linux/arch/x86/kernel/cpu/resctrl/monitor.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Resource Director Technology(RDT)
   4 * - Monitoring code
   5 *
   6 * Copyright (C) 2017 Intel Corporation
   7 *
   8 * Author:
   9 *    Vikas Shivappa <vikas.shivappa@intel.com>
  10 *
  11 * This replaces the cqm.c based on perf but we reuse a lot of
  12 * code and datastructures originally from Peter Zijlstra and Matt Fleming.
  13 *
  14 * More information about RDT be found in the Intel (R) x86 Architecture
  15 * Software Developer Manual June 2016, volume 3, section 17.17.
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/slab.h>
  20#include <asm/cpu_device_id.h>
  21#include "internal.h"
  22
  23struct rmid_entry {
  24        u32                             rmid;
  25        int                             busy;
  26        struct list_head                list;
  27};
  28
  29/**
  30 * @rmid_free_lru    A least recently used list of free RMIDs
  31 *     These RMIDs are guaranteed to have an occupancy less than the
  32 *     threshold occupancy
  33 */
  34static LIST_HEAD(rmid_free_lru);
  35
  36/**
  37 * @rmid_limbo_count     count of currently unused but (potentially)
  38 *     dirty RMIDs.
  39 *     This counts RMIDs that no one is currently using but that
  40 *     may have a occupancy value > intel_cqm_threshold. User can change
  41 *     the threshold occupancy value.
  42 */
  43static unsigned int rmid_limbo_count;
  44
  45/**
  46 * @rmid_entry - The entry in the limbo and free lists.
  47 */
  48static struct rmid_entry        *rmid_ptrs;
  49
  50/*
  51 * Global boolean for rdt_monitor which is true if any
  52 * resource monitoring is enabled.
  53 */
  54bool rdt_mon_capable;
  55
  56/*
  57 * Global to indicate which monitoring events are enabled.
  58 */
  59unsigned int rdt_mon_features;
  60
  61/*
  62 * This is the threshold cache occupancy at which we will consider an
  63 * RMID available for re-allocation.
  64 */
  65unsigned int resctrl_cqm_threshold;
  66
  67static inline struct rmid_entry *__rmid_entry(u32 rmid)
  68{
  69        struct rmid_entry *entry;
  70
  71        entry = &rmid_ptrs[rmid];
  72        WARN_ON(entry->rmid != rmid);
  73
  74        return entry;
  75}
  76
  77static u64 __rmid_read(u32 rmid, u32 eventid)
  78{
  79        u64 val;
  80
  81        /*
  82         * As per the SDM, when IA32_QM_EVTSEL.EvtID (bits 7:0) is configured
  83         * with a valid event code for supported resource type and the bits
  84         * IA32_QM_EVTSEL.RMID (bits 41:32) are configured with valid RMID,
  85         * IA32_QM_CTR.data (bits 61:0) reports the monitored data.
  86         * IA32_QM_CTR.Error (bit 63) and IA32_QM_CTR.Unavailable (bit 62)
  87         * are error bits.
  88         */
  89        wrmsr(MSR_IA32_QM_EVTSEL, eventid, rmid);
  90        rdmsrl(MSR_IA32_QM_CTR, val);
  91
  92        return val;
  93}
  94
  95static bool rmid_dirty(struct rmid_entry *entry)
  96{
  97        u64 val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
  98
  99        return val >= resctrl_cqm_threshold;
 100}
 101
 102/*
 103 * Check the RMIDs that are marked as busy for this domain. If the
 104 * reported LLC occupancy is below the threshold clear the busy bit and
 105 * decrement the count. If the busy count gets to zero on an RMID, we
 106 * free the RMID
 107 */
 108void __check_limbo(struct rdt_domain *d, bool force_free)
 109{
 110        struct rmid_entry *entry;
 111        struct rdt_resource *r;
 112        u32 crmid = 1, nrmid;
 113
 114        r = &rdt_resources_all[RDT_RESOURCE_L3];
 115
 116        /*
 117         * Skip RMID 0 and start from RMID 1 and check all the RMIDs that
 118         * are marked as busy for occupancy < threshold. If the occupancy
 119         * is less than the threshold decrement the busy counter of the
 120         * RMID and move it to the free list when the counter reaches 0.
