linux/arch/x86/kernel/cpu/resctrl/rdtgroup.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * User interface for Resource Alloction in Resource Director Technology(RDT)
   4 *
   5 * Copyright (C) 2016 Intel Corporation
   6 *
   7 * Author: Fenghua Yu <fenghua.yu@intel.com>
   8 *
   9 * More information about RDT be found in the Intel (R) x86 Architecture
  10 * Software Developer Manual.
  11 */
  12
  13#define pr_fmt(fmt)     KBUILD_MODNAME ": " fmt
  14
  15#include <linux/cacheinfo.h>
  16#include <linux/cpu.h>
  17#include <linux/debugfs.h>
  18#include <linux/fs.h>
  19#include <linux/fs_parser.h>
  20#include <linux/sysfs.h>
  21#include <linux/kernfs.h>
  22#include <linux/seq_buf.h>
  23#include <linux/seq_file.h>
  24#include <linux/sched/signal.h>
  25#include <linux/sched/task.h>
  26#include <linux/slab.h>
  27#include <linux/task_work.h>
  28#include <linux/user_namespace.h>
  29
  30#include <uapi/linux/magic.h>
  31
  32#include <asm/resctrl_sched.h>
  33#include "internal.h"
  34
  35DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
  36DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
  37DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
  38static struct kernfs_root *rdt_root;
  39struct rdtgroup rdtgroup_default;
  40LIST_HEAD(rdt_all_groups);
  41
  42/* Kernel fs node for "info" directory under root */
  43static struct kernfs_node *kn_info;
  44
  45/* Kernel fs node for "mon_groups" directory under root */
  46static struct kernfs_node *kn_mongrp;
  47
  48/* Kernel fs node for "mon_data" directory under root */
  49static struct kernfs_node *kn_mondata;
  50
  51static struct seq_buf last_cmd_status;
  52static char last_cmd_status_buf[512];
  53
  54struct dentry *debugfs_resctrl;
  55
  56void rdt_last_cmd_clear(void)
  57{
  58        lockdep_assert_held(&rdtgroup_mutex);
  59        seq_buf_clear(&last_cmd_status);
  60}
  61
  62void rdt_last_cmd_puts(const char *s)
  63{
  64        lockdep_assert_held(&rdtgroup_mutex);
  65        seq_buf_puts(&last_cmd_status, s);
  66}
  67
  68void rdt_last_cmd_printf(const char *fmt, ...)
  69{
  70        va_list ap;
  71
  72        va_start(ap, fmt);
  73        lockdep_assert_held(&rdtgroup_mutex);
  74        seq_buf_vprintf(&last_cmd_status, fmt, ap);
  75        va_end(ap);
  76}
  77
  78/*
  79 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
  80 * we can keep a bitmap of free CLOSIDs in a single integer.
  81 *
  82 * Using a global CLOSID across all resources has some advantages and
  83 * some drawbacks:
  84 * + We can simply set "current->closid" to assign a task to a resource
  85 *   group.
  86 * + Context switch code can avoid extra memory references deciding which
  87 *   CLOSID to load into the PQR_ASSOC MSR
  88 * - We give up some options in configuring resource groups across multi-socket
  89 *   systems.
  90 * - Our choices on how to configure each resource become progressively more
  91 *   limited as the number of resources grows.
  92 */
  93static int closid_free_map;
  94static int closid_free_map_len;
  95
  96int closids_supported(void)
  97{
  98        return closid_free_map_len;
  99}
 100
 101static void closid_init(void)
 102{
 103        struct rdt_resource *r;
 104        int rdt_min_closid = 32;
 105
 106        /* Compute rdt_min_closid across all resources */
 107        for_each_alloc_enabled_rdt_resource(r)
 108                rdt_min_closid = min(rdt_min_closid, r->num_closid);
 109
 110        closid_free_map = BIT_MASK(rdt_min_closid) - 1;
 111
 112        /* CLOSID 0 is always reserved for the default group */
 113        closid_free_map &= ~1;
 114        closid_free_map_len = rdt_min_closid;
 115}
 116
 117static int closid_alloc(void)
 118{
 119        u32 closid = ffs(closid_free_map);
 120
 121        if (closid == 0)
 122                return -ENOSPC;
 123        closid--;
 124        closid_free_map &= ~(1 << closid);
 125
 126        return closid;
 127}
 128
 129void closid_free(int closid)
 130{
 131        closid_free_map |= 1 << closid;
 132}
 133
 134/**
 135 * closid_allocated - test if provided closid is in use
 136 * @closid: closid to be tested
 137 *
 138 * Return: true if @closid is currently associated with a resource group,
 139 * false if @closid is free
 140 */
 141static bool closid_allocated(unsigned int closid)
 142{
 143        return (closid_free_map & (1 << closid)) == 0;
 144}
 145
 146/**
 147 * rdtgroup_mode_by_closid - Return mode of resource group with closid
 148 * @closid: closid if the resource group
 149 *
 150 * Each resource group is associated with a @closid. Here the mode
 151 * of a resource group can be queried by searching for it using its closid.
 152 *
 153 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
 154 */
 155enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
 156{
 157        struct rdtgroup *rdtgrp;
 158
 159        list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
 160                if (rdtgrp->closid == closid)
 161                        return rdtgrp->mode;
 162        }
 163
 164        return RDT_NUM_MODES;
 165}
 166
 167static const char * const rdt_mode_str[] = {
 168        [RDT_MODE_SHAREABLE]            = "shareable",
 169        [RDT_MODE_EXCLUSIVE]            = "exclusive",
 170        [RDT_MODE_PSEUDO_LOCKSETUP]     = "pseudo-locksetup",
 171        [RDT_MODE_PSEUDO_LOCKED]        = "pseudo-locked",
 172};
 173
 174/**
 175 * rdtgroup_mode_str - Return the string representation of mode
 176 * @mode: the resource group mode as &enum rdtgroup_mode
 177 *
 178 * Return: string representation of valid mode, "unknown" otherwise
 179 */
 180static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
 181{
 182        if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
 183                return "unknown";
 184
 185        return rdt_mode_str[mode];
 186}
 187
 188/* set uid and gid of rdtgroup dirs and files to that of the creator */
 189static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
 190{
 191        struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
 192                                .ia_uid = current_fsuid(),
 193                                .ia_gid = current_fsgid(), };
 194
 195        if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
 196            gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
 197                return 0;
 198
 199        return kernfs_setattr(kn, &iattr);
 200}
 201
 202static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
 203{
 204        struct kernfs_node *kn;
 205        int ret;
 206
 207        kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
 208                                  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
 209                                  0, rft->kf_ops, rft, NULL, NULL);
 210        if (IS_ERR(kn))
 211                return PTR_ERR(kn);
 212
 213        ret = rdtgroup_kn_set_ugid(kn);
 214        if (ret) {
 215                kernfs_remove(kn);
 216                return ret;
 217        }
 218
 219        return 0;
 220}
 221
 222static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
 223{
 224        struct kernfs_open_file *of = m->private;
 225        struct rftype *rft = of->kn->priv;
 226
 227        if (rft->seq_show)
 228                return rft->seq_show(of, m, arg);
 229        return 0;
 230}
 231
 232static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
 233                                   size_t nbytes, loff_t off)
 234{
 235        struct rftype *rft = of->kn->priv;
 236
 237        if (rft->write)
 238                return rft->write(of, buf, nbytes, off);
 239
 240        return -EINVAL;
 241}
 242
 243static struct kernfs_ops rdtgroup_kf_single_ops = {
 244        .atomic_write_len       = PAGE_SIZE,
 245        .write                  = rdtgroup_file_write,
 246        .seq_show               = rdtgroup_seqfile_show,
 247};
 248
 249static struct kernfs_ops kf_mondata_ops = {
 250        .atomic_write_len       = PAGE_SIZE,
 251        .seq_show               = rdtgroup_mondata_show,
 252};
 253
 254static bool is_cpu_list(struct kernfs_open_file *of)
 255{
 256        struct rftype *rft = of->kn->priv;
 257
 258        return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
 259}
 260
 261static int rdtgroup_cpus_show(struct kernfs_open_file *of,
 262                              struct seq_file *s, void *v)
 263{
 264        struct rdtgroup *rdtgrp;
 265        struct cpumask *mask;
 266        int ret = 0;
 267
 268        rdtgrp = rdtgroup_kn_lock_live(of->kn);
 269
 270        if (rdtgrp) {
 271                if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
 272                        if (!rdtgrp->plr->d) {
 273                                rdt_last_cmd_clear();
 274                                rdt_last_cmd_puts("Cache domain offline\n");
 275                                ret = -ENODEV;
 276                        } else {
 277                                mask = &rdtgrp->plr->d->cpu_mask;
 278                                seq_printf(s, is_cpu_list(of) ?
 279                                           "%*pbl\n" : "%*pb\n",
 280                                           cpumask_pr_args(mask));
 281                        }
 282                } else {
 283                        seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
 284                                   cpumask_pr_args(&rdtgrp->cpu_mask));
 285                }
 286        } else {
 287                ret = -ENOENT;
 288        }
 289        rdtgroup_kn_unlock(of->kn);
 290
 291        return ret;
 292}
 293
 294/*
 295 * This is safe against resctrl_sched_in() called from __switch_to()
 296 * because __switch_to() is executed with interrupts disabled. A local call
 297 * from update_closid_rmid() is proteced against __switch_to() because
 298 * preemption is disabled.
 299 */
 300static void update_cpu_closid_rmid(void *info)
 301{
 302        struct rdtgroup *r = info;
 303
 304        if (r) {
 305                this_cpu_write(pqr_state.default_closid, r->closid);
 306                this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
 307        }
 308
 309        /*
 310         * We cannot unconditionally write the MSR because the current
 311         * executing task might have its own closid selected. Just reuse
 312         * the context switch code.
 313         */
 314        resctrl_sched_in();
 315}
 316
 317/*
 318 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
 319 *
 320 * Per task closids/rmids must have been set up before calling this function.
 321 */
 322static void
 323update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
 324{
 325        int cpu = get_cpu();
 326
 327        if (cpumask_test_cpu(cpu, cpu_mask))
 328                update_cpu_closid_rmid(r);
 329        smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
 330        put_cpu();
 331}
 332
 333static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
 334                          cpumask_var_t tmpmask)
 335{
 336        struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
 337        struct list_head *head;
 338
 339        /* Check whether cpus belong to parent ctrl group */
 340        cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
 341        if (cpumask_weight(tmpmask)) {
 342                rdt_last_cmd_puts("Can only add CPUs to mongroup that belong to parent\n");
 343                return -EINVAL;
 344        }
 345
 346        /* Check whether cpus are dropped from this group */
 347        cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
 348        if (cpumask_weight(tmpmask)) {
 349                /* Give any dropped cpus to parent rdtgroup */
 350                cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
 351                update_closid_rmid(tmpmask, prgrp);
 352        }
 353
 354        /*
 355         * If we added cpus, remove them from previous group that owned them
 356         * and update per-cpu rmid
 357         */
 358        cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
 359        if (cpumask_weight(tmpmask)) {
 360                head = &prgrp->mon.crdtgrp_list;
 361                list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
 362                        if (crgrp == rdtgrp)
 363                                continue;
 364                        cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
 365                                       tmpmask);
 366                }
 367                update_closid_rmid(tmpmask, rdtgrp);
 368        }
 369
 370        /* Done pushing/pulling - update this group with new mask */
 371        cpumask_copy(&rdtgrp->cpu_mask, newmask);
 372
 373        return 0;
 374}
 375
 376static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
 377{
 378        struct rdtgroup *crgrp;
 379
 380        cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
 381        /* update the child mon group masks as well*/
 382        list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
 383                cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
 384}
 385
 386static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
 387                           cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
 388{
 389        struct rdtgroup *r, *crgrp;
 390        struct list_head *head;
 391
 392        /* Check whether cpus are dropped from this group */
 393        cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
 394        if (cpumask_weight(tmpmask)) {
 395                /* Can't drop from default group */
 396                if (rdtgrp == &rdtgroup_default) {
 397                        rdt_last_cmd_puts("Can't drop CPUs from default group\n");
 398                        return -EINVAL;
 399                }
 400
 401                /* Give any dropped cpus to rdtgroup_default */
 402                cpumask_or(&rdtgroup_default.cpu_mask,
 403                           &rdtgroup_default.cpu_mask, tmpmask);
 404                update_closid_rmid(tmpmask, &rdtgroup_default);
 405        }
 406
 407        /*
 408         * If we added cpus, remove them from previous group and
 409         * the prev group's child groups that owned them
 410         * and update per-cpu closid/rmid.
