{
 137        struct thread_info *ti = task_thread_info(tsk);
 138        __u64 stime = vtime_delta(tsk);
 139
 140        if ((tsk->flags & PF_VCPU) && !irq_count())
 141                ti->gtime += stime;
 142        else if (hardirq_count())
 143                ti->hardirq_time += stime;
 144        else if (in_serving_softirq())
 145                ti->softirq_time += stime;
 146        else
 147                ti->stime += stime;
 148}
 149EXPORT_SYMBOL_GPL(vtime_account_system);
 150
 151void vtime_account_idle(struct task_struct *tsk)
 152{
 153        struct thread_info *ti = task_thread_info(tsk);
 154
 155        ti->idle_time += vtime_delta(tsk);
 156}
 157
 158#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 159
 160static irqreturn_t
 161timer_interrupt (int irq, void *dev_id)
 162{
 163        unsigned long new_itm;
 164
 165        if (cpu_is_offline(smp_processor_id())) {
 166                return IRQ_HANDLED;
 167        }
 168
 169        new_itm = local_cpu_data->itm_next;
 170
 171        if (!time_after(ia64_get_itc(), new_itm))
 172                printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
 173                       ia64_get_itc(), new_itm);
 174
 175        profile_tick(CPU_PROFILING);
 176
 177        while (1) {
 178                update_process_times(user_mode(get_irq_regs()));
 179
 180                new_itm += local_cpu_data->itm_delta;
 181
 182                if (smp_processor_id() == time_keeper_id)
 183                        xtime_update(1);
 184
 185                local_cpu_data->itm_next = new_itm;
 186
 187                if (time_after(new_itm, ia64_get_itc()))
 188                        break;
 189
 190                /*
 191                 * Allow IPIs to interrupt the timer loop.
 192                 */
 193                local_irq_enable();
 194                local_irq_disable();
 195        }
 196
 197        do {
 198                /*
 199                 * If we're too close to the next clock tick for
 200                 * comfort, we increase the safety margin by
 201                 * intentionally dropping the next tick(s).  We do NOT
 202                 * update itm.next because that would force us to call
 203                 * xtime_update() which in turn would let our clock run
 204                 * too fast (with the potentially devastating effect
 205                 * of losing monotony of time).
 206                 */
 207                while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
 208                        new_itm += local_cpu_data->itm_delta;
 209                ia64_set_itm(new_itm);
 210                /* double check, in case we got hit by a (slow) PMI: */
 211        } while (time_after_eq(ia64_get_itc(), new_itm));
 212        return IRQ_HANDLED;
 213}
 214
 215/*
 216 * Encapsulate access to the itm structure for SMP.
 217 */
 218void
 219ia64_cpu_local_tick (void)
 220{
 221        int cpu = smp_processor_id();
 222        unsigned long shift = 0, delta;
 223
 224        /* arrange for the cycle counter to generate a timer interrupt: */
 225        ia64_set_itv(IA64_TIMER_VECTOR);
 226
 227        delta = local_cpu_data->itm_delta;
 228        /*
 229         * Stagger the timer tick for each CPU so they don't occur all at (almost) the
 230         * same time:
 231         */
 232        if (cpu) {
 233                unsigned long hi = 1UL << ia64_fls(cpu);
 234                shift = (2*(cpu - hi) + 1) * delta/hi/2;
 235        }
 236        local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
 237        ia64_set_itm(local_cpu_data->itm_next);
 238}
 239
 240static int nojitter;
 241
 242static int __init nojitter_setup(char *str)
 243{
 244        nojitter = 1;
 245        printk("Jitter checking for ITC timers disabled\n");
 246        return 1;
 247}
 248
 249__setup("nojitter", nojitter_setup);
 250
 251
 252void ia64_init_itm(void)
 253{
 254        unsigned long platform_base_freq, itc_freq;
 255        struct pal_freq_ratio itc_ratio, proc_ratio;
 256        long status, platform_base_drift, itc_drift;
 257
 258        /*
 259         * According to SAL v2.6, we need to use a SAL call to determine the platform base
 260         * frequency and then a PAL call to determine the frequency ratio between the ITC
 261         * and the base frequency.
 262         */
 263        status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
 264                                    &platform_base_freq, &platform_base_drift);
 265        if (status != 0) {
 266                printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
 267        } else {
 268                status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
 269                if (status != 0)
 270                        printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
 271        }
 272        if (status != 0) {
 273                /* invent "random" values */
 274                printk(KERN_ERR
 275                       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
 276                platform_base_freq = 100000000;
 277                platform_base_drift = -1;       /* no drift info */
 278                itc_ratio.num = 3;
 279                itc_ratio.den = 1;
 280        }
 281        if (platform_base_freq < 40000000) {
 282                printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
 283                       platform_base_freq);
 284                platform_base_freq = 75000000;
 285                platform_base_drift = -1;
 286        }
 287        if (!proc_ratio.den)
 288                proc_ratio.den = 1;     /* avoid division by zero */
 289        if (!itc_ratio.den)
 290                itc_ratio.den = 1;      /* avoid division by zero */
 291
 292        itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
 293
 294        local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
 295        printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
 296               "ITC freq=%lu.%03luMHz", smp_processor_id(),
 297               platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
 298               itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
 299
 300        if (platform_base_drift != -1) {
 301                itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
 302                printk("+/-%ldppm\n", itc_drift);
 303        } else {
 304                itc_drift = -1;
 305                printk("\n");
 306        }
 307
 308        local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
 309        local_cpu_data->itc_freq = itc_freq;
 310        local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
 311        local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
 312                                        + itc_freq/2)/itc_freq;
 313
 314        if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
 315#ifdef CONFIG_SMP
 316                /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
 317                 * Jitter compensation requires a cmpxchg which may limit
 318                 * the scalability of the syscalls for retrieving time.