 121         */
 122        for (;;) {
 123                nrmid = find_next_bit(d->rmid_busy_llc, r->num_rmid, crmid);
 124                if (nrmid >= r->num_rmid)
 125                        break;
 126
 127                entry = __rmid_entry(nrmid);
 128                if (force_free || !rmid_dirty(entry)) {
 129                        clear_bit(entry->rmid, d->rmid_busy_llc);
 130                        if (!--entry->busy) {
 131                                rmid_limbo_count--;
 132                                list_add_tail(&entry->list, &rmid_free_lru);
 133                        }
 134                }
 135                crmid = nrmid + 1;
 136        }
 137}
 138
 139bool has_busy_rmid(struct rdt_resource *r, struct rdt_domain *d)
 140{
 141        return find_first_bit(d->rmid_busy_llc, r->num_rmid) != r->num_rmid;
 142}
 143
 144/*
 145 * As of now the RMIDs allocation is global.
 146 * However we keep track of which packages the RMIDs
 147 * are used to optimize the limbo list management.
 148 */
 149int alloc_rmid(void)
 150{
 151        struct rmid_entry *entry;
 152
 153        lockdep_assert_held(&rdtgroup_mutex);
 154
 155        if (list_empty(&rmid_free_lru))
 156                return rmid_limbo_count ? -EBUSY : -ENOSPC;
 157
 158        entry = list_first_entry(&rmid_free_lru,
 159                                 struct rmid_entry, list);
 160        list_del(&entry->list);
 161
 162        return entry->rmid;
 163}
 164
 165static void add_rmid_to_limbo(struct rmid_entry *entry)
 166{
 167        struct rdt_resource *r;
 168        struct rdt_domain *d;
 169        int cpu;
 170        u64 val;
 171
 172        r = &rdt_resources_all[RDT_RESOURCE_L3];
 173
 174        entry->busy = 0;
 175        cpu = get_cpu();
 176        list_for_each_entry(d, &r->domains, list) {
 177                if (cpumask_test_cpu(cpu, &d->cpu_mask)) {
 178                        val = __rmid_read(entry->rmid, QOS_L3_OCCUP_EVENT_ID);
 179                        if (val <= resctrl_cqm_threshold)
 180                                continue;
 181                }
 182
 183                /*
 184                 * For the first limbo RMID in the domain,
 185                 * setup up the limbo worker.
 186                 */
 187                if (!has_busy_rmid(r, d))
 188                        cqm_setup_limbo_handler(d, CQM_LIMBOCHECK_INTERVAL);
 189                set_bit(entry->rmid, d->rmid_busy_llc);
 190                entry->busy++;
 191        }
 192        put_cpu();
 193
 194        if (entry->busy)
 195                rmid_limbo_count++;
 196        else
 197                list_add_tail(&entry->list, &rmid_free_lru);
 198}
 199
 200void free_rmid(u32 rmid)
 201{
 202        struct rmid_entry *entry;
 203
 204        if (!rmid)
 205                return;
 206
 207        lockdep_assert_held(&rdtgroup_mutex);
 208
 209        entry = __rmid_entry(rmid);
 210
 211        if (is_llc_occupancy_enabled())
 212                add_rmid_to_limbo(entry);
 213        else
 214                list_add_tail(&entry->list, &rmid_free_lru);
 215}
 216
 217static u64 mbm_overflow_count(u64 prev_msr, u64 cur_msr)
 218{
 219        u64 shift = 64 - MBM_CNTR_WIDTH, chunks;
 220
 221        chunks = (cur_msr << shift) - (prev_msr << shift);
 222        return chunks >>= shift;
 223}
 224
 225static int __mon_event_count(u32 rmid, struct rmid_read *rr)
 226{
 227        struct mbm_state *m;
 228        u64 chunks, tval;
 229
 230        tval = __rmid_read(rmid, rr->evtid);
 231        if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL)) {
 232                rr->val = tval;
 233                return -EINVAL;
 234        }
 235        switch (rr->evtid) {
 236        case QOS_L3_OCCUP_EVENT_ID:
 237                rr->val += tval;
 238                return 0;
 239        case QOS_L3_MBM_TOTAL_EVENT_ID:
 240                m = &rr->d->mbm_total[rmid];
 241                break;
 242        case QOS_L3_MBM_LOCAL_EVENT_ID:
 243                m = &rr->d->mbm_local[rmid];
 244                break;
 245        default:
 246                /*
 247                 * Code would never reach here because
 248                 * an invalid event id would fail the __rmid_read.
