linux/arch/powerpc/mm/book3s64/hash_utils.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
   4 *   {mikejc|engebret}@us.ibm.com
   5 *
   6 *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
   7 *
   8 * SMP scalability work:
   9 *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
  10 * 
  11 *    Module name: htab.c
  12 *
  13 *    Description:
  14 *      PowerPC Hashed Page Table functions
  15 */
  16
  17#undef DEBUG
  18#undef DEBUG_LOW
  19
  20#define pr_fmt(fmt) "hash-mmu: " fmt
  21#include <linux/spinlock.h>
  22#include <linux/errno.h>
  23#include <linux/sched/mm.h>
  24#include <linux/proc_fs.h>
  25#include <linux/stat.h>
  26#include <linux/sysctl.h>
  27#include <linux/export.h>
  28#include <linux/ctype.h>
  29#include <linux/cache.h>
  30#include <linux/init.h>
  31#include <linux/signal.h>
  32#include <linux/memblock.h>
  33#include <linux/context_tracking.h>
  34#include <linux/libfdt.h>
  35#include <linux/pkeys.h>
  36#include <linux/hugetlb.h>
  37#include <linux/cpu.h>
  38
  39#include <asm/debugfs.h>
  40#include <asm/processor.h>
  41#include <asm/pgtable.h>
  42#include <asm/mmu.h>
  43#include <asm/mmu_context.h>
  44#include <asm/page.h>
  45#include <asm/types.h>
  46#include <linux/uaccess.h>
  47#include <asm/machdep.h>
  48#include <asm/prom.h>
  49#include <asm/io.h>
  50#include <asm/eeh.h>
  51#include <asm/tlb.h>
  52#include <asm/cacheflush.h>
  53#include <asm/cputable.h>
  54#include <asm/sections.h>
  55#include <asm/copro.h>
  56#include <asm/udbg.h>
  57#include <asm/code-patching.h>
  58#include <asm/fadump.h>
  59#include <asm/firmware.h>
  60#include <asm/tm.h>
  61#include <asm/trace.h>
  62#include <asm/ps3.h>
  63#include <asm/pte-walk.h>
  64#include <asm/asm-prototypes.h>
  65#include <asm/ultravisor.h>
  66
  67#include <mm/mmu_decl.h>
  68
  69#ifdef DEBUG
  70#define DBG(fmt...) udbg_printf(fmt)
  71#else
  72#define DBG(fmt...)
  73#endif
  74
  75#ifdef DEBUG_LOW
  76#define DBG_LOW(fmt...) udbg_printf(fmt)
  77#else
  78#define DBG_LOW(fmt...)
  79#endif
  80
  81#define KB (1024)
  82#define MB (1024*KB)
  83#define GB (1024L*MB)
  84
  85/*
  86 * Note:  pte   --> Linux PTE
  87 *        HPTE  --> PowerPC Hashed Page Table Entry
  88 *
  89 * Execution context:
  90 *   htab_initialize is called with the MMU off (of course), but
  91 *   the kernel has been copied down to zero so it can directly
  92 *   reference global data.  At this point it is very difficult
  93 *   to print debug info.
  94 *
  95 */
  96
  97static unsigned long _SDR1;
  98struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
  99EXPORT_SYMBOL_GPL(mmu_psize_defs);
 100
 101u8 hpte_page_sizes[1 << LP_BITS];
 102EXPORT_SYMBOL_GPL(hpte_page_sizes);
 103
 104struct hash_pte *htab_address;
 105unsigned long htab_size_bytes;
 106unsigned long htab_hash_mask;
 107EXPORT_SYMBOL_GPL(htab_hash_mask);
 108int mmu_linear_psize = MMU_PAGE_4K;
 109EXPORT_SYMBOL_GPL(mmu_linear_psize);
 110int mmu_virtual_psize = MMU_PAGE_4K;
 111int mmu_vmalloc_psize = MMU_PAGE_4K;
 112#ifdef CONFIG_SPARSEMEM_VMEMMAP
 113int mmu_vmemmap_psize = MMU_PAGE_4K;
 114#endif
 115int mmu_io_psize = MMU_PAGE_4K;
 116int mmu_kernel_ssize = MMU_SEGSIZE_256M;
 117EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
 118int mmu_highuser_ssize = MMU_SEGSIZE_256M;
 119u16 mmu_slb_size = 64;
 120EXPORT_SYMBOL_GPL(mmu_slb_size);
 121#ifdef CONFIG_PPC_64K_PAGES
 122int mmu_ci_restrictions;
 123#endif
 124#ifdef CONFIG_DEBUG_PAGEALLOC
 125static u8 *linear_map_hash_slots;
 126static unsigned long linear_map_hash_count;
 127static DEFINE_SPINLOCK(linear_map_hash_lock);
 128#endif /* CONFIG_DEBUG_PAGEALLOC */
 129struct mmu_hash_ops mmu_hash_ops;
 130EXPORT_SYMBOL(mmu_hash_ops);
 131
 132/*
 133 * These are definitions of page sizes arrays to be used when none
 134 * is provided by the firmware.
 135 */
 136
 137/*
 138 * Fallback (4k pages only)
 139 */
 140static struct mmu_psize_def mmu_psize_defaults[] = {
 141        [MMU_PAGE_4K] = {
 142                .shift  = 12,
 143                .sllp   = 0,
 144                .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
 145                .avpnm  = 0,
 146                .tlbiel = 0,
 147        },
 148};
 149
 150/*
 151 * POWER4, GPUL, POWER5
 152 *
 153 * Support for 16Mb large pages
 154 */
 155static struct mmu_psize_def mmu_psize_defaults_gp[] = {
 156        [MMU_PAGE_4K] = {
 157                .shift  = 12,
 158                .sllp   = 0,
 159                .penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
 160                .avpnm  = 0,
 161                .tlbiel = 1,
 162        },
 163        [MMU_PAGE_16M] = {
 164                .shift  = 24,
 165                .sllp   = SLB_VSID_L,
 166                .penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
 167                            [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
 168                .avpnm  = 0x1UL,
 169                .tlbiel = 0,
 170        },
 171};
 172
 173/*
 174 * 'R' and 'C' update notes:
 175 *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
 176 *     create writeable HPTEs without C set, because the hcall H_PROTECT
 177 *     that we use in that case will not update C
 178 *  - The above is however not a problem, because we also don't do that
 179 *     fancy "no flush" variant of eviction and we use H_REMOVE which will
 180 *     do the right thing and thus we don't have the race I described earlier
 181 *
 182 *    - Under bare metal,  we do have the race, so we need R and C set
 183 *    - We make sure R is always set and never lost
 184 *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
 185 */
 186unsigned long htab_convert_pte_flags(unsigned long pteflags)
 187{
 188        unsigned long rflags = 0;
 189
 190        /* _PAGE_EXEC -> NOEXEC */
 191        if ((pteflags & _PAGE_EXEC) == 0)
 192                rflags |= HPTE_R_N;
 193        /*
 194         * PPP bits:
 195         * Linux uses slb key 0 for kernel and 1 for user.
 196         * kernel RW areas are mapped with PPP=0b000
 197         * User area is mapped with PPP=0b010 for read/write
 198         * or PPP=0b011 for read-only (including writeable but clean pages).
 199         */
 200        if (pteflags & _PAGE_PRIVILEGED) {
 201                /*
 202                 * Kernel read only mapped with ppp bits 0b110
 203                 */
 204                if (!(pteflags & _PAGE_WRITE)) {
 205                        if (mmu_has_feature(MMU_FTR_KERNEL_RO))
 206                                rflags |= (HPTE_R_PP0 | 0x2);
 207                        else
 208                                rflags |= 0x3;
 209                }
 210        } else {
 211                if (pteflags & _PAGE_RWX)
 212                        rflags |= 0x2;
 213                if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
 214                        rflags |= 0x1;
 215        }
 216        /*
 217         * We can't allow hardware to update hpte bits. Hence always
 218         * set 'R' bit and set 'C' if it is a write fault
 219         */
 220        rflags |=  HPTE_R_R;
 221
 222        if (pteflags & _PAGE_DIRTY)
 223                rflags |= HPTE_R_C;
 224        /*
 225         * Add in WIG bits
 226         */
 227
 228        if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
 229                rflags |= HPTE_R_I;
 230        else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
 231                rflags |= (HPTE_R_I | HPTE_R_G);
 232        else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
 233                rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
 234        else
 235                /*
 236                 * Add memory coherence if cache inhibited is not set
 237                 */
 238                rflags |= HPTE_R_M;
 239
 240        rflags |= pte_to_hpte_pkey_bits(pteflags);
 241        return rflags;
 242}
 243
 244int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
 245                      unsigned long pstart, unsigned long prot,
 246                      int psize, int ssize)
 247{
 248        unsigned long vaddr, paddr;
 249        unsigned int step, shift;
 250        int ret = 0;
 251
 252        shift = mmu_psize_defs[psize].shift;
 253        step = 1 << shift;
 254
 255        prot = htab_convert_pte_flags(prot);
 256
 257        DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
 258            vstart, vend, pstart, prot, psize, ssize);
 259
 260        for (vaddr = vstart, paddr = pstart; vaddr < vend;
 261             vaddr += step, paddr += step) {
 262                unsigned long hash, hpteg;
 263                unsigned long vsid = get_kernel_vsid(vaddr, ssize);
 264                unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
 265                unsigned long tprot = prot;
 266
 267                /*
 268                 * If we hit a bad address return error.
