linux/arch/x86/kernel/cpu/common.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* cpu_feature_enabled() cannot be used this early */
   3#define USE_EARLY_PGTABLE_L5
   4
   5#include <linux/memblock.h>
   6#include <linux/linkage.h>
   7#include <linux/bitops.h>
   8#include <linux/kernel.h>
   9#include <linux/export.h>
  10#include <linux/percpu.h>
  11#include <linux/string.h>
  12#include <linux/ctype.h>
  13#include <linux/delay.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/clock.h>
  16#include <linux/sched/task.h>
  17#include <linux/init.h>
  18#include <linux/kprobes.h>
  19#include <linux/kgdb.h>
  20#include <linux/smp.h>
  21#include <linux/io.h>
  22#include <linux/syscore_ops.h>
  23
  24#include <asm/stackprotector.h>
  25#include <asm/perf_event.h>
  26#include <asm/mmu_context.h>
  27#include <asm/archrandom.h>
  28#include <asm/hypervisor.h>
  29#include <asm/processor.h>
  30#include <asm/tlbflush.h>
  31#include <asm/debugreg.h>
  32#include <asm/sections.h>
  33#include <asm/vsyscall.h>
  34#include <linux/topology.h>
  35#include <linux/cpumask.h>
  36#include <asm/pgtable.h>
  37#include <linux/atomic.h>
  38#include <asm/proto.h>
  39#include <asm/setup.h>
  40#include <asm/apic.h>
  41#include <asm/desc.h>
  42#include <asm/fpu/internal.h>
  43#include <asm/mtrr.h>
  44#include <asm/hwcap2.h>
  45#include <linux/numa.h>
  46#include <asm/asm.h>
  47#include <asm/bugs.h>
  48#include <asm/cpu.h>
  49#include <asm/mce.h>
  50#include <asm/msr.h>
  51#include <asm/pat.h>
  52#include <asm/microcode.h>
  53#include <asm/microcode_intel.h>
  54#include <asm/intel-family.h>
  55#include <asm/cpu_device_id.h>
  56
  57#ifdef CONFIG_X86_LOCAL_APIC
  58#include <asm/uv/uv.h>
  59#endif
  60
  61#include "cpu.h"
  62
  63u32 elf_hwcap2 __read_mostly;
  64
  65/* all of these masks are initialized in setup_cpu_local_masks() */
  66cpumask_var_t cpu_initialized_mask;
  67cpumask_var_t cpu_callout_mask;
  68cpumask_var_t cpu_callin_mask;
  69
  70/* representing cpus for which sibling maps can be computed */
  71cpumask_var_t cpu_sibling_setup_mask;
  72
  73/* Number of siblings per CPU package */
  74int smp_num_siblings = 1;
  75EXPORT_SYMBOL(smp_num_siblings);
  76
  77/* Last level cache ID of each logical CPU */
  78DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
  79
  80/* correctly size the local cpu masks */
  81void __init setup_cpu_local_masks(void)
  82{
  83        alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  84        alloc_bootmem_cpumask_var(&cpu_callin_mask);
  85        alloc_bootmem_cpumask_var(&cpu_callout_mask);
  86        alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  87}
  88
  89static void default_init(struct cpuinfo_x86 *c)
  90{
  91#ifdef CONFIG_X86_64
  92        cpu_detect_cache_sizes(c);
  93#else
  94        /* Not much we can do here... */
  95        /* Check if at least it has cpuid */
  96        if (c->cpuid_level == -1) {
  97                /* No cpuid. It must be an ancient CPU */
  98                if (c->x86 == 4)
  99                        strcpy(c->x86_model_id, "486");
 100                else if (c->x86 == 3)
 101                        strcpy(c->x86_model_id, "386");
 102        }
 103#endif
 104}
 105
 106static const struct cpu_dev default_cpu = {
 107        .c_init         = default_init,
 108        .c_vendor       = "Unknown",
 109        .c_x86_vendor   = X86_VENDOR_UNKNOWN,
 110};
 111
 112static const struct cpu_dev *this_cpu = &default_cpu;
 113
 114DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
 115#ifdef CONFIG_X86_64
 116        /*
 117         * We need valid kernel segments for data and code in long mode too
 118         * IRET will check the segment types  kkeil 2000/10/28
 119         * Also sysret mandates a special GDT layout
 120         *
 121         * TLS descriptors are currently at a different place compared to i386.
 122         * Hopefully nobody expects them at a fixed place (Wine?)
 123         */
 124        [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
 125        [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
 126        [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
 127        [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
 128        [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
 129        [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
 130#else
 131        [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
 132        [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 133        [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
 134        [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
 135        /*
 136         * Segments used for calling PnP BIOS have byte granularity.
 137         * They code segments and data segments have fixed 64k limits,
 138         * the transfer segment sizes are set at run time.
 139         */
 140        /* 32-bit code */
 141        [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 142        /* 16-bit code */
 143        [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 144        /* 16-bit data */
 145        [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
 146        /* 16-bit data */
 147        [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
 148        /* 16-bit data */
 149        [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
 150        /*
 151         * The APM segments have byte granularity and their bases
 152         * are set at run time.  All have 64k limits.
 153         */
 154        /* 32-bit code */
 155        [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 156        /* 16-bit code */
 157        [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 158        /* data */
 159        [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
 160
 161        [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 162        [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 163        GDT_STACK_CANARY_INIT
 164#endif
 165} };
 166EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
 167
 168static int __init x86_mpx_setup(char *s)
 169{
 170        /* require an exact match without trailing characters */
 171        if (strlen(s))
 172                return 0;
 173
 174        /* do not emit a message if the feature is not present */
 175        if (!boot_cpu_has(X86_FEATURE_MPX))
 176                return 1;
 177
 178        setup_clear_cpu_cap(X86_FEATURE_MPX);
 179        pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
 180        return 1;
 181}
 182__setup("nompx", x86_mpx_setup);
 183
 184#ifdef CONFIG_X86_64
 185static int __init x86_nopcid_setup(char *s)
 186{
 187        /* nopcid doesn't accept parameters */
 188        if (s)
 189                return -EINVAL;
 190
 191        /* do not emit a message if the feature is not present */
 192        if (!boot_cpu_has(X86_FEATURE_PCID))
 193                return 0;
 194
 195        setup_clear_cpu_cap(X86_FEATURE_PCID);
 196        pr_info("nopcid: PCID feature disabled\n");
 197        return 0;
 198}
 199early_param("nopcid", x86_nopcid_setup);
 200#endif
 201
 202static int __init x86_noinvpcid_setup(char *s)
 203{
 204        /* noinvpcid doesn't accept parameters */
 205        if (s)
 206                return -EINVAL;
 207
 208        /* do not emit a message if the feature is not present */
 209        if (!boot_cpu_has(X86_FEATURE_INVPCID))
 210                return 0;
 211
 212        setup_clear_cpu_cap(X86_FEATURE_INVPCID);
 213        pr_info("noinvpcid: INVPCID feature disabled\n");
 214        return 0;
 215}
 216early_param("noinvpcid", x86_noinvpcid_setup);
 217
 218#ifdef CONFIG_X86_32
 219static int cachesize_override = -1;
 220static int disable_x86_serial_nr = 1;
 221
 222static int __init cachesize_setup(char *str)
 223{
 224        get_option(&str, &cachesize_override);
 225        return 1;
 226}
 227__setup("cachesize=", cachesize_setup);
 228
 229static int __init x86_sep_setup(char *s)
 230{
 231        setup_clear_cpu_cap(X86_FEATURE_SEP);
 232        return 1;
 233}
 234__setup("nosep", x86_sep_setup);
 235
 236/* Standard macro to see if a specific flag is changeable */
 237static inline int flag_is_changeable_p(u32 flag)
 238{
 239        u32 f1, f2;
 240
 241        /*
 242         * Cyrix and IDT cpus allow disabling of CPUID
 243         * so the code below may return different results
 244         * when it is executed before and after enabling
 245         * the CPUID. Add "volatile" to not allow gcc to
 246         * optimize the subsequent calls to this function.