 411         */
 412        cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
 413        if (cpumask_weight(tmpmask)) {
 414                list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
 415                        if (r == rdtgrp)
 416                                continue;
 417                        cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
 418                        if (cpumask_weight(tmpmask1))
 419                                cpumask_rdtgrp_clear(r, tmpmask1);
 420                }
 421                update_closid_rmid(tmpmask, rdtgrp);
 422        }
 423
 424        /* Done pushing/pulling - update this group with new mask */
 425        cpumask_copy(&rdtgrp->cpu_mask, newmask);
 426
 427        /*
 428         * Clear child mon group masks since there is a new parent mask
 429         * now and update the rmid for the cpus the child lost.
 430         */
 431        head = &rdtgrp->mon.crdtgrp_list;
 432        list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
 433                cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
 434                update_closid_rmid(tmpmask, rdtgrp);
 435                cpumask_clear(&crgrp->cpu_mask);
 436        }
 437
 438        return 0;
 439}
 440
 441static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
 442                                   char *buf, size_t nbytes, loff_t off)
 443{
 444        cpumask_var_t tmpmask, newmask, tmpmask1;
 445        struct rdtgroup *rdtgrp;
 446        int ret;
 447
 448        if (!buf)
 449                return -EINVAL;
 450
 451        if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
 452                return -ENOMEM;
 453        if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
 454                free_cpumask_var(tmpmask);
 455                return -ENOMEM;
 456        }
 457        if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
 458                free_cpumask_var(tmpmask);
 459                free_cpumask_var(newmask);
 460                return -ENOMEM;
 461        }
 462
 463        rdtgrp = rdtgroup_kn_lock_live(of->kn);
 464        if (!rdtgrp) {
 465                ret = -ENOENT;
 466                goto unlock;
 467        }
 468
 469        if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
 470            rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
 471                ret = -EINVAL;
 472                rdt_last_cmd_puts("Pseudo-locking in progress\n");
 473                goto unlock;
 474        }
 475
 476        if (is_cpu_list(of))
 477                ret = cpulist_parse(buf, newmask);
 478        else
 479                ret = cpumask_parse(buf, newmask);
 480
 481        if (ret) {
 482                rdt_last_cmd_puts("Bad CPU list/mask\n");
 483                goto unlock;
 484        }
 485
 486        /* check that user didn't specify any offline cpus */
 487        cpumask_andnot(tmpmask, newmask, cpu_online_mask);
 488        if (cpumask_weight(tmpmask)) {
 489                ret = -EINVAL;
 490                rdt_last_cmd_puts("Can only assign online CPUs\n");
 491                goto unlock;
 492        }
 493
 494        if (rdtgrp->type == RDTCTRL_GROUP)
 495                ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
 496        else if (rdtgrp->type == RDTMON_GROUP)
 497                ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
 498        else
 499                ret = -EINVAL;
 500
 501unlock:
 502        rdtgroup_kn_unlock(of->kn);
 503        free_cpumask_var(tmpmask);
 504        free_cpumask_var(newmask);
 505        free_cpumask_var(tmpmask1);
 506
 507        return ret ?: nbytes;
 508}
 509
 510struct task_move_callback {
 511        struct callback_head    work;
 512        struct rdtgroup         *rdtgrp;
 513};
 514
 515static void move_myself(struct callback_head *head)
 516{
 517        struct task_move_callback *callback;
 518        struct rdtgroup *rdtgrp;
 519
 520        callback = container_of(head, struct task_move_callback, work);
 521        rdtgrp = callback->rdtgrp;
 522
 523        /*
 524         * If resource group was deleted before this task work callback
 525         * was invoked, then assign the task to root group and free the
 526         * resource group.
 527         */
 528        if (atomic_dec_and_test(&rdtgrp->waitcount) &&
 529            (rdtgrp->flags & RDT_DELETED)) {
 530                current->closid = 0;
 531                current->rmid = 0;
 532                kfree(rdtgrp);
 533        }
 534
 535        preempt_disable();
 536        /* update PQR_ASSOC MSR to make resource group go into effect */
 537        resctrl_sched_in();
 538        preempt_enable();
 539
 540        kfree(callback);
 541}
 542
 543static int __rdtgroup_move_task(struct task_struct *tsk,
 544                                struct rdtgroup *rdtgrp)
 545{
 546        struct task_move_callback *callback;
 547        int ret;
 548
 549        callback = kzalloc(sizeof(*callback), GFP_KERNEL);
 550        if (!callback)
 551                return -ENOMEM;
 552        callback->work.func = move_myself;
 553        callback->rdtgrp = rdtgrp;
 554
 555        /*
 556         * Take a refcount, so rdtgrp cannot be freed before the
 557         * callback has been invoked.
 558         */
 559        atomic_inc(&rdtgrp->waitcount);
 560        ret = task_work_add(tsk, &callback->work, true);
 561        if (ret) {
 562                /*
 563                 * Task is exiting. Drop the refcount and free the callback.
 564                 * No need to check the refcount as the group cannot be
 565                 * deleted before the write function unlocks rdtgroup_mutex.
 566                 */
 567                atomic_dec(&rdtgrp->waitcount);
 568                kfree(callback);
 569                rdt_last_cmd_puts("Task exited\n");
 570        } else {
 571                /*
 572                 * For ctrl_mon groups move both closid and rmid.
 573                 * For monitor groups, can move the tasks only from
 574                 * their parent CTRL group.
 575                 */
 576                if (rdtgrp->type == RDTCTRL_GROUP) {
 577                        tsk->closid = rdtgrp->closid;
 578                        tsk->rmid = rdtgrp->mon.rmid;
 579                } else if (rdtgrp->type == RDTMON_GROUP) {
 580                        if (rdtgrp->mon.parent->closid == tsk->closid) {
 581                                tsk->rmid = rdtgrp->mon.rmid;
 582                        } else {
 583                                rdt_last_cmd_puts("Can't move task to different control group\n");
 584                                ret = -EINVAL;
 585                        }
 586                }
 587        }
 588        return ret;
 589}
 590
 591/**
 592 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
 593 * @r: Resource group
 594 *
 595 * Return: 1 if tasks have been assigned to @r, 0 otherwise
 596 */
 597int rdtgroup_tasks_assigned(struct rdtgroup *r)
 598{
 599        struct task_struct *p, *t;
 600        int ret = 0;
 601
 602        lockdep_assert_held(&rdtgroup_mutex);
 603
 604        rcu_read_lock();
 605        for_each_process_thread(p, t) {
 606                if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
 607                    (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) {
 608                        ret = 1;
 609                        break;
 610                }
 611        }
 612        rcu_read_unlock();
 613
 614        return ret;
 615}
 616
 617static int rdtgroup_task_write_permission(struct task_struct *task,
 618                                          struct kernfs_open_file *of)
 619{
 620        const struct cred *tcred = get_task_cred(task);
 621        const struct cred *cred = current_cred();
 622        int ret = 0;
 623
 624        /*
 625         * Even if we're attaching all tasks in the thread group, we only
 626         * need to check permissions on one of them.
 627         */
 628        if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
 629            !uid_eq(cred->euid, tcred->uid) &&
 630            !uid_eq(cred->euid, tcred->suid)) {
 631                rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
 632                ret = -EPERM;
 633        }
 634
 635        put_cred(tcred);
 636        return ret;
 637}
 638
 639static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
 640                              struct kernfs_open_file *of)
 641{
 642        struct task_struct *tsk;
 643        int ret;
 644
 645        rcu_read_lock();
 646        if (pid) {
 647                tsk = find_task_by_vpid(pid);
 648                if (!tsk) {
 649                        rcu_read_unlock();
 650                        rdt_last_cmd_printf("No task %d\n", pid);
 651                        return -ESRCH;
 652                }
 653        } else {
 654                tsk = current;
 655        }
 656
 657        get_task_struct(tsk);
 658        rcu_read_unlock();
 659
 660        ret = rdtgroup_task_write_permission(tsk, of);
 661        if (!ret)
 662                ret = __rdtgroup_move_task(tsk, rdtgrp);
 663
 664        put_task_struct(tsk);
 665        return ret;
 666}
 667
 668static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
 669                                    char *buf, size_t nbytes, loff_t off)
 670{
 671        struct rdtgroup *rdtgrp;
 672        int ret = 0;
 673        pid_t pid;
 674
 675        if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
 676                return -EINVAL;
 677        rdtgrp = rdtgroup_kn_lock_live(of->kn);
 678        if (!rdtgrp) {
 679                rdtgroup_kn_unlock(of->kn);
 680                return -ENOENT;
 681        }
 682        rdt_last_cmd_clear();
 683
 684        if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
 685            rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
 686                ret = -EINVAL;
 687                rdt_last_cmd_puts("Pseudo-locking in progress\n");
 688                goto unlock;
 689        }
 690
 691        ret = rdtgroup_move_task(pid, rdtgrp, of);
 692
 693unlock:
 694        rdtgroup_kn_unlock(of->kn);
 695
 696        return ret ?: nbytes;
 697}
 698
 699static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
 700{
 701        struct task_struct *p, *t;
 702
 703        rcu_read_lock();
 704        for_each_process_thread(p, t) {
 705                if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
 706                    (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid))
 707                        seq_printf(s, "%d\n", t->pid);
 708        }
 709        rcu_read_unlock();
 710}
 711
 712static int rdtgroup_tasks_show(struct kernfs_open_file *of,
 713                               struct seq_file *s, void *v)
 714{
 715        struct rdtgroup *rdtgrp;
 716        int ret = 0;
 717
 718        rdtgrp = rdtgroup_kn_lock_live(of->kn);
 719        if (rdtgrp)
 720                show_rdt_tasks(rdtgrp, s);
 721        else
 722                ret = -ENOENT;
 723        rdtgroup_kn_unlock(of->kn);
 724
 725        return ret;
 726}
 727
 728static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
 729                                    struct seq_file *seq, void *v)
 730{
 731        int len;
 732
 733        mutex_lock(&rdtgroup_mutex);
 734        len = seq_buf_used(&last_cmd_status);
 735        if (len)
 736                seq_printf(seq, "%.*s", len, last_cmd_status_buf);
 737        else
 738                seq_puts(seq, "ok\n");
 739        mutex_unlock(&rdtgroup_mutex);
 740        return 0;
 741}
 742
 743static int rdt_num_closids_show(struct kernfs_open_file *of,
 744                                struct seq_file *seq, void *v)
 745{
 746        struct rdt_resource *r = of->kn->parent->priv;
 747
 748        seq_printf(seq, "%d\n", r->num_closid);
 749        return 0;
 750}
 751
 752static int rdt_default_ctrl_show(struct kernfs_open_file *of,
 753                             struct seq_file *seq, void *v)
 754{
 755        struct rdt_resource *r = of->kn->parent->priv;
 756
 757        seq_printf(seq, "%x\n", r->default_ctrl);
 758        return 0;
 759}
 760
 761static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
 762                             struct seq_file *seq, void *v)
 763{
 764        struct rdt_resource *r = of->kn->parent->priv;
 765
 766        seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
 767        return 0;
 768}
 769
 770static int rdt_shareable_bits_show(struct kernfs_open_file *of,
 771                                   struct seq_file *seq, void *v)
 772{
 773        struct rdt_resource *r = of->kn->parent->priv;
 774
 775        seq_printf(seq, "%x\n", r->cache.shareable_bits);
 776        return 0;
 777}
 778
 779/**
 780 * rdt_bit_usage_show - Display current usage of resources
 781 *
 782 * A domain is a shared resource that can now be allocated differently. Here
 783 * we display the current regions of the domain as an annotated bitmask.
 784 * For each domain of this resource its allocation bitmask
 785 * is annotated as below to indicate the current usage of the corresponding bit:
 786 *   0 - currently unused
 787 *   X - currently available for sharing and used by software and hardware
 788 *   H - currently used by hardware only but available for software use
 789 *   S - currently used and shareable by software only
 790 *   E - currently used exclusively by one resource group
 791 *   P - currently pseudo-locked by one resource group
 792 */
 793static int rdt_bit_usage_show(struct kernfs_open_file *of,
 794                              struct seq_file *seq, void *v)
 795{
 796        struct rdt_resource *r = of->kn->parent->priv;
 797        /*
 798         * Use unsigned long even though only 32 bits are used to ensure
 799         * test_bit() is used safely.