 269                 */
 270                if (!vsid)
 271                        return -1;
 272                /* Make kernel text executable */
 273                if (overlaps_kernel_text(vaddr, vaddr + step))
 274                        tprot &= ~HPTE_R_N;
 275
 276                /*
 277                 * If relocatable, check if it overlaps interrupt vectors that
 278                 * are copied down to real 0. For relocatable kernel
 279                 * (e.g. kdump case) we copy interrupt vectors down to real
 280                 * address 0. Mark that region as executable. This is
 281                 * because on p8 system with relocation on exception feature
 282                 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
 283                 * in order to execute the interrupt handlers in virtual
 284                 * mode the vector region need to be marked as executable.
 285                 */
 286                if ((PHYSICAL_START > MEMORY_START) &&
 287                        overlaps_interrupt_vector_text(vaddr, vaddr + step))
 288                                tprot &= ~HPTE_R_N;
 289
 290                hash = hpt_hash(vpn, shift, ssize);
 291                hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
 292
 293                BUG_ON(!mmu_hash_ops.hpte_insert);
 294                ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
 295                                               HPTE_V_BOLTED, psize, psize,
 296                                               ssize);
 297
 298                if (ret < 0)
 299                        break;
 300
 301#ifdef CONFIG_DEBUG_PAGEALLOC
 302                if (debug_pagealloc_enabled() &&
 303                        (paddr >> PAGE_SHIFT) < linear_map_hash_count)
 304                        linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
 305#endif /* CONFIG_DEBUG_PAGEALLOC */
 306        }
 307        return ret < 0 ? ret : 0;
 308}
 309
 310int htab_remove_mapping(unsigned long vstart, unsigned long vend,
 311                      int psize, int ssize)
 312{
 313        unsigned long vaddr;
 314        unsigned int step, shift;
 315        int rc;
 316        int ret = 0;
 317
 318        shift = mmu_psize_defs[psize].shift;
 319        step = 1 << shift;
 320
 321        if (!mmu_hash_ops.hpte_removebolted)
 322                return -ENODEV;
 323
 324        for (vaddr = vstart; vaddr < vend; vaddr += step) {
 325                rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
 326                if (rc == -ENOENT) {
 327                        ret = -ENOENT;
 328                        continue;
 329                }
 330                if (rc < 0)
 331                        return rc;
 332        }
 333
 334        return ret;
 335}
 336
 337static bool disable_1tb_segments = false;
 338
 339static int __init parse_disable_1tb_segments(char *p)
 340{
 341        disable_1tb_segments = true;
 342        return 0;
 343}
 344early_param("disable_1tb_segments", parse_disable_1tb_segments);
 345
 346static int __init htab_dt_scan_seg_sizes(unsigned long node,
 347                                         const char *uname, int depth,
 348                                         void *data)
 349{
 350        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 351        const __be32 *prop;
 352        int size = 0;
 353
 354        /* We are scanning "cpu" nodes only */
 355        if (type == NULL || strcmp(type, "cpu") != 0)
 356                return 0;
 357
 358        prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
 359        if (prop == NULL)
 360                return 0;
 361        for (; size >= 4; size -= 4, ++prop) {
 362                if (be32_to_cpu(prop[0]) == 40) {
 363                        DBG("1T segment support detected\n");
 364
 365                        if (disable_1tb_segments) {
 366                                DBG("1T segments disabled by command line\n");
 367                                break;
 368                        }
 369
 370                        cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
 371                        return 1;
 372                }
 373        }
 374        cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
 375        return 0;
 376}
 377
 378static int __init get_idx_from_shift(unsigned int shift)
 379{
 380        int idx = -1;
 381
 382        switch (shift) {
 383        case 0xc:
 384                idx = MMU_PAGE_4K;
 385                break;
 386        case 0x10:
 387                idx = MMU_PAGE_64K;
 388                break;
 389        case 0x14:
 390                idx = MMU_PAGE_1M;
 391                break;
 392        case 0x18:
 393                idx = MMU_PAGE_16M;
 394                break;
 395        case 0x22:
 396                idx = MMU_PAGE_16G;
 397                break;
 398        }
 399        return idx;
 400}
 401
 402static int __init htab_dt_scan_page_sizes(unsigned long node,
 403                                          const char *uname, int depth,
 404                                          void *data)
 405{
 406        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 407        const __be32 *prop;
 408        int size = 0;
 409
 410        /* We are scanning "cpu" nodes only */
 411        if (type == NULL || strcmp(type, "cpu") != 0)
 412                return 0;
 413
 414        prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
 415        if (!prop)
 416                return 0;
 417
 418        pr_info("Page sizes from device-tree:\n");
 419        size /= 4;
 420        cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
 421        while(size > 0) {
 422                unsigned int base_shift = be32_to_cpu(prop[0]);
 423                unsigned int slbenc = be32_to_cpu(prop[1]);
 424                unsigned int lpnum = be32_to_cpu(prop[2]);
 425                struct mmu_psize_def *def;
 426                int idx, base_idx;
 427
 428                size -= 3; prop += 3;
 429                base_idx = get_idx_from_shift(base_shift);
 430                if (base_idx < 0) {
 431                        /* skip the pte encoding also */
 432                        prop += lpnum * 2; size -= lpnum * 2;
 433                        continue;
 434                }
 435                def = &mmu_psize_defs[base_idx];
 436                if (base_idx == MMU_PAGE_16M)
 437                        cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
 438
 439                def->shift = base_shift;
 440                if (base_shift <= 23)
 441                        def->avpnm = 0;
 442                else
 443                        def->avpnm = (1 << (base_shift - 23)) - 1;
 444                def->sllp = slbenc;
 445                /*
 446                 * We don't know for sure what's up with tlbiel, so
 447                 * for now we only set it for 4K and 64K pages
 448                 */
 449                if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
 450                        def->tlbiel = 1;
 451                else
 452                        def->tlbiel = 0;
 453
 454                while (size > 0 && lpnum) {
 455                        unsigned int shift = be32_to_cpu(prop[0]);
 456                        int penc  = be32_to_cpu(prop[1]);
 457
 458                        prop += 2; size -= 2;
 459                        lpnum--;
 460
 461                        idx = get_idx_from_shift(shift);
 462                        if (idx < 0)
 463                                continue;
 464
 465                        if (penc == -1)
 466                                pr_err("Invalid penc for base_shift=%d "
 467                                       "shift=%d\n", base_shift, shift);
 468
 469                        def->penc[idx] = penc;
 470                        pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
 471                                " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
 472                                base_shift, shift, def->sllp,
 473                                def->avpnm, def->tlbiel, def->penc[idx]);
 474                }
 475        }
 476
 477        return 1;
 478}
 479
 480#ifdef CONFIG_HUGETLB_PAGE
 481/*
 482 * Scan for 16G memory blocks that have been set aside for huge pages
 483 * and reserve those blocks for 16G huge pages.
 484 */
 485static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
 486                                        const char *uname, int depth,
 487                                        void *data) {
 488        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 489        const __be64 *addr_prop;
 490        const __be32 *page_count_prop;
 491        unsigned int expected_pages;
 492        long unsigned int phys_addr;
 493        long unsigned int block_size;
 494
 495        /* We are scanning "memory" nodes only */
 496        if (type == NULL || strcmp(type, "memory") != 0)
 497                return 0;
 498
 499        /*
 500         * This property is the log base 2 of the number of virtual pages that
 501         * will represent this memory block.