 247         */
 248        asm volatile ("pushfl           \n\t"
 249                      "pushfl           \n\t"
 250                      "popl %0          \n\t"
 251                      "movl %0, %1      \n\t"
 252                      "xorl %2, %0      \n\t"
 253                      "pushl %0         \n\t"
 254                      "popfl            \n\t"
 255                      "pushfl           \n\t"
 256                      "popl %0          \n\t"
 257                      "popfl            \n\t"
 258
 259                      : "=&r" (f1), "=&r" (f2)
 260                      : "ir" (flag));
 261
 262        return ((f1^f2) & flag) != 0;
 263}
 264
 265/* Probe for the CPUID instruction */
 266int have_cpuid_p(void)
 267{
 268        return flag_is_changeable_p(X86_EFLAGS_ID);
 269}
 270
 271static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 272{
 273        unsigned long lo, hi;
 274
 275        if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
 276                return;
 277
 278        /* Disable processor serial number: */
 279
 280        rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 281        lo |= 0x200000;
 282        wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 283
 284        pr_notice("CPU serial number disabled.\n");
 285        clear_cpu_cap(c, X86_FEATURE_PN);
 286
 287        /* Disabling the serial number may affect the cpuid level */
 288        c->cpuid_level = cpuid_eax(0);
 289}
 290
 291static int __init x86_serial_nr_setup(char *s)
 292{
 293        disable_x86_serial_nr = 0;
 294        return 1;
 295}
 296__setup("serialnumber", x86_serial_nr_setup);
 297#else
 298static inline int flag_is_changeable_p(u32 flag)
 299{
 300        return 1;
 301}
 302static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 303{
 304}
 305#endif
 306
 307static __init int setup_disable_smep(char *arg)
 308{
 309        setup_clear_cpu_cap(X86_FEATURE_SMEP);
 310        /* Check for things that depend on SMEP being enabled: */
 311        check_mpx_erratum(&boot_cpu_data);
 312        return 1;
 313}
 314__setup("nosmep", setup_disable_smep);
 315
 316static __always_inline void setup_smep(struct cpuinfo_x86 *c)
 317{
 318        if (cpu_has(c, X86_FEATURE_SMEP))
 319                cr4_set_bits(X86_CR4_SMEP);
 320}
 321
 322static __init int setup_disable_smap(char *arg)
 323{
 324        setup_clear_cpu_cap(X86_FEATURE_SMAP);
 325        return 1;
 326}
 327__setup("nosmap", setup_disable_smap);
 328
 329static __always_inline void setup_smap(struct cpuinfo_x86 *c)
 330{
 331        unsigned long eflags = native_save_fl();
 332
 333        /* This should have been cleared long ago */
 334        BUG_ON(eflags & X86_EFLAGS_AC);
 335
 336        if (cpu_has(c, X86_FEATURE_SMAP)) {
 337#ifdef CONFIG_X86_SMAP
 338                cr4_set_bits(X86_CR4_SMAP);
 339#else
 340                cr4_clear_bits(X86_CR4_SMAP);
 341#endif
 342        }
 343}
 344
 345static __always_inline void setup_umip(struct cpuinfo_x86 *c)
 346{
 347        /* Check the boot processor, plus build option for UMIP. */
 348        if (!cpu_feature_enabled(X86_FEATURE_UMIP))
 349                goto out;
 350
 351        /* Check the current processor's cpuid bits. */
 352        if (!cpu_has(c, X86_FEATURE_UMIP))
 353                goto out;
 354
 355        cr4_set_bits(X86_CR4_UMIP);
 356
 357        pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
 358
 359        return;
 360
 361out:
 362        /*
 363         * Make sure UMIP is disabled in case it was enabled in a
 364         * previous boot (e.g., via kexec).
 365         */
 366        cr4_clear_bits(X86_CR4_UMIP);
 367}
 368
 369static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
 370static unsigned long cr4_pinned_bits __ro_after_init;
 371
 372void native_write_cr0(unsigned long val)
 373{
 374        unsigned long bits_missing = 0;
 375
 376set_register:
 377        asm volatile("mov %0,%%cr0": "+r" (val), "+m" (__force_order));
 378
 379        if (static_branch_likely(&cr_pinning)) {
 380                if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
 381                        bits_missing = X86_CR0_WP;
 382                        val |= bits_missing;
 383                        goto set_register;
 384                }
 385                /* Warn after we've set the missing bits. */
 386                WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
 387        }
 388}
 389EXPORT_SYMBOL(native_write_cr0);
 390
 391void native_write_cr4(unsigned long val)
 392{
 393        unsigned long bits_missing = 0;
 394
 395set_register:
 396        asm volatile("mov %0,%%cr4": "+r" (val), "+m" (cr4_pinned_bits));
 397
 398        if (static_branch_likely(&cr_pinning)) {
 399                if (unlikely((val & cr4_pinned_bits) != cr4_pinned_bits)) {
 400                        bits_missing = ~val & cr4_pinned_bits;
 401                        val |= bits_missing;
 402                        goto set_register;
 403                }
 404                /* Warn after we've set the missing bits. */
 405                WARN_ONCE(bits_missing, "CR4 bits went missing: %lx!?\n",
 406                          bits_missing);
 407        }
 408}
 409EXPORT_SYMBOL(native_write_cr4);
 410
 411void cr4_init(void)
 412{
 413        unsigned long cr4 = __read_cr4();
 414
 415        if (boot_cpu_has(X86_FEATURE_PCID))
 416                cr4 |= X86_CR4_PCIDE;
 417        if (static_branch_likely(&cr_pinning))
 418                cr4 |= cr4_pinned_bits;
 419
 420        __write_cr4(cr4);
 421
 422        /* Initialize cr4 shadow for this CPU. */
 423        this_cpu_write(cpu_tlbstate.cr4, cr4);
 424}
 425
 426/*
 427 * Once CPU feature detection is finished (and boot params have been
 428 * parsed), record any of the sensitive CR bits that are set, and
 429 * enable CR pinning.
 430 */
 431static void __init setup_cr_pinning(void)
 432{
 433        unsigned long mask;
 434
 435        mask = (X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP);
 436        cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & mask;
 437        static_key_enable(&cr_pinning.key);
 438}
 439
 440/*
 441 * Protection Keys are not available in 32-bit mode.
 442 */
 443static bool pku_disabled;
 444
 445static __always_inline void setup_pku(struct cpuinfo_x86 *c)
 446{
 447        struct pkru_state *pk;
 448
 449        /* check the boot processor, plus compile options for PKU: */
 450        if (!cpu_feature_enabled(X86_FEATURE_PKU))
 451                return;
 452        /* checks the actual processor's cpuid bits: */
 453        if (!cpu_has(c, X86_FEATURE_PKU))
 454                return;
 455        if (pku_disabled)
 456                return;
 457
 458        cr4_set_bits(X86_CR4_PKE);
 459        pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
 460        if (pk)
 461                pk->pkru = init_pkru_value;
 462        /*
 463         * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
 464         * cpuid bit to be set.  We need to ensure that we
 465         * update that bit in this CPU's "cpu_info".
 466         */
 467        get_cpu_cap(c);
 468}
 469
 470#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
 471static __init int setup_disable_pku(char *arg)
 472{
 473        /*
 474         * Do not clear the X86_FEATURE_PKU bit.  All of the
 475         * runtime checks are against OSPKE so clearing the
 476         * bit does nothing.