 800         */
 801        unsigned long sw_shareable = 0, hw_shareable = 0;
 802        unsigned long exclusive = 0, pseudo_locked = 0;
 803        struct rdt_domain *dom;
 804        int i, hwb, swb, excl, psl;
 805        enum rdtgrp_mode mode;
 806        bool sep = false;
 807        u32 *ctrl;
 808
 809        mutex_lock(&rdtgroup_mutex);
 810        hw_shareable = r->cache.shareable_bits;
 811        list_for_each_entry(dom, &r->domains, list) {
 812                if (sep)
 813                        seq_putc(seq, ';');
 814                ctrl = dom->ctrl_val;
 815                sw_shareable = 0;
 816                exclusive = 0;
 817                seq_printf(seq, "%d=", dom->id);
 818                for (i = 0; i < closids_supported(); i++, ctrl++) {
 819                        if (!closid_allocated(i))
 820                                continue;
 821                        mode = rdtgroup_mode_by_closid(i);
 822                        switch (mode) {
 823                        case RDT_MODE_SHAREABLE:
 824                                sw_shareable |= *ctrl;
 825                                break;
 826                        case RDT_MODE_EXCLUSIVE:
 827                                exclusive |= *ctrl;
 828                                break;
 829                        case RDT_MODE_PSEUDO_LOCKSETUP:
 830                        /*
 831                         * RDT_MODE_PSEUDO_LOCKSETUP is possible
 832                         * here but not included since the CBM
 833                         * associated with this CLOSID in this mode
 834                         * is not initialized and no task or cpu can be
 835                         * assigned this CLOSID.
 836                         */
 837                                break;
 838                        case RDT_MODE_PSEUDO_LOCKED:
 839                        case RDT_NUM_MODES:
 840                                WARN(1,
 841                                     "invalid mode for closid %d\n", i);
 842                                break;
 843                        }
 844                }
 845                for (i = r->cache.cbm_len - 1; i >= 0; i--) {
 846                        pseudo_locked = dom->plr ? dom->plr->cbm : 0;
 847                        hwb = test_bit(i, &hw_shareable);
 848                        swb = test_bit(i, &sw_shareable);
 849                        excl = test_bit(i, &exclusive);
 850                        psl = test_bit(i, &pseudo_locked);
 851                        if (hwb && swb)
 852                                seq_putc(seq, 'X');
 853                        else if (hwb && !swb)
 854                                seq_putc(seq, 'H');
 855                        else if (!hwb && swb)
 856                                seq_putc(seq, 'S');
 857                        else if (excl)
 858                                seq_putc(seq, 'E');
 859                        else if (psl)
 860                                seq_putc(seq, 'P');
 861                        else /* Unused bits remain */
 862                                seq_putc(seq, '0');
 863                }
 864                sep = true;
 865        }
 866        seq_putc(seq, '\n');
 867        mutex_unlock(&rdtgroup_mutex);
 868        return 0;
 869}
 870
 871static int rdt_min_bw_show(struct kernfs_open_file *of,
 872                             struct seq_file *seq, void *v)
 873{
 874        struct rdt_resource *r = of->kn->parent->priv;
 875
 876        seq_printf(seq, "%u\n", r->membw.min_bw);
 877        return 0;
 878}
 879
 880static int rdt_num_rmids_show(struct kernfs_open_file *of,
 881                              struct seq_file *seq, void *v)
 882{
 883        struct rdt_resource *r = of->kn->parent->priv;
 884
 885        seq_printf(seq, "%d\n", r->num_rmid);
 886
 887        return 0;
 888}
 889
 890static int rdt_mon_features_show(struct kernfs_open_file *of,
 891                                 struct seq_file *seq, void *v)
 892{
 893        struct rdt_resource *r = of->kn->parent->priv;
 894        struct mon_evt *mevt;
 895
 896        list_for_each_entry(mevt, &r->evt_list, list)
 897                seq_printf(seq, "%s\n", mevt->name);
 898
 899        return 0;
 900}
 901
 902static int rdt_bw_gran_show(struct kernfs_open_file *of,
 903                             struct seq_file *seq, void *v)
 904{
 905        struct rdt_resource *r = of->kn->parent->priv;
 906
 907        seq_printf(seq, "%u\n", r->membw.bw_gran);
 908        return 0;
 909}
 910
 911static int rdt_delay_linear_show(struct kernfs_open_file *of,
 912                             struct seq_file *seq, void *v)
 913{
 914        struct rdt_resource *r = of->kn->parent->priv;
 915
 916        seq_printf(seq, "%u\n", r->membw.delay_linear);
 917        return 0;
 918}
 919
 920static int max_threshold_occ_show(struct kernfs_open_file *of,
 921                                  struct seq_file *seq, void *v)
 922{
 923        struct rdt_resource *r = of->kn->parent->priv;
 924
 925        seq_printf(seq, "%u\n", resctrl_cqm_threshold * r->mon_scale);
 926
 927        return 0;
 928}
 929
 930static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
 931                                       char *buf, size_t nbytes, loff_t off)
 932{
 933        struct rdt_resource *r = of->kn->parent->priv;
 934        unsigned int bytes;
 935        int ret;
 936
 937        ret = kstrtouint(buf, 0, &bytes);
 938        if (ret)
 939                return ret;
 940
 941        if (bytes > (boot_cpu_data.x86_cache_size * 1024))
 942                return -EINVAL;
 943
 944        resctrl_cqm_threshold = bytes / r->mon_scale;
 945
 946        return nbytes;
 947}
 948
 949/*
 950 * rdtgroup_mode_show - Display mode of this resource group
 951 */
 952static int rdtgroup_mode_show(struct kernfs_open_file *of,
 953                              struct seq_file *s, void *v)
 954{
 955        struct rdtgroup *rdtgrp;
 956
 957        rdtgrp = rdtgroup_kn_lock_live(of->kn);
 958        if (!rdtgrp) {
 959                rdtgroup_kn_unlock(of->kn);
 960                return -ENOENT;
 961        }
 962
 963        seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
 964
 965        rdtgroup_kn_unlock(of->kn);
 966        return 0;
 967}
 968
 969/**
 970 * rdt_cdp_peer_get - Retrieve CDP peer if it exists
 971 * @r: RDT resource to which RDT domain @d belongs
 972 * @d: Cache instance for which a CDP peer is requested
 973 * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
 974 *         Used to return the result.
 975 * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
 976 *         Used to return the result.
 977 *
 978 * RDT resources are managed independently and by extension the RDT domains
 979 * (RDT resource instances) are managed independently also. The Code and
 980 * Data Prioritization (CDP) RDT resources, while managed independently,
 981 * could refer to the same underlying hardware. For example,
 982 * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
 983 *
 984 * When provided with an RDT resource @r and an instance of that RDT
 985 * resource @d rdt_cdp_peer_get() will return if there is a peer RDT
 986 * resource and the exact instance that shares the same hardware.
 987 *
 988 * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
 989 *         If a CDP peer was found, @r_cdp will point to the peer RDT resource
 990 *         and @d_cdp will point to the peer RDT domain.
 991 */
 992static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
 993                            struct rdt_resource **r_cdp,
 994                            struct rdt_domain **d_cdp)
 995{
 996        struct rdt_resource *_r_cdp = NULL;
 997        struct rdt_domain *_d_cdp = NULL;
 998        int ret = 0;
 999
1000        switch (r->rid) {
1001        case RDT_RESOURCE_L3DATA:
1002                _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
1003                break;
1004        case RDT_RESOURCE_L3CODE:
1005                _r_cdp =  &rdt_resources_all[RDT_RESOURCE_L3DATA];
1006                break;
1007        case RDT_RESOURCE_L2DATA:
1008                _r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2CODE];
1009                break;
1010        case RDT_RESOURCE_L2CODE:
1011                _r_cdp =  &rdt_resources_all[RDT_RESOURCE_L2DATA];
1012                break;
1013        default:
1014                ret = -ENOENT;
1015                goto out;
1016        }
1017
1018        /*
1019         * When a new CPU comes online and CDP is enabled then the new
1020         * RDT domains (if any) associated with both CDP RDT resources
1021         * are added in the same CPU online routine while the
1022         * rdtgroup_mutex is held. It should thus not happen for one
1023         * RDT domain to exist and be associated with its RDT CDP
1024         * resource but there is no RDT domain associated with the
1025         * peer RDT CDP resource. Hence the WARN.
1026         */
1027        _d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
1028        if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) {
1029                _r_cdp = NULL;
1030                ret = -EINVAL;
1031        }
1032
1033out:
1034        *r_cdp = _r_cdp;
1035        *d_cdp = _d_cdp;
1036
1037        return ret;
1038}
1039
1040/**
1041 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1042 * @r: Resource to which domain instance @d belongs.
1043 * @d: The domain instance for which @closid is being tested.
1044 * @cbm: Capacity bitmask being tested.
1045 * @closid: Intended closid for @cbm.
1046 * @exclusive: Only check if overlaps with exclusive resource groups
1047 *
1048 * Checks if provided @cbm intended to be used for @closid on domain
1049 * @d overlaps with any other closids or other hardware usage associated
1050 * with this domain. If @exclusive is true then only overlaps with
1051 * resource groups in exclusive mode will be considered. If @exclusive
1052 * is false then overlaps with any resource group or hardware entities
1053 * will be considered.
1054 *
1055 * @cbm is unsigned long, even if only 32 bits are used, to make the
1056 * bitmap functions work correctly.
1057 *
1058 * Return: false if CBM does not overlap, true if it does.
1059 */
1060static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1061                                    unsigned long cbm, int closid, bool exclusive)
1062{
1063        enum rdtgrp_mode mode;
1064        unsigned long ctrl_b;
1065        u32 *ctrl;
1066        int i;
1067
1068        /* Check for any overlap with regions used by hardware directly */
1069        if (!exclusive) {
1070                ctrl_b = r->cache.shareable_bits;
1071                if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1072                        return true;
1073        }
1074
1075        /* Check for overlap with other resource groups */
1076        ctrl = d->ctrl_val;
1077        for (i = 0; i < closids_supported(); i++, ctrl++) {
1078                ctrl_b = *ctrl;
1079                mode = rdtgroup_mode_by_closid(i);
1080                if (closid_allocated(i) && i != closid &&
1081                    mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1082                        if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1083                                if (exclusive) {
1084                                        if (mode == RDT_MODE_EXCLUSIVE)
1085                                                return true;
1086                                        continue;
1087                                }
1088                                return true;
1089                        }
1090                }
1091        }
1092
1093        return false;
1094}
1095
1096/**
1097 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1098 * @r: Resource to which domain instance @d belongs.
1099 * @d: The domain instance for which @closid is being tested.
1100 * @cbm: Capacity bitmask being tested.
1101 * @closid: Intended closid for @cbm.
1102 * @exclusive: Only check if overlaps with exclusive resource groups
1103 *
1104 * Resources that can be allocated using a CBM can use the CBM to control
1105 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1106 * for overlap. Overlap test is not limited to the specific resource for
1107 * which the CBM is intended though - when dealing with CDP resources that
1108 * share the underlying hardware the overlap check should be performed on
1109 * the CDP resource sharing the hardware also.
1110 *
1111 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1112 * overlap test.
1113 *
1114 * Return: true if CBM overlap detected, false if there is no overlap
1115 */
1116bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1117                           unsigned long cbm, int closid, bool exclusive)
1118{
1119        struct rdt_resource *r_cdp;
1120        struct rdt_domain *d_cdp;
1121
1122        if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
1123                return true;
1124
1125        if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
1126                return false;
1127
1128        return  __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
1129}
1130
1131/**
1132 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1133 *
1134 * An exclusive resource group implies that there should be no sharing of
1135 * its allocated resources. At the time this group is considered to be
1136 * exclusive this test can determine if its current schemata supports this
1137 * setting by testing for overlap with all other resource groups.
1138 *
1139 * Return: true if resource group can be exclusive, false if there is overlap
1140 * with allocations of other resource groups and thus this resource group
1141 * cannot be exclusive.