 502         */
 503        page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
 504        if (page_count_prop == NULL)
 505                return 0;
 506        expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
 507        addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
 508        if (addr_prop == NULL)
 509                return 0;
 510        phys_addr = be64_to_cpu(addr_prop[0]);
 511        block_size = be64_to_cpu(addr_prop[1]);
 512        if (block_size != (16 * GB))
 513                return 0;
 514        printk(KERN_INFO "Huge page(16GB) memory: "
 515                        "addr = 0x%lX size = 0x%lX pages = %d\n",
 516                        phys_addr, block_size, expected_pages);
 517        if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
 518                memblock_reserve(phys_addr, block_size * expected_pages);
 519                pseries_add_gpage(phys_addr, block_size, expected_pages);
 520        }
 521        return 0;
 522}
 523#endif /* CONFIG_HUGETLB_PAGE */
 524
 525static void mmu_psize_set_default_penc(void)
 526{
 527        int bpsize, apsize;
 528        for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
 529                for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
 530                        mmu_psize_defs[bpsize].penc[apsize] = -1;
 531}
 532
 533#ifdef CONFIG_PPC_64K_PAGES
 534
 535static bool might_have_hea(void)
 536{
 537        /*
 538         * The HEA ethernet adapter requires awareness of the
 539         * GX bus. Without that awareness we can easily assume
 540         * we will never see an HEA ethernet device.
 541         */
 542#ifdef CONFIG_IBMEBUS
 543        return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
 544                firmware_has_feature(FW_FEATURE_SPLPAR);
 545#else
 546        return false;
 547#endif
 548}
 549
 550#endif /* #ifdef CONFIG_PPC_64K_PAGES */
 551
 552static void __init htab_scan_page_sizes(void)
 553{
 554        int rc;
 555
 556        /* se the invalid penc to -1 */
 557        mmu_psize_set_default_penc();
 558
 559        /* Default to 4K pages only */
 560        memcpy(mmu_psize_defs, mmu_psize_defaults,
 561               sizeof(mmu_psize_defaults));
 562
 563        /*
 564         * Try to find the available page sizes in the device-tree
 565         */
 566        rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
 567        if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
 568                /*
 569                 * Nothing in the device-tree, but the CPU supports 16M pages,
 570                 * so let's fallback on a known size list for 16M capable CPUs.
 571                 */
 572                memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
 573                       sizeof(mmu_psize_defaults_gp));
 574        }
 575
 576#ifdef CONFIG_HUGETLB_PAGE
 577        if (!hugetlb_disabled) {
 578                /* Reserve 16G huge page memory sections for huge pages */
 579                of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
 580        }
 581#endif /* CONFIG_HUGETLB_PAGE */
 582}
 583
 584/*
 585 * Fill in the hpte_page_sizes[] array.
 586 * We go through the mmu_psize_defs[] array looking for all the
 587 * supported base/actual page size combinations.  Each combination
 588 * has a unique pagesize encoding (penc) value in the low bits of
 589 * the LP field of the HPTE.  For actual page sizes less than 1MB,
 590 * some of the upper LP bits are used for RPN bits, meaning that
 591 * we need to fill in several entries in hpte_page_sizes[].
 592 *
 593 * In diagrammatic form, with r = RPN bits and z = page size bits:
 594 *        PTE LP     actual page size
 595 *    rrrr rrrz         >=8KB
 596 *    rrrr rrzz         >=16KB
 597 *    rrrr rzzz         >=32KB
 598 *    rrrr zzzz         >=64KB
 599 *    ...
 600 *
 601 * The zzzz bits are implementation-specific but are chosen so that
 602 * no encoding for a larger page size uses the same value in its
 603 * low-order N bits as the encoding for the 2^(12+N) byte page size
 604 * (if it exists).
 605 */
 606static void init_hpte_page_sizes(void)
 607{
 608        long int ap, bp;
 609        long int shift, penc;
 610
 611        for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
 612                if (!mmu_psize_defs[bp].shift)
 613                        continue;       /* not a supported page size */
 614                for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
 615                        penc = mmu_psize_defs[bp].penc[ap];
 616                        if (penc == -1 || !mmu_psize_defs[ap].shift)
 617                                continue;
 618                        shift = mmu_psize_defs[ap].shift - LP_SHIFT;
 619                        if (shift <= 0)
 620                                continue;       /* should never happen */
 621                        /*
 622                         * For page sizes less than 1MB, this loop
 623                         * replicates the entry for all possible values
 624                         * of the rrrr bits.
 625                         */
 626                        while (penc < (1 << LP_BITS)) {
 627                                hpte_page_sizes[penc] = (ap << 4) | bp;
 628                                penc += 1 << shift;
 629                        }
 630                }
 631        }
 632}
 633
 634static void __init htab_init_page_sizes(void)
 635{
 636        init_hpte_page_sizes();
 637
 638        if (!debug_pagealloc_enabled()) {
 639                /*
 640                 * Pick a size for the linear mapping. Currently, we only
 641                 * support 16M, 1M and 4K which is the default
 642                 */
 643                if (mmu_psize_defs[MMU_PAGE_16M].shift)
 644                        mmu_linear_psize = MMU_PAGE_16M;
 645                else if (mmu_psize_defs[MMU_PAGE_1M].shift)
 646                        mmu_linear_psize = MMU_PAGE_1M;
 647        }
 648
 649#ifdef CONFIG_PPC_64K_PAGES
 650        /*
 651         * Pick a size for the ordinary pages. Default is 4K, we support
 652         * 64K for user mappings and vmalloc if supported by the processor.
 653         * We only use 64k for ioremap if the processor
 654         * (and firmware) support cache-inhibited large pages.
 655         * If not, we use 4k and set mmu_ci_restrictions so that
 656         * hash_page knows to switch processes that use cache-inhibited
 657         * mappings to 4k pages.
 658         */
 659        if (mmu_psize_defs[MMU_PAGE_64K].shift) {
 660                mmu_virtual_psize = MMU_PAGE_64K;
 661                mmu_vmalloc_psize = MMU_PAGE_64K;
 662                if (mmu_linear_psize == MMU_PAGE_4K)
 663                        mmu_linear_psize = MMU_PAGE_64K;
 664                if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
 665                        /*
 666                         * When running on pSeries using 64k pages for ioremap
 667                         * would stop us accessing the HEA ethernet. So if we
 668                         * have the chance of ever seeing one, stay at 4k.
 669                         */
 670                        if (!might_have_hea())
 671                                mmu_io_psize = MMU_PAGE_64K;
 672                } else
 673                        mmu_ci_restrictions = 1;
 674        }
 675#endif /* CONFIG_PPC_64K_PAGES */
 676
 677#ifdef CONFIG_SPARSEMEM_VMEMMAP
 678        /*
 679         * We try to use 16M pages for vmemmap if that is supported
 680         * and we have at least 1G of RAM at boot
 681         */
 682        if (mmu_psize_defs[MMU_PAGE_16M].shift &&
 683            memblock_phys_mem_size() >= 0x40000000)
 684                mmu_vmemmap_psize = MMU_PAGE_16M;
 685        else
 686                mmu_vmemmap_psize = mmu_virtual_psize;
 687#endif /* CONFIG_SPARSEMEM_VMEMMAP */
 688
 689        printk(KERN_DEBUG "Page orders: linear mapping = %d, "
 690               "virtual = %d, io = %d"
 691#ifdef CONFIG_SPARSEMEM_VMEMMAP
 692               ", vmemmap = %d"
 693#endif
 694               "\n",
 695               mmu_psize_defs[mmu_linear_psize].shift,
 696               mmu_psize_defs[mmu_virtual_psize].shift,
 697               mmu_psize_defs[mmu_io_psize].shift
 698#ifdef CONFIG_SPARSEMEM_VMEMMAP
 699               ,mmu_psize_defs[mmu_vmemmap_psize].shift
 700#endif
 701               );
 702}
 703
 704static int __init htab_dt_scan_pftsize(unsigned long node,
 705                                       const char *uname, int depth,
 706                                       void *data)
 707{
 708        const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
 709        const __be32 *prop;
 710
 711        /* We are scanning "cpu" nodes only */
 712        if (type == NULL || strcmp(type, "cpu") != 0)
 713                return 0;
 714
 715        prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
 716        if (prop != NULL) {
 717                /* pft_size[0] is the NUMA CEC cookie */
 718                ppc64_pft_size = be32_to_cpu(prop[1]);
 719                return 1;
 720        }
 721        return 0;
 722}
 723
 724unsigned htab_shift_for_mem_size(unsigned long mem_size)
 725{
 726        unsigned memshift = __ilog2(mem_size);
 727        unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
 728        unsigned pteg_shift;
 729
 730        /* round mem_size up to next power of 2 */
 731        if ((1UL << memshift) < mem_size)
 732                memshift += 1;
 733
 734        /* aim for 2 pages / pteg */
 735        pteg_shift = memshift - (pshift + 1);
 736
 737        /*
 738         * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
 739         * size permitted by the architecture.