 477         *
 478         * This way, we will see "pku" in cpuinfo, but not
 479         * "ospke", which is exactly what we want.  It shows
 480         * that the CPU has PKU, but the OS has not enabled it.
 481         * This happens to be exactly how a system would look
 482         * if we disabled the config option.
 483         */
 484        pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
 485        pku_disabled = true;
 486        return 1;
 487}
 488__setup("nopku", setup_disable_pku);
 489#endif /* CONFIG_X86_64 */
 490
 491/*
 492 * Some CPU features depend on higher CPUID levels, which may not always
 493 * be available due to CPUID level capping or broken virtualization
 494 * software.  Add those features to this table to auto-disable them.
 495 */
 496struct cpuid_dependent_feature {
 497        u32 feature;
 498        u32 level;
 499};
 500
 501static const struct cpuid_dependent_feature
 502cpuid_dependent_features[] = {
 503        { X86_FEATURE_MWAIT,            0x00000005 },
 504        { X86_FEATURE_DCA,              0x00000009 },
 505        { X86_FEATURE_XSAVE,            0x0000000d },
 506        { 0, 0 }
 507};
 508
 509static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
 510{
 511        const struct cpuid_dependent_feature *df;
 512
 513        for (df = cpuid_dependent_features; df->feature; df++) {
 514
 515                if (!cpu_has(c, df->feature))
 516                        continue;
 517                /*
 518                 * Note: cpuid_level is set to -1 if unavailable, but
 519                 * extended_extended_level is set to 0 if unavailable
 520                 * and the legitimate extended levels are all negative
 521                 * when signed; hence the weird messing around with
 522                 * signs here...
 523                 */
 524                if (!((s32)df->level < 0 ?
 525                     (u32)df->level > (u32)c->extended_cpuid_level :
 526                     (s32)df->level > (s32)c->cpuid_level))
 527                        continue;
 528
 529                clear_cpu_cap(c, df->feature);
 530                if (!warn)
 531                        continue;
 532
 533                pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
 534                        x86_cap_flag(df->feature), df->level);
 535        }
 536}
 537
 538/*
 539 * Naming convention should be: <Name> [(<Codename>)]
 540 * This table only is used unless init_<vendor>() below doesn't set it;
 541 * in particular, if CPUID levels 0x80000002..4 are supported, this
 542 * isn't used
 543 */
 544
 545/* Look up CPU names by table lookup. */
 546static const char *table_lookup_model(struct cpuinfo_x86 *c)
 547{
 548#ifdef CONFIG_X86_32
 549        const struct legacy_cpu_model_info *info;
 550
 551        if (c->x86_model >= 16)
 552                return NULL;    /* Range check */
 553
 554        if (!this_cpu)
 555                return NULL;
 556
 557        info = this_cpu->legacy_models;
 558
 559        while (info->family) {
 560                if (info->family == c->x86)
 561                        return info->model_names[c->x86_model];
 562                info++;
 563        }
 564#endif
 565        return NULL;            /* Not found */
 566}
 567
 568__u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
 569__u32 cpu_caps_set[NCAPINTS + NBUGINTS];
 570
 571void load_percpu_segment(int cpu)
 572{
 573#ifdef CONFIG_X86_32
 574        loadsegment(fs, __KERNEL_PERCPU);
 575#else
 576        __loadsegment_simple(gs, 0);
 577        wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
 578#endif
 579        load_stack_canary_segment();
 580}
 581
 582#ifdef CONFIG_X86_32
 583/* The 32-bit entry code needs to find cpu_entry_area. */
 584DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
 585#endif
 586
 587/* Load the original GDT from the per-cpu structure */
 588void load_direct_gdt(int cpu)
 589{
 590        struct desc_ptr gdt_descr;
 591
 592        gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
 593        gdt_descr.size = GDT_SIZE - 1;
 594        load_gdt(&gdt_descr);
 595}
 596EXPORT_SYMBOL_GPL(load_direct_gdt);
 597
 598/* Load a fixmap remapping of the per-cpu GDT */
 599void load_fixmap_gdt(int cpu)
 600{
 601        struct desc_ptr gdt_descr;
 602
 603        gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
 604        gdt_descr.size = GDT_SIZE - 1;
 605        load_gdt(&gdt_descr);
 606}
 607EXPORT_SYMBOL_GPL(load_fixmap_gdt);
 608
 609/*
 610 * Current gdt points %fs at the "master" per-cpu area: after this,
 611 * it's on the real one.
 612 */
 613void switch_to_new_gdt(int cpu)
 614{
 615        /* Load the original GDT */
 616        load_direct_gdt(cpu);
 617        /* Reload the per-cpu base */
 618        load_percpu_segment(cpu);
 619}
 620
 621static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
 622
 623static void get_model_name(struct cpuinfo_x86 *c)
 624{
 625        unsigned int *v;
 626        char *p, *q, *s;
 627
 628        if (c->extended_cpuid_level < 0x80000004)
 629                return;
 630
 631        v = (unsigned int *)c->x86_model_id;
 632        cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
 633        cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
 634        cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
 635        c->x86_model_id[48] = 0;
 636
 637        /* Trim whitespace */
 638        p = q = s = &c->x86_model_id[0];
 639
 640        while (*p == ' ')
 641                p++;
 642
 643        while (*p) {
 644                /* Note the last non-whitespace index */
 645                if (!isspace(*p))
 646                        s = q;
 647
 648                *q++ = *p++;
 649        }
 650
 651        *(s + 1) = '\0';
 652}
 653
 654void detect_num_cpu_cores(struct cpuinfo_x86 *c)
 655{
 656        unsigned int eax, ebx, ecx, edx;
 657
 658        c->x86_max_cores = 1;
 659        if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
 660                return;
 661
 662        cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
 663        if (eax & 0x1f)
 664                c->x86_max_cores = (eax >> 26) + 1;
 665}
 666
 667void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
 668{
 669        unsigned int n, dummy, ebx, ecx, edx, l2size;
 670
 671        n = c->extended_cpuid_level;
 672
 673        if (n >= 0x80000005) {
 674                cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
 675                c->x86_cache_size = (ecx>>24) + (edx>>24);
 676#ifdef CONFIG_X86_64
 677                /* On K8 L1 TLB is inclusive, so don't count it */
 678                c->x86_tlbsize = 0;
 679#endif
 680        }
 681
 682        if (n < 0x80000006)     /* Some chips just has a large L1. */
 683                return;
 684
 685        cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
 686        l2size = ecx >> 16;
 687
 688#ifdef CONFIG_X86_64
 689        c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
 690#else
 691        /* do processor-specific cache resizing */
 692        if (this_cpu->legacy_cache_size)
 693                l2size = this_cpu->legacy_cache_size(c, l2size);
 694
 695        /* Allow user to override all this if necessary. */
 696        if (cachesize_override != -1)
 697                l2size = cachesize_override;
 698
 699        if (l2size == 0)
 700                return;         /* Again, no L2 cache is possible */
 701#endif
 702
 703        c->x86_cache_size = l2size;
 704}
 705
 706u16 __read_mostly tlb_lli_4k[NR_INFO];
 707u16 __read_mostly tlb_lli_2m[NR_INFO];
 708u16 __read_mostly tlb_lli_4m[NR_INFO];
 709u16 __read_mostly tlb_lld_4k[NR_INFO];
 710u16 __read_mostly tlb_lld_2m[NR_INFO];
 711u16 __read_mostly tlb_lld_4m[NR_INFO];
 712u16 __read_mostly tlb_lld_1g[NR_INFO];
 713
 714static void cpu_detect_tlb(struct cpuinfo_x86 *c)
 715{
 716        if (this_cpu->c_detect_tlb)
 717                this_cpu->c_detect_tlb(c);
 718
 719        pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
 720                tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
 721                tlb_lli_4m[ENTRIES]);
 722
 723        pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
 724                tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
 725                tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
 726}
 727
 728int detect_ht_early(struct cpuinfo_x86 *c)
 729{
 730#ifdef CONFIG_SMP
 731        u32 eax, ebx, ecx, edx;
 732
 733        if (!cpu_has(c, X86_FEATURE_HT))
 734                return -1;
 735
 736        if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
 737                return -1;
 738
 739        if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