 249                 */
 250                return -EINVAL;
 251        }
 252
 253        if (rr->first) {
 254                memset(m, 0, sizeof(struct mbm_state));
 255                m->prev_bw_msr = m->prev_msr = tval;
 256                return 0;
 257        }
 258
 259        chunks = mbm_overflow_count(m->prev_msr, tval);
 260        m->chunks += chunks;
 261        m->prev_msr = tval;
 262
 263        rr->val += m->chunks;
 264        return 0;
 265}
 266
 267/*
 268 * Supporting function to calculate the memory bandwidth
 269 * and delta bandwidth in MBps.
 270 */
 271static void mbm_bw_count(u32 rmid, struct rmid_read *rr)
 272{
 273        struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_L3];
 274        struct mbm_state *m = &rr->d->mbm_local[rmid];
 275        u64 tval, cur_bw, chunks;
 276
 277        tval = __rmid_read(rmid, rr->evtid);
 278        if (tval & (RMID_VAL_ERROR | RMID_VAL_UNAVAIL))
 279                return;
 280
 281        chunks = mbm_overflow_count(m->prev_bw_msr, tval);
 282        m->chunks_bw += chunks;
 283        m->chunks = m->chunks_bw;
 284        cur_bw = (chunks * r->mon_scale) >> 20;
 285
 286        if (m->delta_comp)
 287                m->delta_bw = abs(cur_bw - m->prev_bw);
 288        m->delta_comp = false;
 289        m->prev_bw = cur_bw;
 290        m->prev_bw_msr = tval;
 291}
 292
 293/*
 294 * This is called via IPI to read the CQM/MBM counters
 295 * on a domain.
 296 */
 297void mon_event_count(void *info)
 298{
 299        struct rdtgroup *rdtgrp, *entry;
 300        struct rmid_read *rr = info;
 301        struct list_head *head;
 302
 303        rdtgrp = rr->rgrp;
 304
 305        if (__mon_event_count(rdtgrp->mon.rmid, rr))
 306                return;
 307
 308        /*
 309         * For Ctrl groups read data from child monitor groups.
 310         */
 311        head = &rdtgrp->mon.crdtgrp_list;
 312
 313        if (rdtgrp->type == RDTCTRL_GROUP) {
 314                list_for_each_entry(entry, head, mon.crdtgrp_list) {
 315                        if (__mon_event_count(entry->mon.rmid, rr))
 316                                return;
 317                }
 318        }
 319}
 320
 321/*
 322 * Feedback loop for MBA software controller (mba_sc)
 323 *
 324 * mba_sc is a feedback loop where we periodically read MBM counters and
 325 * adjust the bandwidth percentage values via the IA32_MBA_THRTL_MSRs so
 326 * that:
 327 *
 328 *   current bandwdith(cur_bw) < user specified bandwidth(user_bw)
 329 *
 330 * This uses the MBM counters to measure the bandwidth and MBA throttle
 331 * MSRs to control the bandwidth for a particular rdtgrp. It builds on the
 332 * fact that resctrl rdtgroups have both monitoring and control.
 333 *
 334 * The frequency of the checks is 1s and we just tag along the MBM overflow
 335 * timer. Having 1s interval makes the calculation of bandwidth simpler.
 336 *
 337 * Although MBA's goal is to restrict the bandwidth to a maximum, there may
 338 * be a need to increase the bandwidth to avoid uncecessarily restricting
 339 * the L2 <-> L3 traffic.