 740         */
 741        return max(pteg_shift + 7, 18U);
 742}
 743
 744static unsigned long __init htab_get_table_size(void)
 745{
 746        /*
 747         * If hash size isn't already provided by the platform, we try to
 748         * retrieve it from the device-tree. If it's not there neither, we
 749         * calculate it now based on the total RAM size
 750         */
 751        if (ppc64_pft_size == 0)
 752                of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
 753        if (ppc64_pft_size)
 754                return 1UL << ppc64_pft_size;
 755
 756        return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
 757}
 758
 759#ifdef CONFIG_MEMORY_HOTPLUG
 760int resize_hpt_for_hotplug(unsigned long new_mem_size)
 761{
 762        unsigned target_hpt_shift;
 763
 764        if (!mmu_hash_ops.resize_hpt)
 765                return 0;
 766
 767        target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
 768
 769        /*
 770         * To avoid lots of HPT resizes if memory size is fluctuating
 771         * across a boundary, we deliberately have some hysterisis
 772         * here: we immediately increase the HPT size if the target
 773         * shift exceeds the current shift, but we won't attempt to
 774         * reduce unless the target shift is at least 2 below the
 775         * current shift
 776         */
 777        if (target_hpt_shift > ppc64_pft_size ||
 778            target_hpt_shift < ppc64_pft_size - 1)
 779                return mmu_hash_ops.resize_hpt(target_hpt_shift);
 780
 781        return 0;
 782}
 783
 784int hash__create_section_mapping(unsigned long start, unsigned long end, int nid)
 785{
 786        int rc;
 787
 788        if (end >= H_VMALLOC_START) {
 789                pr_warn("Outside the supported range\n");
 790                return -1;
 791        }
 792
 793        rc = htab_bolt_mapping(start, end, __pa(start),
 794                               pgprot_val(PAGE_KERNEL), mmu_linear_psize,
 795                               mmu_kernel_ssize);
 796
 797        if (rc < 0) {
 798                int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
 799                                              mmu_kernel_ssize);
 800                BUG_ON(rc2 && (rc2 != -ENOENT));
 801        }
 802        return rc;
 803}
 804
 805int hash__remove_section_mapping(unsigned long start, unsigned long end)
 806{
 807        int rc = htab_remove_mapping(start, end, mmu_linear_psize,
 808                                     mmu_kernel_ssize);
 809        WARN_ON(rc < 0);
 810        return rc;
 811}
 812#endif /* CONFIG_MEMORY_HOTPLUG */
 813
 814static void __init hash_init_partition_table(phys_addr_t hash_table,
 815                                             unsigned long htab_size)
 816{
 817        mmu_partition_table_init();
 818
 819        /*
 820         * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
 821         * For now, UPRT is 0 and we have no segment table.
 822         */
 823        htab_size =  __ilog2(htab_size) - 18;
 824        mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
 825        pr_info("Partition table %p\n", partition_tb);
 826}
 827
 828static void __init htab_initialize(void)
 829{
 830        unsigned long table;
 831        unsigned long pteg_count;
 832        unsigned long prot;
 833        unsigned long base = 0, size = 0;
 834        struct memblock_region *reg;
 835
 836        DBG(" -> htab_initialize()\n");
 837
 838        if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
 839                mmu_kernel_ssize = MMU_SEGSIZE_1T;
 840                mmu_highuser_ssize = MMU_SEGSIZE_1T;
 841                printk(KERN_INFO "Using 1TB segments\n");
 842        }
 843
 844        /*
 845         * Calculate the required size of the htab.  We want the number of
 846         * PTEGs to equal one half the number of real pages.
 847         */ 
 848        htab_size_bytes = htab_get_table_size();
 849        pteg_count = htab_size_bytes >> 7;
 850
 851        htab_hash_mask = pteg_count - 1;
 852
 853        if (firmware_has_feature(FW_FEATURE_LPAR) ||
 854            firmware_has_feature(FW_FEATURE_PS3_LV1)) {
 855                /* Using a hypervisor which owns the htab */
 856                htab_address = NULL;
 857                _SDR1 = 0; 
 858#ifdef CONFIG_FA_DUMP
 859                /*
 860                 * If firmware assisted dump is active firmware preserves
 861                 * the contents of htab along with entire partition memory.
 862                 * Clear the htab if firmware assisted dump is active so
 863                 * that we dont end up using old mappings.
 864                 */
 865                if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
 866                        mmu_hash_ops.hpte_clear_all();
 867#endif
 868        } else {
 869                unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
 870
 871#ifdef CONFIG_PPC_CELL
 872                /*
 873                 * Cell may require the hash table down low when using the
 874                 * Axon IOMMU in order to fit the dynamic region over it, see
 875                 * comments in cell/iommu.c
 876                 */
 877                if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
 878                        limit = 0x80000000;
 879                        pr_info("Hash table forced below 2G for Axon IOMMU\n");
 880                }
 881#endif /* CONFIG_PPC_CELL */
 882
 883                table = memblock_phys_alloc_range(htab_size_bytes,
 884                                                  htab_size_bytes,
 885                                                  0, limit);
 886                if (!table)
 887                        panic("ERROR: Failed to allocate %pa bytes below %pa\n",
 888                              &htab_size_bytes, &limit);
 889
 890                DBG("Hash table allocated at %lx, size: %lx\n", table,
 891                    htab_size_bytes);
 892
 893                htab_address = __va(table);
 894
 895                /* htab absolute addr + encoded htabsize */
 896                _SDR1 = table + __ilog2(htab_size_bytes) - 18;
 897
 898                /* Initialize the HPT with no entries */
 899                memset((void *)table, 0, htab_size_bytes);
 900
 901                if (!cpu_has_feature(CPU_FTR_ARCH_300))
 902                        /* Set SDR1 */
 903                        mtspr(SPRN_SDR1, _SDR1);
 904                else
 905                        hash_init_partition_table(table, htab_size_bytes);
 906        }
 907
 908        prot = pgprot_val(PAGE_KERNEL);
 909
 910#ifdef CONFIG_DEBUG_PAGEALLOC
 911        if (debug_pagealloc_enabled()) {
 912                linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
 913                linear_map_hash_slots = memblock_alloc_try_nid(
 914                                linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
 915                                ppc64_rma_size, NUMA_NO_NODE);
 916                if (!linear_map_hash_slots)
 917                        panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
 918                              __func__, linear_map_hash_count, &ppc64_rma_size);
 919        }
 920#endif /* CONFIG_DEBUG_PAGEALLOC */
 921
 922        /* create bolted the linear mapping in the hash table */
 923        for_each_memblock(memory, reg) {
 924                base = (unsigned long)__va(reg->base);
 925                size = reg->size;
 926
 927                DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
 928                    base, size, prot);
 929
 930                if ((base + size) >= H_VMALLOC_START) {
 931                        pr_warn("Outside the supported range\n");
 932                        continue;
 933                }
 934
 935                BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
 936                                prot, mmu_linear_psize, mmu_kernel_ssize));
 937        }
 938        memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
 939
 940        /*
 941         * If we have a memory_limit and we've allocated TCEs then we need to
 942         * explicitly map the TCE area at the top of RAM. We also cope with the
 943         * case that the TCEs start below memory_limit.
 944         * tce_alloc_start/end are 16MB aligned so the mapping should work
 945         * for either 4K or 16MB pages.