 740                return -1;
 741
 742        cpuid(1, &eax, &ebx, &ecx, &edx);
 743
 744        smp_num_siblings = (ebx & 0xff0000) >> 16;
 745        if (smp_num_siblings == 1)
 746                pr_info_once("CPU0: Hyper-Threading is disabled\n");
 747#endif
 748        return 0;
 749}
 750
 751void detect_ht(struct cpuinfo_x86 *c)
 752{
 753#ifdef CONFIG_SMP
 754        int index_msb, core_bits;
 755
 756        if (detect_ht_early(c) < 0)
 757                return;
 758
 759        index_msb = get_count_order(smp_num_siblings);
 760        c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
 761
 762        smp_num_siblings = smp_num_siblings / c->x86_max_cores;
 763
 764        index_msb = get_count_order(smp_num_siblings);
 765
 766        core_bits = get_count_order(c->x86_max_cores);
 767
 768        c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
 769                                       ((1 << core_bits) - 1);
 770#endif
 771}
 772
 773static void get_cpu_vendor(struct cpuinfo_x86 *c)
 774{
 775        char *v = c->x86_vendor_id;
 776        int i;
 777
 778        for (i = 0; i < X86_VENDOR_NUM; i++) {
 779                if (!cpu_devs[i])
 780                        break;
 781
 782                if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
 783                    (cpu_devs[i]->c_ident[1] &&
 784                     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
 785
 786                        this_cpu = cpu_devs[i];
 787                        c->x86_vendor = this_cpu->c_x86_vendor;
 788                        return;
 789                }
 790        }
 791
 792        pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
 793                    "CPU: Your system may be unstable.\n", v);
 794
 795        c->x86_vendor = X86_VENDOR_UNKNOWN;
 796        this_cpu = &default_cpu;
 797}
 798
 799void cpu_detect(struct cpuinfo_x86 *c)
 800{
 801        /* Get vendor name */
 802        cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
 803              (unsigned int *)&c->x86_vendor_id[0],
 804              (unsigned int *)&c->x86_vendor_id[8],
 805              (unsigned int *)&c->x86_vendor_id[4]);
 806
 807        c->x86 = 4;
 808        /* Intel-defined flags: level 0x00000001 */
 809        if (c->cpuid_level >= 0x00000001) {
 810                u32 junk, tfms, cap0, misc;
 811
 812                cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
 813                c->x86          = x86_family(tfms);
 814                c->x86_model    = x86_model(tfms);
 815                c->x86_stepping = x86_stepping(tfms);
 816
 817                if (cap0 & (1<<19)) {
 818                        c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
 819                        c->x86_cache_alignment = c->x86_clflush_size;
 820                }
 821        }
 822}
 823
 824static void apply_forced_caps(struct cpuinfo_x86 *c)
 825{
 826        int i;
 827
 828        for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
 829                c->x86_capability[i] &= ~cpu_caps_cleared[i];
 830                c->x86_capability[i] |= cpu_caps_set[i];
 831        }
 832}
 833
 834static void init_speculation_control(struct cpuinfo_x86 *c)
 835{
 836        /*
 837         * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
 838         * and they also have a different bit for STIBP support. Also,
 839         * a hypervisor might have set the individual AMD bits even on
 840         * Intel CPUs, for finer-grained selection of what's available.
 841         */
 842        if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
 843                set_cpu_cap(c, X86_FEATURE_IBRS);
 844                set_cpu_cap(c, X86_FEATURE_IBPB);
 845                set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 846        }
 847
 848        if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
 849                set_cpu_cap(c, X86_FEATURE_STIBP);
 850
 851        if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
 852            cpu_has(c, X86_FEATURE_VIRT_SSBD))
 853                set_cpu_cap(c, X86_FEATURE_SSBD);
 854
 855        if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
 856                set_cpu_cap(c, X86_FEATURE_IBRS);
 857                set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 858        }
 859
 860        if (cpu_has(c, X86_FEATURE_AMD_IBPB))
 861                set_cpu_cap(c, X86_FEATURE_IBPB);
 862
 863        if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
 864                set_cpu_cap(c, X86_FEATURE_STIBP);
 865                set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 866        }
 867
 868        if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
 869                set_cpu_cap(c, X86_FEATURE_SSBD);
 870                set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
 871                clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
 872        }
 873}
 874
 875static void init_cqm(struct cpuinfo_x86 *c)
 876{
 877        if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
 878                c->x86_cache_max_rmid  = -1;
 879                c->x86_cache_occ_scale = -1;
 880                return;
 881        }
 882
 883        /* will be overridden if occupancy monitoring exists */
 884        c->x86_cache_max_rmid = cpuid_ebx(0xf);
 885
 886        if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
 887            cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
 888            cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
 889                u32 eax, ebx, ecx, edx;
 890
 891                /* QoS sub-leaf, EAX=0Fh, ECX=1 */
 892                cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
 893
 894                c->x86_cache_max_rmid  = ecx;
 895                c->x86_cache_occ_scale = ebx;
 896        }
 897}
 898
 899void get_cpu_cap(struct cpuinfo_x86 *c)
 900{
 901        u32 eax, ebx, ecx, edx;
 902
 903        /* Intel-defined flags: level 0x00000001 */
 904        if (c->cpuid_level >= 0x00000001) {
 905                cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
 906
 907                c->x86_capability[CPUID_1_ECX] = ecx;
 908                c->x86_capability[CPUID_1_EDX] = edx;
 909        }
 910
 911        /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
 912        if (c->cpuid_level >= 0x00000006)
 913                c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
 914
 915        /* Additional Intel-defined flags: level 0x00000007 */
 916        if (c->cpuid_level >= 0x00000007) {
 917                cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
 918                c->x86_capability[CPUID_7_0_EBX] = ebx;
 919                c->x86_capability[CPUID_7_ECX] = ecx;
 920                c->x86_capability[CPUID_7_EDX] = edx;
 921
 922                /* Check valid sub-leaf index before accessing it */
 923                if (eax >= 1) {
 924                        cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
 925                        c->x86_capability[CPUID_7_1_EAX] = eax;
 926                }
 927        }
 928
 929        /* Extended state features: level 0x0000000d */
 930        if (c->cpuid_level >= 0x0000000d) {
 931                cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
 932
 933                c->x86_capability[CPUID_D_1_EAX] = eax;
 934        }
 935
 936        /* AMD-defined flags: level 0x80000001 */
 937        eax = cpuid_eax(0x80000000);
 938        c->extended_cpuid_level = eax;
 939
 940        if ((eax & 0xffff0000) == 0x80000000) {
 941                if (eax >= 0x80000001) {
 942                        cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
 943
 944                        c->x86_capability[CPUID_8000_0001_ECX] = ecx;
 945                        c->x86_capability[CPUID_8000_0001_EDX] = edx;
 946                }
 947        }
 948
 949        if (c->extended_cpuid_level >= 0x80000007) {
 950                cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
 951
 952                c->x86_capability[CPUID_8000_0007_EBX] = ebx;
 953                c->x86_power = edx;
 954        }
 955
 956        if (c->extended_cpuid_level >= 0x80000008) {
 957                cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
 958                c->x86_capability[CPUID_8000_0008_EBX] = ebx;
 959        }
 960
 961        if (c->extended_cpuid_level >= 0x8000000a)
 962                c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
 963
 964        init_scattered_cpuid_features(c);
 965        init_speculation_control(c);
 966        init_cqm(c);
 967
 968        /*
 969         * Clear/Set all flags overridden by options, after probe.