 340 *
 341 * Since MBA controls the L2 external bandwidth where as MBM measures the
 342 * L3 external bandwidth the following sequence could lead to such a
 343 * situation.
 344 *
 345 * Consider an rdtgroup which had high L3 <-> memory traffic in initial
 346 * phases -> mba_sc kicks in and reduced bandwidth percentage values -> but
 347 * after some time rdtgroup has mostly L2 <-> L3 traffic.
 348 *
 349 * In this case we may restrict the rdtgroup's L2 <-> L3 traffic as its
 350 * throttle MSRs already have low percentage values.  To avoid
 351 * unnecessarily restricting such rdtgroups, we also increase the bandwidth.
 352 */
 353static void update_mba_bw(struct rdtgroup *rgrp, struct rdt_domain *dom_mbm)
 354{
 355        u32 closid, rmid, cur_msr, cur_msr_val, new_msr_val;
 356        struct mbm_state *pmbm_data, *cmbm_data;
 357        u32 cur_bw, delta_bw, user_bw;
 358        struct rdt_resource *r_mba;
 359        struct rdt_domain *dom_mba;
 360        struct list_head *head;
 361        struct rdtgroup *entry;
 362
 363        if (!is_mbm_local_enabled())
 364                return;
 365
 366        r_mba = &rdt_resources_all[RDT_RESOURCE_MBA];
 367        closid = rgrp->closid;
 368        rmid = rgrp->mon.rmid;
 369        pmbm_data = &dom_mbm->mbm_local[rmid];
 370
 371        dom_mba = get_domain_from_cpu(smp_processor_id(), r_mba);
 372        if (!dom_mba) {
 373                pr_warn_once("Failure to get domain for MBA update\n");
 374                return;
 375        }
 376
 377        cur_bw = pmbm_data->prev_bw;
 378        user_bw = dom_mba->mbps_val[closid];
 379        delta_bw = pmbm_data->delta_bw;
 380        cur_msr_val = dom_mba->ctrl_val[closid];
 381
 382        /*
 383         * For Ctrl groups read data from child monitor groups.
 384         */
 385        head = &rgrp->mon.crdtgrp_list;
 386        list_for_each_entry(entry, head, mon.crdtgrp_list) {
 387                cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
 388                cur_bw += cmbm_data->prev_bw;
 389                delta_bw += cmbm_data->delta_bw;
 390        }
 391
 392        /*
 393         * Scale up/down the bandwidth linearly for the ctrl group.  The
 394         * bandwidth step is the bandwidth granularity specified by the
 395         * hardware.
 396         *
 397         * The delta_bw is used when increasing the bandwidth so that we
 398         * dont alternately increase and decrease the control values
 399         * continuously.
 400         *
 401         * For ex: consider cur_bw = 90MBps, user_bw = 100MBps and if
 402         * bandwidth step is 20MBps(> user_bw - cur_bw), we would keep
 403         * switching between 90 and 110 continuously if we only check
 404         * cur_bw < user_bw.
 405         */
 406        if (cur_msr_val > r_mba->membw.min_bw && user_bw < cur_bw) {
 407                new_msr_val = cur_msr_val - r_mba->membw.bw_gran;
 408        } else if (cur_msr_val < MAX_MBA_BW &&
 409                   (user_bw > (cur_bw + delta_bw))) {
 410                new_msr_val = cur_msr_val + r_mba->membw.bw_gran;
 411        } else {
 412                return;
 413        }
 414
 415        cur_msr = r_mba->msr_base + closid;
 416        wrmsrl(cur_msr, delay_bw_map(new_msr_val, r_mba));
 417        dom_mba->ctrl_val[closid] = new_msr_val;
 418
 419        /*
 420         * Delta values are updated dynamically package wise for each
 421         * rdtgrp everytime the throttle MSR changes value.
 422         *
 423         * This is because (1)the increase in bandwidth is not perfectly
 424         * linear and only "approximately" linear even when the hardware
 425         * says it is linear.(2)Also since MBA is a core specific
 426         * mechanism, the delta values vary based on number of cores used
 427         * by the rdtgrp.