1142 */
1143static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1144{
1145        int closid = rdtgrp->closid;
1146        struct rdt_resource *r;
1147        bool has_cache = false;
1148        struct rdt_domain *d;
1149
1150        for_each_alloc_enabled_rdt_resource(r) {
1151                if (r->rid == RDT_RESOURCE_MBA)
1152                        continue;
1153                has_cache = true;
1154                list_for_each_entry(d, &r->domains, list) {
1155                        if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
1156                                                  rdtgrp->closid, false)) {
1157                                rdt_last_cmd_puts("Schemata overlaps\n");
1158                                return false;
1159                        }
1160                }
1161        }
1162
1163        if (!has_cache) {
1164                rdt_last_cmd_puts("Cannot be exclusive without CAT/CDP\n");
1165                return false;
1166        }
1167
1168        return true;
1169}
1170
1171/**
1172 * rdtgroup_mode_write - Modify the resource group's mode
1173 *
1174 */
1175static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1176                                   char *buf, size_t nbytes, loff_t off)
1177{
1178        struct rdtgroup *rdtgrp;
1179        enum rdtgrp_mode mode;
1180        int ret = 0;
1181
1182        /* Valid input requires a trailing newline */
1183        if (nbytes == 0 || buf[nbytes - 1] != '\n')
1184                return -EINVAL;
1185        buf[nbytes - 1] = '\0';
1186
1187        rdtgrp = rdtgroup_kn_lock_live(of->kn);
1188        if (!rdtgrp) {
1189                rdtgroup_kn_unlock(of->kn);
1190                return -ENOENT;
1191        }
1192
1193        rdt_last_cmd_clear();
1194
1195        mode = rdtgrp->mode;
1196
1197        if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1198            (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1199            (!strcmp(buf, "pseudo-locksetup") &&
1200             mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1201            (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1202                goto out;
1203
1204        if (mode == RDT_MODE_PSEUDO_LOCKED) {
1205                rdt_last_cmd_puts("Cannot change pseudo-locked group\n");
1206                ret = -EINVAL;
1207                goto out;
1208        }
1209
1210        if (!strcmp(buf, "shareable")) {
1211                if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1212                        ret = rdtgroup_locksetup_exit(rdtgrp);
1213                        if (ret)
1214                                goto out;
1215                }
1216                rdtgrp->mode = RDT_MODE_SHAREABLE;
1217        } else if (!strcmp(buf, "exclusive")) {
1218                if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1219                        ret = -EINVAL;
1220                        goto out;
1221                }
1222                if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1223                        ret = rdtgroup_locksetup_exit(rdtgrp);
1224                        if (ret)
1225                                goto out;
1226                }
1227                rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1228        } else if (!strcmp(buf, "pseudo-locksetup")) {
1229                ret = rdtgroup_locksetup_enter(rdtgrp);
1230                if (ret)
1231                        goto out;
1232                rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1233        } else {
1234                rdt_last_cmd_puts("Unknown or unsupported mode\n");
1235                ret = -EINVAL;
1236        }
1237
1238out:
1239        rdtgroup_kn_unlock(of->kn);
1240        return ret ?: nbytes;
1241}
1242
1243/**
1244 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1245 * @r: RDT resource to which @d belongs.
1246 * @d: RDT domain instance.
1247 * @cbm: bitmask for which the size should be computed.
1248 *
1249 * The bitmask provided associated with the RDT domain instance @d will be
1250 * translated into how many bytes it represents. The size in bytes is
1251 * computed by first dividing the total cache size by the CBM length to
1252 * determine how many bytes each bit in the bitmask represents. The result
1253 * is multiplied with the number of bits set in the bitmask.
1254 *
1255 * @cbm is unsigned long, even if only 32 bits are used to make the
1256 * bitmap functions work correctly.
1257 */
1258unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1259                                  struct rdt_domain *d, unsigned long cbm)
1260{
1261        struct cpu_cacheinfo *ci;
1262        unsigned int size = 0;
1263        int num_b, i;
1264
1265        num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1266        ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1267        for (i = 0; i < ci->num_leaves; i++) {
1268                if (ci->info_list[i].level == r->cache_level) {
1269                        size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1270                        break;
1271                }
1272        }
1273
1274        return size;
1275}
1276
1277/**
1278 * rdtgroup_size_show - Display size in bytes of allocated regions
1279 *
1280 * The "size" file mirrors the layout of the "schemata" file, printing the
1281 * size in bytes of each region instead of the capacity bitmask.
1282 *
1283 */
1284static int rdtgroup_size_show(struct kernfs_open_file *of,
1285                              struct seq_file *s, void *v)
1286{
1287        struct rdtgroup *rdtgrp;
1288        struct rdt_resource *r;
1289        struct rdt_domain *d;
1290        unsigned int size;
1291        int ret = 0;
1292        bool sep;
1293        u32 ctrl;
1294
1295        rdtgrp = rdtgroup_kn_lock_live(of->kn);
1296        if (!rdtgrp) {
1297                rdtgroup_kn_unlock(of->kn);
1298                return -ENOENT;
1299        }
1300
1301        if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1302                if (!rdtgrp->plr->d) {
1303                        rdt_last_cmd_clear();
1304                        rdt_last_cmd_puts("Cache domain offline\n");
1305                        ret = -ENODEV;
1306                } else {
1307                        seq_printf(s, "%*s:", max_name_width,
1308                                   rdtgrp->plr->r->name);
1309                        size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
1310                                                    rdtgrp->plr->d,
1311                                                    rdtgrp->plr->cbm);
1312                        seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1313                }
1314                goto out;
1315        }
1316
1317        for_each_alloc_enabled_rdt_resource(r) {
1318                sep = false;
1319                seq_printf(s, "%*s:", max_name_width, r->name);
1320                list_for_each_entry(d, &r->domains, list) {
1321                        if (sep)
1322                                seq_putc(s, ';');
1323                        if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1324                                size = 0;
1325                        } else {
1326                                ctrl = (!is_mba_sc(r) ?
1327                                                d->ctrl_val[rdtgrp->closid] :
1328                                                d->mbps_val[rdtgrp->closid]);
1329                                if (r->rid == RDT_RESOURCE_MBA)
1330                                        size = ctrl;
1331                                else
1332                                        size = rdtgroup_cbm_to_size(r, d, ctrl);
1333                        }
1334                        seq_printf(s, "%d=%u", d->id, size);
1335                        sep = true;
1336                }
1337                seq_putc(s, '\n');
1338        }
1339
1340out:
1341        rdtgroup_kn_unlock(of->kn);
1342
1343        return ret;
1344}
1345
1346/* rdtgroup information files for one cache resource. */
1347static struct rftype res_common_files[] = {
1348        {
1349                .name           = "last_cmd_status",
1350                .mode           = 0444,
1351                .kf_ops         = &rdtgroup_kf_single_ops,
1352                .seq_show       = rdt_last_cmd_status_show,
1353                .fflags         = RF_TOP_INFO,
1354        },
1355        {
1356                .name           = "num_closids",
1357                .mode           = 0444,
1358                .kf_ops         = &rdtgroup_kf_single_ops,
1359                .seq_show       = rdt_num_closids_show,
1360                .fflags         = RF_CTRL_INFO,
1361        },
1362        {
1363                .name           = "mon_features",
1364                .mode           = 0444,
1365                .kf_ops         = &rdtgroup_kf_single_ops,
1366                .seq_show       = rdt_mon_features_show,
1367                .fflags         = RF_MON_INFO,
1368        },
1369        {
1370                .name           = "num_rmids",
1371                .mode           = 0444,
1372                .kf_ops         = &rdtgroup_kf_single_ops,
1373                .seq_show       = rdt_num_rmids_show,
1374                .fflags         = RF_MON_INFO,
1375        },
1376        {
1377                .name           = "cbm_mask",
1378                .mode           = 0444,
1379                .kf_ops         = &rdtgroup_kf_single_ops,
1380                .seq_show       = rdt_default_ctrl_show,
1381                .fflags         = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1382        },
1383        {
1384                .name           = "min_cbm_bits",
1385                .mode           = 0444,
1386                .kf_ops         = &rdtgroup_kf_single_ops,
1387                .seq_show       = rdt_min_cbm_bits_show,
1388                .fflags         = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1389        },
1390        {
1391                .name           = "shareable_bits",
1392                .mode           = 0444,
1393                .kf_ops         = &rdtgroup_kf_single_ops,
1394                .seq_show       = rdt_shareable_bits_show,
1395                .fflags         = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1396        },
1397        {
1398                .name           = "bit_usage",
1399                .mode           = 0444,
1400                .kf_ops         = &rdtgroup_kf_single_ops,
1401                .seq_show       = rdt_bit_usage_show,
1402                .fflags         = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1403        },
1404        {
1405                .name           = "min_bandwidth",
1406                .mode           = 0444,
1407                .kf_ops         = &rdtgroup_kf_single_ops,
1408                .seq_show       = rdt_min_bw_show,
1409                .fflags         = RF_CTRL_INFO | RFTYPE_RES_MB,
1410        },
1411        {
1412                .name           = "bandwidth_gran",
1413                .mode           = 0444,
1414                .kf_ops         = &rdtgroup_kf_single_ops,
1415                .seq_show       = rdt_bw_gran_show,
1416                .fflags         = RF_CTRL_INFO | RFTYPE_RES_MB,
1417        },
1418        {
1419                .name           = "delay_linear",
1420                .mode           = 0444,
1421                .kf_ops         = &rdtgroup_kf_single_ops,
1422                .seq_show       = rdt_delay_linear_show,
1423                .fflags         = RF_CTRL_INFO | RFTYPE_RES_MB,
1424        },
1425        {
1426                .name           = "max_threshold_occupancy",
1427                .mode           = 0644,
1428                .kf_ops         = &rdtgroup_kf_single_ops,
1429                .write          = max_threshold_occ_write,
1430                .seq_show       = max_threshold_occ_show,
1431                .fflags         = RF_MON_INFO | RFTYPE_RES_CACHE,
1432        },
1433        {
1434                .name           = "cpus",
1435                .mode           = 0644,
1436                .kf_ops         = &rdtgroup_kf_single_ops,
1437                .write          = rdtgroup_cpus_write,
1438                .seq_show       = rdtgroup_cpus_show,
1439                .fflags         = RFTYPE_BASE,
1440        },
1441        {
1442                .name           = "cpus_list",
1443                .mode           = 0644,
1444                .kf_ops         = &rdtgroup_kf_single_ops,
1445                .write          = rdtgroup_cpus_write,
1446                .seq_show       = rdtgroup_cpus_show,
1447                .flags          = RFTYPE_FLAGS_CPUS_LIST,
1448                .fflags         = RFTYPE_BASE,
1449        },
1450        {
1451                .name           = "tasks",
1452                .mode           = 0644,
1453                .kf_ops         = &rdtgroup_kf_single_ops,
1454                .write          = rdtgroup_tasks_write,
1455                .seq_show       = rdtgroup_tasks_show,
1456                .fflags         = RFTYPE_BASE,
1457        },
1458        {
1459                .name           = "schemata",
1460                .mode           = 0644,
1461                .kf_ops         = &rdtgroup_kf_single_ops,
1462                .write          = rdtgroup_schemata_write,
1463                .seq_show       = rdtgroup_schemata_show,
1464                .fflags         = RF_CTRL_BASE,
1465        },
1466        {
1467                .name           = "mode",
1468                .mode           = 0644,
1469                .kf_ops         = &rdtgroup_kf_single_ops,
1470                .write          = rdtgroup_mode_write,
1471                .seq_show       = rdtgroup_mode_show,
1472                .fflags         = RF_CTRL_BASE,
1473        },
1474        {
1475                .name           = "size",
1476                .mode           = 0444,
1477                .kf_ops         = &rdtgroup_kf_single_ops,
1478                .seq_show       = rdtgroup_size_show,
1479                .fflags         = RF_CTRL_BASE,
1480        },
1481
1482};
1483
1484static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1485{
1486        struct rftype *rfts, *rft;
1487        int ret, len;
1488
1489        rfts = res_common_files;
1490        len = ARRAY_SIZE(res_common_files);
1491
1492        lockdep_assert_held(&rdtgroup_mutex);
1493
1494        for (rft = rfts; rft < rfts + len; rft++) {
1495                if ((fflags & rft->fflags) == rft->fflags) {
1496                        ret = rdtgroup_add_file(kn, rft);
1497                        if (ret)
1498                                goto error;
1499                }
1500        }
1501
1502        return 0;
1503error:
1504        pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1505        while (--rft >= rfts) {
1506                if ((fflags & rft->fflags) == rft->fflags)
1507                        kernfs_remove_by_name(kn, rft->name);
1508        }
1509        return ret;
1510}
1511
1512/**
1513 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1514 * @r: The resource group with which the file is associated.