 970         * This needs to happen each time we re-probe, which may happen
 971         * several times during CPU initialization.
 972         */
 973        apply_forced_caps(c);
 974}
 975
 976void get_cpu_address_sizes(struct cpuinfo_x86 *c)
 977{
 978        u32 eax, ebx, ecx, edx;
 979
 980        if (c->extended_cpuid_level >= 0x80000008) {
 981                cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
 982
 983                c->x86_virt_bits = (eax >> 8) & 0xff;
 984                c->x86_phys_bits = eax & 0xff;
 985        }
 986#ifdef CONFIG_X86_32
 987        else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
 988                c->x86_phys_bits = 36;
 989#endif
 990        c->x86_cache_bits = c->x86_phys_bits;
 991}
 992
 993static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
 994{
 995#ifdef CONFIG_X86_32
 996        int i;
 997
 998        /*
 999         * First of all, decide if this is a 486 or higher
1000         * It's a 486 if we can modify the AC flag
1001         */
1002        if (flag_is_changeable_p(X86_EFLAGS_AC))
1003                c->x86 = 4;
1004        else
1005                c->x86 = 3;
1006
1007        for (i = 0; i < X86_VENDOR_NUM; i++)
1008                if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1009                        c->x86_vendor_id[0] = 0;
1010                        cpu_devs[i]->c_identify(c);
1011                        if (c->x86_vendor_id[0]) {
1012                                get_cpu_vendor(c);
1013                                break;
1014                        }
1015                }
1016#endif
1017}
1018
1019#define NO_SPECULATION          BIT(0)
1020#define NO_MELTDOWN             BIT(1)
1021#define NO_SSB                  BIT(2)
1022#define NO_L1TF                 BIT(3)
1023#define NO_MDS                  BIT(4)
1024#define MSBDS_ONLY              BIT(5)
1025#define NO_SWAPGS               BIT(6)
1026#define NO_ITLB_MULTIHIT        BIT(7)
1027
1028#define VULNWL(_vendor, _family, _model, _whitelist)    \
1029        { X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
1030
1031#define VULNWL_INTEL(model, whitelist)          \
1032        VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1033
1034#define VULNWL_AMD(family, whitelist)           \
1035        VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1036
1037#define VULNWL_HYGON(family, whitelist)         \
1038        VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1039
1040static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1041        VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1042        VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1043        VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1044        VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1045
1046        /* Intel Family 6 */
1047        VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1048        VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1049        VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1050        VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1051        VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1052
1053        VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1054        VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1055        VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1056        VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1057        VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1058        VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1059
1060        VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1061
1062        VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1063        VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064
1065        VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066        VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1067        VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1068
1069        /*
1070         * Technically, swapgs isn't serializing on AMD (despite it previously
1071         * being documented as such in the APM).  But according to AMD, %gs is
1072         * updated non-speculatively, and the issuing of %gs-relative memory
1073         * operands will be blocked until the %gs update completes, which is
1074         * good enough for our purposes.
1075         */
1076
1077        VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT),
1078
1079        /* AMD Family 0xf - 0x12 */
1080        VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1081        VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1082        VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1083        VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1084
1085        /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1086        VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1087        VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1088        {}
1089};
1090
1091static bool __init cpu_matches(unsigned long which)
1092{
1093        const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
1094
1095        return m && !!(m->driver_data & which);
1096}
1097
1098u64 x86_read_arch_cap_msr(void)
1099{
1100        u64 ia32_cap = 0;
1101
1102        if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1103                rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1104
1105        return ia32_cap;
1106}
1107
1108static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1109{
1110        u64 ia32_cap = x86_read_arch_cap_msr();
1111
1112        /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1113        if (!cpu_matches(NO_ITLB_MULTIHIT) && !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1114                setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1115
1116        if (cpu_matches(NO_SPECULATION))
1117                return;
1118
1119        setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1120        setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1121
1122        if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
1123           !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1124                setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1125
1126        if (ia32_cap & ARCH_CAP_IBRS_ALL)
1127                setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1128
1129        if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) {
1130                setup_force_cpu_bug(X86_BUG_MDS);
1131                if (cpu_matches(MSBDS_ONLY))
1132                        setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1133        }
1134
1135        if (!cpu_matches(NO_SWAPGS))
1136                setup_force_cpu_bug(X86_BUG_SWAPGS);
1137
1138        /*
1139         * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1140         *      - TSX is supported or
1141         *      - TSX_CTRL is present
1142         *
1143         * TSX_CTRL check is needed for cases when TSX could be disabled before
1144         * the kernel boot e.g. kexec.
1145         * TSX_CTRL check alone is not sufficient for cases when the microcode
1146         * update is not present or running as guest that don't get TSX_CTRL.
1147         */
1148        if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1149            (cpu_has(c, X86_FEATURE_RTM) ||
1150             (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1151                setup_force_cpu_bug(X86_BUG_TAA);
1152
1153        if (cpu_matches(NO_MELTDOWN))
1154                return;
1155
1156        /* Rogue Data Cache Load? No! */
1157        if (ia32_cap & ARCH_CAP_RDCL_NO)
1158                return;
1159
1160        setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1161
1162        if (cpu_matches(NO_L1TF))
1163                return;
1164
1165        setup_force_cpu_bug(X86_BUG_L1TF);
1166}
1167
1168/*
1169 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1170 * unfortunately, that's not true in practice because of early VIA
1171 * chips and (more importantly) broken virtualizers that are not easy
1172 * to detect. In the latter case it doesn't even *fail* reliably, so
1173 * probing for it doesn't even work. Disable it completely on 32-bit
1174 * unless we can find a reliable way to detect all the broken cases.
1175 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1176 */
1177static void detect_nopl(void)
1178{
1179#ifdef CONFIG_X86_32
1180        setup_clear_cpu_cap(X86_FEATURE_NOPL);
1181#else
1182        setup_force_cpu_cap(X86_FEATURE_NOPL);
1183#endif
1184}
1185
1186/*
1187 * Do minimum CPU detection early.
1188 * Fields really needed: vendor, cpuid_level, family, model, mask,
1189 * cache alignment.
1190 * The others are not touched to avoid unwanted side effects.
1191 *
1192 * WARNING: this function is only called on the boot CPU.  Don't add code
1193 * here that is supposed to run on all CPUs.
1194 */
1195static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1196{
1197#ifdef CONFIG_X86_64
1198        c->x86_clflush_size = 64;
1199        c->x86_phys_bits = 36;
1200        c->x86_virt_bits = 48;
1201#else
1202        c->x86_clflush_size = 32;
1203        c->x86_phys_bits = 32;
1204        c->x86_virt_bits = 32;
1205#endif
1206        c->x86_cache_alignment = c->x86_clflush_size;
1207
1208        memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1209        c->extended_cpuid_level = 0;
1210
1211        if (!have_cpuid_p())
1212                identify_cpu_without_cpuid(c);
1213
1214        /* cyrix could have cpuid enabled via c_identify()*/
1215        if (have_cpuid_p()) {
1216                cpu_detect(c);
1217                get_cpu_vendor(c);
1218                get_cpu_cap(c);
1219                get_cpu_address_sizes(c);
1220                setup_force_cpu_cap(X86_FEATURE_CPUID);
1221
1222                if (this_cpu->c_early_init)
1223                        this_cpu->c_early_init(c);
1224
1225                c->cpu_index = 0;
1226                filter_cpuid_features(c, false);
1227
1228                if (this_cpu->c_bsp_init)
1229                        this_cpu->c_bsp_init(c);
1230        } else {
1231                setup_clear_cpu_cap(X86_FEATURE_CPUID);
1232        }
1233
1234        setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1235
1236        cpu_set_bug_bits(c);
1237
1238        fpu__init_system(c);
1239
1240#ifdef CONFIG_X86_32
1241        /*
1242         * Regardless of whether PCID is enumerated, the SDM says
1243         * that it can't be enabled in 32-bit mode.