 946         */
 947        if (tce_alloc_start) {
 948                tce_alloc_start = (unsigned long)__va(tce_alloc_start);
 949                tce_alloc_end = (unsigned long)__va(tce_alloc_end);
 950
 951                if (base + size >= tce_alloc_start)
 952                        tce_alloc_start = base + size + 1;
 953
 954                BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
 955                                         __pa(tce_alloc_start), prot,
 956                                         mmu_linear_psize, mmu_kernel_ssize));
 957        }
 958
 959
 960        DBG(" <- htab_initialize()\n");
 961}
 962#undef KB
 963#undef MB
 964
 965void __init hash__early_init_devtree(void)
 966{
 967        /* Initialize segment sizes */
 968        of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
 969
 970        /* Initialize page sizes */
 971        htab_scan_page_sizes();
 972}
 973
 974static struct hash_mm_context init_hash_mm_context;
 975void __init hash__early_init_mmu(void)
 976{
 977#ifndef CONFIG_PPC_64K_PAGES
 978        /*
 979         * We have code in __hash_page_4K() and elsewhere, which assumes it can
 980         * do the following:
 981         *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
 982         *
 983         * Where the slot number is between 0-15, and values of 8-15 indicate
 984         * the secondary bucket. For that code to work H_PAGE_F_SECOND and
 985         * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
 986         * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
 987         * with a BUILD_BUG_ON().
 988         */
 989        BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
 990#endif /* CONFIG_PPC_64K_PAGES */
 991
 992        htab_init_page_sizes();
 993
 994        /*
 995         * initialize page table size
 996         */
 997        __pte_frag_nr = H_PTE_FRAG_NR;
 998        __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
 999        __pmd_frag_nr = H_PMD_FRAG_NR;
1000        __pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1001
1002        __pte_index_size = H_PTE_INDEX_SIZE;
1003        __pmd_index_size = H_PMD_INDEX_SIZE;
1004        __pud_index_size = H_PUD_INDEX_SIZE;
1005        __pgd_index_size = H_PGD_INDEX_SIZE;
1006        __pud_cache_index = H_PUD_CACHE_INDEX;
1007        __pte_table_size = H_PTE_TABLE_SIZE;
1008        __pmd_table_size = H_PMD_TABLE_SIZE;
1009        __pud_table_size = H_PUD_TABLE_SIZE;
1010        __pgd_table_size = H_PGD_TABLE_SIZE;
1011        /*
1012         * 4k use hugepd format, so for hash set then to
1013         * zero
1014         */
1015        __pmd_val_bits = HASH_PMD_VAL_BITS;
1016        __pud_val_bits = HASH_PUD_VAL_BITS;
1017        __pgd_val_bits = HASH_PGD_VAL_BITS;
1018
1019        __kernel_virt_start = H_KERN_VIRT_START;
1020        __vmalloc_start = H_VMALLOC_START;
1021        __vmalloc_end = H_VMALLOC_END;
1022        __kernel_io_start = H_KERN_IO_START;
1023        __kernel_io_end = H_KERN_IO_END;
1024        vmemmap = (struct page *)H_VMEMMAP_START;
1025        ioremap_bot = IOREMAP_BASE;
1026
1027#ifdef CONFIG_PCI
1028        pci_io_base = ISA_IO_BASE;
1029#endif
1030
1031        /* Select appropriate backend */
1032        if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1033                ps3_early_mm_init();
1034        else if (firmware_has_feature(FW_FEATURE_LPAR))
1035                hpte_init_pseries();
1036        else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1037                hpte_init_native();
1038
1039        if (!mmu_hash_ops.hpte_insert)
1040                panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1041
1042        /*
1043         * Initialize the MMU Hash table and create the linear mapping
1044         * of memory. Has to be done before SLB initialization as this is
1045         * currently where the page size encoding is obtained.
1046         */
1047        htab_initialize();
1048
1049        init_mm.context.hash_context = &init_hash_mm_context;
1050        mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1051
1052        pr_info("Initializing hash mmu with SLB\n");
1053        /* Initialize SLB management */
1054        slb_initialize();
1055
1056        if (cpu_has_feature(CPU_FTR_ARCH_206)
1057                        && cpu_has_feature(CPU_FTR_HVMODE))
1058                tlbiel_all();
1059}
1060
1061#ifdef CONFIG_SMP
1062void hash__early_init_mmu_secondary(void)
1063{
1064        /* Initialize hash table for that CPU */
1065        if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1066
1067                if (!cpu_has_feature(CPU_FTR_ARCH_300))
1068                        mtspr(SPRN_SDR1, _SDR1);
1069                else
1070                        set_ptcr_when_no_uv(__pa(partition_tb) |
1071                                            (PATB_SIZE_SHIFT - 12));
1072        }
1073        /* Initialize SLB */
1074        slb_initialize();
1075
1076        if (cpu_has_feature(CPU_FTR_ARCH_206)
1077                        && cpu_has_feature(CPU_FTR_HVMODE))
1078                tlbiel_all();
1079}
1080#endif /* CONFIG_SMP */
1081
1082/*
1083 * Called by asm hashtable.S for doing lazy icache flush
1084 */
1085unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1086{
1087        struct page *page;
1088
1089        if (!pfn_valid(pte_pfn(pte)))
1090                return pp;
1091
1092        page = pte_page(pte);
1093
1094        /* page is dirty */
1095        if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1096                if (trap == 0x400) {
1097                        flush_dcache_icache_page(page);
1098                        set_bit(PG_arch_1, &page->flags);
1099                } else
1100                        pp |= HPTE_R_N;
1101        }
1102        return pp;
1103}
1104
1105#ifdef CONFIG_PPC_MM_SLICES
1106static unsigned int get_paca_psize(unsigned long addr)
1107{
1108        unsigned char *psizes;
1109        unsigned long index, mask_index;
1110
1111        if (addr < SLICE_LOW_TOP) {
1112                psizes = get_paca()->mm_ctx_low_slices_psize;
1113                index = GET_LOW_SLICE_INDEX(addr);
1114        } else {
1115                psizes = get_paca()->mm_ctx_high_slices_psize;
1116                index = GET_HIGH_SLICE_INDEX(addr);
1117        }
1118        mask_index = index & 0x1;
1119        return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1120}
1121
1122#else
1123unsigned int get_paca_psize(unsigned long addr)
1124{
1125        return get_paca()->mm_ctx_user_psize;
1126}
1127#endif
1128
1129/*
1130 * Demote a segment to using 4k pages.
1131 * For now this makes the whole process use 4k pages.
1132 */
1133#ifdef CONFIG_PPC_64K_PAGES
1134void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1135{
1136        if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1137                return;
1138        slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1139        copro_flush_all_slbs(mm);
1140        if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1141
1142                copy_mm_to_paca(mm);
1143                slb_flush_and_restore_bolted();
1144        }
1145}
1146#endif /* CONFIG_PPC_64K_PAGES */
1147
1148#ifdef CONFIG_PPC_SUBPAGE_PROT
1149/*
1150 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1151 * Userspace sets the subpage permissions using the subpage_prot system call.
1152 *
1153 * Result is 0: full permissions, _PAGE_RW: read-only,
1154 * _PAGE_RWX: no access.
1155 */
1156static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1157{
1158        struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1159        u32 spp = 0;
1160        u32 **sbpm, *sbpp;
1161
1162        if (!spt)
1163                return 0;
1164
1165        if (ea >= spt->maxaddr)
1166                return 0;
1167        if (ea < 0x100000000UL) {
1168                /* addresses below 4GB use spt->low_prot */
1169                sbpm = spt->low_prot;
1170        } else {
1171                sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1172                if (!sbpm)
1173                        return 0;
1174        }
1175        sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1176        if (!sbpp)
1177                return 0;
1178        spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1179
1180        /* extract 2-bit bitfield for this 4k subpage */
1181        spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1182
1183        /*
1184         * 0 -> full premission
1185         * 1 -> Read only
1186         * 2 -> no access.
1187         * We return the flag that need to be cleared.