 428         */
 429        pmbm_data->delta_comp = true;
 430        list_for_each_entry(entry, head, mon.crdtgrp_list) {
 431                cmbm_data = &dom_mbm->mbm_local[entry->mon.rmid];
 432                cmbm_data->delta_comp = true;
 433        }
 434}
 435
 436static void mbm_update(struct rdt_domain *d, int rmid)
 437{
 438        struct rmid_read rr;
 439
 440        rr.first = false;
 441        rr.d = d;
 442
 443        /*
 444         * This is protected from concurrent reads from user
 445         * as both the user and we hold the global mutex.
 446         */
 447        if (is_mbm_total_enabled()) {
 448                rr.evtid = QOS_L3_MBM_TOTAL_EVENT_ID;
 449                __mon_event_count(rmid, &rr);
 450        }
 451        if (is_mbm_local_enabled()) {
 452                rr.evtid = QOS_L3_MBM_LOCAL_EVENT_ID;
 453
 454                /*
 455                 * Call the MBA software controller only for the
 456                 * control groups and when user has enabled
 457                 * the software controller explicitly.
 458                 */
 459                if (!is_mba_sc(NULL))
 460                        __mon_event_count(rmid, &rr);
 461                else
 462                        mbm_bw_count(rmid, &rr);
 463        }
 464}
 465
 466/*
 467 * Handler to scan the limbo list and move the RMIDs
 468 * to free list whose occupancy < threshold_occupancy.
 469 */
 470void cqm_handle_limbo(struct work_struct *work)
 471{
 472        unsigned long delay = msecs_to_jiffies(CQM_LIMBOCHECK_INTERVAL);
 473        int cpu = smp_processor_id();
 474        struct rdt_resource *r;
 475        struct rdt_domain *d;
 476
 477        mutex_lock(&rdtgroup_mutex);
 478
 479        r = &rdt_resources_all[RDT_RESOURCE_L3];
 480        d = get_domain_from_cpu(cpu, r);
 481
 482        if (!d) {
 483                pr_warn_once("Failure to get domain for limbo worker\n");
 484                goto out_unlock;
 485        }
 486
 487        __check_limbo(d, false);
 488
 489        if (has_busy_rmid(r, d))
 490                schedule_delayed_work_on(cpu, &d->cqm_limbo, delay);
 491
 492out_unlock:
 493        mutex_unlock(&rdtgroup_mutex);
 494}
 495
 496void cqm_setup_limbo_handler(struct rdt_domain *dom, unsigned long delay_ms)
 497{
 498        unsigned long delay = msecs_to_jiffies(delay_ms);
 499        int cpu;
 500
 501        cpu = cpumask_any(&dom->cpu_mask);
 502        dom->cqm_work_cpu = cpu;
 503
 504        schedule_delayed_work_on(cpu, &dom->cqm_limbo, delay);
 505}
 506
 507void mbm_handle_overflow(struct work_struct *work)
 508{
 509        unsigned long delay = msecs_to_jiffies(MBM_OVERFLOW_INTERVAL);
 510        struct rdtgroup *prgrp, *crgrp;
 511        int cpu = smp_processor_id();
 512        struct list_head *head;
 513        struct rdt_domain *d;
 514
 515        mutex_lock(&rdtgroup_mutex);
 516
 517        if (!static_branch_likely(&rdt_enable_key))
 518                goto out_unlock;
 519
 520        d = get_domain_from_cpu(cpu, &rdt_resources_all[RDT_RESOURCE_L3]);
 521        if (!d)
 522                goto out_unlock;
 523
 524        list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
 525                mbm_update(d, prgrp->mon.rmid);
 526
 527                head = &prgrp->mon.crdtgrp_list;
 528                list_for_each_entry(crgrp, head, mon.crdtgrp_list)
 529                        mbm_update(d, crgrp->mon.rmid);
 530
 531                if (is_mba_sc(NULL))
 532                        update_mba_bw(prgrp, d);
 533        }
 534
 535        schedule_delayed_work_on(cpu, &d->mbm_over, delay);