1244         */
1245        setup_clear_cpu_cap(X86_FEATURE_PCID);
1246#endif
1247
1248        /*
1249         * Later in the boot process pgtable_l5_enabled() relies on
1250         * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1251         * enabled by this point we need to clear the feature bit to avoid
1252         * false-positives at the later stage.
1253         *
1254         * pgtable_l5_enabled() can be false here for several reasons:
1255         *  - 5-level paging is disabled compile-time;
1256         *  - it's 32-bit kernel;
1257         *  - machine doesn't support 5-level paging;
1258         *  - user specified 'no5lvl' in kernel command line.
1259         */
1260        if (!pgtable_l5_enabled())
1261                setup_clear_cpu_cap(X86_FEATURE_LA57);
1262
1263        detect_nopl();
1264}
1265
1266void __init early_cpu_init(void)
1267{
1268        const struct cpu_dev *const *cdev;
1269        int count = 0;
1270
1271#ifdef CONFIG_PROCESSOR_SELECT
1272        pr_info("KERNEL supported cpus:\n");
1273#endif
1274
1275        for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1276                const struct cpu_dev *cpudev = *cdev;
1277
1278                if (count >= X86_VENDOR_NUM)
1279                        break;
1280                cpu_devs[count] = cpudev;
1281                count++;
1282
1283#ifdef CONFIG_PROCESSOR_SELECT
1284                {
1285                        unsigned int j;
1286
1287                        for (j = 0; j < 2; j++) {
1288                                if (!cpudev->c_ident[j])
1289                                        continue;
1290                                pr_info("  %s %s\n", cpudev->c_vendor,
1291                                        cpudev->c_ident[j]);
1292                        }
1293                }
1294#endif
1295        }
1296        early_identify_cpu(&boot_cpu_data);
1297}
1298
1299static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1300{
1301#ifdef CONFIG_X86_64
1302        /*
1303         * Empirically, writing zero to a segment selector on AMD does
1304         * not clear the base, whereas writing zero to a segment
1305         * selector on Intel does clear the base.  Intel's behavior
1306         * allows slightly faster context switches in the common case
1307         * where GS is unused by the prev and next threads.
1308         *
1309         * Since neither vendor documents this anywhere that I can see,
1310         * detect it directly instead of hardcoding the choice by
1311         * vendor.
1312         *
1313         * I've designated AMD's behavior as the "bug" because it's
1314         * counterintuitive and less friendly.
1315         */
1316
1317        unsigned long old_base, tmp;
1318        rdmsrl(MSR_FS_BASE, old_base);
1319        wrmsrl(MSR_FS_BASE, 1);
1320        loadsegment(fs, 0);
1321        rdmsrl(MSR_FS_BASE, tmp);
1322        if (tmp != 0)
1323                set_cpu_bug(c, X86_BUG_NULL_SEG);
1324        wrmsrl(MSR_FS_BASE, old_base);
1325#endif
1326}
1327
1328static void generic_identify(struct cpuinfo_x86 *c)
1329{
1330        c->extended_cpuid_level = 0;
1331
1332        if (!have_cpuid_p())
1333                identify_cpu_without_cpuid(c);
1334
1335        /* cyrix could have cpuid enabled via c_identify()*/
1336        if (!have_cpuid_p())
1337                return;
1338
1339        cpu_detect(c);
1340
1341        get_cpu_vendor(c);
1342
1343        get_cpu_cap(c);
1344
1345        get_cpu_address_sizes(c);
1346
1347        if (c->cpuid_level >= 0x00000001) {
1348                c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1349#ifdef CONFIG_X86_32
1350# ifdef CONFIG_SMP
1351                c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1352# else
1353                c->apicid = c->initial_apicid;
1354# endif
1355#endif
1356                c->phys_proc_id = c->initial_apicid;
1357        }
1358
1359        get_model_name(c); /* Default name */
1360
1361        detect_null_seg_behavior(c);
1362
1363        /*
1364         * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1365         * systems that run Linux at CPL > 0 may or may not have the
1366         * issue, but, even if they have the issue, there's absolutely
1367         * nothing we can do about it because we can't use the real IRET
1368         * instruction.
1369         *
1370         * NB: For the time being, only 32-bit kernels support
1371         * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1372         * whether to apply espfix using paravirt hooks.  If any
1373         * non-paravirt system ever shows up that does *not* have the
1374         * ESPFIX issue, we can change this.
1375         */
1376#ifdef CONFIG_X86_32
1377# ifdef CONFIG_PARAVIRT_XXL
1378        do {
1379                extern void native_iret(void);
1380                if (pv_ops.cpu.iret == native_iret)
1381                        set_cpu_bug(c, X86_BUG_ESPFIX);
1382        } while (0);
1383# else
1384        set_cpu_bug(c, X86_BUG_ESPFIX);
1385# endif
1386#endif
1387}
1388
1389static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1390{
1391        /*
1392         * The heavy lifting of max_rmid and cache_occ_scale are handled
1393         * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1394         * in case CQM bits really aren't there in this CPU.
1395         */
1396        if (c != &boot_cpu_data) {
1397                boot_cpu_data.x86_cache_max_rmid =
1398                        min(boot_cpu_data.x86_cache_max_rmid,
1399                            c->x86_cache_max_rmid);
1400        }
1401}
1402
1403/*
1404 * Validate that ACPI/mptables have the same information about the
1405 * effective APIC id and update the package map.
1406 */
1407static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1408{
1409#ifdef CONFIG_SMP
1410        unsigned int apicid, cpu = smp_processor_id();
1411
1412        apicid = apic->cpu_present_to_apicid(cpu);
1413
1414        if (apicid != c->apicid) {
1415                pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1416                       cpu, apicid, c->initial_apicid);
1417        }
1418        BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1419        BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1420#else
1421        c->logical_proc_id = 0;
1422#endif
1423}
1424
1425/*
1426 * This does the hard work of actually picking apart the CPU stuff...
1427 */
1428static void identify_cpu(struct cpuinfo_x86 *c)
1429{
1430        int i;
1431
1432        c->loops_per_jiffy = loops_per_jiffy;
1433        c->x86_cache_size = 0;
1434        c->x86_vendor = X86_VENDOR_UNKNOWN;
1435        c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1436        c->x86_vendor_id[0] = '\0'; /* Unset */
1437        c->x86_model_id[0] = '\0';  /* Unset */
1438        c->x86_max_cores = 1;
1439        c->x86_coreid_bits = 0;
1440        c->cu_id = 0xff;
1441#ifdef CONFIG_X86_64
1442        c->x86_clflush_size = 64;
1443        c->x86_phys_bits = 36;
1444        c->x86_virt_bits = 48;
1445#else
1446        c->cpuid_level = -1;    /* CPUID not detected */
1447        c->x86_clflush_size = 32;
1448        c->x86_phys_bits = 32;
1449        c->x86_virt_bits = 32;
1450#endif
1451        c->x86_cache_alignment = c->x86_clflush_size;
1452        memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1453
1454        generic_identify(c);
1455
1456        if (this_cpu->c_identify)
1457                this_cpu->c_identify(c);
1458
1459        /* Clear/Set all flags overridden by options, after probe */
1460        apply_forced_caps(c);
1461
1462#ifdef CONFIG_X86_64
1463        c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1464#endif
1465
1466        /*
1467         * Vendor-specific initialization.  In this section we
1468         * canonicalize the feature flags, meaning if there are
1469         * features a certain CPU supports which CPUID doesn't
1470         * tell us, CPUID claiming incorrect flags, or other bugs,
1471         * we handle them here.