1515 * @name: Name of the file
1516 *
1517 * The permissions of named resctrl file, directory, or link are modified
1518 * to not allow read, write, or execute by any user.
1519 *
1520 * WARNING: This function is intended to communicate to the user that the
1521 * resctrl file has been locked down - that it is not relevant to the
1522 * particular state the system finds itself in. It should not be relied
1523 * on to protect from user access because after the file's permissions
1524 * are restricted the user can still change the permissions using chmod
1525 * from the command line.
1526 *
1527 * Return: 0 on success, <0 on failure.
1528 */
1529int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1530{
1531        struct iattr iattr = {.ia_valid = ATTR_MODE,};
1532        struct kernfs_node *kn;
1533        int ret = 0;
1534
1535        kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1536        if (!kn)
1537                return -ENOENT;
1538
1539        switch (kernfs_type(kn)) {
1540        case KERNFS_DIR:
1541                iattr.ia_mode = S_IFDIR;
1542                break;
1543        case KERNFS_FILE:
1544                iattr.ia_mode = S_IFREG;
1545                break;
1546        case KERNFS_LINK:
1547                iattr.ia_mode = S_IFLNK;
1548                break;
1549        }
1550
1551        ret = kernfs_setattr(kn, &iattr);
1552        kernfs_put(kn);
1553        return ret;
1554}
1555
1556/**
1557 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1558 * @r: The resource group with which the file is associated.
1559 * @name: Name of the file
1560 * @mask: Mask of permissions that should be restored
1561 *
1562 * Restore the permissions of the named file. If @name is a directory the
1563 * permissions of its parent will be used.
1564 *
1565 * Return: 0 on success, <0 on failure.
1566 */
1567int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1568                             umode_t mask)
1569{
1570        struct iattr iattr = {.ia_valid = ATTR_MODE,};
1571        struct kernfs_node *kn, *parent;
1572        struct rftype *rfts, *rft;
1573        int ret, len;
1574
1575        rfts = res_common_files;
1576        len = ARRAY_SIZE(res_common_files);
1577
1578        for (rft = rfts; rft < rfts + len; rft++) {
1579                if (!strcmp(rft->name, name))
1580                        iattr.ia_mode = rft->mode & mask;
1581        }
1582
1583        kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1584        if (!kn)
1585                return -ENOENT;
1586
1587        switch (kernfs_type(kn)) {
1588        case KERNFS_DIR:
1589                parent = kernfs_get_parent(kn);
1590                if (parent) {
1591                        iattr.ia_mode |= parent->mode;
1592                        kernfs_put(parent);
1593                }
1594                iattr.ia_mode |= S_IFDIR;
1595                break;
1596        case KERNFS_FILE:
1597                iattr.ia_mode |= S_IFREG;
1598                break;
1599        case KERNFS_LINK:
1600                iattr.ia_mode |= S_IFLNK;
1601                break;
1602        }
1603
1604        ret = kernfs_setattr(kn, &iattr);
1605        kernfs_put(kn);
1606        return ret;
1607}
1608
1609static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
1610                                      unsigned long fflags)
1611{
1612        struct kernfs_node *kn_subdir;
1613        int ret;
1614
1615        kn_subdir = kernfs_create_dir(kn_info, name,
1616                                      kn_info->mode, r);
1617        if (IS_ERR(kn_subdir))
1618                return PTR_ERR(kn_subdir);
1619
1620        kernfs_get(kn_subdir);
1621        ret = rdtgroup_kn_set_ugid(kn_subdir);
1622        if (ret)
1623                return ret;
1624
1625        ret = rdtgroup_add_files(kn_subdir, fflags);
1626        if (!ret)
1627                kernfs_activate(kn_subdir);
1628
1629        return ret;
1630}
1631
1632static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1633{
1634        struct rdt_resource *r;
1635        unsigned long fflags;
1636        char name[32];
1637        int ret;
1638
1639        /* create the directory */
1640        kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1641        if (IS_ERR(kn_info))
1642                return PTR_ERR(kn_info);
1643        kernfs_get(kn_info);
1644
1645        ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1646        if (ret)
1647                goto out_destroy;
1648
1649        for_each_alloc_enabled_rdt_resource(r) {
1650                fflags =  r->fflags | RF_CTRL_INFO;
1651                ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1652                if (ret)
1653                        goto out_destroy;
1654        }
1655
1656        for_each_mon_enabled_rdt_resource(r) {
1657                fflags =  r->fflags | RF_MON_INFO;
1658                sprintf(name, "%s_MON", r->name);
1659                ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1660                if (ret)
1661                        goto out_destroy;
1662        }
1663
1664        /*
1665         * This extra ref will be put in kernfs_remove() and guarantees
1666         * that @rdtgrp->kn is always accessible.
1667         */
1668        kernfs_get(kn_info);
1669
1670        ret = rdtgroup_kn_set_ugid(kn_info);
1671        if (ret)
1672                goto out_destroy;
1673
1674        kernfs_activate(kn_info);
1675
1676        return 0;
1677
1678out_destroy:
1679        kernfs_remove(kn_info);
1680        return ret;
1681}
1682
1683static int
1684mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1685                    char *name, struct kernfs_node **dest_kn)
1686{
1687        struct kernfs_node *kn;
1688        int ret;
1689
1690        /* create the directory */
1691        kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1692        if (IS_ERR(kn))
1693                return PTR_ERR(kn);
1694
1695        if (dest_kn)
1696                *dest_kn = kn;
1697
1698        /*
1699         * This extra ref will be put in kernfs_remove() and guarantees
1700         * that @rdtgrp->kn is always accessible.
1701         */
1702        kernfs_get(kn);
1703
1704        ret = rdtgroup_kn_set_ugid(kn);
1705        if (ret)
1706                goto out_destroy;
1707
1708        kernfs_activate(kn);
1709
1710        return 0;
1711
1712out_destroy:
1713        kernfs_remove(kn);
1714        return ret;
1715}
1716
1717static void l3_qos_cfg_update(void *arg)
1718{
1719        bool *enable = arg;
1720
1721        wrmsrl(MSR_IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1722}
1723
1724static void l2_qos_cfg_update(void *arg)
1725{
1726        bool *enable = arg;
1727
1728        wrmsrl(MSR_IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1729}
1730
1731static inline bool is_mba_linear(void)
1732{
1733        return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
1734}
1735
1736static int set_cache_qos_cfg(int level, bool enable)
1737{
1738        void (*update)(void *arg);
1739        struct rdt_resource *r_l;
1740        cpumask_var_t cpu_mask;
1741        struct rdt_domain *d;
1742        int cpu;
1743
1744        if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1745                return -ENOMEM;
1746
1747        if (level == RDT_RESOURCE_L3)
1748                update = l3_qos_cfg_update;
1749        else if (level == RDT_RESOURCE_L2)
1750                update = l2_qos_cfg_update;
1751        else
1752                return -EINVAL;
1753
1754        r_l = &rdt_resources_all[level];
1755        list_for_each_entry(d, &r_l->domains, list) {
1756                /* Pick one CPU from each domain instance to update MSR */
1757                cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1758        }
1759        cpu = get_cpu();
1760        /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1761        if (cpumask_test_cpu(cpu, cpu_mask))
1762                update(&enable);
1763        /* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1764        smp_call_function_many(cpu_mask, update, &enable, 1);
1765        put_cpu();
1766
1767        free_cpumask_var(cpu_mask);
1768
1769        return 0;
1770}
1771
1772/*
1773 * Enable or disable the MBA software controller
1774 * which helps user specify bandwidth in MBps.
1775 * MBA software controller is supported only if
1776 * MBM is supported and MBA is in linear scale.
1777 */
1778static int set_mba_sc(bool mba_sc)
1779{
1780        struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1781        struct rdt_domain *d;
1782
1783        if (!is_mbm_enabled() || !is_mba_linear() ||
1784            mba_sc == is_mba_sc(r))
1785                return -EINVAL;
1786
1787        r->membw.mba_sc = mba_sc;
1788        list_for_each_entry(d, &r->domains, list)
1789                setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1790
1791        return 0;
1792}
1793
1794static int cdp_enable(int level, int data_type, int code_type)
1795{
1796        struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
1797        struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
1798        struct rdt_resource *r_l = &rdt_resources_all[level];
1799        int ret;
1800
1801        if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
1802            !r_lcode->alloc_capable)
1803                return -EINVAL;
1804
1805        ret = set_cache_qos_cfg(level, true);
1806        if (!ret) {
1807                r_l->alloc_enabled = false;
1808                r_ldata->alloc_enabled = true;
1809                r_lcode->alloc_enabled = true;
1810        }
1811        return ret;
1812}
1813
1814static int cdpl3_enable(void)
1815{
1816        return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
1817                          RDT_RESOURCE_L3CODE);
1818}
1819
1820static int cdpl2_enable(void)
1821{
1822        return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
1823                          RDT_RESOURCE_L2CODE);
1824}
1825
1826static void cdp_disable(int level, int data_type, int code_type)
1827{
1828        struct rdt_resource *r = &rdt_resources_all[level];
1829
1830        r->alloc_enabled = r->alloc_capable;
1831
1832        if (rdt_resources_all[data_type].alloc_enabled) {
1833                rdt_resources_all[data_type].alloc_enabled = false;
1834                rdt_resources_all[code_type].alloc_enabled = false;
1835                set_cache_qos_cfg(level, false);
1836        }
1837}
1838
1839static void cdpl3_disable(void)
1840{
1841        cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
1842}
1843
1844static void cdpl2_disable(void)
1845{
1846        cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
1847}
1848
1849static void cdp_disable_all(void)
1850{
1851        if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
1852                cdpl3_disable();
1853        if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
1854                cdpl2_disable();
1855}
1856
1857/*
1858 * We don't allow rdtgroup directories to be created anywhere
1859 * except the root directory. Thus when looking for the rdtgroup
1860 * structure for a kernfs node we are either looking at a directory,
1861 * in which case the rdtgroup structure is pointed at by the "priv"
1862 * field, otherwise we have a file, and need only look to the parent
1863 * to find the rdtgroup.
1864 */
1865static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
1866{
1867        if (kernfs_type(kn) == KERNFS_DIR) {
1868                /*
1869                 * All the resource directories use "kn->priv"
1870                 * to point to the "struct rdtgroup" for the
1871                 * resource. "info" and its subdirectories don't
1872                 * have rdtgroup structures, so return NULL here.
1873                 */
1874                if (kn == kn_info || kn->parent == kn_info)
1875                        return NULL;
1876                else
1877                        return kn->priv;
1878        } else {
1879                return kn->parent->priv;
1880        }
1881}
1882
1883struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
1884{
1885        struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1886
1887        if (!rdtgrp)
1888                return NULL;
1889
1890        atomic_inc(&rdtgrp->waitcount);
1891        kernfs_break_active_protection(kn);
1892
1893        mutex_lock(&rdtgroup_mutex);
1894
1895        /* Was this group deleted while we waited? */
1896        if (rdtgrp->flags & RDT_DELETED)
1897                return NULL;
1898
1899        return rdtgrp;
1900}
1901
1902void rdtgroup_kn_unlock(struct kernfs_node *kn)
1903{
1904        struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1905
1906        if (!rdtgrp)
1907                return;
1908
1909        mutex_unlock(&rdtgroup_mutex);
1910
1911        if (atomic_dec_and_test(&rdtgrp->waitcount) &&
1912            (rdtgrp->flags & RDT_DELETED)) {
1913                if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
1914                    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
1915                        rdtgroup_pseudo_lock_remove(rdtgrp);
1916                kernfs_unbreak_active_protection(kn);
1917                kernfs_put(rdtgrp->kn);
1918                kfree(rdtgrp);
1919        } else {
1920                kernfs_unbreak_active_protection(kn);
1921        }
1922}
1923
1924static int mkdir_mondata_all(struct kernfs_node *parent_kn,
1925                             struct rdtgroup *prgrp,
1926                             struct kernfs_node **mon_data_kn);
1927
1928static int rdt_enable_ctx(struct rdt_fs_context *ctx)
1929{
1930        int ret = 0;
1931
1932        if (ctx->enable_cdpl2)
1933                ret = cdpl2_enable();
1934
1935        if (!ret && ctx->enable_cdpl3)
1936                ret = cdpl3_enable();
1937
1938        if (!ret && ctx->enable_mba_mbps)
1939                ret = set_mba_sc(true);
1940
1941        return ret;
1942}
1943
1944static int rdt_get_tree(struct fs_context *fc)
1945{
1946        struct rdt_fs_context *ctx = rdt_fc2context(fc);
1947        struct rdt_domain *dom;
1948        struct rdt_resource *r;
1949        int ret;
1950
1951        cpus_read_lock();
1952        mutex_lock(&rdtgroup_mutex);
1953        /*
1954         * resctrl file system can only be mounted once.