 536
 537out_unlock:
 538        mutex_unlock(&rdtgroup_mutex);
 539}
 540
 541void mbm_setup_overflow_handler(struct rdt_domain *dom, unsigned long delay_ms)
 542{
 543        unsigned long delay = msecs_to_jiffies(delay_ms);
 544        int cpu;
 545
 546        if (!static_branch_likely(&rdt_enable_key))
 547                return;
 548        cpu = cpumask_any(&dom->cpu_mask);
 549        dom->mbm_work_cpu = cpu;
 550        schedule_delayed_work_on(cpu, &dom->mbm_over, delay);
 551}
 552
 553static int dom_data_init(struct rdt_resource *r)
 554{
 555        struct rmid_entry *entry = NULL;
 556        int i, nr_rmids;
 557
 558        nr_rmids = r->num_rmid;
 559        rmid_ptrs = kcalloc(nr_rmids, sizeof(struct rmid_entry), GFP_KERNEL);
 560        if (!rmid_ptrs)
 561                return -ENOMEM;
 562
 563        for (i = 0; i < nr_rmids; i++) {
 564                entry = &rmid_ptrs[i];
 565                INIT_LIST_HEAD(&entry->list);
 566
 567                entry->rmid = i;
 568                list_add_tail(&entry->list, &rmid_free_lru);
 569        }
 570
 571        /*
 572         * RMID 0 is special and is always allocated. It's used for all
 573         * tasks that are not monitored.
 574         */
 575        entry = __rmid_entry(0);
 576        list_del(&entry->list);
 577
 578        return 0;
 579}
 580
 581static struct mon_evt llc_occupancy_event = {
 582        .name           = "llc_occupancy",
 583        .evtid          = QOS_L3_OCCUP_EVENT_ID,
 584};
 585
 586static struct mon_evt mbm_total_event = {
 587        .name           = "mbm_total_bytes",
 588        .evtid          = QOS_L3_MBM_TOTAL_EVENT_ID,
 589};
 590
 591static struct mon_evt mbm_local_event = {
 592        .name           = "mbm_local_bytes",
 593        .evtid          = QOS_L3_MBM_LOCAL_EVENT_ID,
 594};
 595
 596/*
 597 * Initialize the event list for the resource.
 598 *
 599 * Note that MBM events are also part of RDT_RESOURCE_L3 resource
 600 * because as per the SDM the total and local memory bandwidth
 601 * are enumerated as part of L3 monitoring.
 602 */
 603static void l3_mon_evt_init(struct rdt_resource *r)
 604{
 605        INIT_LIST_HEAD(&r->evt_list);
 606
 607        if (is_llc_occupancy_enabled())
 608                list_add_tail(&llc_occupancy_event.list, &r->evt_list);
 609        if (is_mbm_total_enabled())
 610                list_add_tail(&mbm_total_event.list, &r->evt_list);
 611        if (is_mbm_local_enabled())
 612                list_add_tail(&mbm_local_event.list, &r->evt_list);
 613}
 614
 615int rdt_get_mon_l3_config(struct rdt_resource *r)
 616{
 617        unsigned int cl_size = boot_cpu_data.x86_cache_size;
 618        int ret;
 619
 620        r->mon_scale = boot_cpu_data.x86_cache_occ_scale;
 621        r->num_rmid = boot_cpu_data.x86_cache_max_rmid + 1;
 622
 623        /*
 624         * A reasonable upper limit on the max threshold is the number
 625         * of lines tagged per RMID if all RMIDs have the same number of
 626         * lines tagged in the LLC.
 627         *
 628         * For a 35MB LLC and 56 RMIDs, this is ~1.8% of the LLC.
 629         */
 630        resctrl_cqm_threshold = cl_size * 1024 / r->num_rmid;
 631
 632        /* h/w works in units of "boot_cpu_data.x86_cache_occ_scale" */
 633        resctrl_cqm_threshold /= r->mon_scale;
 634
 635        ret = dom_data_init(r);
 636        if (ret)
 637                return ret;
 638
 639        l3_mon_evt_init(r);
 640
 641        r->mon_capable = true;
 642        r->mon_enabled = true;
 643
 644        return 0;
 645}
 646