1472         *
1473         * At the end of this section, c->x86_capability better
1474         * indicate the features this CPU genuinely supports!
1475         */
1476        if (this_cpu->c_init)
1477                this_cpu->c_init(c);
1478
1479        /* Disable the PN if appropriate */
1480        squash_the_stupid_serial_number(c);
1481
1482        /* Set up SMEP/SMAP/UMIP */
1483        setup_smep(c);
1484        setup_smap(c);
1485        setup_umip(c);
1486
1487        /*
1488         * The vendor-specific functions might have changed features.
1489         * Now we do "generic changes."
1490         */
1491
1492        /* Filter out anything that depends on CPUID levels we don't have */
1493        filter_cpuid_features(c, true);
1494
1495        /* If the model name is still unset, do table lookup. */
1496        if (!c->x86_model_id[0]) {
1497                const char *p;
1498                p = table_lookup_model(c);
1499                if (p)
1500                        strcpy(c->x86_model_id, p);
1501                else
1502                        /* Last resort... */
1503                        sprintf(c->x86_model_id, "%02x/%02x",
1504                                c->x86, c->x86_model);
1505        }
1506
1507#ifdef CONFIG_X86_64
1508        detect_ht(c);
1509#endif
1510
1511        x86_init_rdrand(c);
1512        x86_init_cache_qos(c);
1513        setup_pku(c);
1514
1515        /*
1516         * Clear/Set all flags overridden by options, need do it
1517         * before following smp all cpus cap AND.
1518         */
1519        apply_forced_caps(c);
1520
1521        /*
1522         * On SMP, boot_cpu_data holds the common feature set between
1523         * all CPUs; so make sure that we indicate which features are
1524         * common between the CPUs.  The first time this routine gets
1525         * executed, c == &boot_cpu_data.
1526         */
1527        if (c != &boot_cpu_data) {
1528                /* AND the already accumulated flags with these */
1529                for (i = 0; i < NCAPINTS; i++)
1530                        boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1531
1532                /* OR, i.e. replicate the bug flags */
1533                for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1534                        c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1535        }
1536
1537        /* Init Machine Check Exception if available. */
1538        mcheck_cpu_init(c);
1539
1540        select_idle_routine(c);
1541
1542#ifdef CONFIG_NUMA
1543        numa_add_cpu(smp_processor_id());
1544#endif
1545}
1546
1547/*
1548 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1549 * on 32-bit kernels:
1550 */
1551#ifdef CONFIG_X86_32
1552void enable_sep_cpu(void)
1553{
1554        struct tss_struct *tss;
1555        int cpu;
1556
1557        if (!boot_cpu_has(X86_FEATURE_SEP))
1558                return;
1559
1560        cpu = get_cpu();
1561        tss = &per_cpu(cpu_tss_rw, cpu);
1562
1563        /*
1564         * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1565         * see the big comment in struct x86_hw_tss's definition.
1566         */
1567
1568        tss->x86_tss.ss1 = __KERNEL_CS;
1569        wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1570        wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1571        wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1572
1573        put_cpu();
1574}
1575#endif
1576
1577void __init identify_boot_cpu(void)
1578{
1579        identify_cpu(&boot_cpu_data);
1580#ifdef CONFIG_X86_32
1581        sysenter_setup();
1582        enable_sep_cpu();
1583#endif
1584        cpu_detect_tlb(&boot_cpu_data);
1585        setup_cr_pinning();
1586
1587        tsx_init();
1588}
1589
1590void identify_secondary_cpu(struct cpuinfo_x86 *c)
1591{
1592        BUG_ON(c == &boot_cpu_data);
1593        identify_cpu(c);
1594#ifdef CONFIG_X86_32
1595        enable_sep_cpu();
1596#endif
1597        mtrr_ap_init();
1598        validate_apic_and_package_id(c);
1599        x86_spec_ctrl_setup_ap();
1600}
1601
1602static __init int setup_noclflush(char *arg)
1603{
1604        setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1605        setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1606        return 1;
1607}
1608__setup("noclflush", setup_noclflush);
1609
1610void print_cpu_info(struct cpuinfo_x86 *c)
1611{
1612        const char *vendor = NULL;
1613
1614        if (c->x86_vendor < X86_VENDOR_NUM) {
1615                vendor = this_cpu->c_vendor;
1616        } else {
1617                if (c->cpuid_level >= 0)
1618                        vendor = c->x86_vendor_id;
1619        }
1620
1621        if (vendor && !strstr(c->x86_model_id, vendor))
1622                pr_cont("%s ", vendor);
1623
1624        if (c->x86_model_id[0])
1625                pr_cont("%s", c->x86_model_id);
1626        else
1627                pr_cont("%d86", c->x86);
1628
1629        pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1630
1631        if (c->x86_stepping || c->cpuid_level >= 0)
1632                pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1633        else
1634                pr_cont(")\n");
1635}
1636
1637/*
1638 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1639 * But we need to keep a dummy __setup around otherwise it would
1640 * show up as an environment variable for init.
1641 */
1642static __init int setup_clearcpuid(char *arg)
1643{
1644        return 1;
1645}
1646__setup("clearcpuid=", setup_clearcpuid);
1647
1648#ifdef CONFIG_X86_64
1649DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1650                     fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1651EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1652
1653/*
1654 * The following percpu variables are hot.  Align current_task to
1655 * cacheline size such that they fall in the same cacheline.
1656 */
1657DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1658        &init_task;
1659EXPORT_PER_CPU_SYMBOL(current_task);
1660
1661DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1662DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1663
1664DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1665EXPORT_PER_CPU_SYMBOL(__preempt_count);
1666
1667/* May not be marked __init: used by software suspend */
1668void syscall_init(void)
1669{
1670        wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1671        wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1672
1673#ifdef CONFIG_IA32_EMULATION
1674        wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1675        /*
1676         * This only works on Intel CPUs.
1677         * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1678         * This does not cause SYSENTER to jump to the wrong location, because
1679         * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1680         */
1681        wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1682        wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1683                    (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1684        wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1685#else
1686        wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1687        wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1688        wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1689        wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1690#endif
1691
1692        /* Flags to clear on syscall */
1693        wrmsrl(MSR_SYSCALL_MASK,
1694               X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1695               X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1696}
1697
1698DEFINE_PER_CPU(int, debug_stack_usage);
1699DEFINE_PER_CPU(u32, debug_idt_ctr);
1700
1701void debug_stack_set_zero(void)
1702{
1703        this_cpu_inc(debug_idt_ctr);
1704        load_current_idt();
1705}
1706NOKPROBE_SYMBOL(debug_stack_set_zero);
1707
1708void debug_stack_reset(void)
1709{
1710        if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1711                return;
1712        if (this_cpu_dec_return(debug_idt_ctr) == 0)
1713                load_current_idt();
1714}
1715NOKPROBE_SYMBOL(debug_stack_reset);
1716
1717#else   /* CONFIG_X86_64 */
1718
1719DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1720EXPORT_PER_CPU_SYMBOL(current_task);
1721DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1722EXPORT_PER_CPU_SYMBOL(__preempt_count);
1723
1724/*
1725 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1726 * the top of the kernel stack.  Use an extra percpu variable to track the
1727 * top of the kernel stack directly.