 319                 * The ITC synchronization is usually successful to within a few
 320                 * ITC ticks but this is not a sure thing. If you need to improve
 321                 * timer performance in SMP situations then boot the kernel with the
 322                 * "nojitter" option. However, doing so may result in time fluctuating (maybe
 323                 * even going backward) if the ITC offsets between the individual CPUs
 324                 * are too large.
 325                 */
 326                if (!nojitter)
 327                        itc_jitter_data.itc_jitter = 1;
 328#endif
 329        } else
 330                /*
 331                 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
 332                 * ITC values may fluctuate significantly between processors.
 333                 * Clock should not be used for hrtimers. Mark itc as only
 334                 * useful for boot and testing.
 335                 *
 336                 * Note that jitter compensation is off! There is no point of
 337                 * synchronizing ITCs since they may be large differentials
 338                 * that change over time.
 339                 *
 340                 * The only way to fix this would be to repeatedly sync the
 341                 * ITCs. Until that time we have to avoid ITC.
 342                 */
 343                clocksource_itc.rating = 50;
 344
 345        /* avoid softlock up message when cpu is unplug and plugged again. */
 346        touch_softlockup_watchdog();
 347
 348        /* Setup the CPU local timer tick */
 349        ia64_cpu_local_tick();
 350
 351        if (!itc_clocksource) {
 352                clocksource_register_hz(&clocksource_itc,
 353                                                local_cpu_data->itc_freq);
 354                itc_clocksource = &clocksource_itc;
 355        }
 356}
 357
 358static u64 itc_get_cycles(struct clocksource *cs)
 359{
 360        unsigned long lcycle, now, ret;
 361
 362        if (!itc_jitter_data.itc_jitter)
 363                return get_cycles();
 364
 365        lcycle = itc_jitter_data.itc_lastcycle;
 366        now = get_cycles();
 367        if (lcycle && time_after(lcycle, now))
 368                return lcycle;
 369
 370        /*
 371         * Keep track of the last timer value returned.
 372         * In an SMP environment, you could lose out in contention of
 373         * cmpxchg. If so, your cmpxchg returns new value which the
 374         * winner of contention updated to. Use the new value instead.
 375         */
 376        ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
 377        if (unlikely(ret != lcycle))
 378                return ret;
 379
 380        return now;
 381}
 382
 383
 384static struct irqaction timer_irqaction = {
 385        .handler =      timer_interrupt,
 386        .flags =        IRQF_IRQPOLL,
 387        .name =         "timer"
 388};
 389
 390void read_persistent_clock64(struct timespec64 *ts)
 391{
 392        efi_gettimeofday(ts);
 393}
 394
 395void __init
 396time_init (void)
 397{
 398        register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
 399        ia64_init_itm();
 400}
 401
 402/*
 403 * Generic udelay assumes that if preemption is allowed and the thread
 404 * migrates to another CPU, that the ITC values are synchronized across
 405 * all CPUs.
 406 */
 407static void
 408ia64_itc_udelay (unsigned long usecs)
 409{
 410        unsigned long start = ia64_get_itc();
 411        unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
 412
 413        while (time_before(ia64_get_itc(), end))
 414                cpu_relax();
 415}
 416
 417void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
 418
 419void
 420udelay (unsigned long usecs)
 421{
 422        (*ia64_udelay)(usecs);
 423}
 424EXPORT_SYMBOL(udelay);
 425
 426/* IA64 doesn't cache the timezone */
 427void update_vsyscall_tz(void)
 428{
 429}
 430
 431void update_vsyscall(struct timekeeper *tk)
 432{
 433        write_seqcount_begin(&fsyscall_gtod_data.seq);
 434
 435        /* copy vsyscall data */
 436        fsyscall_gtod_data.clk_mask = tk->tkr_mono.mask;
 437        fsyscall_gtod_data.clk_mult = tk->tkr_mono.mult;
 438        fsyscall_gtod_data.clk_shift = tk->tkr_mono.shift;
 439        fsyscall_gtod_data.clk_fsys_mmio = tk->tkr_mono.clock->archdata.fsys_mmio;
 440        fsyscall_gtod_data.clk_cycle_last = tk->tkr_mono.cycle_last;
 441
 442        fsyscall_gtod_data.wall_time.sec = tk->xtime_sec;
 443        fsyscall_gtod_data.wall_time.snsec = tk->tkr_mono.xtime_nsec;
 444
 445        fsyscall_gtod_data.monotonic_time.sec = tk->xtime_sec
 446                                              + tk->wall_to_monotonic.tv_sec;
 447        fsyscall_gtod_data.monotonic_time.snsec = tk->tkr_mono.xtime_nsec
 448                                                + ((u64)tk->wall_to_monotonic.tv_nsec
 449                                                        << tk->tkr_mono.shift);
 450
 451        /* normalize */
 452        while (fsyscall_gtod_data.monotonic_time.snsec >=
 453                                        (((u64)NSEC_PER_SEC) << tk->tkr_mono.shift)) {
 454                fsyscall_gtod_data.monotonic_time.snsec -=
 455                                        ((u64)NSEC_PER_SEC) << tk->tkr_mono.shift;
 456                fsyscall_gtod_data.monotonic_time.sec++;
 457        }
 458
 459        write_seqcount_end(&fsyscall_gtod_data.seq);
 460}
 461
 462