1188         */
1189        spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1190        return spp;
1191}
1192
1193#else /* CONFIG_PPC_SUBPAGE_PROT */
1194static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1195{
1196        return 0;
1197}
1198#endif
1199
1200void hash_failure_debug(unsigned long ea, unsigned long access,
1201                        unsigned long vsid, unsigned long trap,
1202                        int ssize, int psize, int lpsize, unsigned long pte)
1203{
1204        if (!printk_ratelimit())
1205                return;
1206        pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1207                ea, access, current->comm);
1208        pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1209                trap, vsid, ssize, psize, lpsize, pte);
1210}
1211
1212static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1213                             int psize, bool user_region)
1214{
1215        if (user_region) {
1216                if (psize != get_paca_psize(ea)) {
1217                        copy_mm_to_paca(mm);
1218                        slb_flush_and_restore_bolted();
1219                }
1220        } else if (get_paca()->vmalloc_sllp !=
1221                   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1222                get_paca()->vmalloc_sllp =
1223                        mmu_psize_defs[mmu_vmalloc_psize].sllp;
1224                slb_vmalloc_update();
1225        }
1226}
1227
1228/*
1229 * Result code is:
1230 *  0 - handled
1231 *  1 - normal page fault
1232 * -1 - critical hash insertion error
1233 * -2 - access not permitted by subpage protection mechanism
1234 */
1235int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1236                 unsigned long access, unsigned long trap,
1237                 unsigned long flags)
1238{
1239        bool is_thp;
1240        enum ctx_state prev_state = exception_enter();
1241        pgd_t *pgdir;
1242        unsigned long vsid;
1243        pte_t *ptep;
1244        unsigned hugeshift;
1245        int rc, user_region = 0;
1246        int psize, ssize;
1247
1248        DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1249                ea, access, trap);
1250        trace_hash_fault(ea, access, trap);
1251
1252        /* Get region & vsid */
1253        switch (get_region_id(ea)) {
1254        case USER_REGION_ID:
1255                user_region = 1;
1256                if (! mm) {
1257                        DBG_LOW(" user region with no mm !\n");
1258                        rc = 1;
1259                        goto bail;
1260                }
1261                psize = get_slice_psize(mm, ea);
1262                ssize = user_segment_size(ea);
1263                vsid = get_user_vsid(&mm->context, ea, ssize);
1264                break;
1265        case VMALLOC_REGION_ID:
1266                vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1267                psize = mmu_vmalloc_psize;
1268                ssize = mmu_kernel_ssize;
1269                break;
1270
1271        case IO_REGION_ID:
1272                vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1273                psize = mmu_io_psize;
1274                ssize = mmu_kernel_ssize;
1275                break;
1276        default:
1277                /*
1278                 * Not a valid range
1279                 * Send the problem up to do_page_fault()
1280                 */
1281                rc = 1;
1282                goto bail;
1283        }
1284        DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1285
1286        /* Bad address. */
1287        if (!vsid) {
1288                DBG_LOW("Bad address!\n");
1289                rc = 1;
1290                goto bail;
1291        }
1292        /* Get pgdir */
1293        pgdir = mm->pgd;
1294        if (pgdir == NULL) {
1295                rc = 1;
1296                goto bail;
1297        }
1298
1299        /* Check CPU locality */
1300        if (user_region && mm_is_thread_local(mm))
1301                flags |= HPTE_LOCAL_UPDATE;
1302
1303#ifndef CONFIG_PPC_64K_PAGES
1304        /*
1305         * If we use 4K pages and our psize is not 4K, then we might
1306         * be hitting a special driver mapping, and need to align the
1307         * address before we fetch the PTE.
1308         *
1309         * It could also be a hugepage mapping, in which case this is
1310         * not necessary, but it's not harmful, either.
1311         */
1312        if (psize != MMU_PAGE_4K)
1313                ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1314#endif /* CONFIG_PPC_64K_PAGES */
1315
1316        /* Get PTE and page size from page tables */
1317        ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1318        if (ptep == NULL || !pte_present(*ptep)) {
1319                DBG_LOW(" no PTE !\n");
1320                rc = 1;
1321                goto bail;
1322        }
1323
1324        /* Add _PAGE_PRESENT to the required access perm */
1325        access |= _PAGE_PRESENT;
1326
1327        /*
1328         * Pre-check access permissions (will be re-checked atomically
1329         * in __hash_page_XX but this pre-check is a fast path
1330         */
1331        if (!check_pte_access(access, pte_val(*ptep))) {
1332                DBG_LOW(" no access !\n");
1333                rc = 1;
1334                goto bail;
1335        }
1336
1337        if (hugeshift) {
1338                if (is_thp)
1339                        rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1340                                             trap, flags, ssize, psize);
1341#ifdef CONFIG_HUGETLB_PAGE
1342                else
1343                        rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1344                                              flags, ssize, hugeshift, psize);
1345#else
1346                else {
1347                        /*
1348                         * if we have hugeshift, and is not transhuge with
1349                         * hugetlb disabled, something is really wrong.
1350                         */
1351                        rc = 1;
1352                        WARN_ON(1);
1353                }
1354#endif
1355                if (current->mm == mm)
1356                        check_paca_psize(ea, mm, psize, user_region);
1357
1358                goto bail;
1359        }
1360
1361#ifndef CONFIG_PPC_64K_PAGES
1362        DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1363#else
1364        DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1365                pte_val(*(ptep + PTRS_PER_PTE)));
1366#endif
1367        /* Do actual hashing */
1368#ifdef CONFIG_PPC_64K_PAGES
1369        /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1370        if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1371                demote_segment_4k(mm, ea);
1372                psize = MMU_PAGE_4K;
1373        }
1374
1375        /*
1376         * If this PTE is non-cacheable and we have restrictions on
1377         * using non cacheable large pages, then we switch to 4k
1378         */
1379        if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1380                if (user_region) {
1381                        demote_segment_4k(mm, ea);
1382                        psize = MMU_PAGE_4K;
1383                } else if (ea < VMALLOC_END) {
1384                        /*
1385                         * some driver did a non-cacheable mapping
1386                         * in vmalloc space, so switch vmalloc
1387                         * to 4k pages
1388                         */
1389                        printk(KERN_ALERT "Reducing vmalloc segment "
1390                               "to 4kB pages because of "
1391                               "non-cacheable mapping\n");
1392                        psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1393                        copro_flush_all_slbs(mm);
1394                }
1395        }
1396
1397#endif /* CONFIG_PPC_64K_PAGES */
1398
1399        if (current->mm == mm)
1400                check_paca_psize(ea, mm, psize, user_region);
1401
1402#ifdef CONFIG_PPC_64K_PAGES
1403        if (psize == MMU_PAGE_64K)
1404                rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1405                                     flags, ssize);
1406        else
1407#endif /* CONFIG_PPC_64K_PAGES */
1408        {
1409                int spp = subpage_protection(mm, ea);
1410                if (access & spp)
1411                        rc = -2;
1412                else
1413                        rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1414                                            flags, ssize, spp);
1415        }
1416
1417        /*
1418         * Dump some info in case of hash insertion failure, they should
1419         * never happen so it is really useful to know if/when they do
1420         */
1421        if (rc == -1)
1422                hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1423                                   psize, pte_val(*ptep));
1424#ifndef CONFIG_PPC_64K_PAGES
1425        DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1426#else
1427        DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1428                pte_val(*(ptep + PTRS_PER_PTE)));
1429#endif
1430        DBG_LOW(" -> rc=%d\n", rc);
1431
1432bail:
1433        exception_exit(prev_state);
1434        return rc;
1435}
1436EXPORT_SYMBOL_GPL(hash_page_mm);
1437
1438int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1439              unsigned long dsisr)
1440{
1441        unsigned long flags = 0;
1442        struct mm_struct *mm = current->mm;
1443
1444        if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1445            (get_region_id(ea) == IO_REGION_ID))
1446                mm = &init_mm;
1447
1448        if (dsisr & DSISR_NOHPTE)
1449                flags |= HPTE_NOHPTE_UPDATE;
1450
1451        return hash_page_mm(mm, ea, access, trap, flags);
1452}
1453EXPORT_SYMBOL_GPL(hash_page);
1454
1455int __hash_page(unsigned long trap, unsigned long ea, unsigned long dsisr,
1456                unsigned long msr)
1457{
1458        unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1459        unsigned long flags = 0;
1460        struct mm_struct *mm = current->mm;
1461        unsigned int region_id = get_region_id(ea);
1462
1463        if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1464                mm = &init_mm;
1465
1466        if (dsisr & DSISR_NOHPTE)
1467                flags |= HPTE_NOHPTE_UPDATE;
1468
1469        if (dsisr & DSISR_ISSTORE)
1470                access |= _PAGE_WRITE;
1471        /*
1472         * We set _PAGE_PRIVILEGED only when
1473         * kernel mode access kernel space.