1955         */
1956        if (static_branch_unlikely(&rdt_enable_key)) {
1957                ret = -EBUSY;
1958                goto out;
1959        }
1960
1961        ret = rdt_enable_ctx(ctx);
1962        if (ret < 0)
1963                goto out_cdp;
1964
1965        closid_init();
1966
1967        ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
1968        if (ret < 0)
1969                goto out_mba;
1970
1971        if (rdt_mon_capable) {
1972                ret = mongroup_create_dir(rdtgroup_default.kn,
1973                                          NULL, "mon_groups",
1974                                          &kn_mongrp);
1975                if (ret < 0)
1976                        goto out_info;
1977                kernfs_get(kn_mongrp);
1978
1979                ret = mkdir_mondata_all(rdtgroup_default.kn,
1980                                        &rdtgroup_default, &kn_mondata);
1981                if (ret < 0)
1982                        goto out_mongrp;
1983                kernfs_get(kn_mondata);
1984                rdtgroup_default.mon.mon_data_kn = kn_mondata;
1985        }
1986
1987        ret = rdt_pseudo_lock_init();
1988        if (ret)
1989                goto out_mondata;
1990
1991        ret = kernfs_get_tree(fc);
1992        if (ret < 0)
1993                goto out_psl;
1994
1995        if (rdt_alloc_capable)
1996                static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
1997        if (rdt_mon_capable)
1998                static_branch_enable_cpuslocked(&rdt_mon_enable_key);
1999
2000        if (rdt_alloc_capable || rdt_mon_capable)
2001                static_branch_enable_cpuslocked(&rdt_enable_key);
2002
2003        if (is_mbm_enabled()) {
2004                r = &rdt_resources_all[RDT_RESOURCE_L3];
2005                list_for_each_entry(dom, &r->domains, list)
2006                        mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2007        }
2008
2009        goto out;
2010
2011out_psl:
2012        rdt_pseudo_lock_release();
2013out_mondata:
2014        if (rdt_mon_capable)
2015                kernfs_remove(kn_mondata);
2016out_mongrp:
2017        if (rdt_mon_capable)
2018                kernfs_remove(kn_mongrp);
2019out_info:
2020        kernfs_remove(kn_info);
2021out_mba:
2022        if (ctx->enable_mba_mbps)
2023                set_mba_sc(false);
2024out_cdp:
2025        cdp_disable_all();
2026out:
2027        rdt_last_cmd_clear();
2028        mutex_unlock(&rdtgroup_mutex);
2029        cpus_read_unlock();
2030        return ret;
2031}
2032
2033enum rdt_param {
2034        Opt_cdp,
2035        Opt_cdpl2,
2036        Opt_mba_mbps,
2037        nr__rdt_params
2038};
2039
2040static const struct fs_parameter_spec rdt_param_specs[] = {
2041        fsparam_flag("cdp",             Opt_cdp),
2042        fsparam_flag("cdpl2",           Opt_cdpl2),
2043        fsparam_flag("mba_MBps",        Opt_mba_mbps),
2044        {}
2045};
2046
2047static const struct fs_parameter_description rdt_fs_parameters = {
2048        .name           = "rdt",
2049        .specs          = rdt_param_specs,
2050};
2051
2052static int rdt_parse_param(struct fs_context *fc, struct fs_parameter *param)
2053{
2054        struct rdt_fs_context *ctx = rdt_fc2context(fc);
2055        struct fs_parse_result result;
2056        int opt;
2057
2058        opt = fs_parse(fc, &rdt_fs_parameters, param, &result);
2059        if (opt < 0)
2060                return opt;
2061
2062        switch (opt) {
2063        case Opt_cdp:
2064                ctx->enable_cdpl3 = true;
2065                return 0;
2066        case Opt_cdpl2:
2067                ctx->enable_cdpl2 = true;
2068                return 0;
2069        case Opt_mba_mbps:
2070                if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2071                        return -EINVAL;
2072                ctx->enable_mba_mbps = true;
2073                return 0;
2074        }
2075
2076        return -EINVAL;
2077}
2078
2079static void rdt_fs_context_free(struct fs_context *fc)
2080{
2081        struct rdt_fs_context *ctx = rdt_fc2context(fc);
2082
2083        kernfs_free_fs_context(fc);
2084        kfree(ctx);
2085}
2086
2087static const struct fs_context_operations rdt_fs_context_ops = {
2088        .free           = rdt_fs_context_free,
2089        .parse_param    = rdt_parse_param,
2090        .get_tree       = rdt_get_tree,
2091};
2092
2093static int rdt_init_fs_context(struct fs_context *fc)
2094{
2095        struct rdt_fs_context *ctx;
2096
2097        ctx = kzalloc(sizeof(struct rdt_fs_context), GFP_KERNEL);
2098        if (!ctx)
2099                return -ENOMEM;
2100
2101        ctx->kfc.root = rdt_root;
2102        ctx->kfc.magic = RDTGROUP_SUPER_MAGIC;
2103        fc->fs_private = &ctx->kfc;
2104        fc->ops = &rdt_fs_context_ops;
2105        put_user_ns(fc->user_ns);
2106        fc->user_ns = get_user_ns(&init_user_ns);
2107        fc->global = true;
2108        return 0;
2109}
2110
2111static int reset_all_ctrls(struct rdt_resource *r)
2112{
2113        struct msr_param msr_param;
2114        cpumask_var_t cpu_mask;
2115        struct rdt_domain *d;
2116        int i, cpu;
2117
2118        if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2119                return -ENOMEM;
2120
2121        msr_param.res = r;
2122        msr_param.low = 0;
2123        msr_param.high = r->num_closid;
2124
2125        /*
2126         * Disable resource control for this resource by setting all
2127         * CBMs in all domains to the maximum mask value. Pick one CPU
2128         * from each domain to update the MSRs below.
2129         */
2130        list_for_each_entry(d, &r->domains, list) {
2131                cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2132
2133                for (i = 0; i < r->num_closid; i++)
2134                        d->ctrl_val[i] = r->default_ctrl;
2135        }
2136        cpu = get_cpu();
2137        /* Update CBM on this cpu if it's in cpu_mask. */
2138        if (cpumask_test_cpu(cpu, cpu_mask))
2139                rdt_ctrl_update(&msr_param);
2140        /* Update CBM on all other cpus in cpu_mask. */
2141        smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2142        put_cpu();
2143
2144        free_cpumask_var(cpu_mask);
2145
2146        return 0;
2147}
2148
2149static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
2150{
2151        return (rdt_alloc_capable &&
2152                (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
2153}
2154
2155static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
2156{
2157        return (rdt_mon_capable &&
2158                (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
2159}
2160
2161/*
2162 * Move tasks from one to the other group. If @from is NULL, then all tasks
2163 * in the systems are moved unconditionally (used for teardown).
2164 *
2165 * If @mask is not NULL the cpus on which moved tasks are running are set
2166 * in that mask so the update smp function call is restricted to affected
2167 * cpus.
2168 */
2169static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2170                                 struct cpumask *mask)
2171{
2172        struct task_struct *p, *t;
2173
2174        read_lock(&tasklist_lock);
2175        for_each_process_thread(p, t) {
2176                if (!from || is_closid_match(t, from) ||
2177                    is_rmid_match(t, from)) {
2178                        t->closid = to->closid;
2179                        t->rmid = to->mon.rmid;
2180
2181#ifdef CONFIG_SMP
2182                        /*
2183                         * This is safe on x86 w/o barriers as the ordering
2184                         * of writing to task_cpu() and t->on_cpu is
2185                         * reverse to the reading here. The detection is
2186                         * inaccurate as tasks might move or schedule
2187                         * before the smp function call takes place. In
2188                         * such a case the function call is pointless, but
2189                         * there is no other side effect.
2190                         */
2191                        if (mask && t->on_cpu)
2192                                cpumask_set_cpu(task_cpu(t), mask);
2193#endif
2194                }
2195        }
2196        read_unlock(&tasklist_lock);
2197}
2198
2199static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2200{
2201        struct rdtgroup *sentry, *stmp;
2202        struct list_head *head;
2203
2204        head = &rdtgrp->mon.crdtgrp_list;
2205        list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2206                free_rmid(sentry->mon.rmid);
2207                list_del(&sentry->mon.crdtgrp_list);
2208                kfree(sentry);
2209        }
2210}
2211
2212/*
2213 * Forcibly remove all of subdirectories under root.
2214 */
2215static void rmdir_all_sub(void)
2216{
2217        struct rdtgroup *rdtgrp, *tmp;
2218
2219        /* Move all tasks to the default resource group */
2220        rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2221
2222        list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2223                /* Free any child rmids */
2224                free_all_child_rdtgrp(rdtgrp);
2225
2226                /* Remove each rdtgroup other than root */
2227                if (rdtgrp == &rdtgroup_default)
2228                        continue;
2229
2230                if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2231                    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2232                        rdtgroup_pseudo_lock_remove(rdtgrp);
2233
2234                /*
2235                 * Give any CPUs back to the default group. We cannot copy
2236                 * cpu_online_mask because a CPU might have executed the
2237                 * offline callback already, but is still marked online.
2238                 */
2239                cpumask_or(&rdtgroup_default.cpu_mask,
2240                           &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2241
2242                free_rmid(rdtgrp->mon.rmid);
2243
2244                kernfs_remove(rdtgrp->kn);
2245                list_del(&rdtgrp->rdtgroup_list);
2246                kfree(rdtgrp);
2247        }
2248        /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2249        update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2250
2251        kernfs_remove(kn_info);
2252        kernfs_remove(kn_mongrp);
2253        kernfs_remove(kn_mondata);
2254}
2255
2256static void rdt_kill_sb(struct super_block *sb)
2257{
2258        struct rdt_resource *r;
2259
2260        cpus_read_lock();
2261        mutex_lock(&rdtgroup_mutex);
2262
2263        set_mba_sc(false);
2264
2265        /*Put everything back to default values. */
2266        for_each_alloc_enabled_rdt_resource(r)
2267                reset_all_ctrls(r);
2268        cdp_disable_all();
2269        rmdir_all_sub();
2270        rdt_pseudo_lock_release();
2271        rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2272        static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2273        static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2274        static_branch_disable_cpuslocked(&rdt_enable_key);
2275        kernfs_kill_sb(sb);
2276        mutex_unlock(&rdtgroup_mutex);
2277        cpus_read_unlock();
2278}
2279
2280static struct file_system_type rdt_fs_type = {
2281        .name                   = "resctrl",
2282        .init_fs_context        = rdt_init_fs_context,
2283        .parameters             = &rdt_fs_parameters,
2284        .kill_sb                = rdt_kill_sb,
2285};
2286
2287static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2288                       void *priv)
2289{
2290        struct kernfs_node *kn;
2291        int ret = 0;
2292
2293        kn = __kernfs_create_file(parent_kn, name, 0444,
2294                                  GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2295                                  &kf_mondata_ops, priv, NULL, NULL);
2296        if (IS_ERR(kn))
2297                return PTR_ERR(kn);
2298
2299        ret = rdtgroup_kn_set_ugid(kn);
2300        if (ret) {
2301                kernfs_remove(kn);
2302                return ret;
2303        }
2304
2305        return ret;
2306}
2307
2308/*
2309 * Remove all subdirectories of mon_data of ctrl_mon groups
2310 * and monitor groups with given domain id.
2311 */
2312void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
2313{
2314        struct rdtgroup *prgrp, *crgrp;
2315        char name[32];
2316
2317        if (!r->mon_enabled)
2318                return;
2319
2320        list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2321                sprintf(name, "mon_%s_%02d", r->name, dom_id);
2322                kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2323
2324                list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2325                        kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2326        }
2327}
2328
2329static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2330                                struct rdt_domain *d,
2331                                struct rdt_resource *r, struct rdtgroup *prgrp)
2332{
2333        union mon_data_bits priv;
2334        struct kernfs_node *kn;
2335        struct mon_evt *mevt;
2336        struct rmid_read rr;
2337        char name[32];
2338        int ret;
2339
2340        sprintf(name, "mon_%s_%02d", r->name, d->id);
2341        /* create the directory */
2342        kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2343        if (IS_ERR(kn))
2344                return PTR_ERR(kn);
2345
2346        /*
2347         * This extra ref will be put in kernfs_remove() and guarantees
2348         * that kn is always accessible.