1728 */
1729DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1730        (unsigned long)&init_thread_union + THREAD_SIZE;
1731EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1732
1733#ifdef CONFIG_STACKPROTECTOR
1734DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1735#endif
1736
1737#endif  /* CONFIG_X86_64 */
1738
1739/*
1740 * Clear all 6 debug registers:
1741 */
1742static void clear_all_debug_regs(void)
1743{
1744        int i;
1745
1746        for (i = 0; i < 8; i++) {
1747                /* Ignore db4, db5 */
1748                if ((i == 4) || (i == 5))
1749                        continue;
1750
1751                set_debugreg(0, i);
1752        }
1753}
1754
1755#ifdef CONFIG_KGDB
1756/*
1757 * Restore debug regs if using kgdbwait and you have a kernel debugger
1758 * connection established.
1759 */
1760static void dbg_restore_debug_regs(void)
1761{
1762        if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1763                arch_kgdb_ops.correct_hw_break();
1764}
1765#else /* ! CONFIG_KGDB */
1766#define dbg_restore_debug_regs()
1767#endif /* ! CONFIG_KGDB */
1768
1769static void wait_for_master_cpu(int cpu)
1770{
1771#ifdef CONFIG_SMP
1772        /*
1773         * wait for ACK from master CPU before continuing
1774         * with AP initialization
1775         */
1776        WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1777        while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1778                cpu_relax();
1779#endif
1780}
1781
1782#ifdef CONFIG_X86_64
1783static void setup_getcpu(int cpu)
1784{
1785        unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1786        struct desc_struct d = { };
1787
1788        if (boot_cpu_has(X86_FEATURE_RDTSCP))
1789                write_rdtscp_aux(cpudata);
1790
1791        /* Store CPU and node number in limit. */
1792        d.limit0 = cpudata;
1793        d.limit1 = cpudata >> 16;
1794
1795        d.type = 5;             /* RO data, expand down, accessed */
1796        d.dpl = 3;              /* Visible to user code */
1797        d.s = 1;                /* Not a system segment */
1798        d.p = 1;                /* Present */
1799        d.d = 1;                /* 32-bit */
1800
1801        write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1802}
1803#endif
1804
1805/*
1806 * cpu_init() initializes state that is per-CPU. Some data is already
1807 * initialized (naturally) in the bootstrap process, such as the GDT
1808 * and IDT. We reload them nevertheless, this function acts as a
1809 * 'CPU state barrier', nothing should get across.
1810 */
1811#ifdef CONFIG_X86_64
1812
1813void cpu_init(void)
1814{
1815        int cpu = raw_smp_processor_id();
1816        struct task_struct *me;
1817        struct tss_struct *t;
1818        int i;
1819
1820        wait_for_master_cpu(cpu);
1821
1822        if (cpu)
1823                load_ucode_ap();
1824
1825        t = &per_cpu(cpu_tss_rw, cpu);
1826
1827#ifdef CONFIG_NUMA
1828        if (this_cpu_read(numa_node) == 0 &&
1829            early_cpu_to_node(cpu) != NUMA_NO_NODE)
1830                set_numa_node(early_cpu_to_node(cpu));
1831#endif
1832        setup_getcpu(cpu);
1833
1834        me = current;
1835
1836        pr_debug("Initializing CPU#%d\n", cpu);
1837
1838        cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1839
1840        /*
1841         * Initialize the per-CPU GDT with the boot GDT,
1842         * and set up the GDT descriptor:
1843         */
1844
1845        switch_to_new_gdt(cpu);
1846        loadsegment(fs, 0);
1847
1848        load_current_idt();
1849
1850        memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1851        syscall_init();
1852
1853        wrmsrl(MSR_FS_BASE, 0);
1854        wrmsrl(MSR_KERNEL_GS_BASE, 0);
1855        barrier();
1856
1857        x86_configure_nx();
1858        x2apic_setup();
1859
1860        /*
1861         * set up and load the per-CPU TSS
1862         */
1863        if (!t->x86_tss.ist[0]) {
1864                t->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1865                t->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1866                t->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1867                t->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1868        }
1869
1870        t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1871
1872        /*
1873         * <= is required because the CPU will access up to
1874         * 8 bits beyond the end of the IO permission bitmap.
1875         */
1876        for (i = 0; i <= IO_BITMAP_LONGS; i++)
1877                t->io_bitmap[i] = ~0UL;
1878
1879        mmgrab(&init_mm);
1880        me->active_mm = &init_mm;
1881        BUG_ON(me->mm);
1882        initialize_tlbstate_and_flush();
1883        enter_lazy_tlb(&init_mm, me);
1884
1885        /*
1886         * Initialize the TSS.  sp0 points to the entry trampoline stack
1887         * regardless of what task is running.
1888         */
1889        set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1890        load_TR_desc();
1891        load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1892
1893        load_mm_ldt(&init_mm);
1894
1895        clear_all_debug_regs();
1896        dbg_restore_debug_regs();
1897
1898        fpu__init_cpu();
1899
1900        if (is_uv_system())
1901                uv_cpu_init();
1902
1903        load_fixmap_gdt(cpu);
1904}
1905
1906#else
1907
1908void cpu_init(void)
1909{
1910        int cpu = smp_processor_id();
1911        struct task_struct *curr = current;
1912        struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1913
1914        wait_for_master_cpu(cpu);
1915
1916        show_ucode_info_early();
1917
1918        pr_info("Initializing CPU#%d\n", cpu);
1919
1920        if (cpu_feature_enabled(X86_FEATURE_VME) ||
1921            boot_cpu_has(X86_FEATURE_TSC) ||
1922            boot_cpu_has(X86_FEATURE_DE))
1923                cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1924
1925        load_current_idt();
1926        switch_to_new_gdt(cpu);
1927
1928        /*
1929         * Set up and load the per-CPU TSS and LDT
1930         */
1931        mmgrab(&init_mm);
1932        curr->active_mm = &init_mm;
1933        BUG_ON(curr->mm);
1934        initialize_tlbstate_and_flush();
1935        enter_lazy_tlb(&init_mm, curr);
1936
1937        /*
1938         * Initialize the TSS.  sp0 points to the entry trampoline stack
1939         * regardless of what task is running.
1940         */
1941        set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1942        load_TR_desc();
1943        load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1944
1945        load_mm_ldt(&init_mm);
1946
1947        t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1948
1949#ifdef CONFIG_DOUBLEFAULT
1950        /* Set up doublefault TSS pointer in the GDT */
1951        __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1952#endif
1953
1954        clear_all_debug_regs();
1955        dbg_restore_debug_regs();
1956
1957        fpu__init_cpu();
1958
1959        load_fixmap_gdt(cpu);
1960}
1961#endif
1962
1963/*
1964 * The microcode loader calls this upon late microcode load to recheck features,
1965 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1966 * hotplug lock.
1967 */
1968void microcode_check(void)
1969{
1970        struct cpuinfo_x86 info;
1971
1972        perf_check_microcode();
1973
1974        /* Reload CPUID max function as it might've changed. */
1975        info.cpuid_level = cpuid_eax(0);
1976
1977        /*
1978         * Copy all capability leafs to pick up the synthetic ones so that
1979         * memcmp() below doesn't fail on that. The ones coming from CPUID will
1980         * get overwritten in get_cpu_cap().
1981         */
1982        memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1983
1984        get_cpu_cap(&info);
1985
1986        if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1987                return;
1988
1989        pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1990        pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1991}
1992
1993/*
1994 * Invoked from core CPU hotplug code after hotplug operations
1995 */
1996void arch_smt_update(void)
1997{
1998        /* Handle the speculative execution misfeatures */
1999        cpu_bugs_smt_update();
2000        /* Check whether IPI broadcasting can be enabled */
2001        apic_smt_update();
2002}
2003