1474         *
1475         * _PAGE_PRIVILEGED is NOT set
1476         * 1) when kernel mode access user space
1477         * 2) user space access kernel space.
1478         */
1479        access |= _PAGE_PRIVILEGED;
1480        if ((msr & MSR_PR) || (region_id == USER_REGION_ID))
1481                access &= ~_PAGE_PRIVILEGED;
1482
1483        if (trap == 0x400)
1484                access |= _PAGE_EXEC;
1485
1486        return hash_page_mm(mm, ea, access, trap, flags);
1487}
1488
1489#ifdef CONFIG_PPC_MM_SLICES
1490static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1491{
1492        int psize = get_slice_psize(mm, ea);
1493
1494        /* We only prefault standard pages for now */
1495        if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
1496                return false;
1497
1498        /*
1499         * Don't prefault if subpage protection is enabled for the EA.
1500         */
1501        if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1502                return false;
1503
1504        return true;
1505}
1506#else
1507static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1508{
1509        return true;
1510}
1511#endif
1512
1513static void hash_preload(struct mm_struct *mm, unsigned long ea,
1514                         bool is_exec, unsigned long trap)
1515{
1516        int hugepage_shift;
1517        unsigned long vsid;
1518        pgd_t *pgdir;
1519        pte_t *ptep;
1520        unsigned long flags;
1521        int rc, ssize, update_flags = 0;
1522        unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
1523
1524        BUG_ON(get_region_id(ea) != USER_REGION_ID);
1525
1526        if (!should_hash_preload(mm, ea))
1527                return;
1528
1529        DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1530                " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1531
1532        /* Get Linux PTE if available */
1533        pgdir = mm->pgd;
1534        if (pgdir == NULL)
1535                return;
1536
1537        /* Get VSID */
1538        ssize = user_segment_size(ea);
1539        vsid = get_user_vsid(&mm->context, ea, ssize);
1540        if (!vsid)
1541                return;
1542        /*
1543         * Hash doesn't like irqs. Walking linux page table with irq disabled
1544         * saves us from holding multiple locks.
1545         */
1546        local_irq_save(flags);
1547
1548        /*
1549         * THP pages use update_mmu_cache_pmd. We don't do
1550         * hash preload there. Hence can ignore THP here
1551         */
1552        ptep = find_current_mm_pte(pgdir, ea, NULL, &hugepage_shift);
1553        if (!ptep)
1554                goto out_exit;
1555
1556        WARN_ON(hugepage_shift);
1557#ifdef CONFIG_PPC_64K_PAGES
1558        /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1559         * a 64K kernel), then we don't preload, hash_page() will take
1560         * care of it once we actually try to access the page.
1561         * That way we don't have to duplicate all of the logic for segment
1562         * page size demotion here
1563         */
1564        if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1565                goto out_exit;
1566#endif /* CONFIG_PPC_64K_PAGES */
1567
1568        /* Is that local to this CPU ? */
1569        if (mm_is_thread_local(mm))
1570                update_flags |= HPTE_LOCAL_UPDATE;
1571
1572        /* Hash it in */
1573#ifdef CONFIG_PPC_64K_PAGES
1574        if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
1575                rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1576                                     update_flags, ssize);
1577        else
1578#endif /* CONFIG_PPC_64K_PAGES */
1579                rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1580                                    ssize, subpage_protection(mm, ea));
1581
1582        /* Dump some info in case of hash insertion failure, they should
1583         * never happen so it is really useful to know if/when they do
1584         */
1585        if (rc == -1)
1586                hash_failure_debug(ea, access, vsid, trap, ssize,
1587                                   mm_ctx_user_psize(&mm->context),
1588                                   mm_ctx_user_psize(&mm->context),
1589                                   pte_val(*ptep));
1590out_exit:
1591        local_irq_restore(flags);
1592}
1593
1594/*
1595 * This is called at the end of handling a user page fault, when the
1596 * fault has been handled by updating a PTE in the linux page tables.
1597 * We use it to preload an HPTE into the hash table corresponding to
1598 * the updated linux PTE.
1599 *
1600 * This must always be called with the pte lock held.
1601 */
1602void update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
1603                      pte_t *ptep)
1604{
1605        /*
1606         * We don't need to worry about _PAGE_PRESENT here because we are
1607         * called with either mm->page_table_lock held or ptl lock held
1608         */
1609        unsigned long trap;
1610        bool is_exec;
1611
1612        if (radix_enabled()) {
1613                prefetch((void *)address);
1614                return;
1615        }
1616
1617        /* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
1618        if (!pte_young(*ptep) || address >= TASK_SIZE)
1619                return;
1620
1621        /*
1622         * We try to figure out if we are coming from an instruction
1623         * access fault and pass that down to __hash_page so we avoid
1624         * double-faulting on execution of fresh text. We have to test
1625         * for regs NULL since init will get here first thing at boot.
1626         *
1627         * We also avoid filling the hash if not coming from a fault.
1628         */
1629
1630        trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
1631        switch (trap) {
1632        case 0x300:
1633                is_exec = false;
1634                break;
1635        case 0x400:
1636                is_exec = true;
1637                break;
1638        default:
1639                return;
1640        }
1641
1642        hash_preload(vma->vm_mm, address, is_exec, trap);
1643}
1644
1645#ifdef CONFIG_PPC_MEM_KEYS
1646/*
1647 * Return the protection key associated with the given address and the
1648 * mm_struct.
1649 */
1650u16 get_mm_addr_key(struct mm_struct *mm, unsigned long address)
1651{
1652        pte_t *ptep;
1653        u16 pkey = 0;
1654        unsigned long flags;
1655
1656        if (!mm || !mm->pgd)
1657                return 0;
1658
1659        local_irq_save(flags);
1660        ptep = find_linux_pte(mm->pgd, address, NULL, NULL);
1661        if (ptep)
1662                pkey = pte_to_pkey_bits(pte_val(READ_ONCE(*ptep)));
1663        local_irq_restore(flags);
1664
1665        return pkey;
1666}
1667#endif /* CONFIG_PPC_MEM_KEYS */
1668
1669#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1670static inline void tm_flush_hash_page(int local)
1671{
1672        /*
1673         * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1674         * page back to a block device w/PIO could pick up transactional data
1675         * (bad!) so we force an abort here. Before the sync the page will be
1676         * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1677         * kernel uses a page from userspace without unmapping it first, it may
1678         * see the speculated version.
1679         */
1680        if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1681            MSR_TM_ACTIVE(current->thread.regs->msr)) {
1682                tm_enable();
1683                tm_abort(TM_CAUSE_TLBI);
1684        }
1685}
1686#else
1687static inline void tm_flush_hash_page(int local)
1688{
1689}
1690#endif
1691
1692/*
1693 * Return the global hash slot, corresponding to the given PTE, which contains
1694 * the HPTE.
1695 */
1696unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1697                int ssize, real_pte_t rpte, unsigned int subpg_index)
1698{
1699        unsigned long hash, gslot, hidx;
1700
1701        hash = hpt_hash(vpn, shift, ssize);
1702        hidx = __rpte_to_hidx(rpte, subpg_index);
1703        if (hidx & _PTEIDX_SECONDARY)
1704                hash = ~hash;
1705        gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1706        gslot += hidx & _PTEIDX_GROUP_IX;
1707        return gslot;
1708}
1709
1710/*
1711 * WARNING: This is called from hash_low_64.S, if you change this prototype,
1712 *          do not forget to update the assembly call site !
1713 */
1714void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1715                     unsigned long flags)
1716{
1717        unsigned long index, shift, gslot;
1718        int local = flags & HPTE_LOCAL_UPDATE;
1719
1720        DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1721        pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1722                gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1723                DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1724                /*
1725                 * We use same base page size and actual psize, because we don't
1726                 * use these functions for hugepage
1727                 */
1728                mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1729                                             ssize, local);
1730        } pte_iterate_hashed_end();
1731
1732        tm_flush_hash_page(local);
1733}
1734
1735#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1736void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1737                         pmd_t *pmdp, unsigned int psize, int ssize,
1738                         unsigned long flags)
1739{
1740        int i, max_hpte_count, valid;
1741        unsigned long s_addr;
1742        unsigned char *hpte_slot_array;
1743        unsigned long hidx, shift, vpn, hash, slot;
1744        int local = flags & HPTE_LOCAL_UPDATE;
1745
1746        s_addr = addr & HPAGE_PMD_MASK;
1747        hpte_slot_array = get_hpte_slot_array(pmdp);
1748        /*
1749         * IF we try to do a HUGE PTE update after a withdraw is done.