2349         */
2350        kernfs_get(kn);
2351        ret = rdtgroup_kn_set_ugid(kn);
2352        if (ret)
2353                goto out_destroy;
2354
2355        if (WARN_ON(list_empty(&r->evt_list))) {
2356                ret = -EPERM;
2357                goto out_destroy;
2358        }
2359
2360        priv.u.rid = r->rid;
2361        priv.u.domid = d->id;
2362        list_for_each_entry(mevt, &r->evt_list, list) {
2363                priv.u.evtid = mevt->evtid;
2364                ret = mon_addfile(kn, mevt->name, priv.priv);
2365                if (ret)
2366                        goto out_destroy;
2367
2368                if (is_mbm_event(mevt->evtid))
2369                        mon_event_read(&rr, d, prgrp, mevt->evtid, true);
2370        }
2371        kernfs_activate(kn);
2372        return 0;
2373
2374out_destroy:
2375        kernfs_remove(kn);
2376        return ret;
2377}
2378
2379/*
2380 * Add all subdirectories of mon_data for "ctrl_mon" groups
2381 * and "monitor" groups with given domain id.
2382 */
2383void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2384                                    struct rdt_domain *d)
2385{
2386        struct kernfs_node *parent_kn;
2387        struct rdtgroup *prgrp, *crgrp;
2388        struct list_head *head;
2389
2390        if (!r->mon_enabled)
2391                return;
2392
2393        list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2394                parent_kn = prgrp->mon.mon_data_kn;
2395                mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2396
2397                head = &prgrp->mon.crdtgrp_list;
2398                list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2399                        parent_kn = crgrp->mon.mon_data_kn;
2400                        mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2401                }
2402        }
2403}
2404
2405static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2406                                       struct rdt_resource *r,
2407                                       struct rdtgroup *prgrp)
2408{
2409        struct rdt_domain *dom;
2410        int ret;
2411
2412        list_for_each_entry(dom, &r->domains, list) {
2413                ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2414                if (ret)
2415                        return ret;
2416        }
2417
2418        return 0;
2419}
2420
2421/*
2422 * This creates a directory mon_data which contains the monitored data.
2423 *
2424 * mon_data has one directory for each domain whic are named
2425 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2426 * with L3 domain looks as below:
2427 * ./mon_data:
2428 * mon_L3_00
2429 * mon_L3_01
2430 * mon_L3_02
2431 * ...
2432 *
2433 * Each domain directory has one file per event:
2434 * ./mon_L3_00/:
2435 * llc_occupancy
2436 *
2437 */
2438static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2439                             struct rdtgroup *prgrp,
2440                             struct kernfs_node **dest_kn)
2441{
2442        struct rdt_resource *r;
2443        struct kernfs_node *kn;
2444        int ret;
2445
2446        /*
2447         * Create the mon_data directory first.
2448         */
2449        ret = mongroup_create_dir(parent_kn, NULL, "mon_data", &kn);
2450        if (ret)
2451                return ret;
2452
2453        if (dest_kn)
2454                *dest_kn = kn;
2455
2456        /*
2457         * Create the subdirectories for each domain. Note that all events
2458         * in a domain like L3 are grouped into a resource whose domain is L3
2459         */
2460        for_each_mon_enabled_rdt_resource(r) {
2461                ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2462                if (ret)
2463                        goto out_destroy;
2464        }
2465
2466        return 0;
2467
2468out_destroy:
2469        kernfs_remove(kn);
2470        return ret;
2471}
2472
2473/**
2474 * cbm_ensure_valid - Enforce validity on provided CBM
2475 * @_val:       Candidate CBM
2476 * @r:          RDT resource to which the CBM belongs
2477 *
2478 * The provided CBM represents all cache portions available for use. This
2479 * may be represented by a bitmap that does not consist of contiguous ones
2480 * and thus be an invalid CBM.
2481 * Here the provided CBM is forced to be a valid CBM by only considering
2482 * the first set of contiguous bits as valid and clearing all bits.
2483 * The intention here is to provide a valid default CBM with which a new
2484 * resource group is initialized. The user can follow this with a
2485 * modification to the CBM if the default does not satisfy the
2486 * requirements.
2487 */
2488static u32 cbm_ensure_valid(u32 _val, struct rdt_resource *r)
2489{
2490        unsigned int cbm_len = r->cache.cbm_len;
2491        unsigned long first_bit, zero_bit;
2492        unsigned long val = _val;
2493
2494        if (!val)
2495                return 0;
2496
2497        first_bit = find_first_bit(&val, cbm_len);
2498        zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
2499
2500        /* Clear any remaining bits to ensure contiguous region */
2501        bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
2502        return (u32)val;
2503}
2504
2505/*
2506 * Initialize cache resources per RDT domain
2507 *
2508 * Set the RDT domain up to start off with all usable allocations. That is,
2509 * all shareable and unused bits. All-zero CBM is invalid.
2510 */
2511static int __init_one_rdt_domain(struct rdt_domain *d, struct rdt_resource *r,
2512                                 u32 closid)
2513{
2514        struct rdt_resource *r_cdp = NULL;
2515        struct rdt_domain *d_cdp = NULL;
2516        u32 used_b = 0, unused_b = 0;
2517        unsigned long tmp_cbm;
2518        enum rdtgrp_mode mode;
2519        u32 peer_ctl, *ctrl;
2520        int i;
2521
2522        rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp);
2523        d->have_new_ctrl = false;
2524        d->new_ctrl = r->cache.shareable_bits;
2525        used_b = r->cache.shareable_bits;
2526        ctrl = d->ctrl_val;
2527        for (i = 0; i < closids_supported(); i++, ctrl++) {
2528                if (closid_allocated(i) && i != closid) {
2529                        mode = rdtgroup_mode_by_closid(i);
2530                        if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2531                                /*
2532                                 * ctrl values for locksetup aren't relevant
2533                                 * until the schemata is written, and the mode
2534                                 * becomes RDT_MODE_PSEUDO_LOCKED.
2535                                 */
2536                                continue;
2537                        /*
2538                         * If CDP is active include peer domain's
2539                         * usage to ensure there is no overlap
2540                         * with an exclusive group.
2541                         */
2542                        if (d_cdp)
2543                                peer_ctl = d_cdp->ctrl_val[i];
2544                        else
2545                                peer_ctl = 0;
2546                        used_b |= *ctrl | peer_ctl;
2547                        if (mode == RDT_MODE_SHAREABLE)
2548                                d->new_ctrl |= *ctrl | peer_ctl;
2549                }
2550        }
2551        if (d->plr && d->plr->cbm > 0)
2552                used_b |= d->plr->cbm;
2553        unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2554        unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2555        d->new_ctrl |= unused_b;
2556        /*
2557         * Force the initial CBM to be valid, user can
2558         * modify the CBM based on system availability.
2559         */
2560        d->new_ctrl = cbm_ensure_valid(d->new_ctrl, r);
2561        /*
2562         * Assign the u32 CBM to an unsigned long to ensure that
2563         * bitmap_weight() does not access out-of-bound memory.
2564         */
2565        tmp_cbm = d->new_ctrl;
2566        if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) < r->cache.min_cbm_bits) {
2567                rdt_last_cmd_printf("No space on %s:%d\n", r->name, d->id);
2568                return -ENOSPC;
2569        }
2570        d->have_new_ctrl = true;
2571
2572        return 0;
2573}
2574
2575/*
2576 * Initialize cache resources with default values.
2577 *
2578 * A new RDT group is being created on an allocation capable (CAT)
2579 * supporting system. Set this group up to start off with all usable
2580 * allocations.
2581 *
2582 * If there are no more shareable bits available on any domain then
2583 * the entire allocation will fail.
2584 */
2585static int rdtgroup_init_cat(struct rdt_resource *r, u32 closid)
2586{
2587        struct rdt_domain *d;
2588        int ret;
2589
2590        list_for_each_entry(d, &r->domains, list) {
2591                ret = __init_one_rdt_domain(d, r, closid);
2592                if (ret < 0)
2593                        return ret;
2594        }
2595
2596        return 0;
2597}
2598
2599/* Initialize MBA resource with default values. */
2600static void rdtgroup_init_mba(struct rdt_resource *r)
2601{
2602        struct rdt_domain *d;
2603
2604        list_for_each_entry(d, &r->domains, list) {
2605                d->new_ctrl = is_mba_sc(r) ? MBA_MAX_MBPS : r->default_ctrl;
2606                d->have_new_ctrl = true;
2607        }
2608}
2609
2610/* Initialize the RDT group's allocations. */
2611static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2612{
2613        struct rdt_resource *r;
2614        int ret;
2615
2616        for_each_alloc_enabled_rdt_resource(r) {
2617                if (r->rid == RDT_RESOURCE_MBA) {
2618                        rdtgroup_init_mba(r);
2619                } else {
2620                        ret = rdtgroup_init_cat(r, rdtgrp->closid);
2621                        if (ret < 0)
2622                                return ret;
2623                }
2624
2625                ret = update_domains(r, rdtgrp->closid);
2626                if (ret < 0) {
2627                        rdt_last_cmd_puts("Failed to initialize allocations\n");
2628                        return ret;
2629                }
2630
2631        }
2632
2633        rdtgrp->mode = RDT_MODE_SHAREABLE;
2634
2635        return 0;
2636}
2637
2638static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2639                             struct kernfs_node *prgrp_kn,
2640                             const char *name, umode_t mode,
2641                             enum rdt_group_type rtype, struct rdtgroup **r)
2642{
2643        struct rdtgroup *prdtgrp, *rdtgrp;
2644        struct kernfs_node *kn;
2645        uint files = 0;
2646        int ret;
2647
2648        prdtgrp = rdtgroup_kn_lock_live(prgrp_kn);
2649        if (!prdtgrp) {
2650                ret = -ENODEV;
2651                goto out_unlock;
2652        }
2653
2654        if (rtype == RDTMON_GROUP &&
2655            (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2656             prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2657                ret = -EINVAL;
2658                rdt_last_cmd_puts("Pseudo-locking in progress\n");
2659                goto out_unlock;
2660        }
2661
2662        /* allocate the rdtgroup. */
2663        rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2664        if (!rdtgrp) {
2665                ret = -ENOSPC;
2666                rdt_last_cmd_puts("Kernel out of memory\n");
2667                goto out_unlock;
2668        }
2669        *r = rdtgrp;
2670        rdtgrp->mon.parent = prdtgrp;
2671        rdtgrp->type = rtype;
2672        INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2673
2674        /* kernfs creates the directory for rdtgrp */
2675        kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2676        if (IS_ERR(kn)) {
2677                ret = PTR_ERR(kn);
2678                rdt_last_cmd_puts("kernfs create error\n");
2679                goto out_free_rgrp;
2680        }
2681        rdtgrp->kn = kn;
2682
2683        /*
2684         * kernfs_remove() will drop the reference count on "kn" which
2685         * will free it. But we still need it to stick around for the
2686         * rdtgroup_kn_unlock(kn} call below. Take one extra reference
2687         * here, which will be dropped inside rdtgroup_kn_unlock().
2688         */
2689        kernfs_get(kn);
2690
2691        ret = rdtgroup_kn_set_ugid(kn);
2692        if (ret) {
2693                rdt_last_cmd_puts("kernfs perm error\n");
2694                goto out_destroy;
2695        }
2696
2697        files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2698        ret = rdtgroup_add_files(kn, files);
2699        if (ret) {
2700                rdt_last_cmd_puts("kernfs fill error\n");
2701                goto out_destroy;
2702        }
2703
2704        if (rdt_mon_capable) {
2705                ret = alloc_rmid();
2706                if (ret < 0) {
2707                        rdt_last_cmd_puts("Out of RMIDs\n");
2708                        goto out_destroy;
2709                }
2710                rdtgrp->mon.rmid = ret;
2711
2712                ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2713                if (ret) {
2714                        rdt_last_cmd_puts("kernfs subdir error\n");
2715                        goto out_idfree;
2716                }
2717        }
2718        kernfs_activate(kn);
2719
2720        /*
2721         * The caller unlocks the prgrp_kn upon success.