1750         * we will find the below NULL. This happens when we do
1751         * split_huge_pmd
1752         */
1753        if (!hpte_slot_array)
1754                return;
1755
1756        if (mmu_hash_ops.hugepage_invalidate) {
1757                mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1758                                                 psize, ssize, local);
1759                goto tm_abort;
1760        }
1761        /*
1762         * No bluk hpte removal support, invalidate each entry
1763         */
1764        shift = mmu_psize_defs[psize].shift;
1765        max_hpte_count = HPAGE_PMD_SIZE >> shift;
1766        for (i = 0; i < max_hpte_count; i++) {
1767                /*
1768                 * 8 bits per each hpte entries
1769                 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1770                 */
1771                valid = hpte_valid(hpte_slot_array, i);
1772                if (!valid)
1773                        continue;
1774                hidx =  hpte_hash_index(hpte_slot_array, i);
1775
1776                /* get the vpn */
1777                addr = s_addr + (i * (1ul << shift));
1778                vpn = hpt_vpn(addr, vsid, ssize);
1779                hash = hpt_hash(vpn, shift, ssize);
1780                if (hidx & _PTEIDX_SECONDARY)
1781                        hash = ~hash;
1782
1783                slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1784                slot += hidx & _PTEIDX_GROUP_IX;
1785                mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1786                                             MMU_PAGE_16M, ssize, local);
1787        }
1788tm_abort:
1789        tm_flush_hash_page(local);
1790}
1791#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1792
1793void flush_hash_range(unsigned long number, int local)
1794{
1795        if (mmu_hash_ops.flush_hash_range)
1796                mmu_hash_ops.flush_hash_range(number, local);
1797        else {
1798                int i;
1799                struct ppc64_tlb_batch *batch =
1800                        this_cpu_ptr(&ppc64_tlb_batch);
1801
1802                for (i = 0; i < number; i++)
1803                        flush_hash_page(batch->vpn[i], batch->pte[i],
1804                                        batch->psize, batch->ssize, local);
1805        }
1806}
1807
1808/*
1809 * low_hash_fault is called when we the low level hash code failed
1810 * to instert a PTE due to an hypervisor error
1811 */
1812void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1813{
1814        enum ctx_state prev_state = exception_enter();
1815
1816        if (user_mode(regs)) {
1817#ifdef CONFIG_PPC_SUBPAGE_PROT
1818                if (rc == -2)
1819                        _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1820                else
1821#endif
1822                        _exception(SIGBUS, regs, BUS_ADRERR, address);
1823        } else
1824                bad_page_fault(regs, address, SIGBUS);
1825
1826        exception_exit(prev_state);
1827}
1828
1829long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1830                           unsigned long pa, unsigned long rflags,
1831                           unsigned long vflags, int psize, int ssize)
1832{
1833        unsigned long hpte_group;
1834        long slot;
1835
1836repeat:
1837        hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1838
1839        /* Insert into the hash table, primary slot */
1840        slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1841                                        psize, psize, ssize);
1842
1843        /* Primary is full, try the secondary */
1844        if (unlikely(slot == -1)) {
1845                hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
1846                slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1847                                                vflags | HPTE_V_SECONDARY,
1848                                                psize, psize, ssize);
1849                if (slot == -1) {
1850                        if (mftb() & 0x1)
1851                                hpte_group = (hash & htab_hash_mask) *
1852                                                HPTES_PER_GROUP;
1853
1854                        mmu_hash_ops.hpte_remove(hpte_group);
1855                        goto repeat;
1856                }
1857        }
1858
1859        return slot;
1860}
1861
1862#ifdef CONFIG_DEBUG_PAGEALLOC
1863static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1864{
1865        unsigned long hash;
1866        unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1867        unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1868        unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1869        long ret;
1870
1871        hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1872
1873        /* Don't create HPTE entries for bad address */
1874        if (!vsid)
1875                return;
1876
1877        ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1878                                    HPTE_V_BOLTED,
1879                                    mmu_linear_psize, mmu_kernel_ssize);
1880
1881        BUG_ON (ret < 0);
1882        spin_lock(&linear_map_hash_lock);
1883        BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1884        linear_map_hash_slots[lmi] = ret | 0x80;
1885        spin_unlock(&linear_map_hash_lock);
1886}
1887
1888static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1889{
1890        unsigned long hash, hidx, slot;
1891        unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1892        unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1893
1894        hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1895        spin_lock(&linear_map_hash_lock);
1896        BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1897        hidx = linear_map_hash_slots[lmi] & 0x7f;
1898        linear_map_hash_slots[lmi] = 0;
1899        spin_unlock(&linear_map_hash_lock);
1900        if (hidx & _PTEIDX_SECONDARY)
1901                hash = ~hash;
1902        slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1903        slot += hidx & _PTEIDX_GROUP_IX;
1904        mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1905                                     mmu_linear_psize,
1906                                     mmu_kernel_ssize, 0);
1907}
1908
1909void __kernel_map_pages(struct page *page, int numpages, int enable)
1910{
1911        unsigned long flags, vaddr, lmi;
1912        int i;
1913
1914        local_irq_save(flags);
1915        for (i = 0; i < numpages; i++, page++) {
1916                vaddr = (unsigned long)page_address(page);
1917                lmi = __pa(vaddr) >> PAGE_SHIFT;
1918                if (lmi >= linear_map_hash_count)
1919                        continue;
1920                if (enable)
1921                        kernel_map_linear_page(vaddr, lmi);
1922                else
1923                        kernel_unmap_linear_page(vaddr, lmi);
1924        }
1925        local_irq_restore(flags);
1926}
1927#endif /* CONFIG_DEBUG_PAGEALLOC */
1928
1929void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1930                                phys_addr_t first_memblock_size)
1931{
1932        /*
1933         * We don't currently support the first MEMBLOCK not mapping 0
1934         * physical on those processors
1935         */
1936        BUG_ON(first_memblock_base != 0);
1937
1938        /*
1939         * On virtualized systems the first entry is our RMA region aka VRMA,
1940         * non-virtualized 64-bit hash MMU systems don't have a limitation
1941         * on real mode access.
1942         *
1943         * For guests on platforms before POWER9, we clamp the it limit to 1G
1944         * to avoid some funky things such as RTAS bugs etc...
1945         *
1946         * On POWER9 we limit to 1TB in case the host erroneously told us that
1947         * the RMA was >1TB. Effective address bits 0:23 are treated as zero
1948         * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
1949         * for virtual real mode addressing and so it doesn't make sense to
1950         * have an area larger than 1TB as it can't be addressed.
1951         */
1952        if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
1953                ppc64_rma_size = first_memblock_size;
1954                if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
1955                        ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
1956                else
1957                        ppc64_rma_size = min_t(u64, ppc64_rma_size,
1958                                               1UL << SID_SHIFT_1T);
1959
1960                /* Finally limit subsequent allocations */
1961                memblock_set_current_limit(ppc64_rma_size);
1962        } else {
1963                ppc64_rma_size = ULONG_MAX;
1964        }
1965}
1966
1967#ifdef CONFIG_DEBUG_FS
1968
1969static int hpt_order_get(void *data, u64 *val)
1970{
1971        *val = ppc64_pft_size;
1972        return 0;
1973}
1974
1975static int hpt_order_set(void *data, u64 val)
1976{
1977        int ret;
1978
1979        if (!mmu_hash_ops.resize_hpt)
1980                return -ENODEV;
1981
1982        cpus_read_lock();
1983        ret = mmu_hash_ops.resize_hpt(val);
1984        cpus_read_unlock();
1985
1986        return ret;
1987}
1988
1989DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
1990
1991static int __init hash64_debugfs(void)
1992{
1993        if (!debugfs_create_file_unsafe("hpt_order", 0600, powerpc_debugfs_root,
1994                                        NULL, &fops_hpt_order)) {
1995                pr_err("lpar: unable to create hpt_order debugsfs file\n");
1996        }
1997
1998        return 0;
1999}
2000machine_device_initcall(pseries, hash64_debugfs);
2001#endif /* CONFIG_DEBUG_FS */
2002
2003void __init print_system_hash_info(void)
2004{
2005        pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
2006
2007        if (htab_hash_mask)
2008                pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
2009}
2010