2722         */
2723        return 0;
2724
2725out_idfree:
2726        free_rmid(rdtgrp->mon.rmid);
2727out_destroy:
2728        kernfs_remove(rdtgrp->kn);
2729out_free_rgrp:
2730        kfree(rdtgrp);
2731out_unlock:
2732        rdtgroup_kn_unlock(prgrp_kn);
2733        return ret;
2734}
2735
2736static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2737{
2738        kernfs_remove(rgrp->kn);
2739        free_rmid(rgrp->mon.rmid);
2740        kfree(rgrp);
2741}
2742
2743/*
2744 * Create a monitor group under "mon_groups" directory of a control
2745 * and monitor group(ctrl_mon). This is a resource group
2746 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2747 */
2748static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2749                              struct kernfs_node *prgrp_kn,
2750                              const char *name,
2751                              umode_t mode)
2752{
2753        struct rdtgroup *rdtgrp, *prgrp;
2754        int ret;
2755
2756        ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP,
2757                                &rdtgrp);
2758        if (ret)
2759                return ret;
2760
2761        prgrp = rdtgrp->mon.parent;
2762        rdtgrp->closid = prgrp->closid;
2763
2764        /*
2765         * Add the rdtgrp to the list of rdtgrps the parent
2766         * ctrl_mon group has to track.
2767         */
2768        list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2769
2770        rdtgroup_kn_unlock(prgrp_kn);
2771        return ret;
2772}
2773
2774/*
2775 * These are rdtgroups created under the root directory. Can be used
2776 * to allocate and monitor resources.
2777 */
2778static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
2779                                   struct kernfs_node *prgrp_kn,
2780                                   const char *name, umode_t mode)
2781{
2782        struct rdtgroup *rdtgrp;
2783        struct kernfs_node *kn;
2784        u32 closid;
2785        int ret;
2786
2787        ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP,
2788                                &rdtgrp);
2789        if (ret)
2790                return ret;
2791
2792        kn = rdtgrp->kn;
2793        ret = closid_alloc();
2794        if (ret < 0) {
2795                rdt_last_cmd_puts("Out of CLOSIDs\n");
2796                goto out_common_fail;
2797        }
2798        closid = ret;
2799        ret = 0;
2800
2801        rdtgrp->closid = closid;
2802        ret = rdtgroup_init_alloc(rdtgrp);
2803        if (ret < 0)
2804                goto out_id_free;
2805
2806        list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
2807
2808        if (rdt_mon_capable) {
2809                /*
2810                 * Create an empty mon_groups directory to hold the subset
2811                 * of tasks and cpus to monitor.
2812                 */
2813                ret = mongroup_create_dir(kn, NULL, "mon_groups", NULL);
2814                if (ret) {
2815                        rdt_last_cmd_puts("kernfs subdir error\n");
2816                        goto out_del_list;
2817                }
2818        }
2819
2820        goto out_unlock;
2821
2822out_del_list:
2823        list_del(&rdtgrp->rdtgroup_list);
2824out_id_free:
2825        closid_free(closid);
2826out_common_fail:
2827        mkdir_rdt_prepare_clean(rdtgrp);
2828out_unlock:
2829        rdtgroup_kn_unlock(prgrp_kn);
2830        return ret;
2831}
2832
2833/*
2834 * We allow creating mon groups only with in a directory called "mon_groups"
2835 * which is present in every ctrl_mon group. Check if this is a valid
2836 * "mon_groups" directory.
2837 *
2838 * 1. The directory should be named "mon_groups".
2839 * 2. The mon group itself should "not" be named "mon_groups".
2840 *   This makes sure "mon_groups" directory always has a ctrl_mon group
2841 *   as parent.
2842 */
2843static bool is_mon_groups(struct kernfs_node *kn, const char *name)
2844{
2845        return (!strcmp(kn->name, "mon_groups") &&
2846                strcmp(name, "mon_groups"));
2847}
2848
2849static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
2850                          umode_t mode)
2851{
2852        /* Do not accept '\n' to avoid unparsable situation. */
2853        if (strchr(name, '\n'))
2854                return -EINVAL;
2855
2856        /*
2857         * If the parent directory is the root directory and RDT
2858         * allocation is supported, add a control and monitoring
2859         * subdirectory
2860         */
2861        if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
2862                return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode);
2863
2864        /*
2865         * If RDT monitoring is supported and the parent directory is a valid
2866         * "mon_groups" directory, add a monitoring subdirectory.
2867         */
2868        if (rdt_mon_capable && is_mon_groups(parent_kn, name))
2869                return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode);
2870
2871        return -EPERM;
2872}
2873
2874static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2875                              cpumask_var_t tmpmask)
2876{
2877        struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
2878        int cpu;
2879
2880        /* Give any tasks back to the parent group */
2881        rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
2882
2883        /* Update per cpu rmid of the moved CPUs first */
2884        for_each_cpu(cpu, &rdtgrp->cpu_mask)
2885                per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
2886        /*
2887         * Update the MSR on moved CPUs and CPUs which have moved
2888         * task running on them.
2889         */
2890        cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2891        update_closid_rmid(tmpmask, NULL);
2892
2893        rdtgrp->flags = RDT_DELETED;
2894        free_rmid(rdtgrp->mon.rmid);
2895
2896        /*
2897         * Remove the rdtgrp from the parent ctrl_mon group's list
2898         */
2899        WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
2900        list_del(&rdtgrp->mon.crdtgrp_list);
2901
2902        /*
2903         * one extra hold on this, will drop when we kfree(rdtgrp)
2904         * in rdtgroup_kn_unlock()
2905         */
2906        kernfs_get(kn);
2907        kernfs_remove(rdtgrp->kn);
2908
2909        return 0;
2910}
2911
2912static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
2913                                struct rdtgroup *rdtgrp)
2914{
2915        rdtgrp->flags = RDT_DELETED;
2916        list_del(&rdtgrp->rdtgroup_list);
2917
2918        /*
2919         * one extra hold on this, will drop when we kfree(rdtgrp)
2920         * in rdtgroup_kn_unlock()
2921         */
2922        kernfs_get(kn);
2923        kernfs_remove(rdtgrp->kn);
2924        return 0;
2925}
2926
2927static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2928                               cpumask_var_t tmpmask)
2929{
2930        int cpu;
2931
2932        /* Give any tasks back to the default group */
2933        rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
2934
2935        /* Give any CPUs back to the default group */
2936        cpumask_or(&rdtgroup_default.cpu_mask,
2937                   &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2938
2939        /* Update per cpu closid and rmid of the moved CPUs first */
2940        for_each_cpu(cpu, &rdtgrp->cpu_mask) {
2941                per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
2942                per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
2943        }
2944
2945        /*
2946         * Update the MSR on moved CPUs and CPUs which have moved
2947         * task running on them.
2948         */
2949        cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2950        update_closid_rmid(tmpmask, NULL);
2951
2952        closid_free(rdtgrp->closid);
2953        free_rmid(rdtgrp->mon.rmid);
2954
2955        /*
2956         * Free all the child monitor group rmids.
2957         */
2958        free_all_child_rdtgrp(rdtgrp);
2959
2960        rdtgroup_ctrl_remove(kn, rdtgrp);
2961
2962        return 0;
2963}
2964
2965static int rdtgroup_rmdir(struct kernfs_node *kn)
2966{
2967        struct kernfs_node *parent_kn = kn->parent;
2968        struct rdtgroup *rdtgrp;
2969        cpumask_var_t tmpmask;
2970        int ret = 0;
2971
2972        if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
2973                return -ENOMEM;
2974
2975        rdtgrp = rdtgroup_kn_lock_live(kn);
2976        if (!rdtgrp) {
2977                ret = -EPERM;
2978                goto out;
2979        }
2980
2981        /*
2982         * If the rdtgroup is a ctrl_mon group and parent directory
2983         * is the root directory, remove the ctrl_mon group.
2984         *
2985         * If the rdtgroup is a mon group and parent directory
2986         * is a valid "mon_groups" directory, remove the mon group.
2987         */
2988        if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn) {
2989                if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2990                    rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
2991                        ret = rdtgroup_ctrl_remove(kn, rdtgrp);
2992                } else {
2993                        ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
2994                }
2995        } else if (rdtgrp->type == RDTMON_GROUP &&
2996                 is_mon_groups(parent_kn, kn->name)) {
2997                ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
2998        } else {
2999                ret = -EPERM;
3000        }
3001
3002out:
3003        rdtgroup_kn_unlock(kn);
3004        free_cpumask_var(tmpmask);
3005        return ret;
3006}
3007
3008static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
3009{
3010        if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
3011                seq_puts(seq, ",cdp");
3012
3013        if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
3014                seq_puts(seq, ",cdpl2");
3015
3016        if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
3017                seq_puts(seq, ",mba_MBps");
3018
3019        return 0;
3020}
3021
3022static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
3023        .mkdir          = rdtgroup_mkdir,
3024        .rmdir          = rdtgroup_rmdir,
3025        .show_options   = rdtgroup_show_options,
3026};
3027
3028static int __init rdtgroup_setup_root(void)
3029{
3030        int ret;
3031
3032        rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
3033                                      KERNFS_ROOT_CREATE_DEACTIVATED |
3034                                      KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
3035                                      &rdtgroup_default);
3036        if (IS_ERR(rdt_root))
3037                return PTR_ERR(rdt_root);
3038
3039        mutex_lock(&rdtgroup_mutex);
3040
3041        rdtgroup_default.closid = 0;
3042        rdtgroup_default.mon.rmid = 0;
3043        rdtgroup_default.type = RDTCTRL_GROUP;
3044        INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
3045
3046        list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
3047
3048        ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
3049        if (ret) {
3050                kernfs_destroy_root(rdt_root);
3051                goto out;
3052        }
3053
3054        rdtgroup_default.kn = rdt_root->kn;
3055        kernfs_activate(rdtgroup_default.kn);
3056
3057out:
3058        mutex_unlock(&rdtgroup_mutex);
3059
3060        return ret;
3061}
3062
3063/*
3064 * rdtgroup_init - rdtgroup initialization
3065 *
3066 * Setup resctrl file system including set up root, create mount point,
3067 * register rdtgroup filesystem, and initialize files under root directory.
3068 *
3069 * Return: 0 on success or -errno
3070 */
3071int __init rdtgroup_init(void)
3072{
3073        int ret = 0;
3074
3075        seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3076                     sizeof(last_cmd_status_buf));
3077
3078        ret = rdtgroup_setup_root();
3079        if (ret)
3080                return ret;
3081
3082        ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3083        if (ret)
3084                goto cleanup_root;
3085
3086        ret = register_filesystem(&rdt_fs_type);
3087        if (ret)
3088                goto cleanup_mountpoint;
3089
3090        /*
3091         * Adding the resctrl debugfs directory here may not be ideal since
3092         * it would let the resctrl debugfs directory appear on the debugfs
3093         * filesystem before the resctrl filesystem is mounted.
3094         * It may also be ok since that would enable debugging of RDT before
3095         * resctrl is mounted.
3096         * The reason why the debugfs directory is created here and not in
3097         * rdt_mount() is because rdt_mount() takes rdtgroup_mutex and
3098         * during the debugfs directory creation also &sb->s_type->i_mutex_key
3099         * (the lockdep class of inode->i_rwsem). Other filesystem
3100         * interactions (eg. SyS_getdents) have the lock ordering:
3101         * &sb->s_type->i_mutex_key --> &mm->mmap_sem
3102         * During mmap(), called with &mm->mmap_sem, the rdtgroup_mutex
3103         * is taken, thus creating dependency:
3104         * &mm->mmap_sem --> rdtgroup_mutex for the latter that can cause
3105         * issues considering the other two lock dependencies.
3106         * By creating the debugfs directory here we avoid a dependency
3107         * that may cause deadlock (even though file operations cannot
3108         * occur until the filesystem is mounted, but I do not know how to
3109         * tell lockdep that).
3110         */
3111        debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3112
3113        return 0;
3114
3115cleanup_mountpoint:
3116        sysfs_remove_mount_point(fs_kobj, "resctrl");
3117cleanup_root:
3118        kernfs_destroy_root(rdt_root);
3119
3120        return ret;
3121}
3122
3123void __exit rdtgroup_exit(void)
3124{
3125        debugfs_remove_recursive(debugfs_resctrl);
3126        unregister_filesystem(&rdt_fs_type);
3127        sysfs_remove_mount_point(fs_kobj, "resctrl");
3128        kernfs_destroy_root(rdt_root);
3129}
3130